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ABSTRACT
Effects of additive independent noise are investigated for sub-
optimal detectors according to the restricted Bayes criterion.
The statistics of optimal additive noise are characterized.
Also, sufficient conditions for improvability or nonimprov-
ability of detection via additive noise are obtained. A detec-
tion example is presented to study the theoretical results.

Index Terms— Detection, restricted Bayes, minimax,
noise enhanced detection, stochastic resonance.

1. INTRODUCTION

Performance of some suboptimal detectors can be enhanced
by adding independent noise to their observations. Improving
the performance of a detector by adding a stochastic signal to
its observation can be considered in the framework of stochas-
tic resonance (SR), which can be regarded as noise benefits
related to signal transmission in nonlinear systems (please re-
fer to [1]-[3] and references therein for more details). In other
words, for certain detectors, addition of controlled “noise”
can improve detection performance. Such noise benefits can
be in various forms, such as an increase in output signal-to-
noise ratio (SNR) [4], a decrease in probability of error [5],
or an increase in probability of detection under a false-alarm
rate constraint [3], [6], [7].

The effects of additive noise on detection performance are
studied in [3] and [6] in the Neyman-Pearson framework, and
it is shown that the optimal additive noise can be represented
by a randomization of at most two different signal values. In
[5], noise enhanced detection is investigated according to the
Bayesian criterion under uniform cost assignment. It is shown
that the optimal noise that minimizes the probability of deci-
sion error has a constant value, and a Gaussian mixture exam-
ple is presented to illustrate the improvability of a suboptimal
detector via adding constant noise. Also, the studies in [8] and
[9] consider the minimax criterion and investigate the effects
of additive noise on suboptimal detectors.

Although both the Bayesian and the minimax frameworks
have been considered for the noise enhanced detection prob-
lem, no studies have considered the restricted Bayes criterion
[10]. Under the Bayesian criterion, the prior information is
precisely known, whereas it is not available under the mini-
max criterion. However, having prior information with some
uncertainty is the most common situation, and the restricted
Bayes criterion is well-suited to that case [10], [11]. In the
restricted Bayesian framework, the aim is to minimize the
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Bayes risk under a constraint on the individual conditional
risks [10]. Depending on the value of the constraint, the re-
stricted Bayes criterion covers the Bayesian and minimax cri-
teria as special cases [11].

In this study, noise enhanced detection is studied in the
restricted Bayesian framework. First, a generic problem for-
mulation is presented (Section 2). Then, the statistics of op-
timal additive noise are obtained, and various sufficient con-
ditions are derived to specify when the performance of a de-
tector can or cannot be enhanced via additive noise in the re-
stricted Bayesian framework (Section 3). Finally, a detection
example is presented to illustrate the theoretical results, and
concluding remarks are made (Section 4).

2. PROBLEM FORMULATION AND MOTIVATION

Consider the following M -ary hypothesis-testing problem:

Hi : pX
i (x) , i = 0, 1, . . . , M − 1 , (1)

where pX
i (x) denotes the probability density function (PDF)

of the observation under hypothesis Hi and the observa-
tion x is a vector with K components; that is, x ∈ R

K .
The prior probabilities of the hypotheses are denoted by
π0, π1, . . . , πM−1. Also, a generic decision rule is defined as

φ(x) = i , if x ∈ Γi , (2)

for i = 0, 1, . . . , M − 1, where Γ0, Γ1, . . . , ΓM−1 form a
partition of the observation space Γ.

In some cases, addition of noise to observations can im-
prove the performance of a suboptimal decision rule (detec-
tor) [3], [6]. By adding noise n to the original data x, the
modified observation is formed as y = x + n, where n has
a PDF denoted by pN (·), and is independent of x. As in [3]
and [6], it is assumed that the detector in (2) is fixed, and that
the only means for improving the performance of the detector
is to optimize the additive noise n. In other words, the aim
is to find the best pN (·) according to the restricted Bayes cri-
terion [10]; namely, to minimize the Bayes risk under certain
constraints on the conditional risks, as specified below.

min
pN (·)

M−1∑
i=0

πiR
y
i (φ)

subject to max
i∈{0,1,...,M−1}

Ry
i (φ) ≤ α (3)

where α represents the upper limit on the conditional risks,∑M−1
i=0 πiR

y
i (φ) � ry(φ) is the Bayes risk and Ry

i (φ) repre-
sents the conditional risk of φ given Hi for the noise modified
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observation y. More specifically, Ry
i (φ) =

∑M−1
j=0 CjiP

y
i (Γj),

where Py
i (Γj) denotes the probability that y ∈ Γj when Hi is

the true hypothesis, and Cji is the cost of deciding Hj when
Hi is true. In the restricted Bayes formulation, any undesired
effects due to the uncertainty of prior probabilities can be
eliminated via parameter α, which can also be considered as
an upper bound for the Bayes risk [11].

Two main motivations for studying the effects of addi-
tive noise on detector performance are as follows. First, the
optimal detectors according to the restricted Bayes criterion
are difficult to obtain, or require intense computations [11].
Therefore, a suboptimal detector with additive noise can pro-
vide reasonable performance with low complexity in some
cases. Second, it is of theoretical interest to investigate the
improvements that can be achieved via additive noise.

3. OPTIMAL ADDITIVE NOISE AND
(NON)IMPROVABILITY CONDITIONS

In order to obtain the optimal additive noise from (3), an alter-
native expression for Ry

i (φ) can be obtained first. Since the
additive noise n is independent of the observation x, Py

i (Γj)
is given by

∫
Γj

∫
RK pN (n)pX

i (y−n) dn dy. Then, Ry
i (φ) =∑M−1

j=0 CjiP
y
i (Γj) can be expressed as

Ry
i (φ) =

M−1∑
j=0

Cji E{Fij(N)} = E{Fi(N)} , (4)

where N is the random variable representing the addi-

tive noise, Fij(N) �
∫
Γj

pX
i (y − N)dy and Fi(N) �∑M−1

j=0 CjiFij(N). Thus, (3) can be reformulated as

min
pN (·)

M−1∑
i=0

πiE{Fi(N)} � E{F (N)}

subject to max
i∈{0,1,...,M−1}

E{Fi(N)} ≤ α (5)

where F (N) �
∑M−1

i=0 πiFi(N). Note that under uniform
cost assignment (UCA); that is, when Cji = 1 for j �= i, and
Cji = 0 for j = i, Fi(N) becomes equal to 1 − Fii(N).

It is noted from (4) that, in the absence of additive noise
n, the original conditional risks are given by Rx

i (φ) = Fi(0)
for i = 0, 1, . . . , M − 1. Similarly, the original Bayes risk is

defined as rx(φ) � F (0) in the absence of noise (cf. (5)).
The optimization problem in (5) seems quite difficult to

solve since it requires a search over all possible noise PDFs.
However, it is shown in the following that an optimal additive
noise PDF can be represented by a discrete probability distri-
bution with at most M mass points in most practical cases.
To that aim, it is first assumed that the possible values that
the additive noise can take satisfy a � n � b for certain a
and b values; that is, nj ∈ [aj , bj ] for j = 1, . . . , K, which
is a reasonable assumption as the additive noise cannot take
infinitely large positive/negative values. Then, the following
proposition states the discrete nature of the optimal additive
noise, which can be proven similarly to a result in [6].

Proposition 1: If Fi(·) in (5) are continuous functions,
then the optimal additive noise PDF can be expressed as

pN (n) =
M∑
l=1

λl δ(n − nl) , (6)

where
∑M

l=1 λl = 1 and λl ≥ 0 for l = 1, 2, . . . , M .
From Proposition 1, the optimization problem in (5) can

be simplified as

min
{λl,nl}M

l=1

M∑
l=1

λlF (nl)

subject to max
i∈{0,1,...,M−1}

M∑
l=1

λlFi(nl) ≤ α

M∑
l=1

λl = 1 , λl ≥ 0 , l = 1, 2, . . . , M . (7)

The optimization in (7) is over a set of variables instead of
functions (cf. (5)). However, it can still be a nonconvex opti-
mization problem in general; hence, global optimization tech-
niques, such as particle-swarm optimization (PSO) and dif-
ferential evolution can be applied [12]. In Section 4, PSO is
employed to obtain the PDF of optimal additive noise.

Next, sufficient conditions are derived to determine when
it is (not) possible to improve the performance of a detec-
tor via additive independent noise. In that respect, a detector
is called improvable if there exists a noise PDF that satisfies
E{F (N)} < F (0) and max

i
E{Fi(N)} ≤ α ; otherwise, it

is called nonimprovable. First, sufficient conditions for non-
improvability are obtained.

Proposition 2: Assume that there exists i ∈ {0, 1, . . . , M−
1} for which Fi(n) ≤ α implies F (n) ≥ F (0) for all
n ∈ Sn, where Sn is a convex set1 consisting of all possible
values of additive noise n. If Fi(n) and F (n) are convex
over Sn, then the detector is nonimprovable.

Proof: It relies on the applications of Jensen’s inequality.
The importance of Proposition 2 lies in the fact that when-

ever the conditions in the proposition are satisfied, no additive
noise can improve the detector performance; hence, unneces-
sary efforts in trying to solve (7) can be prevented.

In order to derive sufficient conditions for improvability, it
is assumed that F (x) and Fi(x) for i = 0, 1, . . . , M − 1 are
second-order continuously differentiable around x = 0 . In

addition, define f
(1)
j (x, z) �

∑K
i=1 zi

∂Fj(x)
∂xi

, f (1)(x, z) �∑K
i=1 zi

∂F (x)
∂xi

, f
(2)
j (x, z) �

∑K
l=1

∑K
i=1 zlzi

∂2Fj(x)
∂xl∂xi

, and

f (2)(x, z) �
∑K

l=1

∑K
i=1 zlzi

∂2F (x)
∂xl∂xi

where xi and zi rep-

resent the ith components of x and z, respectively. Then,
the following proposition provides improvability conditions
based on the first and second order derivatives.

Proposition 3: Suppose Fk(0) = α and Fi(0) < α for
i = 0, 1, . . . , k − 1, k + 1, . . . , M − 1. Then, the detector is
improvable

1Since the convex combination of individual noise components are ob-
tained via randomization [13], Sn can be modeled as convex.
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• if there exists a K-dimensional vector z such that
f

(1)
k (x, z)f (1)(x, z) > 0 is satisfied at x = 0; or,

• if there exists a K-dimensional vector z such that
f (1)(x, z) > 0, f (1)

k (x, z) < 0 and f (2)(x, z)f (1)
k (x, z)

> f
(2)
k (x, z)f (1)(x, z) are satisfied at x = 0 .2

Whenever any of the results in Proposition 3 holds, the
detector is improvable. Therefore, the optimization problem
in (7) can be solved to specify the optimal additive noise. Al-
though Proposition 3 considers that the maximum of the orig-
inal conditional risks, F0(0), F1(0), . . . , FM−1(0), is unique
and equal to α, the results in Proposition 3 can be extended
to cover other cases as well, which is not pursued here due to
space limitations.

4. NUMERICAL RESULTS AND CONCLUSIONS

In this section, a binary hypothesis-testing problem is studied
in order to provide an example of the results presented in the
previous section. The hypotheses H0 and H1 are defined as

H0 : x = v , H1 : x = A + v , (8)

where x ∈ R and A > 0 is a known scalar value. In ad-
dition, v is Gaussian mixture noise with the PDF pV (x) =∑M

i=1 wi ψi(x − μi), where wi ≥ 0 for i = 1, . . . , M ,∑M
i=1 wi = 1, and ψi(x) = 1√

2π σi
exp

(
−x2

2 σ2
i

)
for i =

1, . . . , M . In addition, the detector is described by

φ(y) =
{

1 , y ≥ A/2
0 , y < A/2

, (9)

where y = x+n, with n representing the additive independent
noise term.

Based on the definitions in Section 3, F0(x) and F1(x)
can be obtained as

Fk(x) = 1 −
M∑
i=1

wi Q

(−A/2 + ak(x + μi)
σi

)
, (10)

for k = 0, 1, where a0 = 1, a1 = −1, and Q(x) =
1√
2π

∫ ∞
x

e−t2/2dt denotes the Q-function.

In practice, the example described above can be encoun-
tered in detection of communications signals in the presence
of co-channel interference, which can result in Gaussian mix-
ture noise at the receiver [14].

In the simulations, UCA is employed and two cases are
considered for the prior probabilities: i) π0 = 0.9, π1 = 0.1
(unequal priors), ii) π0 = π1 = 0.5 (equal priors). Also, sym-
metric Gaussian mixture noise with M = 4 is considered for
noise v in (8), where the mean values of the Gaussian com-
ponents in the mixture noise are specified as ±[0.033 0.52]
with corresponding weights of [0.35 0.15]. In addition, for all
cases, the variances of the Gaussian components in the mix-
ture noise are assumed to be the same; that is, σi = σ for
i = 1, . . . , M .

2This result still holds if the inverses of all the inequality signs are taken.
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Fig. 1. Bayes risks of the original and noise modified detec-
tors versus σ for α = 0.12 and A = 1.
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Fig. 2. Improvement ratio versus α for σ = 0.01, σ = 0.05
and σ = 0.1, where A = 1.

Fig. 1 illustrates the Bayes risks for the modified and orig-
inal (i.e., in the absence of additive noise) detectors for var-
ious values of σ in the cases of equal and unequal priors for
α = 0.12, where A = 1. It is observed that as σ increases,
the improvement obtained via additive noise decreases. Also,
there is more improvement for the unequal priors case than
for the equal priors case, which is expected because there is
more room for noise enhancement in the unequal priors case
due to the asymmetry between the weights of the conditional
risks in determining the Bayes risk.

Fig. 2 illustrates the improvement ratio, defined as the
ratio of the Bayes risks without and with additive noise, ver-
sus α in the cases of equal and unequal priors for σ = 0.01,
σ = 0.05 and σ = 0.1, where A = 1 is used. In the case of
unequal priors, as α increases, an increase is observed in the
improvement ratio up to a certain α, and then the improve-
ment ratio becomes constant. Those critical α values specify
the boundaries between the restricted Bayes and the (unre-
stricted) Bayes criteria. When α becomes larger than those
values, the constraint in (3) is no longer active; hence, the
problem reduces to the Bayesian framework. Similarly, as
the value of α decreases, the restricted Bayes criterion con-
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Table 1. Optimal additive noise PDFs for various values of σ.

π0 = 0.5/π0 = 0.9
σ λ n1 n2

0 0.2553/0.8 -0.2849/-0.4063 0.0421/0.0598
0.08 0.4436/0.2028 -0.2266/0.2266 0.2266/-0.2266
0.15 0.7492/1 0.0944/-0.0959 -0.0944/—
0.23 1/1 0/-0.0693 —/—
0.31 1/1 0/-0.0067 —/—

verges to the minimax criterion. The restricted Bayes cri-
terion achieves its minimum improvement ratio when it be-
comes equivalent to the minimax criterion and achieves its
maximum improvement ratio when it is equal to the Bayes
criterion. In the case of equal priors, the improvement ratio is
constant with respect to α, meaning that the improvement for
the minimax criterion equals that for the Bayes criterion. An-
other observation from the figure is that an increase σ reduces
the improvement ratio, and for the same values of σ, there is
more improvement for the unequal priors case.

Table 1 shows the optimal additive noise PDFs for vari-
ous values of σ in the cases of equal and unequal priors for
α = 0.12 and A = 1. According to Proposition 1, the opti-
mal additive noise PDF contains at most two different mass
points, which is expressed as pN (x) = λ δ(x − n1) + (1 −
λ) δ(x − n2). From the table, it is observed that the optimal
additive noise PDF has two mass points for certain values of
σ whereas it has a single mass point for other σ values. Also,
in the case of equal priors, the optimal noise PDFs contain
only one mass point at the origin for σ = 0.23 and σ = 0.31,
meaning that the detector is nonimprovable in those scenar-
ios. However, there is always improvement for the unequal
priors case, which can also be verified from Fig. 1.

Finally, the improvability conditions based on Proposition
3 are evaluated for the considered detection example for var-
ious values of A.3 The limit on the conditional risks, α, is
set to the original conditional risks for each value of σ. For
both the equal and unequal priors cases, the improvability
conditions state that the detector is improvable for A = 1
if σ ∈ [0.005, 0.1597], for A = 0.9 if σ ∈ [0.01, 0.1686],
and for A = 0.8 if σ ∈ [0.02, 0.161]. On the other hand, the
calculations show that the detector is actually improvable for
A = 1 if σ ≤ 0.16, for A = 0.9 if σ ≤ 0.17, and for A = 0.8
if σ ≤ 0.161. The results reveal that the proposed improvabil-
ity conditions are sufficient but not necessary, and that they
are quite effective in determining the range of parameters for
which the detector performance can be improved.

In conclusion, the restricted Bayesian framework consid-
ered in this study provides a generalization of noise enhanced
detection in the minimax and the Bayesian frameworks. In
addition, it has practical importance since prior information
may not be exact in practice [11].
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