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Abstract
Sponsored search advertisement allows advertisers to target their messages to appro-
priate customer segments at low costs. While search engines are interested in auction
mechanisms that boost their revenues, advertisers seek optimal bidding strategies to
increase their net sale revenues for multiple keywords under strict daily budget con-
straints in an environment where keyword query arrivals, competitor bid amounts,
and user purchases are random. We focus on the advertiser’s question and formulate
her optimal intraday dynamic multi-keyword bidding problem as a continuous-time
stochastic optimization problem. We solve the problem, characterize an optimal pol-
icy, and bring a numerical algorithm for implementation.We also illustrate our optimal
bidding policy and its benefits over heuristic solutions on numerical examples.

Keywords Sponsored search advertising · Stochastic modeling · Dynamic
programming · Dynamic bidding

Mathematics Subject Classification 93E20 · 91B70 · 60G55

1 Introduction

Sponsored search advertisement is a service of many internet search engines that
allows businesses to communicate their messages to their potential customers along
with the user search results. It is a popular marketing tool for advertisers as the target
audience can be reached effectively at low costs. Parallel to its increasing popularity,
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there has been a growing literature on search-based advertisement models, for which
there are three different major streams of research. One stream brings a game theoretic
perspective and studies the equilibria of the advertisers under various auction settings.
The reader may refer to the review papers Maillé et al. (2012) and Qin et al. (2015),
and also some of the recent papers Balseiro et al. (2015), Hummel (2018), Bae and
Kagel (2019), Kotowski (2020) with their references for this line of work. A second
stream of research focuses on the mechanism design problem of the search engine
company with the objective of finding ad allocation/assignment policies to increase
search engine’s revenues. This line of work studies the problem as a general online
resource allocation or matching problem. Earlier papers with such a focus include
Mehta et al. (2007), Abrams et al. (2007), Goel andMehta (2008), Devanur and Hayes
(2009), Feldman et al. (2010), Goel et al. (2010), Mahdian et al. (2012). For recent
results and discussions, the reader may refer to Jaillet and Lu (2014), Naor and Wajc
(2015), Brubach et al. (2016), Devanur et al. (2019), Boulatov and Severinov (2021)
and their references. A relatively less developed third and final stream of research
considers the problem from the advertiser’s perspective and aims at finding bidding
policies maximizing the number of impressions, clicks, or revenues. This is the line
of work we contribute to in the current paper.

In practice, an advertiser first compiles a list of keywords that she thinks are related
to her products and services. Every time a search engine user queries a keyword,
the search engine runs an online auction among the advertisers who keep the same
keyword on their lists. After the bids are received sealed (namely, competitors do
not see each others’ bids), they are sorted in decreasing order according to a sorting
algorithm taking into account the bid amounts and also a number of other factors like
the relevancies of the ads, landing pages’ contents, etc. Then the (chosen) sponsored
links are displayed in the same order on the result page together with the organic
search results; see, for example, Jansen andMullen (2008) and Özlük (2011) for more
details. The advertiser is charged only if the link is actually clicked, and the amount
is calculated by the auction mechanism of the search engine (e.g., the generalized
second price rule) with which, the actual cost is often less than the bid amount. Also,
each advertiser fixes a finite daily budget as a protection against excessive spending,
and the sponsored links cease to appear on the result pages as soon as the budget is
depleted.

In the first line of research described above (with a game theoretic approach) the
bidding behavior is generally governed by the equilibrium conditions, and in the
second stream (taking search engine’s perspective) bid amounts/policies are often
assumed to be given. In real life, an advertiser typically acts as a revenue maximizing
agent. Her problem of determining an optimal bidding policy is quite complicated
and includes many stochastic elements: not only the keyword queries arrive randomly
in continuous time, but also the number of competitors are unknown, and their bid
amounts are unobserved. Hence, the positions of sponsored links on the search pages
and the click events are all random to the advertiser. Furthermore, if the advertiser’s
link is displayed and clicked, the sales events and the sale amounts are also uncertain.
Therefore, the advertiser faces a difficult optimization problem in a highly stochastic
environment. The reader may refer to Pin and Key (2011) for further details and
comments on the randomness in an ad auction environment.
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In the current paper, we consider a stochasticmodel for this environment. Extending
the single keyword formulation of Dayanik and Parlar (2013), we study the problem
of finding a bidding policy for multiple keywords in a general auction setting as a
continuous-time optimization problem, and we solve it for an optimal policy using
stochastic dynamic programming. This is the main contribution of the paper.

Earlier work (taking the advertiser’s perspective) include Kitts and Leblanc (2004)
determining the optimal bid amounts for multiple keywords in an open bid system
by solving a deterministic integer program (with unknown functions estimated). In
a similar setting with known competitors’ bids, a different formulation to determine
the number of times the advertiser participates in different auctions is considered in
Chaitanya and Narahari (2012). Today, however, an overwhelming fraction of the
sponsored search auctions are with closed bids.

Özlük and Cholette (2007), Cholette et al. (2012), Abhishek and Hosanagar (2013),
and Küçükaydın et al. (2020) study the bidding problem in closed bid generalized
second price (GSP) auctions. These papers determine a constant bid price for the
whole day for each keyword under the soft budget constraint; namely, the expected total
daily spending should not exceed the available budget. A simple randomized bidding
policy is considered in Feldman et al. (2007), again under a soft budget constraint.
Taking adifferent objective, Selçuk andÖzlük (2013)minimizes the expected spending
while satisfying a certain level of exposure. Although providing important insights and
contributions, in these models with soft constraints, the budget limits may be exceeded
with non-negligible probabilities, and this can be a problem in practice. Furthermore,
constant bids or more general time-stationary bidding strategies may cause profit
losses because they do not adjust themselves as the keyword arrival, remaining time,
and budget processes are continuously observed along the day.

For a single keyword, the first optimal dynamic bidding strategy in a stochastic
model with closed bids and under strict budget constraint was derived by the afore-
mentioned paper Dayanik and Parlar (2013). The straightforward generalization of
that model to K -many keywords with a given budget B over a planning horizon T
would require solving the problem

sup
B1,...,BK

K∑

k=1

fk(Bk, T ) subject to the constraint
K∑

k=1

Bk ≤ B,

where the function fk denotes the expected revenue from the keyword k that one
could obtain using the solution of the single keyword formulation. That is, we first
solve K -many two-dimensional problems to obtain the functions fks, and then, as the
next step, we determine the optimal partitioning of the budget to different keywords
(which can, for example, be obtained using a dynamic programming approach over
the keywords). However, such an approach not only suffers from the increased com-
putation times as the number of keywords grows, but also has the drawback that some
of the budget allocated for certain keywords may remain idle as a result of low query
traffic realizations (and not used for other keywords with high volumes).

Here, in this paper, we show that, independent of the number of keywords, the
problem can be solved using a two-dimensional budget-time jump process. We char-
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acterize the value function as the unique solution of a differential equation on this
two-dimensional space and show how to numerically obtain it; see (34). This approach
shields us from the computational issues and suboptimality of the straightforward
extension of Dayanik and Parlar (2013) described above. To highlight the importance
of using such an approach, in Sect. 6, we numerically compare the performance of our
multi-keyword optimal policy to a number of heuristics in which the budget is split
for each keyword and one-keyword policy of Dayanik and Parlar (2013) is applied
separately. These heuristics differ in the way they partition the budget for different
keywords. In our results, we observe that the multi-keyword optimal policy signifi-
cantly outperforms the heuristic ones when the available advertisement budget is small
or moderate. As expected, when the budget gets large, this difference becomes less
significant. In our setup, to close up the expected net revenues between optimal and
heuristic bidding policies, one needs to almost double the optimal daily advertisement
budget.

The current paper differs from Dayanik and Parlar (2013) on other accounts as
well. Firstly, we consider a general pricing mechanism under which the advertiser
pays less than her bid amount (which was overlooked in the cited paper). Secondly,
we consider a general display-and-click probability function for each keyword rather
than assuming a special distribution for the location of the ad on the result page and
then expressing the conditional click probability dependent on this location. Using
display-and-click probability functions gives us a direct and flexible way of modeling
the effects of bids. These functions can also be regarded as determined by a game
model, in which the dynamics of the game determine the click probabilities for a given
bid amount. As the third difference of the current paper, we use a different dynamic
programming operator which does not assume that a keyword query is realized at time
zero and therefore reflects the true nature of the problem better. Overall, the current
paper greatly improves the analysis and formulation of Dayanik and Parlar (2013) and
provides a more general picture of this continuous-time optimization problem in its
multi-keyword setting.

As in many decision problems, applying the results of the current paper in a real
life scenario requires reliable estimates of the parameters and distributions. When an
advertiser launches a new campaign, these estimates may not be readily available.
To address such issues, the current model should be enlarged to include a learning
window in the beginning of the campaign over which the advertiser places bids and
enters the auctions. The study of such an extended formulation is clearly non-trivial
and left as future research. For related work and discussions, the reader may refer to
Rusmevichientong and Williamson (2006), Borgs et al. (2007), Perlich et al. (2012),
Skiera and Nabout (2013), Iyer et al. (2014), Lee et al. (2017), and the references
therein.

The rest of the paper is organized as follows. In Sect. 2, we present a stochas-
tic model for the bidding process and formulate the optimal bidding problem. The
dynamic programming operator associated with this formulation is discussed next in
Sect. 3 along with its useful properties. In Sect. 4, we construct sequential approx-
imations for the value function, and we present an optimal bidding policy for the
advertiser. For practical implementations, successive approximations turn out to be
a computationally inefficient way to calculate the value function. Instead, in Sect. 5,
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we derive a differential equation that is much faster to solve for the value function.
Finally, in Sect. 6, we illustrate on some numerical results the computation of maxi-
mum expected total net daily revenues and optimal bidding policy, and we quantify
their benefits over the simpler heuristics. Appendix at the end includes supplementary
proofs.

2 Problem formulation

Suppose that an advertiser compiles a fixed list of K keywords. Let τ1, τ2, . . . be
the successive query times and κ1, κ2, . . . be the keywords searched at those times,
respectively. The collection (τn, κn)n≥1 forms a Poisson point process

p((0, t] × {k}) =
∑

n≥1

1{τn≤t , κn=k}, for t ≥ 0 and 1 ≤ k ≤ K ,

with compensator E[p((0, t]×{k})] = λt × λk
λ
, for 1 ≤ k ≤ K , where λ = ∑K

k=1 λk ,
and with filtration denoted by F

p = {F p
t }t≥0 in the sequel. In plain words, queries

arrive according to a simple Poisson process with intensity λ, and keywords have the
distributions P(κn = k) = λk/λ, 1 ≤ k ≤ K , independently for all n ≥ 1.

The advertiser starts with an initial budget 0 ≤ B ≤ Bmax allocated for a period
[0, T ] for some 0 ≤ T ≤ Tmax, and she bids for an ad position on the result page after
every query. We assume that the advertiser is charged only when the ad is clicked.
The amount charged is less than the bid amout and determined according to a given
auction pricing rule. More precisely, we let bn be the bid amount at the n’th query and
bn Rn is the actual price paid upon click event, where Rn ∈ (0, 1] denotes the effect
of the pricing mechanism (for example, in a second price auction, it is the ratio of the
largest bid smaller than bn to bn). Also, we let Zn be the indicator of the event that
the ad is displayed and clicked at the n’th query; that is, Zn = 1 if the ad is displayed
on the result page and clicked (i.e., a search user visits the advertiser’s website), and
it is zero otherwise. On the click event, the user potentially generates a revenue, and
the amount is denoted by the random variable Wn .

On this environment, as the advertiser places bids, she also observes the click events,
her actual payments, and the revenue generated by the users. All these observations are
represented by the filtration F = {Ft }t≥0, which is obtained by augmenting F

p with
previously observed random variables (Z ·, Z ·R·, Z ·W·)’s. For notational convenience,
we omit the dependence of the observation filtration on the bidding policy.

At a given query time τn , n ≥ 1, given the observations Fτn , the conditional
distribution of Rn depends on κn only, and the conditional distributions of Zn depends
on κn and bn only. That is, in the P-almost sure sense, we have

P[Rn ≤ r | Fτn ] = Hκn (r) and P[Zn = 1 | Fτn ] = Gκn (bn) (1)

in terms of the given functions r �→ Hk(r) and b �→ Gk(b), for 1 ≤ k ≤ K . For the
keyword k, the function Hk gives us the (conditional) cumulative distribution of the
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discount random variable Rn , andGk is the (conditional) display-and-click probability
function for the binary random variable Zn . We additionally assume that Rn and Zn

are conditionally independent given Fτn .
We denote

ρk :=
∫ 1

0
r Hk(dr), for every 1 ≤ k ≤ K . (2)

For the display-and-click probability functions Gk’s, for k ≤ K , we take the natural
assumptions that i) Gk(0) = 0, ii) Gk(b) is non-decreasing in b, and ii) small incre-
ments in the bid amounts do not drastically increase the click probabilities. That is,
for each keyword, the function b �→ Gk(b) is a non-decreasing continuous function
starting from the origin.

GivenFτn , independent from the random variables Rn and Zn , the potential random
revenue Wn has a conditional mean

E[Wn | Fn] =
K∑

k=1

μk 1{κn=k} = μκn , P -almost surely, (3)

where μk denotes the expected revenue generated by the user searching the keyword
k and clicking the advertiser’s ad. We have μk ∈ (0,∞) for all 1 ≤ k ≤ K , and when
needed, we denote their maximum as μ̄ := maxk μk .

In this setup, for every

(B, T ) ∈ � := [0, Bmax] × [0, Tmax], (4)

the objective of the advertiser is to compute the maximum expected net revenue

V (B, T ) := sup
(bn)n≥1∈D(B,T )

E

[ ∑

n≥1

(Wn − bn Rn)Zn1{τi≤T }
]
, (5)

in which the supremum is taken over the collection of admissible bidding strategies

D(B, T ) : =
{
(bn)n≥1; bn ∈ Fτn , bn ≥ 0 for every n ≥ 1, and

∞∑

n=1

bn Rn Zn1{τn≤T } ≤ B
}

(6)

imposing the strict budget constraint and also the measurability of the bids (so that
looking into future is not allowed).

In the appendix, we show that

E

[∑

n≥1

(Wn − bn Rn)Zn1{τn≤T }
]

= E

[ ∑

n≥1

(μκn − bnρκn )Gκn (bn)1{τn≤T }
]
, (7)
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which gives us an alternative representation for the expected net revenue associated
with a given bidding policy.

Remark 1 The representation in (7) implies that it is never optimal to bid more than
μk/ρk when the keyword observed is k. Therefore, the supremum in (5) can be taken
over admissible policies for which bn ≤ μκn/ρκn for all n ≥ 1.

Remark 2 For B1 ≤ B2 ≤ Bmax, we haveD(B1, T ) ⊆ D(B2, T ). Hence the mapping
B �→ V (B, T ) is non-decreasing. Similarly, for T1 ≤ T2 ≤ Tmax, D(B, T1) ⊆
D(B, T2) and the mapping T �→ V (B, T ) is non-decreasing as well.

Remark 3 The value function V is clearly non-negative because bn = 0 for all n ≥ 1
is an admissible policy for any pair (B, T ) ∈ �. Also, since B �→ V (B, T ) is non-
decreasing, using the representation in (7) and the observation in Remark 1, we write

lim
B→∞ V (B, T ) = sup

B≥0
V (B, T )

= sup
B≥0

sup
bn∈Fτn

0≤bn≤ μκn
ρκn

E

[( ∑

n≥1

(μκn − bnρκn )Gκn (bn)1{τn≤T }
)

× 1{∑∞
n=1 bn Rn Zn1{τn≤T }≤B}

]

= sup
bn∈Fτn

0≤bn≤ μκn
ρκn

sup
B≥0

E

[( ∑

n≥1

(μκn − bnρκn )Gκn (bn)1{τn≤T }
)

× 1{∑∞
n=1 bn Rn Zn1{τn≤T }≤B}

]

= sup
bn∈Fτn

0≤bn≤ μκn
ρκn

E

[∑

n≥1

(μκn − bnρκn )Gκn (bn)1{τn≤T }
]

≡ V (∞, T ).

Note that the mapping b �→ (μk −bρk)Gk(b) is continuous for every k, and therefore
it attains its maximum on the interval [0, μk/ρk]. If we let b∞,k denote the smallest
maximizer on this interval, it follows that it is optimal to bid b∞,κn at time τn in the
absence of any budget constraint, and this gives

V (∞, T ) = E

[ ∑

n≥1

(μκn − b∞,κnρκn )Gκn (b∞,κn )1{τn≤T }
]

= γ λT , (8)

where γ := ∑K
k=1(μk − b∞,kρk)Gk(b∞,k)

λk
λ
. Hence, we have the bounds 0 ≤

V (B, T ) ≤ V (∞, T ) = γ λT .

Having a finite upper bound as described in the remark above is not surprising
because, even if we could bid for keywords large enough to attract every web surfer
who search them, the total number of web searches for those keywords is determined
by the probability laws that do not depend on the advertisement campaign.
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Remark 4 For a fixed budget B ≤ Bmax, take two time horizons 0 ≤ T1 < T2 and let
b(ε) be an ε-optimal policy for V (B, T2) for some ε > 0; that is,

V (B, T2) ≤ E

[ ∑

n≥1

(μκn − b(ε)
n ρκn )Gκn (b

(ε)
n )1{τn≤T }

]
+ ε.

The truncated bidding policy b̄(ε) with b̄(ε)
n = b(ε)

n 1{τn≤T1}, n ∈ N, is inD(B, T1), and
we have

0 ≤ V (B, T2) − V (B, T1) ≤ E

[ ∑

n≥1

(μκn − b(ε)
n ρκn )Gκn (b

(ε)
n ) 1{T1<τn≤T2}

]
+ ε

≤ E

[∑

n≥1

μκn 1{T1<τn≤T2}
]

+ ε ≤ μ̄E[NT2 − NT1 ] + ε = μ̄λ(T2 − T1) + ε,

where N denotes the counting process Nt = ∑
n≥1 1{τn≤T } for t ≥ 0. Since ε above

is arbitrary, it follows that the function T �→ V (B, T ) is Lipschitz continuous.

3 Dynamic programming operator

Let us introduce the budget process {Bt }t∈[0,T ], where Bt represents the remaining
budget at time t . Clearly, for a given bidding policy (bn)n≥1, we have

Bt =
{
Bτn , for t ∈ [τn, τn+1),

Bτn+1− − Zn+1Rn+1bn+1, for t = τn+1,
(9)

for n ≥ 0, with B0 = B and τ0 = 0. The principle of dynamic programming suggests
that if the first keyword search occurs before time T with a bid amount b1, then the
realized net profit is (W1 − b1R1)Z1 and the optimal conditional expected revenue
collected from then on should be given by V (Bτ1 , T −τ1) = V (B−b1R1Z1, T −τ1).
Therefore, the value function should satisfy the equation V (B, T ) = D[V ](B, T ) in
terms of the operator

D[ f ](B, T ) = sup
b1∈Fτ1
0≤b1≤B

E

[
1{τ1≤T }

(
(W1 − b1R1)Z1 + f (B − b1R1Z1, T − τ1)

)]

(10)

defined for Borel functions f ’s on �.

Proposition 1 If f1 and f2 are two functions for which 0 ≤ f1(·, T ) ≤ f2(·, T ) ≤
γ λT (see Remark 3 for the definition of γ ), then we have 0 ≤ D[ f1](·, T ) ≤
D[ f2](·, T ) ≤ γ λT .
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As τ1, κ1, b1 ∈ Fτ1 , conditioning on Fτ1 yields

E

[
1{τ1≤T } f (B − Z1R1b1, T − τ1)

]
= E

[
1{τ1≤T }

(
f (B, T − τ1) + Gκ1(b1)

×
( ∫ 1

0
f (B − rb1, T − τ1) Hκ1(dr) − f (B, T − τ1)

))]
,

which implies that the operator D in (10) can be rewritten as

D[ f ](B, T ) = sup
b1∈Fτ1

E

[
1{τ1≤T }

(
f (B, T − τ1) + Gκ1(b1)

×
(
μκ1 − b1 ρκ1 +

∫ 1

0
f (B − rb1, T − τ1) Hκ1(dr) − f (B, T − τ1)

))]
.

(11)

For notational convenience, let us introduce

	k[ f ](b, B, s) := μk − bρk +
∫ 1

0
f (B − rb, s) Hk(dr) − f (B, s)

Mk[ f ](b, B, s) := Gk(b) · 	k[ f ](b, B, s)

(12)

and define

M∗
k [ f ](B, s) := sup

b≤B
Mk[ f ](b, B, s), for 1 ≤ k ≤ K and (B, s) ∈ �. (13)

The operator 	k represents the incremental contribution/reward of the keyword k, on
the display-and-click event, under the bid amount b when the value of continuing is
given by the function f . Mk takes the product of this incremental reward with the
probability Gk(b) of the display-and-click event, and M∗

k seeks for the value of b
maximizing this product. Note that, for a function f for which B �→ f (B, T ) is non-
decreasing, 	k is non-increasing in the bid amount as expected (higher bid reduces
the budget more if the ad is clicked). However, the trade-off comes from the property
of Gk that it is non-decreasing in b. Hence, solving for the best b in (13) a non-trivial
one-dimensional optimization problem.

In (12–13), if we replace f with the value function V in (5)we expect themaximizer
ofM∗

k [V ](B, s), if exists, be the optimal bid amount if the keyword k is searched when
there is s units of time left (until the end of time horizon) with the available budget
being B.We verify this intuition rigorously later in Sect. 4. In this section, f denotes an
arbitrary function with which we continue after the first query in the one-step operator
D.

If f (·, ·) is a continuous function on �, the proof of Proposition 1 (i–ii) in Dayanik
and Parlar (2013) can bemodified easily to prove that the supremum in (13) is attained,
and M∗

k [ f ](·, ·) is continuous on � for each 1 ≤ k ≤ K . In this case, in terms of

b∗
k [ f ](B, s) := argmaxb∈[0,B] Mk[ f ](b, B, s), (14)
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the supremum in (11) is attained when we set b1 = b∗
κ1

[ f ](B, T − τ1)1{τ1≤T } ∈ Fτ1 ,
and we have the explicit form

D[ f ](B, T ) = E

[
1{τ1≤T }

(
f (B, T − τ1) + M∗

κ1
[ f ](B, T − τ1)

)]

=
K∑

k=1

e−λT
∫ T

0
λke

λu
[
f (B, u) + M∗

k [ f ](B, u)
]
du.

(15)

Corollary 1 The explicit characterization in (15) shows that D[ f ] is continuous on �

if so is f .

In the sequel, we use C(�) to denote the set of continuous functions on�. Proposi-
tion 2 strengthens the result in Corollary 1 by controlling the growth in each dimension
under some assumptions. The proof the result is deferred to the appendix.

Proposition 2 1. Suppose f is non-negative, bounded, and T �→ f (B, T ) is non-
decreasing for every B ∈ [0, Bmax]. Then,

0 ≤ D[ f ](B, T2) − D[ f ](B, T1) ≤ λ(μ̄ + ‖ f ‖)(T2 − T1), for T1 < T2,
(16)

again for every B ∈ [0, Bmax], where ‖ f ‖ := sup(B,T )∈� | f (B, T )|.
2. Assume that f is non-negative, bounded, and B �→ f (B, T ) is non-decreasing

for every T ∈ [0, Tmax]. Also, suppose that there exist Lipschitz constants α f > 0
and αG > 0 for which

f (B2, T ) − f (B1, T ) ≤ α f (B2 − B1), for B1 < B2 for every T ∈ [0, Tmax] ,

andGk(b2) − Gk(b1) ≤ αG(b2 − b1), for b1 < b2 for all 1 ≤ k ≤ K .

Then, for B1 < B2,

0 ≤ D[ f ](B2, T ) − D[ f ](B1, T ) ≤ (B2 − B1)(1 − e−λTmax )
[
α f + αG(μ̄ + ‖ f ‖)],

(17)

for every T ∈ [0, Tmax].
Lemma 1 below is analogous to Proposition 1 (iv) in Dayanik and Parlar (2013).

Its proof is similar, hence omitted.

Lemma 1 The dynamic programming operator D is a contraction mapping and we
have ‖D[ f1] − D[ f2]‖ ≤ (1 − e−λTmax)‖ f1 − f2‖ for two functions f1, f2 ∈ C(�).
Therefore, if D has a fixed point in C(�), then it must be unique.

If B �→ f (B, T ) is continuous, bounded, and non-decreasing, then b �→
	k[ f ](b, B, T ) is continuous (thanks to the bounded convergence theorem) and strictly

123



Optimal dynamic multi-keyword bidding... 35

decreasing. Also, we have 	k[ f ](0, B, T ) = μk > 0. Hence, the region of bids with
non-negative contributions

A[ f ](B, T ) := {b ∈ [0, B] ; 	k[ f ](b, B, T ) > 0} (18)

is a non-empty interval starting from the origin having a strictly positive (open) right
boundary. We have

sup
b≤B

Mk[ f ](b, B, T ) = sup
b∈A[ f ](B,T )

Mk[ f ](b, B, T ), (19)

and, unless the click probability Gk(b) is zero for all b ∈ A[ f ](B, T ), the maximizer
b∗
k [ f ](B, s) in (14) is strictly positive; that is, ‘no bidding’ (b = 0) is a suboptimal
choice.

Note that when B �→ f (B, T ) is non-decreasing,

∫ 1

0
f (B − rb, s) Hk(dr) − f (B, s) =

∫ 1

0

[
f (B − rb, s) − f (B, s)

]
Hk(dr) ≤ 0,

and therefore 	k[ f ](b, B, T ) ≤ μk − bρk . This further implies that A[ f ](B, T ) ⊆
[0, μk

ρk
), which is in linewith the upper bound on the bid amounts established inRemark

1.

4 Successive approximations and an optimal bidding policy

Let us construct the sequences of functions (Vn)n≥0, (Un)n≥0 and (Un)n≥0 on� such
that

Vn(B, T ) := sup
(bi )i≥1∈D(B,T )

E

[∑

i≤n

(Wi − bi Ri )Zi1{τi≤T }
]
,

U 0(B, T ) := 0 and Un+1(B, T ) := D[Un](B, T ),

U 0(B, T ) := γ λT and Un+1(B, T ) := D[Un](B, T ), for n ≥ 0.

(20)

The first sequence is obtained by limiting the number bids, and the second and the
third follow from the repeated applications of the dynamic programming operator D
starting with a lower and upper bound on the original value function.

Remark 5 Note that U0 and U0 are both continuous on �. Because the operator D
preserves the continuity (see Corollary 1), it follows by induction that the functions
Un and Un are also continuous for each n ≥ 1.

Proposition 3 The sequences (Un)n≥0 and (Un)n≥0 are non-decreasing and non-
increasing respectively. They converge to the same functionU∞ = limn Un = limn Un

uniformly on � with the error bounds

‖U∞ −Un‖ ≤ γ λTmax e
λTmax

(
1 − e−λTmax

)n
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and ‖U∞ −Un‖ ≤ γ λTmax e
λTmax

(
1 − e−λTmax

)n
, (21)

for every n ≥ 0. The limit function U∞ is the unique fixed point of the operator D on
C(�).

Remark 6 Both U 0 and U0 satisfy the assumptions in Proposition 2 (i) and we have
the bounds 0 ≤ Un ≤ Un ≤ γ λTmax for all n ≥ 0. Hence, it follows by induction
that, for T1 < T2 and B ∈ [0, Bmax],

0 ≤ Un(B, T2) −Un(B, T1) ≤ λ(μ̄ + γ λTmax)(T2 − T1)

0 ≤ Un(B, T2) −Un(B, T1) ≤ λ(μ̄ + γ λTmax)(T2 − T1)
(22)

for all n ≥ 1. Letting n → ∞ in (22) shows that the same bounds also hold for U∞.
Similarly, because U 0 and U 0 satisfy the assumptions in Proposition 2 (ii) with

the common upper bound γ λTmax, again it can be shown inductively that, when the
click-and-display probability functions are all Lipschitz continuous with a Lipschitz
constant αG , we have for B1 < B2 and T ∈ [0, Tmax]

0 ≤ Un(B2, T ) −Un(B1, T ) ≤ (B2 − B1)(1 − e−λTmax)αG(μ̄ + γ λTmax)

×
n−1∑

i=0

(1 − e−λTmax)i

0 ≤ Un(B2, T ) −Un(B1, T ) ≤ (B2 − B1)(1 − e−λTmax)αG(μ̄ + γ λTmax)

×
n−1∑

i=0

(1 − e−λTmax)i ,

(23)

for all n ≥ 1, and letting n → ∞ above gives

0 ≤ U∞(B2, T ) −U∞(B1, T ) ≤ (B2 − B1)(e
λTmax − 1)αG(μ̄ + γ λTmax). (24)

Proposition 4 Vn ↗ V uniformly on � and we have

V (B, T ) ≥ Vn(B, T ) ≥ V (B, T ) − γ
(λTmax)n+1

(n + 1)! , for n ≥ 0. (25)

Proof The first inequality in (25) is obvious. To establish the second, we note that
a given feasible bidding policy (bi )i≥1 can be truncated after the n’th query and the
expected revenue generated by the remaining bids are bounded from above by

E
[ ∑

i≥n+1

(μκi − b∞,κi ρi )Gκi (b∞,κi )1{τi≤T }
] = E

[ ∑

i≥n+1

γ 1{τi≤T }
]

≤ γ
∑

i≥n+1

E
[
1{τi≤Tmax}

]
.
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The i’th arrival time τi has the Erlang distribution. Using this distribution for the
last term above, it is easy to show that

∑
i≥n+1 E

[
1{τi≤Tmax}

]
is bounded above by

(λTmax)
n+1/(n + 1)!. Hence, we have the following upper bound

E
[ ∑

i≥1

(Wi − bi Ri )Zi1{τi≤T }
] ≤ E

[ ∑

i≤n

(Wi − bi Ri )Zi1{τi≤T }
] + γ

(λTmax)
n+1

(n + 1)!

for the expected revenue generated by a bidding policy (bi )i≥1. Taking next the supre-
mum of both sides gives now the second inequality in (25). 
�
Lemma 2 For any admissible policy (bi )i≥1, we have

E
[ n∑

i=1

(Wi − bi Ri )Zi1{τi≤T }
] ≤ E

[ n− j+1∑

i=1

(Wi − bi Ri )Zi1{τi≤T } + 1{τn− j+1≤T }

×U j−1(Bτn− j+1T − τn− j+1)
]
, (26)

for all 1 ≤ j ≤ n + 1 (with τ0 = 0 for j = n + 1).

For all n ≥ 1 and (B, T ) ∈ �, let us define the bidding policy b(n) ≡ (
b(n)
i

)
i≥1

with the corresponding budget policy B(n) (according to (9)) recursively as

b(n)
i :=

{
b∗
κi

[Un−i ]
(
B(n)

τi−1
, T − τi

) · 1{τi≤T }, i ≤ n,

0, i ≥ n + 1

}
, for i ≥ 1,

(27)

in terms of b∗· [·](·, ·) given in (14), and with τ0 = 0 for i = 1. Proposition 5 below
shows that the we have Vn = Un and the supremum in (20) is attained if we apply
the bidding policy in (27). Clearly, both b(n) and B(n) depend on the initial point
(B, T ) ∈ �. Here, we omit this dependence for notational convenience only.

Proposition 5 For every n ≥ 1 and (B, T ) ∈ �, we have

Vn(B, T ) = Un(B, T ) = E

[
n∑

i=1

(
Wi − b(n)

i Ri

)
Zi1{τi≤T }

]
, (28)

where (b(n)
i )i≥1 is defined in (27).

The results in Lemma 2 and Proposition 5 are indeed intuitive from a dynamic
programming point of view. Lemma 2 shows (with the help of Proposition 5) that any
feasible n-bid policy can be improved after any bid by switching to the optimal policy
with the then available budget, time, and number of remaining bids. Also, the identity
Vn = Un in Proposition 5 states that the one-step dynamic programming operator
applied n-many times yields the truncated version of the problem where the advertiser
can bid only for the first n-many queries.
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The equalities in (28) and the error bounds in (21) and (25) imply the following:
given (B, T ) ∈ � and a tolerance level ε > 0, if we fix n large so that

γ λTmax · min

{
eλTmax

(
1 − e−λTmax

)n
,

(λTmax)
n

(n + 1)!
}

< ε (29)

and apply the policy
(
b(n)
i

)
i≥1, then the resulting expected total net revenue is at most

ε away from the optimal expected net revenue V (B, T ). In other words, if nε is the
smallest n such that (29) holds, then (b(nε)

i )i≥1 is an ε-optimal bidding policy.

Corollary 2 Because Vn = Un for all n ≥ 0, Propositions 3 and 4 imply that V = U∞;
namely, that V is the unique fixed point of D in C(�).

We already discuss the growth of V in the T variable in Remark 4. The following
corollary follows from the identity V = U∞ and the bounds in (24) in Remark 6; see
also Remark 2.

Corollary 3 When the display-and-click probability functions are all Lipschitz contin-
uous with a Lipschitz constant αG, we have the growth condition in (24) for the value
function V .

It should be noted that when display-and-click probability functions are not all
Lipschitz continuous (everywhere), the mapping B �→ V (B, T )may not be Lipschitz
continuous (everywhere) either. To give a counterexample, let us consider a simple
case with a single keyword (i.e., K = 1) and G1(b) = √

b for b ≤ Bmax < 1. For a
bidding policy in which b1 = B and bi = 0 for all i ≥ 2, we have

V (B, T ) ≥ E

[
1{τ1≤T }(W1 − R1B)

√
B

]
= E

[
1{τ1≤T }(μ1 − ρ1B)

√
B

]

= (μ1 − ρ1B)
√
B(1 − e−λT ),

which yields V (B,T )−V (0,T )
B ≥ μ1−ρ1B√

B
(1 − e−λT ), where the lower bound goes to

+∞ as B ↘ 0 for any T > 0.
The next proposition concludes this section with an optimal bidding policy for the

main problem in (5). As in the notations for the bidding policy described in (27) and its
budget process, we suppress for notational convenience the dependence of the optimal
bidding policy and the corresponding budget process on the starting point (B, T ) in
�.

Proposition 6 For (B, T ) ∈ �, let us extend the definition in (27) for n = ∞ and
introduce the bidding policy b(∞) = (

b(∞)
i

)
i≥1 with its budget process B

(∞) (evolving
according to (9)) recursively as

b(∞)
i := b∗

κi
[U∞](B(∞)

τi−1
, T − τi

) · 1{τi≤T }, for i ≥ 1, (30)
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again in terms of b∗· [·](·, ·) given in (14), and with τ0 = 0 for i = 1. The policy b(∞)

attains the supremum in (5); that is,

V (B, T ) = E

[ ∑

i≥1

(
Wi − b(∞)

i Ri

)
Zi1{τi≤T }

]
. (31)

5 Computing the value function

The successive approximations of Sect. 4, although useful in establishing the opti-
mality of the policy in (30), is a computationally expensive way to obtain the value
function. In this section, we show that the value function can be characterized as the
unique solution of a differential equation with a proper boundary condition. Hence, a
much faster finite difference scheme can be employed to compute the value function.

To that end, for h ≤ T ≤ Tmax, the expected total net revenue given on the right
hand side of (31) can be decomposed as the sum of the revenue collected over the
interval [0, h] and that obtained over (h, T ]. Nh denoting the number of queries over
the interval (0, h], the latter revenue can be written as

E

[
E

[ ∞∑

i=Nh+1

(
Wi − b(∞)

i Ri

)
Zi1{τi≤T }

∣∣∣∣Fh

]]
= E V

(
B(∞)
Nh

, T − h
)
,

where the equality is due to the Markov property. Therefore, the equality in (31) can
be rewritten as

V (B, T ) = E

[ Nh∑

i=1

(
Wi − b(∞)

i Ri

)
Zi + V

(
B(∞)
Nh

, T − h
)]

. (32)

For small h, using to the infinitesimal arrival probabilities of Poisson process and the
distributions of W1, R1, and Z1 (see also the definition of b(∞)

1 in (30)), we obtain

V (B, T ) = (1 − λh + o(h))V (B, T − h)

+ (λh + o(h))

K∑

k=1

λk

λ

{ (
1 − Gk

(
b∗
k [V ](B, T − h)

))
V (B, T − h) + Gk

(
b∗
k [V ](B, T − h)

)

×
[
μk − b∗

k [V ](B, T − h) ρk +
∫ 1

0
V

(
B − rb∗

k [V ](B, T − h), T − h
)
Hk(dr)

]}
+ o(h)

= V (B, T − h) + h
K∑

k=1

λk Gk
(
b∗
k [V ](B, T − h)

) ·
[

− V (B, T − h)

+ μk − b∗
k [V ](B, T − h) ρk +

∫ 1

0
V

(
B − rb∗

k [V ](B, T − h), T − h
)
Hk(dr)

]
+ o(h)

= V (B, T − h) + h
K∑

k=1

λk M∗
k [V ](B, T − h) + o(h), (33)
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Fig. 1 Numerical algorithm to compute the value function in (5)

where the last equality is due to the definition of M∗
k [·] given in (12). Recall that both

V and M∗
k [V ] for each 1 ≤ k ≤ K are continuous on �. Therefore, after subtracting

V (B, T − h) from both sides in (33), dividing by h, and letting h → ∞ we obtain

∂V (B, T )

∂T
=

K∑

k=1

λk M∗
k [V ](B, T ), (34)

which also shows that V (·, ·) is continuously differentiable in T .
Proposition 7 below verifies that the equation in (34) and the boundary condition

V (B, 0) = 0 uniquely characterize the value function in C(�). We can use this result
and employ a finite-difference algorithm to numerically compute the value function
V on �. That is, we discretize the space �, and starting with V (·, 0) we compute
V (·, δT ), V (·, 2δT ), . . ., where δT denotes the step length in the variable T . The details
are given in Fig. 1.

Proposition 7 If f is a function in C(�), which is continuously differentiable in T and
solves (34) with the condition f (B, 0) = 0 for all B ∈ [0, Bmax], then f = V .

6 Numerical examples

In this last section, we illustrate the methods we developed so far on an example,
where an advertiser wants to bid for ten keywords whose characteristics are given in
Table 1. Following Cholette et al. (2012) and Dayanik and Parlar (2013), we consider
a model in which, for a keyword k ≤ 10, a given bid amount b yields the following
beta density

Qk,b(d
) = 	(ak + b)

	(ak)	(b)

ak (1 − 
)b−1 d
, 
 ∈ [0, 1], (35)

for the location on the search page, where 
 = 0 (
 = 1) corresponds to the top
(bottom) of the page. A similar model is also used in Küçükaydın et al. (2020). In
(35), 	 denotes the gamma function 	(α) = ∫ ∞

0 tα−1e−t dt , and ak represents the
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Table 1 Keywords
characteristics: arrival rates (�λ),
expected revenues upon click
( �μ), average bids of the
competitors (�a)

Keywords (K = 10)

1 2 3 4 5 6 7 8 9 10

�λ 50 250 100 150 200 50 80 60 90 70

�μ 50 20 30 25 20 20 25 10 20 30

�a 20 100 30 10 50 35 45 40 50 60

average bid of the competitors for the k’th keyword. Conditioned on the location 
,
the probability of click is given by (1 − 
)m where we set m = 0.8 for all keywords.
In this setup, the display-and-click probability function can easily be computed as

Gk(b) =
∫ 1

0
(1 − 
)mQk,b(d
) = 	(ak + b)

	(b)

	(m + b)

	(m + ak + b)
, b ≥ 0.

When ak is an integer as in our setting, it follows from the recursion 	(α) = (α − 1)
	(α − 1) that

	(ak + b)

	(b)

	(m + b)

	(m + ak + b)
= (ak + b − 1) · · · b

(m + ak + b − 1) · · · (m + b)
=

a j−1∏

j=0

(
1 − m

j + m + b

)
.

For all keywords, we use the discrete uniform distribution on {0.90, 0.91, . . . , 0.99}
for the distributions Hk’s giving the price discount effect; see (1).

Table 1 shows that keywords 2 and 5 are very popular (they have the highest
search frequencies, 250 and 200 searches per day), while keyword 1 brings the highest
expected sales revenue ($50). The lowest expected sales revenue ($10) is generated by
keyword 8. The most frequently searched keyword; namely, keyword 2, also receives
the highest average bid amount ($100) from the competitors, while the lowest average
amount ($10) is bid by the competitors for keyword 4.

We calculated the optimal value and policy functions for this problem using the
numerical algorithm in Fig. 1. Figure2 shows the color-coded level plots of optimal
bidding policy functions b∗

k [V ](B, T ), k = 1, . . . , 10, of ten keywords when we start
the day with a budget of B0 = $2500. Whenever a keyword search is done, we can see
the optimal bid amount for that keyword from the corresponding plot at the current
values of remaining time T and budget B. For example, if T = 1/5th of the day and
B = $2000 remained at the time of a keyword search was just done, then the optimal
bid amounts will be about $15, $8, and $5 for keywords 1, 2, and 8, respectively.
Note that the bid amounts for keyword 1 quickly rise with available budget and time.
This is followed by keywords 3,4, and 10, and the slowest increase is with keyword
8. When we compare the values (μk − b∞,kρk)Gk(b∞,k), k ≤ 10, for the keywords,
we observe a similar ordering. That is, we numerically observe the intuitive result that
the optimal actions become gradually myopic as the budget and time increase. The
values b∞,k , k ≤ 10, are reported in Table 2 below.

The perspective and level plots of value function are drawn in the upper rowof Fig. 3.
At every fixed remaining time T , the expected total net revenue V (B, T ) increases
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Fig. 2 Optimal bidding policy for ten keywords with the properties as in Table 1 and with a budget of $2500
at the beginning of a typical day. Horizontal axis shows the remaining fraction T of a day, and vertical axis
shows the remaining advertisement budget B. Optimal bid amount for a keyword at a given remaining time
and budget is color-coded according to the color key on the right and turns out to be between $0 and $16
in this example

Table 2 b∞,k values for the keywords

k 1 2 3 4 5 6 7 8 9 10

b∞,k 16.29 9.02 11.68 8.18 8.65 8.37 10.48 4.49 8.65 12.69

with B and converges to γ λT = 4.47003 × 1100 × T = 4917.07 × T ; see (8) in
Remark 3 and the last plot in Fig. 3.

Starting with a small budget lowers the bid amounts and potentially reduces the
internet traffic to product pages. A low starting budget may also cause the advertise-
ments to completely disappear early during the day. On the other hand, starting with
very large amounts may not be effective, either, because the fraction of the budget
beyond what is needed to attract the total internet traffic for all of those keywords is
likely to sit idle in the account. Hence, it is important to select the budget B carefully.

123



Optimal dynamic multi-keyword bidding... 43

B=0

B=250

B=500

B=750
B=1000
B=1250

B=1750

B=2500

V = 49
17

.07
T

0

1000

2000

3000

4000

5000

0.00 0.25 0.50 0.75 1.00
T

V
(B

, T
)

Fig. 3 Value function V (B, T ): perspective (left) and level plots (middle), and cross-sections at fixed B
values (right). Last plot shows that as daily budget increases, the maximum expected net reward converges,
as described in Remark 3, to the straight line V (∞, T ) = 4917.07 × T

Table 3 Alternative bidding policies (left) and performances of the alternative policies. The shaded row
corresponds to the daily advertisement budget B = 2500 beyond which additional budget is unproductive

The first two columns of Table 3 show the maximum expected total net revenues
V (B, 1) corresponding to starting budget values B = 50, 100, . . . , 5000 using the
same ten keywords of Table 1. Note that V (B, 1) increases in significant amounts
with increasing B initially and flattens for B ≥ 2500. Those figures suggest that an
advertisement budget should be chosen somewhere between 2000 and 2500. We can
devise a more precise guideline based on the third column of the same Table 3, which
reports

�V

�B
= V (B + �B, 1) − V (B, 1)

�B
× 100%.

For example, since B = 2000, V (2000, 1) = 4706.51, V (2500, 1) = 4761.91, and
�B = 2500 − 2000 = 500, we find �V /�B = (4761.91 − 4706.51)/500 = 11%.
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Fig. 4 Selection of the initial budget (top) and comparison of bidding policies (bottom). On the upper left
plot, the expected total net revenue (on the vertical axis on the right) increases, while the rate of increase
(on the vertical axis on the left) decreases very fast. We zoomed the picture on the upper right plot to show
better that the rate vanishes near B = 2500, which we set as the daily advertisement budget. The bottom
plot gives the expected daily net revenues of optimal and heuristic bidding policies of Table 3 (left). When
we start with the initial budget B = 2500, to close up the revenue gap between optimal and heuristic bidding
policies, one needs to nearly double the daily budget to 5000; see also Table 3 (right)

This ratio shows roughly the daily marginal rate of return on the additional�B = 500
investment into search-based advertisement budget B. The top row of Fig. 4 gives the
full story: it gives the ratio �V /�B at every budget B value with �B = 1. That is,
we consider adding one additional unit budget to see its effect. In practice, a good rule
of thumb would be to keep incrementing the budget until some target internal rate of
return is reached. In Table 3 and Fig. 4, we observe that any additional budget beyond
B = 2500 is simply unproductive. Hence, one should not go beyond that level. If
there is no alternative investment opportunity (to make a rate of return comparison),
B = 2500 would be a good choice as a daily search-based advertisement budget to
bid for those ten keywords in Table 1.

Along with the optimal multi-keyword bidding policy, we also calculate expected
total net revenues of three one-keyword heuristic bidding policies described in Table
3 (left). In all of those heuristics, the budget is split at the very beginning and then
used exclusively for each of ten keywords (with their one-keyword optimal policies)
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Fig. 5 Counter example for the monotonicity of the optimal bid amounts in B: plots of the display-and-
click probability function b �→ G(b) (left), the mapping B �→ V (B, 1) (middle), optimal bid amounts
B �→ b∗[V ](B, 1) (right)

throughout the day. In the “even” heuristic, the budget is evenly distributed among ten
keywords. In the “λμ” and “λμ/a” heuristics, the budget is split among the keywords
proportional to λμ and λμ/a, respectively. The former heuristic tries to capture each
keyword’s capability to generate revenues in the absence of any competitors, while
the latter heuristic tries to also take into account the strength of competition between
rivals. Table 3 (right) provides the percentage shortages

V (B, 1) − expected revenue of the heuristic

V (B, 1)
× 100%

for each of heuristics “even”, “∝ λμ”, and “∝ λμ/a”.
We observe that the multi-keyword optimal policy differs significantly from the

others when the daily advertisement budget is tight, and the differences diminish
as the budget increases as expected. Three heuristic bidding policies are ordered as
∝ λμ/a,∝ λμ, “even” from the best to the worse, respectively, for most of the
budget values in Table 3. The bottom row of Fig. 4 gives a more complete comparison
of optimal and heuristic bidding policies.

Recall that additional budget beyond $2500 did not increase the expected net rev-
enuemuch under optimal bidding policy.With this budget at hand, the optimal strategy
earns more than any heuristic by a margin between 2.83% and 5.01% every day; see
the shaded row of Table 3 (right). We see the corresponding gaps between solid and
dashed curves along the vertical dashed line at B = 2500 in Fig. 4 (bottom). If one is
prepared to invest a higher advertisement budget into any of those heuristic methods
to close up the performance gaps, the last row of Table 3 (right) tells us that, to reduce
the this gap to less than 1%, one needs a budget around $5000, which is twice the
optimal budget amount. Likewise, Fig. 4 (bottom) shows that expected net revenues
from heuristics increase slowly after B = 2500, and in order to close up the gap, the
budget should nearly be doubled to 5000.

If, on the other hand, the advertisement budget has to be cut back, for example, for
the lack of sufficient funds, then the margin between optimal and heuristic bidding
policies can be as large as 10–20%, and those are the significant gains of the optimal
bidding strategy over those three heuristic bidding policies.
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Lastly, we conclude with an example in which the bid amounts are not always
monotone in the remaining budget. For that, we consider a problem with a single
keyword (K = 1) for which λ = 50 and μ = 10. We assume the same Hk function
as in the previous example with ten keywords. For the display-and-click probability
function, we take a logistic function of the form

G(b) = 0.5

1 + 100b−5
, b ≥ 0,

shown in the first plot in Fig. 5. In this example, we observe a non-monotone behavior
in the optimal bid amount B �→ b∗[V ](B, 1); see the last plot in the figure. The
plot of the function b �→ G(b) shows that small bid amounts bring higher marginal
increments in the display-and-click-probabilities. Considering that the advertiser has
only a small number of bidding opportunities when the budget is relatively tight,
at certain levels, it becomes preferable to decrease the bid amount and leave some
amount for later in order to potentially benefit more from this region of high marginal
increments. We observe a wavy behavior in the slope of the value function again
especially over the region where the budget is tight; see the second plot in the same
figure for B �→ V (B, 1).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00186-022-00803-y.

Appendix: Supplementary proofs

Proof of the equality in (7) For a given admissible bidding policy, since
∑

n≥1 bn Rn

Zn1{τn≤T } is bounded by B, we have

E

[ ∑

n≥1

(Wn − bn Rn)Zn1{τn≤T }
]

= E

[ ∑

n≥1

WnZn1{τn≤T }
]

− E

[ ∑

n≥1

bn Rn Zn1{τn≤T }
]

=
∑

n≥1

E[WnZn1{τn≤T }] −
∑

n≥1

E[bn Rn Zn1{τn≤T }],

(36)

where the second line follows by the monotone convergence theorem applied to each
expected random sum separately. Note that

E[WnZn1{τn≤T }] = E[1{τn≤T }E[WnZn | Fτn ]] = E[1{τn≤T }μκnGκn (bn)], (37)

due to the conditional independence of Wn , the conditional expectations in (3), and
the conditional distributions in (1). Similarly, we write

E[bn Rn Zn1{τn≤T }] = E[1{τn≤T }bnE[RnZn | Fτn ]] = E[1{τn≤T }bnρκnGκn (bn)],
(38)
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thanks to (1) and (2). Using now (37-38) in (36) yields

E

[∑

n≥1

(Wn − bn Rn)Zn1{τn≤T }
]

=
∑

n≥1

E[1{τn≤T }μκnGκn (bn)] −
∑

n≥1

E[1{τn≤T }bnρκnGκn (bn)]

= E

[ ∑

n≥1

1{τn≤T }μκnGκn (bn)
]

− E

[ ∑

n≥1

1{τn≤T }bnρκnGκn (bn)
]

= E

[ ∑

n≥1

1{τn≤T }(μκn − bnρκn )Gκn (bn)
]

(39)

establishing (7). In (39), the second equality is by the monotone convergence theorem
(applied to each expectation), and the last equality follows simply by the boundedness
of

∑
n≥1 1{τn≤T }bnρκnGκn (bn) (by B). 
�

Proof of Proposition 1 Monotonicity of D[ f ] in f is obvious, and the non-negativity
of D[ f1] follows after taking b1 = 0 in (10). To prove the upper boundD[ f2](·, T ) ≤
γ λT , we observe that

D[ f ](B,T ) ≤ sup
b1∈Fτ1

E 1{τ1≤T }
[
(W1 − b1R1)Z1 + γ λ(T − τ1)

]

= sup
b1∈Fτ1

E 1{τ1≤T }
[
(μκ1 − b1ρκ1)Gκ1(b1) + γ λ(T − τ1)

]

≤ E 1{τ1≤T }
[
γ + γ λ(T − τ1)

]
= γ

∫ T

0
λe−λt [1 + λ(T − t)]dt = γ λT ,

in which the second line follows by conditioning on Fτ1 , the inequality in the third
line is by related arguments on the mapping b �→ (μk − bρk)Gk(b) and the definition
of γ in Remark 3, and the very last equality is simply by integration (by parts). 
�
Proof of Proposition 2 For notational convenience, let us define for 1 ≤ k ≤ K

Lk[ f ](b, B, T ) := f (B, T ) + Mk[ f ](b, B, T ) and

L∗
k [ f ](B, T ) := f (B, T ) + M∗

k [ f ](B, T ),

with Mk and M∗
k defined in (12-13). It is easy to verify that the mappings B �→

L∗
k [ f ](B, ·) and T �→ L∗

k [ f ](·, T ) are non-decreasing under the given assumptions
(on the monotonicity of f in its arguments). Since

D[ f ](B, T ) =
∫ T

0

K∑

k=1

λke
−λu L∗

k [ f ](B, T − u)du,

it follows that B �→ D[ f ](B, ·) and T �→ D[ f ](·, T ) are again non-decreasing. This
proves the non-negativity of the differences in (16) and (17).
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The prove the upper bound in (16), we note that, for T1 < T2, we have

D[ f ](B, T2) − D[ f ](B, T1) = (e−λT2 − e−λT1)

∫ T1

0

K∑

k=1

λke
λu L∗

k [ f ](B, u)du

+e−λT2

∫ T2

T1

K∑

k=1

λke
λu L∗

k [ f ](B, u)du

≤
∫ T2

T1

K∑

k=1

λk L
∗
k [ f ](B, u)du. (40)

It is easy to verify that L∗
k [ f ](B, T ) ≤ μk + ‖ f ‖ ≤ μ̄ + ‖ f ‖. Hence, we obtain

D[ f ](B, T2) − D[ f ](B, T1) ≤ λ(μ̄ + ‖ f ‖)(T2 − T1).
To establish the second claim, let B1 < B2 be two budget levels, and for fixed T ,

let b2 = b∗
k [ f ](B2, T ) denote the maximum bid in (14) for a fixed k with the budget

level B2. Note that b1 = B1
B2
b2 < b2 is a feasible bid for the budget B1, and we have

b2 − b1 = (B2−B1)
B2

b2 ≤ B2 − B1. Then, we write

L∗
k [ f ](B2, T ) = (1 − Gk(b2)) f (B2, T ) + Gk(b2)

[
μk − ρkb2

+
∫ 1

0
f (B2 − rb2, T )Hk(dr)

]

≤ (1 − Gk(b2))( f (B1, T ) + α f (B2 − B1))

+Gk(b2)
[
μk−ρkb1+

∫ 1

0
f (B1−rb1, T )Hk(dr)+α f (B2−B1)

]

= α f (B2 − B1) + (1 − Gk(b2)) f (B1, T )

+Gk(b2)
[
μk − ρkb1 +

∫ 1

0
f (B1 − rb1, T )Hk(dr)

]

≤ α f (B2 − B1) + Lk[ f ](b1, B1, T ) + αG(b2 − b1)(μ̄ + ‖ f ‖)
≤ α f (B2 − B1) + L∗

k [ f ](B1, T ) + αG(B2 − B1)(μ̄ + ‖ f ‖)
= L∗

k [ f ](B1, T ) + (B2 − B1)
[
α f + αG(μ̄ + ‖ f ‖)]. (41)

Next, we consider the difference

D[ f ](B2, T ) − D[ f ](B1, T ) = e−λT
∫ T

0

K∑

k=1

λke
λu[L∗

k [ f ](B2, u)

− L∗
k [ f ](B1, u)

]
du,

and using (41), we obtain D[ f ](B2, T ) − D[ f ](B1, T ) ≤

e−λT
∫ T

0

K∑

k=1

λke
λu(B2 − B1)

[
α f + αG(μ̄ + ‖ f ‖)]du
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≤ (B2 − B1)(1 − e−λTmax)
[
α f + αG(μ̄ + ‖ f ‖)]

giving us the upper bound in (17). 
�
Proof of Proposition 3 Because U 0(·, ·) = 0 ≤ U 0(B, T ) = γ λT , Proposition 1
implies that 0 ≤ U1 ≤ U 1 ≤ γ λT . Let us now assume that Un−1 ≤ Un ≤
Un ≤ Un−1 for some n ≥ 1. Then, again by Proposition 1, we have D[Un−1] ≤
D[Un] ≤ D[Un] ≤ D[Un−1], and together with the induction hypothesis, this yields
Un−1 ≤ Un ≤ Un+1 ≤ Un+1 ≤ Un ≤ Un−1. Hence, by induction we conclude that
(Un(·, ·))n≥0 and (Un(·, ·))n≥0 are non-decreasing and non-increasing, respectively,
and the collection (Un(·, ·))n≥0 is bounded from above by (Un(·, ·))n≥0.

Let U∞ denote the pointwise limit of the monotone sequence (Un)n≥0. Because
the operator D is a contraction mapping, ‖U 
+1 − U 
‖ = ‖D[U 
] − D[U 
−1]‖ ≤
(1 − e−λTmax)‖U 
 −U 
−1‖ ≤ . . . ≤ (1 − e−λTmax)
 ‖U 1‖, using which we obtain

‖Um+n−Un‖≤
m+n−1∑


=n

‖U 
+1−U 
‖ ≤ ‖U 1‖
m+n−1∑


=n

(1 − e−λTmax)
for every m, n≥0,

and this gives 0 ≤ U∞(B, T ) − Un(B, T ) = limm→∞ Um+n(B, T ) − Un(B, T ) ≤
‖U 1‖ limm→∞

∑m+n−1

=n (1−e−λTmax)
 ≤ γ λTmax

∑∞

=n(1−e−λTmax)
 = γ λTmax(1−

e−λTmax)neλTmax . Since this is true for all (B, T ) ∈ �, we have ‖U∞ − Un‖ ≤
γ λTmax(1 − e−λTmax)neλTmax , which proves that the convergence of Un to U∞ is
uniform on � as n → ∞. In the arguments above, if we replace U with U , then
we obtain the same upper bound for Un(B, T ) − U∞(B, T ) ≥ 0. This shows that
the Un’s converge to U∞(B, T ) also uniformly with the same error bound. Because
Un’s andUn’s are continuous, their uniform limitsU∞ andU∞, respectively, are also
continuous on �.

The uniform convergence of (Un)n≥0 and (Un)n≥0 also imply that as n → ∞,
we have M∗

k [Un](·, ·) → M∗
k [U∞](·, ·) and M∗

k [Un](·, ·) → M∗
k [U∞](·, ·) for each

1 ≤ k ≤ K , and they are bounded from above by maxk M∗
k [U 0](Bmax, Tmax) < ∞.

Then, by bounded convergence theorem we obtain

U∞(B, T ) = lim
n

Un+1(B, T ) = lim
n

D[Un](B, T ) = lim
n

E 1{τ1≤T }
[
Un(B, T − τ1)

+M∗
κ1

[Un](B, T − τ1)
]

= E 1{τ1≤T }
[
U∞(B, T −τ1)+M∗

κ1
[U∞](B, T−τ1)

]
=D[U∞](B, T ),

which shows that U∞ is a fixed point of D. Replicating the arguments above with
U∞ = limn Un , we observe that U∞ is also a fixed point of the operator D. Finally,
the uniqueness of the fixed point (see Lemma 1) implies that U∞ = U∞. 
�
Proof of Lemma 2 The inequality in (26) becomes an equality for j = 1. Assume that
it holds for some 1 ≤ j ≤ n, and let us prove it for j + 1. Note that the right hand
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side of (26) can be decomposed as

E

n− j∑

i=1

(Wi − bi Ri )Zi1{τi≤T }

+E
[
1{τn− j+1≤T }

(
(Wn− j+1 − bn− j+1Rn− j+1)Zn− j+1+U j−1(Bτn+ j+1, T − τn− j+1)

)]
.

(42)

Conditioning on Fτn− j+1 and using the conditional distributions of Wn− j+1, Rn− j+1,
and Zn− j+1, the second expectation in (42) above becomes

E

[
1{τn− j+1≤T }

(
(μκn− j+1 − bn− j+1 · ρn− j+1)Gκn− j+1(bn− j+1)

+U j−1(Bτn− j , T − τn− j+1)(1 − Gκn− j+1(bn− j+1))

+ Gκn− j+1(bn− j+1)

∫ 1

0
U j−1(Bτn− j − rbn− j+1, T − τn− j+1)hκn− j+1(r)dr

)]

= E

[
1{τn− j+1≤T }

(
U j−1(Bτn− j , T − τn− j+1)

+ Mκn− j+1 [U j−1](bn− j+1, Bτn− j , T − τn− j+1)
)]

≤E

[
1{τn− j+1≤T }

(
U j−1(Bτn− j , T − τn− j+1)+M∗

κn− j+1
[U j−1](Bτn− j, T−τn− j+1)

)]

= E

[
1{τn− j≤T }E

[
1{τn− j+1≤T }

(
U j−1(Bτn− j , T − τn− j+1)

+ M∗
κn− j+1

[U j−1](Bτn− j , T − τn− j+1)
)∣∣∣Fτn− j ∨ σ(Bτn− j )

]]

= E

[
1{τn− j≤T } D[U j−1](Bτn− j , T − τn− j )

]

(43)

where the last line is due to strong Markov property. Because D[U j−1] = U j , com-
bining (42-43) with the induction hypothesis yields

E

[ n∑

i=1

(Wi − bi Ri )Zi1{τi≤T }
] ≤ E

[ n− j+1∑

i=1

(Wi − bi Ri )Zi1{τi≤T }

+1{τn− j+1≤T } U j−1(Bτn+ j+1 , T − τn− j+1)
]

≤ E
[ n− j∑

i=1

(Wi − bi Ri )Zi1{τi≤T } + 1{τn− j≤T }

U j (Bτn− j , T − τn− j )
]
, (44)

and this proves the inequality (26) for j + 1. Hence, by induction it holds for all
1 ≤ j ≤ n + 1. 
�
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Proof of Proposition 5 For n = 0, we have V0 = U 0 = 0 by construction, and the sum-
mation in (28) equals zero. Hence, the claim of the proposition is obvious. Therefore,
we state the proposition and prove the equalities in (28) for n ≥ 1.

By Lemma 2, we have for every admissible policy (bi )i≥1

E

[ n∑

i=1

(Wi − bi Ri )Zi1{τi≤T }
]

≤ E
[ n− j+1∑

i=1

(Wi − bi Ri )Zi1{τi≤T } + 1{τn− j+1≤T } U j−1(Bτn− j+1 , T − τn− j+1)
]

for 1 ≤ j ≤ n + 1. Evaluating this inequality with k = n + 1 gives E
[ ∑n

i=1(Wi −
bi Ri )Zi1{τi≤T }

] ≤ Un(B, T ) and this implies Vn(B, T ) ≤ Un(B, T ) for all n ≥ 1.
We next establish the second equality in (28) for all n ≥ 1. Because U0 ≡ 0, we

have

U 1(B, T ) = D[U0](B, T ) = sup
b1∈Fτ1

E
[
1{τ1≤T } (W1 − b1R1) Z1

]

= sup
b1∈Fτ1

E 1{τ1≤T }Gκ1(b1)
(
μκ1 − b1ρκ1

)

= E

[
1{τ1≤T }

(
W1 − b∗

κ1
[U 0](B, T − τ1) · R1

)
Z1

]

≡ E

[
1{τ1≤T }

(
W1 − b(1)

1 R1

)
Z1

]
,

and this gives the second equality in (28) for n = 1. Assume now that the second
equality in (28) holds for some n ≥ 1. Then we have

Un+1(B, T ) = D[Un](B, T )

= sup
b1∈Fτ1

E 1{τ1≤T }
[
(W1 − b1R1)Z1 +Un(Bτ1, T − τ1)

]

= E 1{τ1≤T }
[
(W1 − b∗

κ1
[Un](B, T − τ1)︸ ︷︷ ︸

b(n+1)
1

·R1)Z1 +Un(Bτ1 , T − τ1)
]
.

(45)
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Using the induction hypothesis and the strong Markov property, we obtain

E
(
1{τ1≤T } Un(Bτ1 , T − τ1)

)

= E

(
1{τ1≤T }E

[ n∑

i=1

(
Wi+1 − b∗

κi+1
[Un−i ]

(
B(n+1)
Ti

, T − Ti+1
)

·Ri+1) Zi+11{Ti+1≤T } | Fτ1 ∨ σ(Bτ1)
])

= E

[ n+1∑

i=2

(
Wi − b∗

κi
[Un+1−i ](B(n+1)

τi−1
, T − τi ) · Ri

)
Zi 1{τi≤T }

]

≡ E

[ n+1∑

i=2

(
Wi − b(n+1)

i Ri

)
Zi 1{τi≤T }

]
.

(46)

Substituting (46) into (45) gives

Un+1(B, T ) = E

[ n+1∑

i=1

(
Wi − b(n+1)

i Ri

)
Zi 1{τi≤T }

]
.

This proves the second equality in (28) for n + 1. Hence, it holds for all n ≥ 1 by
induction.

Clearly, Vn is an upper bound for the expected net revenue of any n-bid policy.
Hence, combining all the arguments above, we now have, for any n ≥ 1,

Vn(B, T ) ≤ Un(B, T ) = E

[ n∑

i=1

(
Wi − b(n+1)

i Ri

)
Zi 1{τi≤T }

]
≤ Vn(B, T ),

and this establishes the equalities in (28). 
�
Proof of Proposition 6 To prove the claim, it is sufficient to establish the identity

V (B, T ) = E

[ n∑

i=1

(
Wi − b(∞)

i Ri

)
Zi1{τi≤T } + 1{τn≤T } V

(
B(∞)

τn
, T − τn

)]
, (47)

inductively for all n ≥ 1. When we let n → ∞, the expectation of the second
term converges to zero because V is bounded (see Remark 3) and P(τn ≤ T ) → 0.
Also both E

[ ∑n
i=1 Wi · Ri Zi1{τi≤T }

]
and E

[ ∑n
i=1 b

(∞)
i Ri Zi1{τi≤T }

]
convergence

by monotone convergence theorem to the expectations of the corresponding infinite
sums, and

∑∞
i=1 b

(∞)
i Ri Zi1{τi≤T } ≤ B. Hence, as n → ∞, the expectation of the

summation in (47) converges to the right hand side in (31).
For n = 1, the expectation in (47) becomes D[V ](B, T ), and the equality holds

since V is a fixed point of the operator D. Assume now that the equality holds for
some n ≥ 1. Then
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E

[ n+1∑

i=1

(
Wi − b(∞)

i Ri

)
Zi1{τi≤T } + 1{Tn+1≤T } V

(
B(∞)
Tn+1

, T − Tn+1
)]

= E

[ (
W1 − b(∞)

1 R1

)
Z11{τ1≤T }

+1{τ1≤T } E
[ n+1∑

i=2

(
Wi − b(∞)

i Ri

)
Zi1{τi≤T }

+1{Tn+1≤T }V
(
B(∞)
Tn+1

, T − Tn+1
) ∣∣∣ Fτ1 ∨ σ(B(∞)

T1
)
]]

. (48)

On the event {τ1 ≤ T }, the conditional expectation above is equal to V (
B(∞)

τ1 , T −τ1
)

by the strong Markov property and the induction hypothesis. Hence, the right hand
side of the equality in (48) becomes

E1{τ1≤T }
[ (

W1 − b(∞)
1 R1

)
Z1 + V

(
B(∞)

τ1
, T − τ1

)] = D[V ](B, T ) = V (B, T ),

which proves (47) for n + 1. Hence, (47) holds for all n ≥ 1 by induction, and this
completes the proof. 
�

Proof of Proposition 7 The identity f (B, 0) = V (B, 0) for T = 0 is obvious. There-
fore, we only give the proof for T > 0. Note that for a given admissible policy (bi )i≥1
and the corresponding budget process {Bt }t∈[0,T ], the chain rule gives

E f (BT , 0)︸ ︷︷ ︸
0

− f (B, T )

= E

[
−

∫ T

0
fT (Bt−, T − t)dt +

∑

i≥1

[
f (Bτi , T − τi ) − f (Bτi−, T − τi )

]
1{τi≤T }

]

= E

[
−

∫ T

0

( K∑

k=1

λk

λ
M∗

k [ f ](Bt−, T − t)

)
λdt

+
∑

i≥1

[
f (Bτi , T − τi ) − f (Bτi−, T − τi )

]
1{τi≤T }

]
. (49)

Because M∗
k [ f ](·, ·) is continuous on� and the budget process is an F-adapted càdlàg

process, it follows that {M∗
k [ f ](Bt−, T − t)}t∈[0,T ] is bounded and F-predictable.

Therefore, in terms of the counting process N = {Nt }t≥0 with Nt = ∑
i≥1 1{τi≤T },
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for t ≥ 0, we have

E

[ ∫ T

0

( K∑

k=1

λk

λ
M∗

k [ f ](Bt−, T − t)

)
λdt

]

= E

[ ∫

(0,T ]

( K∑

k=1

λk

λ
M∗

k [ f ](Bt−, T − t)

)
dNt

]

= E

[ ∑

i≥1

M∗
κi

[ f ](Bτi−, T − τi
) · 1{τi≤T }

]

≥ E

[ ∑

i≥1

Mκi [ f ]
(
bi , Bτi−, T − τi

) · 1{τi≤T }
]

≡ E

[ ∑

i≥1

Gκi (bi )
(
μκi − biρκi +

∫ 1

0
f
(
Bτi− − rbi , T − τi

)
Hκi (dr)

− f
(
Bτi−, T − τi

))
1{τi≤T }

]
.

(50)

Using the conditional distribution of (Zi , Ri ) (with the help of the dominated conver-
gence theorem to interchange the summation and the expectation), we obtain

E

[ ∑

i≥1

(
f
(
Bτi , T − τi

) − f
(
Bτi−, T − τi

))
1{τi≤T }

]

= E

[ ∑

i≥1

Gκi (bi )

(∫ 1

0
f
(
Bτi− − rbi , T − τi

)
Hκi (dr)− f

(
Bτi−, T − τi

))
1{τi≤T }

]
.

(51)

Inserting (50-51) into (49) yields

f (B, T ) ≥ E

[ ∑

i≥1

Gκi (bi )
(
μκi − biρκi

) · 1{τi≤T }
]

= E

[ ∑

i≥1

(
Wi − bi Ri

)
Zi · 1{τi≤T }

]
, (52)

and this implies that f (B, T ) ≥ V (B, T ) because (bi )i≥1 was an arbitrary admissible
policy. In particular, with the optimal policy b(∞) (and its budget process B(∞)) given
in Lemma 6, the inequalities in (50) and (52) become equalities, and this proves that
f (B, T ) = V (B, T ). 
�
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