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ABSTRACT

BALANCING COMPUTATION LOAD AND COMMUNICATION
OVERHEAD WITH MULTILEVEL SELF ORGANIZING MAPS

Erdogan BIKMAZ
M.S. in Computer Engineering
Supervisor: Asst. Prof. Attila Giirsoy
July, 2001

Today, execution time of big programs such as the programs for data-
analysis tasks, scientific computations, and engineering problems remains as
a big bottleneck. To reduce the execution time, a common approach is to
run such applications on parallel machines. A major task in the paralleliza-
tion of these applications or computations is to distribute the computational
load to processors in a balanced way. We argue that distributing only the
computational load equally is not enough for load balancing because commu-
nication cost, which is inevitable in parallel computations, brings some extra
overhead. We used Kohonen Self-Organizing Maps (SOM) that preserves the
neighborhood relationship of tasks to minimize and balance the communica-
tion overhead. We balance not only computation load but also communication
overhead by balancing the number of messages. The performance experiments
show that our algorithm outperforms the other static task mapping algorithms
on the view of load balancing. One general drawback of Self-Organizing ap-
proaches is the high running time. We decreased the execution time of SOM

algorithm with multilevel approach.

Key words: Neural networks, Kohonen Self-Organizing Maps, task map-

ping, load balancing, communication overhead.
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OZET

HESAP VE HABERLESME YUKUNU COK KATMANLI
KENDINDEN DUZENLENEN HARITALARLA
DENGELEME

Erdogan BIKMAZ
Bilgisayar Miihendisligi Boliimii, Yiiksek Lisans
Tez Yoneticisi: Yrd. Dog¢. Attila Giirsoy
Temmuz, 2001

Bugiin, veri analizi, bilimsel hesaplamalar, ve miihendislik hesaplamalari
gibi uygulamalarda kullanilan bazi biiyiik programlarin bilgisayarlarda yiiriitme
zamani biiylik bir problem olarak kargimiza ¢ikmaktadir. Yiirtitme zamanini
azaltmak icin genel yaklasim, bu tiir uygulamalar: paralel makinalarda yiiriit-
mektir. Bu tiir uygulamalar1 ve hesaplamalar1 paralellestirmekte énemli olan
hesaplama yiiklerini iglemcilere dengeli dagitmaktir. Sadece hesaplama yiiklerini
esit olarak dagitmanin yiik dengesi acisindan yeterli olmadigimi iddia ediy-
oruz, ciinkii paralel makinalarda kaginilmaz olan haberlesme fazla yiik ge-
tirir. Haberlegme yiikiinii azaltmak ve dengelemek icin komguluk iligkilerini
topolojik olarak muhafaza eden Kohonen Kendinden Diizenlenen Harita Al-
goritmasini kullandik. Mesaj sayisini dengeleyerek sadece hesaplama yiikiini
degil, ayn1 zamanda haberlesme yiikiinii de dengeledik. Bagarim deneyleri,
yiikk dagilimi agisindan bizim algoritmamizin diger statik yiik dagilim algorit-
malarindan daha iyi oldugunu gosterdi. Kendinden Diizenlenen Haritalar Al-
goritmasinin genel kotii yani uzun yiirtitme zamanidir. Kendinden Diizenlenen

Haritalar Algoritmasinin iglem siiresini ¢ok kath yaklagimla azalttik.

Anahtar Kelimeler: Sinir aglari, Kohonen Kendinden Diizenlenen Haritalar

Algoritmasi, gorev atama, yik dengeleme, Haberlesme yiikii.
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Chapter 1

Introduction

To solve computationally large problems we use parallel programs. The execu-
tion time of a parallel program is determined by the processor with the largest
execution time. This time is dependent upon both the local calculations per-
formed on each processor and any required inter processor communication. To
be able to get good performance from multi-computer systems, computational
load of each processor should be maintained in a balanced way. Balancing
means that total load (computation and communication) of each processor
should be assigned such that each processor spends nearly equal time on the

problem.

In order to develop a parallel program for a multi-computer, first of all, the
problem is decomposed into a set of interacting sequential sub-problems (or
tasks) that can be executed in parallel. Then, each one of these tasks is mapped
to a processor of the parallel machine, in such a way that, the total execution
time is minimized. This mapping phase is called the task mapping problem, and
is known to as NP-hard. However, there exist heuristic approaches to map tasks
to processors that significantly minimize the execution time. According to their
task assignment order (at the beginning or during the execution), mappings
can be grouped in two categories: “static” and “dynamic”. Static mapping
deals with the assignment of tasks to processor at the beginning only once.
On the other hand, dynamic mapping requires changes on mapping (which
is also called task migration) during the execution, according to the states

of processors. In this study, we consider static mapping with Self-Organizing



Introduction 2

Maps (SOM). We have considered both communication load and computation
load of each processor. The performance of SOM algorithm is compared with

the performance of other well-known algorithms.

Self-Organizing Map algorithm is a stochastic optimization algorithm, which
is first introduced by Tuevo Kohonen [28, 29]. The idea of SOM is originated
from the organizational structure of human brain and the learning mechanism
of biological neurons. It is based on competitive learning, where the neural
units compete in order to be activated and eventually corrected. During this
process, the neurons organize themselves according to given inputs and ac-
cording to signals from other neurons. After training, some neurons become
sensitive to particular inputs. This sensitivity forms a topological relation (or-
dering) between the inputs and neurons. That is after training, the neurons
become organized in such a way that their ordering reflect the topological prop-
erties of inputs. So, SOM algorithm forces neurons to be topologically ordered

during the execution according to given inputs.

In this work we discuss different processor connection graphs for SOM based
load balancing for a class of parallel programs where the communication be-
tween tasks are localized. Many real-life parallel scientific computations such
as fluid dynamics, particle simulation, finite element methods have this kind of
communication pattern. Furthermore, these problems can be represented by
computation graphs where the nodes of the graph represent tasks and edges
represent communication or interaction among the tasks. A common way of
mapping these tasks to processors is to partition the graph so that the compu-
tational load of each partition (that is, sum of node weights) is balanced while
the number of edges (or some of edge weights) between partitions is minimized
(minimizing edge-cut). Then, each partition is assigned to a processor. Edge
cut minimization reduces total volume of communication, results in improved
communication time and in general better total execution time. Until now,
a lot of different algorithms designed to solve the mapping problem like ge-
netic algorithms [11], simulated annealing [7], mean field annealing [9], greedy
approaches [12], Kernighan-Lin heuristic [13] etc. Additionally, many multi-
level algorithms/tools are also designed using the above algorithms/approaches
including MeTiS [23], Chaco [17], Jostle [10]. Most of these approaches consid-
ered reducing total volume of communication. However, in current parallel ar-

chitectures (message passing), most of the communication overhead takes place
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at the preparation of sending and receiving messages at the operating system
and parallel runtime system levels [24]. Therefore, in many parallel compu-
tations such as finite element method based computations, minimizing the
number messages that each processor is sending becomes more important. Re-
cently, this problem is addressed within the graph partitioning context [32, 19].
In this thesis, we address this problem and propose algorithms, which is bal-
ancing the number of messages, that balances not only computational load
but also communication overhead. The proposed algorithms are based on the
neighborhood preserving load balancing with Self-Organizing Maps approach
developed by Giirsoy and Atun [14]. In their work, the Self-Organizing Map
approach reduce the communication overhead inherently. We improve the load
balancing algorithm further to minimize and balance the communication over-

head by proposing new processor connection graphs.

The rest of the thesis is organized as follows: For completeness, the SOM
Algorithm is explained in Chapter 2. In Chapter 3, communication overhead
factors, namely, the effect of load size, the effect of communication type, the
effect of the number of communicating processors, the effect of start up time,
the effect of message length are discussed. In Chapter 4, the mapping problem
is described and given new models for processor connection graph, and proces-
sor connection graph models are compared. In Chapter 5, processor mapping
approaches are compared and presented. In Chapter 6, multilevel implementa-
tion of Self-Organizing Map (MSOM) is presented. In Chapter 7, experimental
results are presented. In Appendix A, properties of MeTiS program are given.
In Appendix B, list and properties of input files are given. In Appendix C, the

Chaco input file format is explained.



Chapter 2

Load Balancing with SOM

2.1 Kohonen Self-Organizing Map

Self-Organizing Maps, which are introduced by T. Kohonen [29], are artificial
neural networks modelling the brain’s cortex. One of the best properties of
these maps is neighborhood preservation from input space to output space.
The Kohonen’s algorithm is a well established learning rule in fields like robot
control and speech recognition. A biological analogue to the SOM are the com-
putational maps in the celebral cortex, where the spatial location of neurons
correspond to a particular domain on the human body input sensors. The
human brain is arguably the most fascinating structure in all the human phys-
iology. Although the brain is vastly complex on a microscopic level, it reveals a
consistently uniform structure on a macroscopic scale from one brain to other.
Centers of different actions such as hearing, vision, speech and motor functions
lie in specific areas of the brain and these regions have a relation between each
other. Furthermore, individual areas exhibit a logical ordering of their func-
tionalities. The SOM was inspired by the way in which various human sensory
impressions are neurologically mapped into the brain such that spatial or other
relations among stimuli correspond to spatial relations among the neurons. A
SOM tries to find clusters such that any two nodes that are close to each other
in the grid space have code book vectors that are close to each other in the
input space. However, the reverse may not be true: code book vectors that are

close to each other in the input space, do not necessarily correspond to clusters
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that are close to each other in the grid.

SOMs are widely used in engineering and data-analysis tasks, but rarely in
very large-scale problems. A lot of studies are done to decrease the computa-
tion time. A lot of methods are proposed to reduce the amount of computa-
tion, such as Fast Winner Search [26], and also hardware supported system
that enables the parallel computing of Euclidean distance with Kohonen’s Self-
Organizing Map [2] that computes the distances of all neurons and finds rapidly

the position of the winning neuron.

The SOM is a competitive learning algorithm, where the processing ele-
ments compete in order to be activated and eventually corrected. During the
learning process, neurons become selectively tuned to subregions of the input
space, which results in a code book (reference to each other) represented by

prototypes of typical features in the data.

The Kohonen SOM (KSOM) is composed of neurons that are on one or
two dimensional grid. Each neuron, which is directly connected with the input
signal, has lateral connections with other neurons determining the state of
activation of the whole map. After the learning process is completed, the
Kohonen map has two important properties: topological ordering and density
matching. The map is topologically ordered because there are two prototypes
(features) that are neighbors in the grid and also neighbors in the input domain
space. The map matches the density of the input distribution because regions
with high probability of accuracy are mapped to proportionally larger zones.
The KSOM usually has an output layer of interconnected neurons that are fully
connected to the input layer, so every neuron from the output layer is connected
to every neuron from the input layer. As in the domain of supervised networks
the connection has certain weights. Every neuron from the output layer has
consequently as many weights as the neural network inputs. furthermore the
output neurons are ordered in a particular way, usually two dimensional grid,
where each neuron has neighbors. The KSOM was inspired by the way in
which various human sensory impression are topographically mapped into the
neurons of the brain. Like any other neural network, the usage of the Kohonen
map follows two steps: the learning step and the testing step. During learning
phase, the input examples are sequentially used as input of the neural network,

every time the weights of the connections are being changed. The input data
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are repeatedly used until the neural network converges. During the testing,
the weights do not change and the output of the neural network is used as the

response of the neural network to the given input data.

2.2 Implementation of SOM for Load Balancing

The basic architecture of Kohonen’s map is n neurons that are generally con-
nected to a d—dimensional space, for example a grid, where each neuron is
connected with its neighbors. The map has two layers: an input layer and an
output layer that consists of neural units. Each neuron in the output layer
is connected to every input unit. A weight vector w; is associated with each
neuron 7. An input vector, v, which is chosen randomly, is forwarded to the
neuron layer during the competitive phase of the SOM. Then, excitation center
is determined (the determination of the excitation center will explained later).
The weight vectors of the winner neuron and its topological neighbors are up-
dated so as to align them towards the input vector. This step corresponds to

the cooperative learning phase of the SOM.

SOM Algorithm is used for load balancing is implemented as follows [15]:
in the input layer, unit square S = [0, 1] x [0, 1] is accepted as the input space
of the Self-Organizing Map. Then, unit square S is divided into p square
regions, called processor regions (Figure 2.1(a)), and if the number of tasks is
larger than predetermined number of tasks, then each processor area is divided
to 5 x 5 square boxes (Figure 2.1(b)), where p = P, x P, is the number of
processors. Every processor P;; has a region of coordinates that is a subset of
S bounded by i X width,,j x width, and (i + 1) X width,, (j + 1) X width,
where, width, = 1/p, and width, = 1/p,.

Processors are connected to each other with the Processor Connection
Graph (PCG), which is a commonly used model for this purpose. A PCG,
is an undirected graph Gp(Vp, Ep) such that

e cach v € Vp represents a processor,

e cach (u,v) € Ep represents the physical communication link between

processors u and v.
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(a) (b)

Figure 2.1: Processor mappings of SOM algorithm in[13] (a)Processor Mapping,
(b)Processor mapping when each processor area divided to boxes.

In order to allow different architectures, a weight can be assigned to each
vertex, indicating the speed of that processor and a weight to each edge repre-

senting the bandwidth of the communication link between processors.

In distributed memory architectures, parallel program tasks are generally
thought as a limited number of command lines to be executed sequentially
with interchanging sequences of computation and communication phases. This
definition allows the tasks to be executed at different processors at once (no
precedence constraint between tasks), exposing the advantage of distributed
architectures and forms a way of assigning a load to each task. The load
of a task is the average computation time between successive communication
phases. With these in mind, the parallel program’s tasks are represented by
Task Interaction Graph (TIG), where TIG is a weighted undirected graph
G7(Vr, Er) such that

e cach v € V, represents a task,

e cach (u,v) € Er represents the data exchange between tasks u and v.

In [15], each task corresponds to a neuron in the Self-Organizing Map. The
weight vectors of these neurons are selected to be positions on the unit square

S. This means that, each weight vector, W = (z,y) € S, is a point in S. A
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task, 4, is mapped to a processor F;; if the weight of task 7, W, is in the region

Similar to PCG, a weight is assigned to each vertex indicating the load
of that task and a weight of each edge (u,v) representing the communication

between tasks v and v.

With this representation, the mapping problem is reduced to partitioning of
the vertices of a graph G into |Vp| roughly equal parts (load balancing) such
that the number of edges that are connecting vertices of G in different parts
are to minimize communication. In other words, given a TIG G+ (Vr, Er) and
PCG Gp(Vp, Ep), the optimum partition can be obtained with P : Vi — Vp

such that the differences between the loads of processors are minimized:

Vol
AvgLoad = = x> load(q)
pi=
Mazx Load = mazx;cy, load(1)
MaxLoad — AvgLoad
LoadImbalance = @ ZSJgLoasg o % 100 (1)

At the beginning of the algorithm, weights of nodes are given randomly and
these tasks (nodes) are randomly distributed to the subregions (sub squares)
of the processors. Then processor loads and initial load imbalance value are
calculated. Then the SOM algorithm is executed in a loop (number of pre-
determined times), execution is terminated when convergence load imbalance
value is reached before this predetermined times. In the loop, we choose any
task (node) in the area of the least loaded processor’s least loaded box and
find the excitation center. As we know each processor region was divided into
square boxes. The excitation center is determined as follows: each input vec-
tor is compared to the weight vector of every neuron from the output layer.
The neuron with the most similar weight vector is selected to be the excitation
center ¢ and is permitted to update its weights towards the values of the input
vector [15]

W — 1| = i || W — 1| )
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That is why the output layer is often called the competitive layer: each
neuron fights over the input and the winner is granted an update of its weights.
If a similar input is represented afterwards, this neuron will be more likely to
win again because it will update its weights while the weights of the other
neurons remained unchanged. The neuron that wins the competition is called
“Best Matching Unit (BMU)” or “excitation center”.

After the excitation center is determined, the weight vectors of some neu-
rons are updated according to a learning function by which the neurons or-
ganize themselves. The learning function of the SOM Algorithm is generally

formulated as Equation ( 3)

W =W+ € % h(c,i, t) * ||I' = W] (3)

In Equation ( 3),

o W! and W/'! are the weight vectors of neuron i at time ¢ and t + 1

respectively,

e I is the input vector forwarded to output layer at time ¢,

h(c,i,t) is the neighborhood function and

€' is the learning rate at time t.

Neighborhood function mainly defines the neurons that are effected and
the ratio of this effect for current input at each step. The neurons that are
effected at each step are specified by neighborhood diameter function €, which
is generally embedded into the definition of neighborhood function. It is mostly
an exponential function and decreases with increasing time step. Generally, it
defines the vicinity of an excitation center at each step. As it is seen in Equation
( 3), the learning rate, the neighborhood function and the difference between
weight vector and input vector at time ¢, determine at what ratio the weight

vector of a neuron should be updated.

The typical SOM is given in Figure 2.2. The steps of selecting an input,

determining the excitation center and the weight vector update are repeated
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Initialize Weight Vectors
Initialize Input Vectors
for (i=0; i$<t_{max}$; i++) {
Select an input
Determine excitation center
for (j=0; j< Number_0f_Neurons; j++)
if (neuron j is inside the vicinity of input vector)
Update neuron j

Figure 2.2: Typical SOM Algorithm

until an ordered map formation is completed. The stopping criterion is gener-
ally a predetermined number of steps or the result of an error function whose
value is expected to become less than a predetermined threshold value [14].
An example of Airfoil data, which has 4253 nodes, is distributed to 16 proces-
sors randomly at the beginning of the algorithm and after the execution of the
algorithm, these nodes are distributed to the processors in a balanced way as

shown in Figure 2.3.

Figure 2.3: airfoil data is distributed to 16 processors.
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2.3 DMotivation of Our Studies

Up to know, the research on the SOM Algorithm neglected the communication
overhead. We thought that, inter processor communication is inevitable for
parallel computers, and this overhead will be very important during the load
balancing. On the light of this hypothesis, we tried to analyze the effects of

communication overhead and elements of communication cost.



Chapter 3

Communication Overhead

Recent advances in message passing implementations [31] and improved net-
work interfaces [6, 20] have significantly reduced the software cost of message
passing. However, software communication overhead still continues to be big-
ger problem than the hardware routing cost [24]. The interactions influencing
a parallel program’s overall performance can be very complex, so changing
the performance of one aspect of the system may cause subtle changes to the
programs behavior. For example, changing the communication overhead may
change the load balance, the synchronization behavior, the contention, or other

aspects of a parallel program [30].

Communication overhead is defined as the length of time that a processor
is engaged in the transmission or reception of each message; during this time,

the processor cannot perform other operations.

The load balancing SOM algorithm, which is discussed in previous chapter,
did not include communication cost overhead or did not consider the effect of
communication overhead on load imbalance. In this chapter, we studied the
effect of communication cost on load balance. Our main aim is to quantify the
impact of communication cost on execution time and to determine the elements

of communication cost, which is very important for total cost.

12
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3.1 Communication Cost

The time spent to communicate information from one processor to other pro-
cessor is a big source of overhead when executing programs on a parallel com-
puter. The time taken to communicate a message between two processors in
the network is called communication latency. Communication latency is the
sum of the time to prepare a message for transmission and the time taken by

the message to travel the network to its destination.

CommunicationCost = > a(i,j) + 1 xt, (1)
(iaj)EET

In Equation ( 1),

e «(z,y) is the startup time needed for processors x to reach the processor

Y,

e [ is the length of message that will be sent to the neighbor processor,

e t, is per-word transfer time.

To see the effect of various parameters on the communication cost, some
experiments were performed. These parameters are the number of communi-
cating processors, the number of messages that are sent to the other processors,
the effect of communication type, the effect of message length, the size of load

and the condition of receiver processor.

3.2 Solution of Laplace’s Equation by Jacobi Iteration

For our experiments, we used the solution of Laplace’s equation with Jacobi
iteration. In this section, we will briefly explain numerical solution of Laplace’s
equation. This problem is chosen since many numerical computations involve

similar computational patterns.
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There are a variety of different methods of simulating the effective con-
ductivity of an inhomogeneous medium. One of them is the Laplace’s equa-
tion. Laplace’s equation is the second order partial differential equation that
is widely used in many disciplines, because its solutions (known as harmonic
functions) occur in problems of electrical, magnetic and gravitational poten-
tials, of steady-state temperatures, and of hydrodynamics. Laplace’s equation
states that the sum of the second-order partial derivatives, with respect to the

Cartesian coordinates, equal to zero. Laplace’s equation is given as

Pu  Pu

We want to solve for u(z,y), an unknown function subject to conditions on
its boundaries. We defined a square grid consisting of points (x,y) (Figure 3.2)
and use Jacobi iteration to compute the value of u(z,y) at the grid point. With
Jacobi iteration, a grid value can be approximated by a centered difference

using the Equation 3

We used 5-pointed stencil to represent the position of each node (Figure 3.2).

@

ij+l
n n
u;;l,j ui+1,j
¢ ®
R
QU .

Figure 3.1: 5-pointed stencil.

n n n n
Uit1yj T U1 T Ui T U5
%] 4

i=1,...,m;j=1,....,m (3)

where n and n + 1 are the current and next iterations.
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Figure 3.2: Square grid.

The code fragment given in Figure 3.3 describes the main loop of the itera-
tive solver where, the value at a point is replaced by the average of the north,
south, east and west neighbors at each iteration, (a 5-pointed stencil is used to
keep example simple). Boundary values do not change. We focus on the inner

loop, where most of the computation is done.

from left to right nodes
from up to down nodes

ulil[j] = 0.26%uli+1] [j1+uli-1] [j1+uli]l [j+1]1+n[i]l [j-11)

Figure 3.3: Main loop of the iterative solver.

We used LAM implementation of Message-Passing Interface (MPI) pro-

gram, which provides a parallel processing environment for a network of inde-

pendent computers.
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3.3 Experiments

3.3.1 Experiment 1: Effect of Communication Cost on Total Cost.

Our main aim in this experiment is to quantify the overhead of communication
cost. To understand the communication overhead on parallel computers, we
performed some experiments. On the solution of Laplace Equation with Jacobi
Iteration experiment, each processor has 100 nodes (Figure 3.4) and each node
is initialized randomly at the beginning of the program. Each processor makes

Jacobi Iteration for each of its nodes.

In this experiment, each processor has to communicate with its neighbor
processors to be able to finish its own tasks, because it needs the values of neigh-
bor processor’s edge node values. After all nodes’ new values are calculated,
edge nodes values are sent to neighbor processors, and neighbor processors
edge nodes values are received by the owner processor. For example, P needs
values of the first column of P2 and values of the first row of P3 to be able
to finish its tasks (Figure 3.4). It is expected that this will cause some extra

overhead.

To see the effect of communication overhead, different values for communi-
cating processors is experimented. Each experiment is executed six times and

average of the values is taken (Figure 3.5).

The same experiment is performed by using blocking communication type
and non-blocking communication type and the effect of communication type

on total cost is investigated.

We know that when the number of processors is one, communication cost
is zero, so the total cost of this experiment with one processor gives only
the computation cost of the program (Figure 3.5(a)). When the number of
processor is two (Figure 3.5(b)), there is one communication on the side of
each processor because each processor is sending one message and receiving one
message from its neighbor processor. When the number of processors is four
(Figure 3.5(c)), each processor is communicating with at most its two neighbor
processors. This means that each processor is using at most two send and two

receive messages. When the number of processors is nine (Figure 3.5(d)), each
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Figure 3.4: Nodes are distributed to processors, each processor has 100 x 100 nodes.
Weight of nodes are given randomly at the beginning of the program.

processor is communicating with at most its four neighbors. This means that,

there will be at most four send and four receive messages.

When we look at the results of this experiment, we can say that every
communicating processor brings some extra communication overhead to the
total cost. So the number of communicating processors has a big effect on
total cost. This means that communication cost can not be neglected. If
we want to have better load balance values, we have to take communication
cost into account. The second important result of this experiment is blocking

communication’s cost is lower than the non-blocking communication’s cost.

3.3.2 Experiment 2: Size of Load Experiment

Our main aim for this experiment is to see the effect of “load size” on total

cost and effect of “communication type”.

To see the effect of the load size on the communication cost, different load
sizes are experimented. The number of nodes per processor increased from
10 x 10 = 100 to 60 x 60 = 3600. We performed the same experiment with
non-blocking communication type and blocking communication type to be sure

about the effect of communication type.



Communication Overhead 18

Pi p; &— P2

(a) 1 processor, there is no communication (b) 2 processors communicating with each other

pr o 2

dood

P34 P4

Ll

(c) 4 processors are communicating with each other

-— —
Pl . R m

I

oot

Figure 3.5: (d) 9 processors are communicating with each other
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Figure 3.6: Blocking communication of Laplace Equation.
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Figure 3.7: Non-blocking communication of Laplace Equation

In this experiment while the size of load increasing n? times, the commu-
nication length is increasing n times. For this reason, the slopes of the graphs

in Figures 3.8 and 3.9 are increasing with the slope of n?.

As a result of this experiment, we can say that there is a direct relation
between the load and the computation cost; when the size of load is increased,
communication cost also increases but not with the same proportion. Second
result of this experiment is non-blocking communication cost is more expensive

than blocking communication cost.
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Figure 3.8: Load overhead of blocking communication
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Figure 3.9: Load overhead of non-blocking communication

cessors

message and inject it into the communication network.

20

3.3.3 Experiment 3: Effect of the Number of Communicating Pro-

In this experiment, we tried to see the effect of startup time of when each

processor is busy. Startup time is the time needed to arrange data into a

In this experiment, we increased the number of communicating processors

from 0 to 6 and took the results (Figure 3.10).
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Figure 3.10: P, is communicating with 5 other processors

After first processor (Pp) finished its computational job, it sends the edge
nodes values of the right column nodes to its neighbor processors. The number
of neighbor processors is changed from 0 to 6. For example, if the number of
neighbor processors is five, first processor who makes the computation sends
the edge nodes values of the right column nodes to the five different processors
that have neighborhood relation with the first processor. When the number of
processor is zero, it means that communication is zero. Load size is not changed
during this experiment. There are two versions of this experiment. In the first
version (Figure 3.11), the processors who receive data (edge nodes values) are
idle, they are not doing any computation. However, the other processors that
receive data from the sender processor are making the same computation as
the sender processor in the second version (Figure 3.12). Besides, the same
experiment is done to see the effect of non-blocking communication (Figures
3.13 and 3.14).

As a result of this experiment, it can be said that, blocking communication
is better than non-blocking communication. The number of communicating
processors (neighbor processors) has important effect on total cost and commu-
nication cost, so it can not be neglected. There is a direct relation between “the
communication cost” and “the number of communicating processors”. When
the number of communicating processors is increased, the communication cost
is increasing. For this experiment, if the computation cost is 100 seconds, then
each communicating processor brings approximately 0.32 seconds overhead.

Non-blocking communication brings extra overhead at the initial step. Except
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Figure 3.11: Communicating processors number overhead of blocking communication
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Figure 3.12: Communicating processors number overhead of non-blocking commu-
nication

the initial overhead of non-blocking communication, both communication types

behaves similarly.

On the other hand, the receiver processors’ condition (whether it is idle or

not) have no relation with the number of communicating processors.

3.3.4 Experiment 4: Effect of Number of Sends

In this experiment, two processors are used with different number of messages.
Instead of different processors, the sender processor communicates with the

receiver processor. In this way, effect of communication cost is investigated,
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Figure 3.13: Communicating processors number overhead of blocking communica-
tion, while receiver processors making computation
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Figure 3.14: Communicating processors number overhead of non-blocking commu-
nication, while receiver processors making computation

the number of receiver processor is not changed, but the number of message is

changed from one to six (Figure 3.15).

This experiment has two versions. In the first version, one processor making
computation and sending edge nodes values to the other processor (Figures 3.16
and 3.17). In the first version, the receiver processor is idle. In the second

version, both processors are making computation (Figures 3.18 and 3.19).

As a result of this experiment, we can say that “number of messages”, which
is send from one processor to the other, is very important for total cost; every

send message brings some extra overhead. It has direct relation with execution
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Figure 3.15: Sender processor sending 1 to 6 messages to the receiver processor.

time of a program. Non-blocking communication is more expensive than block-
ing communication. The receiver processor’s condition is very important. If
the receiver processor is not idle, the execution time of the program obviously

increases, because the receiver processor is waiting to finish its current job.
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Figure 3.16: Number of send overhead of blocking communication when the receiver
processor is idle.
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Figure 3.17: Number of send overhead of non-blocking communication when the
receiver processor is idle.

3.3.5 Experiment 5: The Message Length

This experiment is performed to see the effect of the “message length” over total
cost of a program. We know that one of the components of the communication
cost is message length. Our main aim in this experiment is to detect whether

the message length has an important effect on communication cost or not.

According to this experiment, each processor is communicating with its
six neighbor processors. We changed the length of the message from 1 to

100 floating point numbers, and investigated the effect of message length over
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Figure 3.18: Number of send overhead of blocking communication, while the receiver
processor making computation.
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Figure 3.19: Number of send overhead of non-blocking communication, while the
receiver processor making computation.

communication cost and total cost.

According to the results, we see that the message length has not a significant
effect on communication cost. In Figure 3.20, it is seen that when the message
length is increased, the execution time also increases but with a much less rate.
As a result of this experiment, we can say that, when the computation cost
is 100 seconds, each unit of message length brings approximately 0.000410059
seconds extra overhead to the total cost. This overhead is negligible when

compared to the startup time of communicating processors.
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Figure 3.20: Length of message overhead on communication cost.

3.4 Configuration of the Machine

We used the Beowulf [5] cluster, called borg, at Bilkent University, Department

of Computer Engineering. Beowulf systems are high performance parallel com-
puters built with cheap commodity hardware connected with a low latency and
high bandwidth interconnection network and equipped with free system soft-
ware, such as GNU/Linux or FreeBSB [3, 4]. The hardware of this cluster

consists of three components:

e Nodes There are 32 identical nodes with Intel Pentium II 400 Mhz CPU,

64 MB PC100 RAM, 6GB UDMA IDE hard drive and Intel EtherExpress
Pro 10/100 MIC.,

Interconnection Network The interconnection network is a 3COM
SuperStack IT 3900 smart switch which has 36 100Base-TX ports and a
Giga bit uplink. The ports connect to nodes and uplink connect to the

interface machine.,

Interface Computer The interface computer is a workstation with
Pentium III 500 Mhz, 512 MB Ram and 26 GB hard drive. It has a
gigabit NIC which connects to the uplink of switch and a fast Ethernet
to connect to the Net. The interface Computer provides communication

with developers through console and network.
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The Borg uses Debian GNU/Linux distribution as the operating system.
This distribution has a host of development tools ready to-use, that makes it

preferable.

3.5 Conclusion

Result of experiments are as follows: non-blocking communication type is more
expensive than the blocking communication type. Load size is very important
for total cost. Number of communicating processor is very important and has
direct relation with communication cost and total cost. Receiver processors’
condition is very important for the execution cost. The number of sends has a
direct relation with total cost. If the receiver processor is not idle, the execution
time increases, so the condition of receiver processor is very important. The

message length has not a significant effect on total execution cost.

Experiment results show that in communication performance the sensitivity
to software overhead is much stronger than the other factors of communication.
Similar behavior is observed in [30]. The major factor that effects the com-
munication cost is the number of communicating processors and the number

of messages.

For these experiments and this machine configuration, communication cost

can be formulated as in Equation 4.

CommunicationCost = Y (0.3241x0.000410059) x Computationcost /100
(iaj)eET
(4)



Chapter 4

Communication Optimized

Mapping

On the light of the previous chapter’s results we have seen that communication
cost is very important, it brings some overhead and it can not be neglected.
Another important result of the previous chapter is “communication cost over-

head should be minimized”.

In this chapter, new processor mappings are proposed to reduce the com-

munication cost.

4.1 Processor Mapping

Processor mapping is one of the most complex problems in parallel computing.
The efficiency of any parallel algorithm that assigns tasks to the processors
of multi-computer system can be measured by checking its load imbalance
efficiency and its total execution time. Total execution time can be defined
optimal, if summation of computation and communication time is minimal.
Communication time can be zero, if we assign all tasks to a single processor,
which is the worst case of parallel approach, because it will give the biggest

load imbalance value.

While distributing tasks to the processors, our major aim is to give equal

29
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amount of load to each processor. We know that the load of each task is not
the only factor of total processor load. Communication of processors with each
other also cause some overhead. If we take the communication overhead of
processors into account, we will have fair and real load imbalance. In the ideal
case, the total load of a parallel program is distributed to p processors where
each processor gets the %th part of the total load. During the distribution
of loads to the processors, if we do not ignore inter processor communication
overhead which is inevitable during data exchange between processors, we can

decrease job completion time difference between processors.

In order to efficiently run a parallel program, tasks should be assigned to
processors in such a way that the load of every processor is more or less equal,
and at the same time, the amount of communication between processors should

be minimum.

4.2 Models for Representing Processors

To reduce the communication cost, we should decrease inter processor com-
munication. One approach of decreasing inter processor communication is de-
creasing the number of neighbor processors of each processor. If we decrease
the number of neighbor processors, we will automatically decrease number of
communicating processors, because neighbors of any node probably will be in
the owner processor or neighbor processors of the owner processor. Based on
this, two more processor mappings are proposed in addition to Square proces-
sor mapping (Figure 4.1(b)). These are Hezagonal processor mapping (Fig-
ure 4.1(d)) and Staggered processor mapping (Figure 4.1(c)).

In the implementation, the dimension of the mesh and the type of the
processor mapping is user-specifiable, as opposed the previous approaches. For
this, we initially produced the square meshes (boxes). Then, according to the
position of each box and the mapping type choice, the owner processor of each
box is defined. With this approach, new processor mapping types can be added

to Processor class of our program by defining the new mapping type’s method.

The main aim of usage of square boxes (mesh) is to gain time during the

execution phase of the program. According to SOM algorithm, we are choosing
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any node in the least loaded processor (which has minimum load) randomly
and finding the nearest node of randomly chosen node as the excitation cen-
ter of that iteration. However, the nearest node finding phase, scanning all
nodes to determine whether it is the nearest node or not will be a very costly
operation. To avoid from this costly operation, we used a two dimensional
mesh Figure 4.1(a). With this approach, every box of the mesh is given to a
processor according to the processor type. The owner processor of each box
is determined by Processor class of our program. With this method, to find
the nearest node of the randomly chosen node, which is in the least loaded
processor region, we search the excitation center beginning from the subregion
that owns the input vector and continue in all surrounding subregions until the
excitation center is found. This method is also known as grid method in the
literature. By this method, we find the excitation center more quickly than the
sequential scanning method. The identification number, the position of each
box (subregion) and the processor region’s of two dimensional coordinates are

specified in a row wise fashion.

Commonly used symbols during the calculation of the processor identifica-

tion number are as follows:

e nBPP.i represents the number of boxes per processor in x axis,
e nBPP.j represents the number of boxes per processor in y axis,
e ppos.i represents the processor position in x axis,

e ppos.j represents the processor position in y axis,

e nPE.i represents the number of processor in x axis,

e nPE.j represents the number of processor in y axis.

It should be noted that all divisions are integer division in assigning pro-

cessor identification numbers.

Square processor mapping: In square processor mapping, each processor has
eight neighbors. So, the number of processors a processor may communicate
will be at most eight (Figure 4.1(b)). Each processor has 25 square boxes,

except edge and corner processors.
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Figure 4.1: Processor Mappings. (a) Square Mesh, (b) Square Processor Mapping,
(c) Staggered Processor Mapping, (d) Hexagonal Processor Mapping
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In this mapping, the owner processor of each box is numbered starting from
0 in a row wise fashion. Processor identification number of each box is assigned
as follows: for square processor mapping, number of Box Per Processor (nBPP)
in both dimension is 5. We can find the processor position (ppos) of each box

with Equation 1.

ppos.i = (i/nBPP.i)
ppos.j = (j/nBPP.j) (1)

The number of Processors (nPE.i and nPE.j) in both directions specified by

the user. So, the processor identification number can be found with equation 2.

Processorid = ppos.i X nPE.j + ppos.j (2)

Hexagonal Processor Mapping: In hexagonal processor mapping, each pro-
cessor has six neighbor processors, except corner and edge processors. The
neighbor of nodes may be in the owner processor or in one of the six neighbor
processors. So, the number of communicating processors will be at most six
(Figure 4.1(d)). Each processor area includes 24 square boxes, except corner

and edge processors. The hexagonal processor mapping is given in Figure 4.1(d)

In hexagonal processor mapping, the owner processor of each box is num-
bered in a row wise fashion. For square processor mapping, number of Bozxes
Per Processor(nBPP) in both dimension is 6.

The algorithm in Figure 4.2 used to find the processor identification number

of each box in hexagonal processor mapping.

Staggered Processor Mapping: This mapping is similar to hexagonal pro-
cessor mapping. Every processor region has six neighbors. However, its ap-
plication is simpler than the hexagonal mapping. Each processor area has 25

boxes, except edge and corner processors (Figure 4.1(c)).

In this mapping, the owner processor of each box is numbered in a row

wise fashion. The processor identification number of each box is calculated
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for(i=0 to number of Boxes in x direction )
for(j=0 to number of Boxes in y direction)
if(i > 15) then ii=(i mod 16)
else ii=i
if(((ii mod 10) < 6) or (ii (mod 10) > 7)
and(i mod 16 < 14)) then
(yy = j(mod 6))
(xx = ii(mod 8))
if(((yy == 0 or yy == 5) and (xx == 2 or xx == 3))or
((yy == 1 or yy == 4)
and (xx == 1 or xx == 2 or xx== 3 or xx ==4)) or
(C yy == 2 or yy == 3)
and (xx==0 or xx==1 or xx==2 or xx==3 or xx==4 or xx==5))
or (j<2 ) or (j>nBox.j-3) or
(i<2) or (i>nBox.i-3)) then
ppos.i=(i/8)*2 and ppos.j=j/6
else
ppos.i =(((i-4) /8)*2 +1) and ppos.j =(j-3)/6

if ((j > (nBox.j-4)) or (j < 3))
if ((1 mod 8) == 6)
ppos.i =((i /8)%2 );
if (j>(nBox.j-4) )
ppos.j = (ppos.j+1);
else if((i \% 8) == T7)
ppos.i =(((i /8)%2) +2);
if (j>(nBox.j-4) )
ppos.j = (ppos.j+1);
div =ppos.i/2;
if (ppos.i mod 2 == 0 )
Pnumb= ((div *nPE.j)+(div*(nPE.j - 1))+ppos.j);
else
Pnumb= ((div+1) *nPE.j)+(div*(nPE.j-1))+ ppos.j;
Pmesh->grid[i] [j] .pe (Pnumb,ppos) ;

Figure 4.2: Finding processor identification number of each box in hexagonal pro-
cessor mapping
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for(i=0 to number of Boxes in x direction)
for(int j=0 to number of Boxes in y direction)
if (i (mod 10) < 5) than
ppos.i=(i/5) and ppos.j=j/5
else
if(j > (nBox.j-5))
ppos.j=(j-5)/5
else
ppos.j=(j-2)/5
ppos.i=(i/5)
div =ppos.i/2
if(ppos.i (mod 2) is equal to 0 )
Processor id = (div *nPE.j)+ divx(nPE.j - 1) +ppos.j
else
Processor id = (div+1) #*nPE.j + div*(nPE.j-1)+ ppos.j

Figure 4.3: Finding processor identification number of each box in staggered proces-
sor mapping

as follows: for staggered processor mapping number of Box Per Processors
(nBPP) in both dimensions are 5.

The algorithm in Figure 4.3 is used to find the processor identification

number of each boxes in staggered processor mapping.

4.3 Discussion of Processor Connection Models

Implementation of different processor mappings become easier by Grid Method.
If we examine processor mappings, we can see that in square processor mapping
each processor has 8 surrounding neighbors, where as in hexagonal and stag-
gered processor mappings each processor has 6 surrounding neighbors. When
the top left corner region of each mapping is examined, in square processor
mapping it has 3 surrounding neighbors, whereas in staggered processor map-
ping, it has 2 surrounding neighbors and in hexagonal processor mapping it has
one surrounding neighbor. Since reducing the number of neighbor processors
reduces communication overhead, in hexagonal and staggered processor map-
pings, the number of communicating neighbors for each processor is decreased
25% as compared to square processor mapping. In terms of the total volume of

communication, the processor mappings are ordered from the best to the worst
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as hexagonal, staggered and square processor mappings. Hexagonal processor
mapping performs better than the staggered processor mapping for the edge

and corner processors.

The efficiency of the solution produced by the mapping is highly related
with the representation of processors and tasks. In order to solve the map-
ping problem efficiently, processors and tasks must be represented by suitable
models that exploit the features of the architecture of the multi-computer and

properties of parallel program tasks.

By proposing the staggered processor mapping and hexagonal processor
mapping, we tried to minimize the communication cost overhead of each pro-
cessor. With this approach, we topologically decreased the number of neighbor

processors and hence, the inter processor communication traffic.
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4.4 Improved SOM Algorithm for Load Balancing

In Figure 4.4 communication overhead is included to the total cost during the

execution of SOM algorithm.

Initialize square mesh S and define owner processor of each box according to
user processor type choice
for all neurons i do

initialize weight vectors w; randomly.

initialize position of each neuron w ( z,y coordinates € S) randomly.
end for
for all processors i do

calculate load of each processor
end for
set initial and final values of diameter 6; and 6
set initial and final values of learning constant ¢; and €
for ¢t = 0 to t,4, do

let S), be the region of the least loaded processor p

select a random input vector v = (z,y) € S,

determine the excitation center ¢ such that for all neurons n

lwe — v|| = min|lwn — vl

for d =0 to 6 do

for all neurons k with distance d from center ¢ do
update positions of wy + wy + ce? lwr — v|
end for
end for
_t
update diameterf < 0; (Z—J;) fmaz
t

update learning constant € + ¢; (<L) ™e®
€

update load of each processor which includes communication overhead
k
Py.(Load) + ZLZ”I‘ vF (load) x (1 + Py(neigh) x acc‘;—’fn’; X 100)
end for

Figure 4.4: SOM Algorithm that balances communication overhead and computa-
tional load.



Chapter 5

Comparison of Processors

Mappings

5.1 Related Programs Used for Comparison

Algorithms that find a good partitioning of highly unstructured graphs are
critical for developing efficient solutions for a wide range of problems in many
application on both serial and parallel computers. For example, large-scale nu-
merical simulations on parallel computers, such as those based on finite element
methods, require the distribution of the finite element mesh to the processors.
This distribution must be done so that the number of elements assigned to
each processor is the same and the number of adjacent elements assigned to
different processor is minimized. The goal of the first condition is, to balance
the computations among the processors. The goal of the second condition is
to minimize the communication resulting from the placement of adjacent el-
ements to different processors. Graph partitioning can be used successfully
satisfy these conditions by first modelling the finite element mesh by a graph
and then partitioning it into equal parts [23]. We used MeTiS program, which
is the best of graph partitioning algorithms, for comparison. Properties of

MeTiS programs can be seen from Appendix A.

38
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5.2 Comparison of SOM Mappings

Before comparison of SOM mappings with other algorithms, we compared the
SOM mappings with each other. We used airfoil, biplane and shock data.
In this section, we only compared the number of communicating processors
(startup times), if the number of nodes per processor is not high, each processor

may not communicate with all of its neighbor processors.

Number of | Data | Number of | Shape of | PMeTis | KMeTis | SOM
nodes processors | processor
21,701 biplane 60 Square 3-8
21,701 biplane 60 Staggered 2-6
21,701 biplane 60 hexagonal 1-6
21,701 biplane 60 2-9
21,701 biplane 60 2-8
4,253 airfoil 25 Square 3-8
4,253 airfoil 25 Staggered 2-6
4,253 airfoil 25 hexagonal 2-6
4,253 airfoil 25 2-8
4,253 airfoil 25 2-6
36,476 shock 60 Square 3-7
36,476 shock 60 Staggered 2-6
36,476 shock 60 hexagonal 1-6
36,476 shock 60 2-13
36,476 shock 60 2-7
4,253 airfoil 60 Square 2-9
4,253 airfoil 60 Staggered 2-7
4,253 airfoil 60 hexagonal 2-7
4,253 airfoil 60 2-8
4,253 airfoil 60 2-7

Table 5.1: Number of communicating processors according to the algorithms and
processor shapes.

If we look at Figure 5.1, we can see that hexagonal and staggered proces-
sor mappings perform better than the square processor mapping. Because in
hexagonal and staggered processor mappings, the number of communicating
processor is smaller than that of the square processor mapping. In other words,
these two new mappings decrease the inter processor communication. When
the number of nodes per processor is increased, effectiveness of the hexagonal

processor mapping is becoming clear. Except the edge and corner processors,
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the average communication traffic is decreased by 25 percent. At the edge and

corner processors, communication traffic is better than the other processors.

5.3 Comparison of SOM Processor Mappings with pMeTis
and kMeTis

In this section, we examine the impact of various processor mappings. By new
processor mappings (hexagonal and staggered processor mappings), we tried

to decrease topological neighborhood.

As it is explained in Chapter 4, the startup time has a considerable effect
on total execution cost as compared to the message length. So, while we are
comparing different processor mappings, we ignored the length of a message.
Therefore, startup time of processors to communicate with each other is the

main factor of communication cost.

To be able to get exact loads of each processor, communication cost over-
head of each processor added to their loads. After calculating real loads, real
load imbalance values are calculated. We tried to understand the real load
imbalance values of processors with different processor mappings of SOM al-
gorithm, PMeTis and KMeTis programs. We tried to see the behavior of load
imbalance graphs of different algorithms (Figure 5.1, 5.2 and 5.3), while the

amount of communication cost takes 0.1% to 3% of the computation cost.

To see the behavior of load imbalance graphs, we made the same experi-
ments with different data sets. These data sets are airfoil, biplane and crack

data sets. Properties of data sets are as follows:

e airfoil: airfoil data set has 4253 nodes and 12289 edges. It is in the
FEM(2) graph class.

e biplane: biplane data set has 21701 nodes and 42038 edges. It is in the
Square grid graph class.

e crack: crack data set has 10240 nodes and 30380 edges. It is in the
FEM(2) graph class.



Comparison of Processors Mappings 41
Communication cost | KMeTis | PMeTis Square | Staggered | Hexagonal
(%)
0.000 3.456384 | 1.105102 | 0.517282 | 0.517282 0.517282
0.001 3.353363 | 1.5482203 | 0.661528 | 0.58536 0.653423
0.002 3.25116 | 1.988124 | 0.804471 | 0.652865 0.788315
0.003 3.173581 | 2.424919 | 0.946127 | 0.719782 0.921969
0.004 3.273653 | 2.858605 | 1.086517 | 0.786134 1.054407
0.005 3.37294 | 3.289229 | 1.225653 | 0.851922 1.185643
0.01 3.857 5.397416 | 2.611502 | 1.538973 1.824364
0.02 5.459783 | 9.401321 | 5.608154 | 3.020489 3.020473
0.03 7.141433 | 13.14493 | 8.364479 | 4.388699 4.119251

Table 5.2: airfoil data is distributed to 25 processors, weights of nodes are all 1.

Communication cost | KMeTis | PMeTis | Square | Staggered | Hexagonal
(%)
0.000 3.309905 | 1.068845 | 0.694701 | 0.525818 0.618829
0.001 3.3367536 | 1.169669 | 0.830875 | 0.693983 0.752543
0.002 3.424773 | 1.317603 | 0.965796 | 0.860708 0.871599
0.003 3.48162 | 1.465406 | 1.09993 1.02601 0.989528
0.004 3.59455 | 1.630922 | 1.329224 | 1.189909 1.106346
0.005 3.750285 | 1.872792 | 1.639284 | 1.352422 1.222069
0.01 4.513426 | 3.057468 | 3.207681 | 2.144796 1.784785
0.02 5.966016 | 5.309942 | 6.144634 | 3.633502 2.836284
0.03 7.328012 | 7.418984 8.89 5.011264 3.799549

Table 5.3: airfoil data is distributed to 25 processors, weights of nodes are given
randomly between 1 and 10, weights are read from a text file.

While calculating load imbalance values, we made four different experi-

ments. At the first two parts of the experiments, we distributed airfoil data to
25 processors ((a) and (b) parts of Figures 5.1, 5.2 and 5.3). In the other two
parts of the experiments, we distributed the same data set to the 60 processors
((c) and (d) parts of Figures 5.1, 5.2 and 5.3 ).

In (a) and (b) parts, all the node weights are given as 1. In the (¢) and (d)
parts, all the node weights are given randomly between the range of 0 and 10.
For the sake of fairness, node weights are written to the text file and then they
are read from the text file. With this method same node weights are used in

each experiment.
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Figure 5.1: Deterioration of load imbalance graphs under different communication
cost percentage for airfoil data set and when convergence is 3.
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Communication cost | KMeTis PMeTis Square Staggered | Hexagonal
(%)
0.000 2.986127 | 2.986127 | 2.986127 | 2.986127 2.986127
0.001 3.269501 | 2.965679 | 3.357792 | 3.275645 3.071359
0.002 3.550493 | 2.945401 | 3.725505 | 3.562196 3.155719
0.003 3.829134 | 2.925291 | 4.089331 | 3.845828 3.239221
0.004 4.105454 | 2.905347 | 4.449331 | 4.126584 3.321876
0.005 4.379481 | 2.885568 | 4.805563 | 4.404508 3.403699
0.01 5.716200 | 3.818034 | 6.532246 | 5.753109 3.800751
0.02 8.233009 | 7.188408 | 10.345823 | 8.260603 4.948216
0.03 10.560605 | 10.307384 | 14.729931 | 10.543477 | 6.408273

Table 5.4: airfoil data is distributed to 60 processors, weights of nodes are all 1.

Communication cost | KMeTis PMeTis Square | Staggered | Hexagonal

(%)

0.000 4.184151 3.351072 | 2.468213 | 2.728475 2.827582
0.001 4.154592 | 3.718410 | 2.616816 | 2.59888 2.905802
0.002 4.328910 | 4.082523 | 2.804840 | 2.578009 2.983211
0.003 4.501746 | 4.443452 | 2.990962 | 2.695835 3.059822
0.004 4.673121 | 4.801238 | 3.175210 | 2.964152 3.135648
0.005 4.843053 | 5.155924 | 3.357613 | 3.229715 3.2107

0.01 5.800849 | 6.884213 | 4.489160 | 4.51766 3.574754
0.02 8.257424 | 10.129797 | 7.002007 | 8.001262 5.692687
0.03 10.526802 | 13.121556 | 9.291199 | 11.678745 | 7.869767

Table 5.5: airfoil data is distributed to 60 processors, weights of nodes are given
randomly between 1 and 10, weights are read from a text file.

5.4 Comparison of Algorithms

When we carefully examined the load imbalance graphs of different data sets,
in distributing the load to the processors, we see that hexagonal processor
mapping of SOM algorithm performs best. The reason for this behavior is
its graph increases almost linearly On the other hand, PMeTis behaves worst,
because its graph is increasing abruptly, especially when the communication
cost is more than 0.6% of the total cost. We know that communication cost
percentage of a parallel program can be up to 0.4 of the total cost. In some
cases, staggered processor mapping of SOM algorithm can have the similar
attitude with hexagonal mapping of SOM algorithm but we can not say that,

it will show the same attitude every time.
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Figure 5.2: Deterioration of load imbalance graphs under different communication
cost percentage for biplane data set and when convergence is 3.
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Communication cost | PMeTis | KMeTis | Square | Staggered | Hexagonal

(%)

0.000 0.110594 | 2.990646 | 2.389980 | 2.612720 2.772708
0.001 0.286037 | 2.966222 | 2.646315 | 2.579517 2.841921
0.002 0.460004 | 2.942004 | 2.900371 | 2.546598 2.91054
0.003 0.632515 | 2.917989 | 3.152179 | 2.618047 3.0392

0.004 0.803587 | 2.952627 | 3.401767 | 2.784023 3.205992
0.005 0.973238 | 3.027927 | 3.649166 | 2.948594 3.371373
0.01 1.800793 | 3.395250 | 4.854298 | 3.750982 4.177713
0.02 3.355886 | 4.086839 | 7.115751 | 5.259936 5.694128
0.03 4.799721 | 4.726420 | 9.1984 6.653356 7.094470

Table 5.6: biplane data is distributed to 25 processors, weights of nodes are all 1.

Communication cost | PMeTis | KMeTis | Square | Staggered | Hexagonal
(%)
0.000 0.584783 | 2.45453 | 2.48574 | 2.87345 2.2264
0.001 0.434495 | 2.71315 | 3.74167 | 2.60343 2.54873
0.002 0.26259 | 3.48698 | 3.28369 | 2.34409 2.83081
0.003 0.06694 | 3.25433 | 3.81208 | 2.07750 2.11026
0.004 0.085853 | 3.01529 3.327 2.83861 2.38712
0.005 0.63154 | 3.76993 | 3.82865 | 2.60170 2.66143
0.01 1.29396 | 3.45107 | 4.14365 2.22934 2.91449
0.02 3.62097 | 4.38188 | 6.40969 | 3.60663 3.23297
0.03 4.74054 | 5.15903 | 8.11844 | 5.10314 4.61547

Table 5.7: biplane data is distributed to 25 processors, weights of nodes are given

randomly between 1 and 10 and are read from a text file.

Communication cost | PMeTis | KMeTis | Square | Staggered | Hexagonal
(%)
0.000 0.364039 | 3.128888 | 2.575918 | 2.852403 2.852403
0.001 0.519253 | 3.077502 | 2.694803 | 2.9551071 | 3.043047
0.002 0.946961 | 3.300460 | 2.812550 | 3.048756 3.231753
0.003 1.370732 | 3.521308 | 2.929174 | 3.145471 3.418549
0.004 1.790620 | 3.740075 | 3.044691 | 3.241231 3.603465
0.005 2.206679 | 3.956790 | 3.159118 | 3.336050 3.786529
0.01 4.231321 | 5.010586 | 3.715419 | 3.930757 | 4.675014
0.02 8.021353 | 6.979697 | 5.571256 | 5.663998 6.327819
0.03 11.501091 | 8.783540 | 8.086485 | 7.245584 7.833492

Table 5.8: biplane data is distributed to 60 processors, weights of nodes are all 1.
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Figure 5.3: Deterioration of load imbalance graphs under different communication
cost percentage for crack data set and when convergence is 3.



Comparison of Processors Mappings 47
Communication cost | PMeTis KMeTis Square | Staggered | Hexagonal
(%)

0.000 0.767671 3.11763 2.24710 | 2.832275 2.965332

0.001 0.877847 | 3.432841 | 2.735984 | 2.934253 3.050303

0.002 1.099512 | 3.659258 | 2.648114 | 3.035221 3.134405

0.003 1.422143 | 3.935915 | 2.561087 | 3.135194 3.217650

0.004 1.927867 | 4.257161 | 2.474891 | 3.234186 3.300052

0.005 2.428883 | 4.575407 | 2.389514 | 3.332211 3.381623

0.01 4.865584 | 6.123130 | 3.119498 | 3.808326 3.777448

0.02 9.420897 | 9.016207 | 4.992723 | 5.145886 4.513454

0.03 13.596303 | 11.667632 | 7.059425 | 6.747123 5.183570

Table 5.9: biplane data is distributed to 60 processors, weights of nodes are given
randomly between 1 and 10 and are read from text file.

Communication cost | PMeTis | KMeTis Square Staggered | Hexagonal

(%)

0.000 0.341797 | 2.783203 | 2.792780 | 2.326512 2.927258
0.001 0.501670 | 3.032509 | 2.641090 | 2.271999 2.947367
0.002 0.660148 | 3.279560 | 2.490748 | 2.340791 2.967285
0.003 0.868334 | 3.524387 | 2.606382 | 2.503001 2.987015
0.004 1.120783 | 3.767020 | 2.838245 | 2.669442 3.006558
0.005 1.371059 | 4.007487 | 3.181098 | 2.834476 3.025918
0.01 2.590798 | 5.178341 | 4.851237 | 3.639149 3.28013
0.02 4.8823 | 7.373163 | 7.985408 | 5.152536 4.343577
0.03 6.995675 | 9.391790 | 10.871917 | 6.550204 5.317725

Table 5.10: crack data set is distributed to 25 processors, weights of nodes are all 1.

Although kMeTis shows similar behavior with hexagonal mapping, its ini-

tial load imbalance is larger than the hexagonal mapping and when communi-

cation cost increased, load imbalance value gets larger, so it is not preferred to

the hexagonal mapping of SOM algorithm. On the other hand, in some cases

square processor mapping of SOM algorithm may have good behavior, but in

other cases it may behave badly. Since it does not show stable behavior, it is

not preferred.

To see the behaviors of graphs, we run SOM algorithm until it reached to 3

percent load imbalance value except the first experiment’s (a) and (b) sections
(Figure 5.1(a),(b)). We see that SOM algorithm is distributing the loads more

balanced than others.
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Communication cost | PMeTis | KMeTis | Square | Staggered | Hexagonal
(%)
0.000 0.680139 | 3.855281 | 2.378378 | 2.816133 2.603389
0.001 0.640262 | 3.780296 | 2.532506 | 2.676916 2.676916
0.002 0.710215 | 3.706012 | 2.744997 | 2.798105 2.798105
0.003 0.965298 | 3.632421 | 3.09546 | 2.918148 2.918148
0.004 1.218175 | 3.559512 | 3.442833 | 3.037059 3.037059
0.005 1.468877 | 3.526564 | 3.787156 | 3.154856 3.154856
0.01 2.6907 4.508673 | 5.464406 | 3.727648 3.727648
0.02 4.986179 | 6.538449 | 8.611691 | 4.797958 4.797958
0.03 7.1032602 | 8.400212 | 11.51001 | 5.778431 5.778431

Table 5.11: crack data set is distributed to 25 processors, weights of nodes are given

randomly between 1 and 10 and are read from a text file.

Communication cost | PMeTis | KMeTis | Square | Staggered | Hexagonal
(%)
0.000 0.781250 | 2.539063 | 2.861283 | 2.829714 2.798826
0.001 0.788086 | 2.740175 | 3.065787 | 2.934941 2.686067
0.002 0.794855 | 2.939285 | 3.268265 | 3.039131 2.667567
0.003 0.807910 | 3.136423 | 3.468748 | 3.142301 2.757248
0.004 1.008159 | 3.331617 | 3.667264 | 3.244465 2.846031
0.005 1.06480 | 3.524895 | 3.863843 | 3.345638 2.933931
0.01 2.170122 | 4.463526 | 4.818645 | 3.837126 3.360629
0.02 3.967630 | 6.222122 | 6.780114 | 4.753429 4.154757
0.03 5.61069 | 7.807906 | 9.179823 | 5.590447 4.878602

Table 5.12: crack data set is distributed to 60 processors, weights of nodes are all 1.

As a result, we can say that SOM algorithm is better than other algorithms
for balancing problem and when we used hexagonal processor mapping of SOM
algorithm, we can obtain better balanced results with any communication cost

percentage.

5.5 Comparison of Hexagonal Mapping and kMeTis with

and without Communication Overhead

In this section, we examined the behavior of different algorithms after commu-
nication cost overhead values are added to the processor loads. In order to test

the performance of different algorithms, we use the graphs listed in Table B-1
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Communication cost | PMeTis | KMeTis | Square | Staggered | Hexagonal

(%)

0.000 1.868896 | 4.188371 | 2.845795 | 2.894263 2.961032
0.001 1.770854 | 4.097782 | 2.996013 | 2.897620 2.954242
0.002 1.673777 | 4.154184 | 3.198148 | 2.900944 2.9472

0.003 1.57765 | 4.36944 | 3.39829 | 2.904235 2.940865
0.004 1.857415 | 4.582639 | 3.596468 | 2.907494 2.934277
0.005 2.149494 | 4.793809 | 3.792711 | 2.910722 2.927753
0.01 3.568426 | 5.820218 | 4.74587 | 3.265887 3.023635
0.02 6.213953 | 7.736293 | 6.705969 | 4.181112 3.847644
0.03 8.630748 | 9.489424 | 9.10226 | 5.017206 4.599175

Table 5.13: crack data is distributed to 60 processors, weights of nodes are given
randomly between 1 and 10 and are read from a text file.

in Appendix B.

In this experiment, we compared hexagonal processor mapping with and
without communication overhead. Then we compared hexagonal processor
mapping with kMeTis, which is the best of the graph partitioning algorithms.
In the previous experiments, we see that communication cost takes approx-
imately 0.4% of the computation cost. We performed our experiments and
we saw that SOM shows the best performance. Then, communication cost
included in the total cost and compared kMeTis and SOM. When the com-
munication cost is taken into account, edge processors will have much less

communication cost since corner processors have less neighbors (Figure 5.4).

Communication cost | KMeTis | Computation | Computation +

(%) Communication
0.000 2.539063 2.798826 3.710938
0.001 2.740175 2.686067 3.391547
0.002 2.939285 2.667567 3.075376
0.003 3.136423 2.757248 2.813170
0.004 3.331617 2.846031 2.902714
0.005 3.524895 2.933931 2.991368
0.01 4.463526 3.360629 3.421745
0.02 6.222122 4.154757 4.222496
0.03 7.807906 4.878602 4.953038

Table 5.14: crack data set is distributed to 60 processors when communication cost
included, weights of nodes are 1.
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datums are taken and when convergence is 3.
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Communication cost | KMeTis | Computation | Computation +

(%) Communication
0.000 2.783203 2.927258 2.050781
0.001 3.032509 2.947367 2.172945
0.002 3.279560 2.967285 2.293948
0.003 3.524387 2.987015 2.413807
0.004 3.767020 3.006558 2.532537
0.005 4.007487 3.025918 2.650155
0.01 5.178341 3.280130 3.222091
0.02 7.373163 4.343577 4.290860
0.03 9.391790 5.317725 5.269987

ol

Table 5.15: crack data set is distributed to 25 processors when communication cost
included, weights of nodes are 1.

Communication cost | KMeTis | Computation | Computation +

(%) Communication
0.000 3.128888 2.852403 2.575918
0.001 3.077502 3.043047 2.657513
0.002 3.300460 3.231753 2.738268
0.003 3.521308 3.418549 2.818196
0.004 3.740075 3.603465 2.897309
0.005 3.956790 3.786529 2.975621
0.01 5.010586 4.675014 3.768188
0.02 6.979697 6.327819 5.454193
0.03 8.783540 7.833492 7.655794

Table 5.16: biplane data set is distributed to 60 processors when communication
cost included, weights of nodes are 1.

For this analysis, we performed the experiment for 25 and 60 processors.

Each execution, in each test, repeated 5 times for both 25 and 60 processors and

average results are taken. The (speed of) processors and their communication

link bandwidths are accepted to be identical.

For this and all other analysis in the rest of this thesis, we use the formulae

given in Section 5.3 for load imbalance and communication cost calculation.

We calculated execution time in seconds, discarding the time spent for input

file reading. For input files, we use Chaco format [17, 1] for compatibility with
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Communication cost | KMeTis | Computation | Computation +

(%) Communication
0.000 2.986127 2.986127 2.986127
0.001 3.269501 3.071359 2.853478
0.002 3.550493 3.155719 2.722219
0.003 3.829134 3.239221 2.592328
0.004 4.105454 3.321876 2.651669
0.005 4.379481 3.403699 2.913807
0.01 5.716200 3.800751 4.184950
0.02 8.233009 4.948216 6.544655
0.03 10.56065 6.408273 8.688727

Table 5.17: airfoil data set is distributed to 60 processors when communication cost
included, weights of nodes are 1.

other tools, since it is the most common format. The Chaco file format is

explained in Appendix A.

As we mentioned before, SOM algorithm satisfies the second requirement
of mapping, which is neighborhood preservation. In other words, Kohonen
algorithm tries to place neighboring neurons closer and this is exactly what
a mapping should satisfy (placing neighboring tasks closer). However, there
is the need to explicitly force the algorithm to take care of load imbalance.
Uniformly distributed input selection models are generally used in SOM algo-
rithms. This type of selection forces the SOM algorithm to distribute equal
number of tasks to processors without taking into account of task loads. How-
ever, such a distribution is not a desired criteria for load balancing. So, SOM
algorithm should be forced to distribute the loads of the tasks to processors in a
balanced way. This can be achieved by selecting inputs from the regions closer
to least loaded processor. By this way, such an input will probably force the
algorithm to shift the tasks towards to least loaded processor, which means as-
signment of more tasks to that processor, thus minimizing the load imbalance.
During input selection, least loaded processor information can be directly used
and an input within the region of the least loaded processor may be chosen or
such an information can be used to determine another processor. In either case,
the possibility of selecting the least loaded processor should be high. When
we added the communication cost overhead of each processor to the total load
of each processor, corner processors will have more loads than the other pro-

cessors because communication cost of the corner processors are less than the
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others. When both of the loads are take into account SOM performs better
performance than other well known graph partitioning algorithms. From the
point of view load balance, SOM Algorithm performs better than other algo-
rithms that we have concerned, but its execution time is much more than the

some of other algorithms.



Chapter 6

Multilevel Implementation of
SOM Algorithm

The SOM Algorithm is slower than some other graph partitioning algorithms.
To decrease the execution time, we investigate the possibility of a multi-level
implementation of the SOM Algorithm (MSOM).

As we know, graph partitioning is an important problem that has exten-
sive application in many scientific computing, task scheduling, geographical
information systems, VLSI design and operations research. The graph parti-
tioning problem is NP-complete. However, many polynomial time algorithms
have been developed to find a reasonable good partition. Generally, multilevel
partitioning algorithms produce high quality partitions in a very small amount
of time. Some of the best known graph partitioning algorithms are MeTiS,
Jostle and Chaco. Each of them uses different methods for graph partitioning.
They mainly use recursive graph bisection method and spectral method. In re-
cursive graph bisection method: the graph is partition into two parts and each
part is partitioned recursively until there are as many pieces as the number
of processors of the parallel machine. On the other hand, the spectral graph
methods are invariant under geometric transformations of the computational
domain, as well as under renumbering of the computational graph. They also

seem to generate good partitions in practice [18].

The basic idea behind the multilevel graph partitioning is very simple. The

54
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graph G is first coarsened down to a few hundred vertices, and the algorithm
is executed on these coarsened nodes. Then nodes are partitioned, and this
partition is projected back towards the original graph (finer graph) by periodi-
cally refining the partition. Since the finer graph has more degrees of freedom,

such refinements usually decrease the edge-cut.

During the coarsening phase, a sequence of smaller graphs G; = (11, E}),
is constructed from the original graph Gy = (V4, Ey) such that |Vj| > [Vi44].
This coarsening procedure has a number of attractive properties. First, any
partition of the coarse graph corresponds naturally to a partition of the fine
graph. Second, since vertex weights are summed, constraints on the set sizes
that depend on the number of vertices in a set are preserved in a weighted sense
in the coarse graph. Thus, a good partition of the coarse graph will correspond
to a good partition of the fine graph. Graph G,,; is constructed from G,
by finding a maximal matching M; C FE; of G; and collapsing together the
vertices that are incident on each edge of matching. Maximal matchings can
be computed in different ways [8, 16, 23, 21]. The method used to compute the
matching greatly affects the quality of the partitioning and the time required
during uncoarsening phase. One simple scheme for computing a matching is
the random matching (RM) scheme [8, 16]. In this scheme vertices are visited
in random order and for each unmatched vertex, we randomly match it with
one of its unmatched neighbors. An alternative matching scheme that we
found to be quite effective is called heavy-edge matching (HEM) [23, 25]. The
heavy-edge matching is computed using a randomized algorithm as follows.
The vertices are visited in random order. However, instead of the adjacent
unmatched vertices, the vertices which has the largest weight is chosen for
matching. HEM scheme quickly reduces the sum of the weights of the edges
in the coarsest graph. The coarsening phase ends when the coarsest graph G,

has a predetermined number of vertices.

During the uncoarsening phase, the partition of the coarser graph G,, is pro-
jected back to the original graph, by going through the graphs G, 1, G, o, ., G1.
Since each vertex u € Vjy; contains a distinct subset U of vertices of V;, the
projection of the partition from G, to G} is constructed by simply assigning
the vertices in U to the same part in G; such that vertex u belongs in Gjy;.
After projecting a partition, a partitioning refinement algorithm is used. The

basic purpose of partitioning refinement algorithm is to select vertices such
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Figure 6.1: The various phases of the multilevel SOM algorithm.

that when moved from one partition to another the resulting partitioning has
smaller edge-cut and remains balanced. A class of local refinement algorithms
that tend to produce very good results are those that are based on Kernighan-

Lin (KL) partitioning algorithm [27] and its variants.

6.1 Multilevel Implementation of Self-Organizing Maps

Multilevel implementation of Self-Organizing Maps Algorithm has three steps.

1. Coarsening Phase: In this phase, we used heavy edge matching(HEM)
approach, which chooses the neighbor of each node that has the maximum
communication load as a candidate node to combine. According to this schema,
we chose any node randomly and determine the candidate node with the HEM
approach. Then these two nodes are combined as a new coarsened node. Their
loads are added as the new node load. The average of their x and y coordinates
are taken as the new node’s x and y positions. The neighbors of these two nodes

are combined and taken as new node’s neighbor nodes. This process was done
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as many times as the number of total nodes. The nodes that are not combined
with any of its neighbors are directly transferred to the next coarsening level.

This coarsening step continues until the graph has less than 100 nodes.

2. Initial Partitioning Phase: In this phase, the coarsened nodes are distributed
to the processors by the Self-Organizing Maps Algorithm. The algorithm is

executed until it reaches a predefined load imbalance convergence.

3. Uncoarsening Phase: After initial partitioning phase, coarsest nodes are
restored as many times as the coarsening phase. After each uncoarsening phase,
SOM algorithm is re-executed until it reaches a predetermined load imbalance
convergence. All properties (values) of the uncoarsened nodes remain the same

as the initial values of each node.

6.2 Performance Results

To see the results of MSOM, we performed some experiments. In the first ex-
periment, we compare the sequential SOM algorithm and the multilevel version.
In this experiment, we used different data files and we have used hexagonal
processor mapping. We chose 3 percent load imbalance convergence and we

distributed the loads to 25 processors. The results are given in Table 6.1.

TIG PCG | Ezecution time(sec) | Load Imbalance(%) Dec.Ratio
SOM | MSOM SOM | MSOM | SOM/MSOM

airfoil 7*4 | 1068.53 258.71 2.97578 | 0.862605 4.13
crack 74 | 1306.72 158.62 2.97296 2.8487 8.23
Whitaker | 7*4 | 1383.22 194.82 2.89845 | 2.79069 7.1
L 7*4 167.1 41.16 2.29425 | 2.93442 4.06
4elt 7*4 1 1979.02 616.55 2.41158 | 2.65932 3.2

FFT10 7*4 | 1508.17 502.95 2.56874 | 2.85365 2.998

Table 6.1: Comparison of SOM and MSOM for 25 processors.

At the second experiment, we distributed airfoil data to different number
of processors. We executed both SOM and MSOM algorithms with the same
data and tabulate the results in Table 6.2.
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TIG PCG | Execution time(sec) | Load Imbalance(%) Dec.Ratio
SOM | MSOM SOM | MSOM | SOM/MSOM
airfoil | 1*2=2 2.31 2 1.06 0.0738648 1.155
airfoil | 3*2=5 | 191.73 5.03 2.04611 1.7982 38.12
airfoil | 3*3=8 | 534.71 14.27 2.28073 2.93645 37.47
airfoil | 3*4=11 | 641.96 32.97 2.80216 2.93084 19.47
airfoil | 5*3=13 | 713.47 51.74 2.73127 2.47687 13.79
airfoil | 5*4=18 | 832.13 87.33 2.49624 2.97152 9.53
airfoil | 5*5=23 | 983.33 157.88 2.60422 2.6898 6.23
airfoil | 7¥4=25 | 991.43 149.59 2.27691 2.82668 9.53

Table 6.2: Comparison of SOM and MSOM for airfoil data set with 3% convergence
constraint for different number of processors.

If we examine the results, we can say that MSOM is faster than SOM
algorithm. However, the performance degrades when the number of processors

is increased.

In the third experiment, MSOM algorithm is executed with different data
sets for the same processor connection graph. Convergence constraint was 3

percent and the number of processors is 5. The results are given in Table 6.3.

TIG Number of | PCG | Execution time | Load Imbalance
Nodes (sec) (%)

jagmesh 939 3*2=5 2.69 2.73329
L 956 3*2=5 4.14 2.73008
airfoil 4253 3*2=5 2.59 2.76962
BFLY 4608 3*2=5 120.9 2.93497
CCA9 4608 3*2=5 35.81 2.59671
CCQC9 4608 3*2=5 49.67 1.49698
3elt 4720 3*2=5 3.55 0.91733
FFT9 5120 3*2=5 59.46 2.71536
whitaker 9800 3*2=5 4.68 1.1647
crack 10240 3*2=5 3.62 2.60948
BFLY10 10240 3*2=5 269.18 2.35755
CCA10 10240 3*2=5 79.34 1.94254
FFTI10 11264 3*2=5 97.2 1.28397
big 15606 3*2=5 7.07 2.92696
4elt 15606 3*2=5 5.42 2.38087
bplane 21701 3*2=5 6.01 2.48589
brack2 62631 3*2=5 38.07 2.85953

Table 6.3: Execution time of SOM Algorithm for different data sets with the 3
percent convergence constraint for 5 PCG.
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Table 6.3 shows that the execution time of MSOM is highly dependent on
the type of data. The Number of Nodes is important for execution time but
not as much as the type of data. Although square data sets, like Butterfly, are
taking too much time, FEM(2) type graphs gives the best performance.

6.3 Conclusion

It is clear that multilevel graph partitioning approach is able to find high
quality partitions for a variety of unstructured graphs. By multilevel approach,

we reduced the execution time of the SOM Algorithm.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented Kohonen’s Self-Organizing Map Algorithm that
includes communication cost overhead for static load balancing problem. The
efficiency of a mapping can be determined by checking its load balance values.
However, balancing not only means the balancing of the computation loads,
but also balancing the communication load of the each processor. On the
other hand, communication cost should be reduced as much as possible. To
minimize the communication cost, inter processor communication of multi-

computer system should be minimized.

One of the important properties of SOM Algorithm is its topology preserv-
ing property. By selecting suitable processor mapping (hexagonal) type, we
balanced and minimized communication overhead caused by inter processor
communication. This minimized communication overhead is included the total
load of each processor. By selecting the inputs from the least loaded proces-
sor’s region, we force the algorithm to distribute the loads as equally as to
the processors and incorporate load balancing mechanism into the SOM Algo-
rithm. For a given input, in order to find the nearest task quickly, we divide

the processor regions into subregions and apply a range searching algorithm.

As all neural network algorithms, one of the important disadvantage of
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SOM algorithm is its execution time. To alleviate this disadvantage a mul-
tilevel implementation of the SOM Algorithm is realized. In the multilevel
implementation, we used recursive bisection method, which is the best of mul-
tilevel approaches. The multilevel implementation of SOM algorithm reduced
the execution time by a factor of 40 times. Studies show that our algorithm

outperforms the other algorithms in terms of load balance.

7.2 Future Work

Other multilevel implementation approaches can be implemented to improve
execution time of the SOM algorithm. To decrease the execution time of SOM
algorithm, parallel implementation of SOM algorithm can be an another bril-

liant idea.
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Appendix A

MeTis

MeTis is a software package for partitioning large irregular graphs, partitioning
large meshes, and computing fill-reducing ordering of sparse matrices. The
algorithms in MeTis are based on multilevel graph partitioning described in

[22, 23]. The important properties of MeTis are as follows:

e Multi-Constraint Partitioning: MeTis includes partitioning routines
that can be used to partition a graph in the presence of multiple balancing
constraints. The idea is that, each vertex has a vector of weights of size
m associated with it, and the objective of the partitioning algorithm is,
to minimize the edge cut subject to the constraints that each one of the

m weights is equally distributed among the domains.

e Minimizing the Total Communication volume:The objective of the
traditional graph partitioning problem is, to compute a balanced k-way
partitioning such that the number of edges that straddle different parti-
tions is minimized. When partitioning is used to distribute a graph or a
mesh among the processors of a parallel computer, the objective of mini-
mizing the edge cut is only an approximation of the true communication
cost resulting from the partitioning. Despite that, for a wide range of
problems, by minimizing the edge cut, the partitioning algorithms also

minimize the communication cost reasonably well.

e Minimizing the Maximum Connectivity of the Subdomains: The
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communication cost resulting from a k-way partitioning in general de-
pends on following factors: (i) the total communication volume, (ii)the
maximum amount of data that any particular processor needs to send
and receive; and (iii) the number of messages a processor needs to send

and receive. MeTis tries to minimize all these factors.

MeTis provides two programs pMeTis and kMeTis for partitioning an
unstructured graph into k equal size parts. The partitioning algorithm used by
pMeTis is based on multilevel recursive bisection described in [21], whereas
the partitioning algorithm used by kMeTis is based on multilevel k& — way
partitioning described in [23]. Both of these programs are able to produce
high quality partitions. However, depending on the application, one program
may be preferable than the other. In general, kMeT'is, is preferred when it is
necessary to partition graphs into more than eight partitions. For such cases,
kMeTis is considerably faster than pMeTis. On the other hand, pMeTis is

preferable for partitioning a graph into a small number of partitions.



Appendix B

Data Sets Used for Experiments

In order to test the performance of our algorithm and analyse the effect various
methods and/or parameters we use a collection of graphs which are listed in
the below table. Most of these graphs are collected from AG-Monien (Parallel
Computing Group) Web pages [33]. The common properties all graphs is that
they all have some spatial connections for which SOM algorithm perform well
and expose the advantage of neighbourhood preservation. The table includes
graphs with different interconnection properties with various degrees from dif-
ferent known collections like NASA and Harwell-Boeing. In the below part we

give some details about each class of graphs.

e FEM(2): FEM(2) stands for 2-dimensional finite element meshes. We
have six graphs in this class. All graphs in this class are not ordinary

meshes since L9, 4elt and Airfoil have some holes in them.

e FEM(3): FEM(3) stands for 3-dimensional finite element mesh. The
package obtained from [33] includes just two graphs and we select Brack2
since the other one named Wave has more than 156000 nodes which we

thought more than enough for a non-multilevel algorithm.

e Harwell-Boeing Collection(HB): Within this class we have quite a high
number of graphs with various number of nodes ranging from 500 to
30000. The package contains the series of known graphs named bcsstk.

But as far as we realize most of the graphs with high number of nodes
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in this package are disconnected ones which is not desired for SOM al-
gorithm. We select three from connected ones where Jagmesh is a FEM
graph with a hole in the center, Dwt2680 is a one with a rectangular
shape with average degree of 8 for inner nodes, and finally Bespwrl0 is a

power graph with variuos degree nodes.

e NASA: The obtained NASA graph collection contains three graphs and

the selected one has the maximum number of nodes.

e Grid: Within this class we have four graphs used. The three of them
are square while the other one is rectangular. All graphs in this class are
ordinary grids, that is all inner nodes have degree of four. The graphs
named “200_200” and “200_300” are automatically generated grids by our
program with 40000 and 60000 nodes respectively.

e Butterfly, CCC & CCA: CCC stands for “Cube Connected Cycle” and
CCA stands for CCC graphs without wrap around edges. These three

class of graphs have various dimension, connection and degree properties.
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H Test Graph ‘ #Vertices ‘ #Edges ‘ Class H
Crack 10240 30380 FEM(2)
L9 (Big) 17983 35596 FEM(2)
delt 15606 45878 FEM(2)
3elt 4720 13722 FEM(2)
Brack2 62631 366559 FEM(3)
Jagmesh 936 2664 | Harwell-Boeing Collection (HB)
DWT2680 2680 11173 | Harwell-Boeing Collection (HB)
Bespwrl0 5300 8271 Harwell-Boeing Collection (HB)
Nasad704 4704 50026 NASA
Shock 36476 71290 Square Gird
Biplane 21701 42038 Square Grid
FFT9 5120 9216 Butterfly
FFT10 11264 20480 Butterfly
BFLY9 4608 9216 Butterfly
BFLY10 10240 20240 Butterfly
CCC9 4608 6912 CcCcC
CCC10 10240 15360 CcCcC
CCA9 4608 6400 CCA
CCA10 10240 14336 CCA
Airfoil 4253 12289 FEM(2)
Whitaker 9800 28989 FEM(2)
L 956 1820 Square Grid
Stufel0 24010 46614 Square Grid

Table B-1: Test Graphs
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Chaco file Format

The Chaco file format contains the adjacency information of a graph as a text
file. The lines in such a file beginning with characters # and % are comment
lines. In its simplest form the file contains n + 1 lines. The first line contains
some necessary information about the graph and file. That is the first two
integers on the first line correspond to number of vertices and number of edges
respectively. The remaining n lines contain neighbour lists for each vertex from
1 to n in order. Neighbour lists of vertices are a set of integers separated by
single spaces where each integer identifies the id of each neighbour. Chaco file
format supports graphs with weights on both edges and/or vertices. In order
to include weights on edges and/or vertices, a third integer value should be
specified on the first line. This number may have up to three digits. If the
1’s digit is nonzero this means file also includes vertex weights. If 10’s digit is
nonzero this means file also includes edge weights. And finally if 100’s digit is
nonzero this means file includes vertex numbering information. It is important
that if by setting the related digits to nonzero values, it is mentioned that
vertices and/or edges have weight information than all vertices and/or edges
should have weights specified. If vertex weight information is included each
weight should appear before the neighbour list of each vertex. On the other
hand if edge weight information is included each weight value should appear

immediately after the corresponding entry in the neighbour list.

If any vertex has many neighbours it may be difficult to list all neighbours

on a single line. In such a case the neighbour list of vertices can be split up
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\% This is a sample Chaco file with all its

\’% options presented

Number_0f _Vertices Number_0f _Edges (1) {1} [1]
(Vertex_Number) {Vertex_Weightl} neighbour(1l) [Edge_Weight].....

Figure C.1: Chaco Input File Format

into a few lines by using vertex numbers on each line which should be the first

entry on each line.

The most general form of Chaco input file is given in Figure C.1 where

different types of options are indicated by different parenthesis.



