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ABSTRACT

MODIFIED BLOCK REPLACEMENT MODELS IN 
DISCRETE AND CONTINUOUS TIME

Pelin Arım
M.S. in Industrial Engineering 

Supervisor: Prof. Vladimir V. Anisimov 
April, 2000

In this study, we present modified multi-component block replacement 
policies. Units (items) are replaced only at prescribed times j  = 1,2,... A 
failed unit is changed with a good one with probability a. Replacement time 
is negligible. Three replacement policies for models that are not represented as 
renewal processes are provided under this setup. Some reliability characteristics 
are discussed.

In the first model, total control is considered. All units are controlled 
at time jT ,  j  = 1,2,.... In the second model, a partial (group) control is 
studied in which a sample of size n, (0 < n < A) is taken from all units to 
inspect. And the last model deals with cyclic control: units are divided into 
r parties. Part}' k is controlled at time jT , j  — 1,2,... where j  = k (modulus 
r), k = l ,2 ,. . . ,r  — 1 and if k is equal to zero then party r is controlled. A 
comparison between the partial (group) control and cyclic control is provided. 
We also introduced cyclic partial control which combines the partial and cyclic 
control policies. The cyclic partial control and cyclic control is compared as 
well. Cost type of functionals are considered and optimal replacement interval 
T* is studied as well.

Key Words: Replacement Policies, Block Replacement, Total Control, 
Partial Control, Cyclic Control.
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ÖZET

KESİKLİ VE SÜREKLİ ZAMANDA FARKLILAŞTIRILMIŞ 
ÖBEK DEĞİŞTİRME MODELLERİ

Pelin Amil
Endüstri Mühendisliği Bölümü Yüksek Lisans 
Tez Yöneticisi: Prof. Vladimir V. Anisimov 

Nisan, 2000

Bu çalışmada, kesikli ve sürekli zamanda çok bileşenli farklılaştırılmış öbek 
değiştirme modelleri sunuluyor. Toplamda N  tane olan birimlerden herbiri 
rassal bozulmalara maruz kalıyor. Sistemdeki bozulmuş birimler önceden 
belirlenmiş^T, y = 1,2,... zamanlarında o olasılığıyla değiştirilİ3'or. Yenilenme 
süreci şeklinde gösterilemeyen modellerde değiştirme zamanları göz önünde 
bulundurulmuyor. Bu doğrultuda ortaya konulan üç modelin bazı güvenilirlik 
özellikleri tartışılıyor.

İlk model olan toplam kontrolda sistemdeki tüm birimler jT , j  = 1,2,... 
zamanlarında kontrol ediliyor, ikinci model olarak kısmı kontrol orta.ya 
konuluyor. Bu modelde sistemden alınan n, (0 < n < TV), bÜ3mklüğündeki 
örneklemin kontrol edilmesi varsayılıyor. Son model olan çevrimsel kontrolda 
sistem sabit r gruba bölünÜ3'or ve jT ,  j  = 1,2,... kontrol zamanlarında, j  = k 
(mod 7') k = 1,2,..., 7’ — 1 durumunda grup k, eğer k sıfıra eşitse grup r kontrol 
ediliyor. Kısmi ve çevrimsel kontrolün karşılaştırılması yapılıyor. Ayrıca kısmi 
ve çevrimsel kontrolün birleşiminden meydana gelen çevrimsel-kısmi kontrol 
tanıtılıyor. Bu çalışmada son olarak malİ3'et tipi işlevleri ve en iyi değiştirme 
aralığı T” çalışılıyor.

Anahtar sözcükler: Değiştirme Kuralları, Öbek Değiştirme, Toplam 
Kontrol, Kısmi Kontrol, Çevrimsel Kontrol.
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Chapter 1

INTRODUCTION

Reliability  ̂ is design engineering discipline which applies scientific knowledge 
to assure a product will perform its intended function for the required duration 
within a given environment. This includes designing in the ability to maintain, 
test, and support the product throughout its total life cycle. Reliability 
is best described as product performance over time. This is accomplished 
concurrently with other design disciplines by contributing to the selection of 
the system architecture, materials, processes, and components -both software 
and hardware; followed by verifying the selections made by thorough analysis 

and test.

The skills and knowledge required to achieve reliable products are:

• statistical analysis

• product reliability modeling for selection of redundancy versus compo

nent reliability

• trade study analysis

• reliability predictions 

'Received from http://www.ewch.ieee.org/soc/rs

http://www.ewch.ieee.org/soc/rs


• worst case stress/tolerance/sigma design performance analysis

• engineering based physics of failure

• failure modes/effects/criticality analysis

• reliability test planning and testing -  product stress screening/accelareted 
life/demonstration

• failure analysis

• maintenance concept definition

• maintainability analysis

• maintainability test planning and demonstration

• supportability analysis

• derating analysis

• human engineering analysis

• product safety analysis

• reliability/niaintainability/system safety/quality/logistics support/human 
factors/software performance monitoring

• product effectiveness.
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Many researches have been conducted on maintenance models for systems with 
stochastic failure in the last forty years. Maintenance models can be applied 
to a variety of areas such as military, industry, health, and the environment. 
Due to technological advances in recent decades, systems become more 
complicated and require new technologies, control policies and methodologies. 
Whichever the environment is under consideration, an important point is the 
determination of when to replace the system to guarantee that the system is 
used eifectivel}', efficiently and less costly and it is available whenever need

arises.
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In tlie thesis, we presented partial control policy with a multi-unit system. 
This model assumes that a random sample of n units is inspected at pre
scheduled timesyT, j = 1,2,... and each failed item is replaced by new one with 
probability a. Consequently, the points of inspection are in general not renewal 
points and it is not possible to apply directly renewal theory. In literature, there 
are no known results about partial control of multi-unit models.

Since multi-unit maintenance models are much more difficult to analyze, 
the results of the single-unit models are used frequently (see examples in 
Section 1.1). In the usual block replacement policy (with single or multi-unit 
system), all units in the system are replaced simultaneously by new ones at 
prescribed times jT ,  j  = 1,2,... Therefore, all known results about usual block 
replacement policy (to the best of our knowledge) are based on renewal theory.

In this study, we present three modified multi-unit block replacement policies. 
In all models, there are N  units (items) which are subject to random failures. 
Each failed item is changed with probability a. Replacements are allowed only 
at times jT ,  j  = 1,2,... and T > 0 is fixed. Some reliability characteristics are 
discussed under this setup.

The first model is a total control policy in which all units are controlled at 
times jT ,  j  = 1,2,... Because of shortage of spare units, lack of money or 
workers, controlling all units may not be possible every time. So, we proposed 
a model called partial (group) control which depends on controlling a sample 
taken from all units of size n, {0 < n < N). The last model is a cyclic control 
in which all units are divided into r parties. Then, all parties are numbered 
from 1 to r. Party k is controlled at tim ejT , j  = 1,2,... where j  = k (modulus 
r) k — 1,2,..., r — 1 and if k is equal to zero then party r is controlled. We also 
introduced cyclic partial control which combines the partial and cyclic control 
policies. Under cyclic control policy, a random sample of m < n units are taken 
from party k at time jT ,  j  = I , '2,... j  = k (modulus 7·) k = 1, 2,..., r — 1 and if 
k is equal to zero then a random sample taken from party r is controlled. Then,



the failed units in the sample taken fro]n the part}' is replaced by probability ¡3.

The problem of multi-unit systems with general lifetimes practically is not 
analytically solvable. Thus, we study the exponential case. Since we replaced 
the failed items with good ones with a certain probability, the processes in 
our models are not renewal and regenerative processes. Hence, when we are 
studying the long-run behaviour of the number of failed items in the system 
and the cost functionals, we use the asymptotic results for Markov processes 
with discrete interference of chance.
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1.1 Some Maintenance Policies and Litera

ture Review

Various maintenance policies are studied with a view toward information 
concerning their basic stochastic characteristics, such as the distribution of 
the number of failures, the expected time to in-service failure etc. Some 
decisions concerning replacement, repair and inspection are made in the study 
of maintenance policies.

Replacement decision making involves the problem of specifying a replacement 
policy which balances the cost of failures of a unit during operation against the 
cost of planned replacements. Two widely used replacement policies policies 

are age replacement and block replacement. Under age replacem.ent^ the system 
is replaced upon failure or upon reaching a specified age T  whichever occurs 
first where T  is considered as constant. Under block replacement, the system 
is replaced upon at failure and at times jT ,  j  = 1,2,... (.see Barlow and 

Proschan [6]).

There are some studies in which some replacement policies are compared.In



1979, Berg and Epstein [8] compared age, block and failure replacement (in 
which no preventive replacements are made at all) and provided a simple rule 
for choosing the least costly of the tree policies for any possible values of the 
planned replacement costs. Langberg [18] made the stochastic conrparisons of 
the number of failures and removals in an interval [0,s] under age and block 
replacement policies.

There is a large amount of literature on several maintenance models. In 
sequel, studies related to other maintenance actions and maintenance models 
are provided briefly.

Kaio and Osaki [16] studied the probabilistic characteristics of discrete and 
continuous lifetime distributions. Then, they applied the specific distributions 
to typical age and block replacements. The results are summarized in tables 
for the quick reference in real s3̂ stems.

Block replacement policy derives its name from the commonly employed 
practice of replacing a block or group of units in the system at prescribed times 
jT ,  j  = 1,2,... independent of the failure history of the sз^stem. However, 
the studies on block replacement policy are usually single-unit, see e.g., 
Nakagawa [22]. He proposed new block replacement policies which convert the 

usual age, block, periodic and inspection models to discrete time replacement 
models. Other examples for single-unit block replacement policy have appeared 
in |4J |5) [6| ¡7) [11] |13J [14J (19) (20) |21| (27) and (28).

Some studies [4] [13] [17] have been written for optimization of replacement 
policies. Aven and Dekker [4] presented a general framework which covers 
many age and block replacement for this purpose.

CHAPTER 1. INTRODUCTION 5

Although the simple block replacement policy is simple to understand and 
easy to implement, the important disadvantage of this policy is that sometimes 
almost-new systems are replaced at prescribed replacement times jT ,  j  = 
1,2,... Many modifications have been introduced to avoid this unnecessary



waste: Allowing the system to remain inactive, replacing the failed item by a 
used one or less reliable one are some modifications. ?ilso for repairable systenis, 
two types of repair have been considered; minimcd and imperfect repair. Barlow 
and Hunter [5] introduced the block replacement policy with minimal repair at 
failure. Under minimal repair, the failed unit is repaired so that it functions 
again, but has the same failure rate and the same effective age as at the time 
of failure. Under imperfect repair, the failed unit is repaired with probability 
p it is returned to the ”good-as-new” state (perfect repair), with probability 
q = 1 — p it is returned to the functioning state, but it is only as good as a 
device of age equal to its age at failure (imperfect repair).

In 1979, Nakagawa [19] [20] studied block and age I'eplacement with imperfect 
repair. After introducing imperfect repair concept in [19], he presented 
optimum policies when preventive maintenance is imperfect. A year later, 
he gave a summary of imperfect preventive maintenance policies with minimal 
repair in [21].

Beichelt [7] proposed a generalized block replacement policy for a system with 
two failure modes. If the system is in mode 1, it is removed by minimal repair. 
If the system failure is in mode 2, it is removed by replacement.

Other studies in imperfect repair has a.ppeared in [11] and [14]. Fontenot 
and Proschan in [14] presented two models. In model I, they stated a modified 
age replacement model. At the beginning, a perfect repair is scheduled to take 
place at time T  (a constant) a cost C2 . If the device fails at a time tj prior to 
T, it is repaired at a cost Ci < C2 . This repair is perfect with probability p and 
imperfect (minimal) with probability q = 1 —p. Model II is the same as model 
I except in one concept: the unit is replaced (perfectly repaired) on the next 
failure after k — 1 successive imperfect repairs.

CHAPTER 1. INTRODUCTION 6

Shell [27] [28] studied the modified block replacement policies in detail. In his 
models, an operating system is periodically exchanged at times kT, k = 1,2,... 
independently of its failure history. After a generalization of the policy, he



CHAPTER 1. INTRODUCTION

proposed a model in which an operating s}^stem is either placed b}' a new or 
used one or minimall}/ repaired or remciins inactive until the next planned 
replacement at failure. In another policy, he introduced a modified block 
replacement with two variables and general random minimal cost. The cost of 
¿th minimal repair at age y consists of two parts: C{y) is the age dependent 
random part, c,(y) is the deterministic part which depends on the age and the 
number of minimal repair. Thus, minimal repair cost id random. If the system 
fails in [(A; — 1)7", {k — \ )T  + Tq) it is either replaced by a new one or minimally 
repaired, cincl if [(A; — 1)T + To^kT) it is either minimally repaired or remains 
inactive until the next planned replacement.

The multi-unit maintenance models can be divided into the two main 
categories: ’’Preventive” an d ’’preparedness” maintenance models (see in [12]). 
These models based on the knowledge of the state of systems. Preventive 
maintenance models assume that the state of equipment subject to stochastic 
failure is always known with certainty. Preparedness maintenance models also 
deal with equipment which fails stochastically; however, the state of equipment 
is assumed to be unknown unless either inspection or replacement is carried 
out. An additional decision related to an optimal inspection schedule must be 
made in these models.

Replacement models are included in the preventive maintenance models. 
In sequel, studies related replacement models with multi-unit system are 
provided. Tango [30] investigated a multi-unit system. He proposed a modified 
block replacement policy using less reliable items. If operating items fail in 
[(A; — 1)7", kT — u), they are replaced by new items, and in [(A: — 1)7" — kT), 
they are replaced by less reliable items than new items. (Less reliable 
items should be cheaper and thus less durable than new items.) Haurie 
and L’ecu}'er [15] formulated a group maintenance replacement problem in 
continuous time for multi-component system having identical elements. Also, 
the numerical computation of optimal and suboptimal strategies of group 
preventive replacement are done for discrete time.



Due to the fact that items in a system function under the Scvme environmental 
conditions like temperature, humidity and vibrations, component lifetimes are 
generally stochastically dependent. Thus, they are also economically dependent 
because of doing preventive maintenance to functioning units. In [23], Ozekici 
discusses the effects of these dependencies on periodic replacement policies and 
provides useful characterizations of the optimal replacement polic}^

In 1990, Ritchken and Wilson [24] introduced (??r, T) group replacement policy 
which combines the m-failure and T-age policies. All items are replaced by new 
ones when the system is of age T, or when m failures have occurred whichever 
comes first.

Optimal group maintenance policies for a set of M  identical machines subject 
to stochastic failures are considered in [3] [31]. Assaf and Shanthikumar [3] 
proposed a control limit policy which minimizes the expected cost per unit 
time over an infinite horizon when costs are incurred due to loss of production 
and repair only. In this model it is assumed that the number of failed machines 
in the system is unknown unless an inspection is carried out. Therefore, this 
model is an example for preparedness maintenance policy. In a part of their 
study, the following policy is considered: Inspection takes place every r  units 
of time and all failed machines, if any, are repaired at each inspection epoch. 
Let W { t ) be the average cost of this policy per unit of time. Then,

WM  = Cq̂ C od -  + ./V(C· -  (C./A))(l -  ^
T

where Co is the overhead cost of repair, C\ is a cost of repair per machine 
and C2 is the cost of production loss for each failed machine during operation. 
Also, a positive cost Cq is paid every time such an inspection is performed.
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In [31], Van Der Dyn Schouten and Vanneste introduced four possible states 
for each component: good, doubtful, preventive maintenance is due and failed. 

They considered two types of control policies which based on the number of 
doubtful components at component failure epochs. After introducing a general 
model with identical lifetime distributions for individual components, they



propose an approximate model in which the four possible states are identified 
with certain age intervals for each individual component.

Some other studies about multi-unit maintenance policies are the following: 
In 1992, Sheu and Griffith [29] studied multi-unit systems with dependent life- 
lenghts having certain multivariate distributions. Components are repaired 
upon failure (perfect or imperfect repair) depending on the different sources 
of failure. In the same year, several new results which connect the 
properties of block replacement policies with properties of corresponding 
renewal function and excess lifetimes are obtained in [26]. In [10] the concept 
of repair replacement is introduced by Block, Langberg and Savits. In repair 
replacement, items are repaired if they fail and replaced only if they survive 
beyond a certain fixed time from the last repair or replacement.

In [9], it is assumed that performance of M  identical machines deteriorates with 
the operating time since the last maintenance and no random failures occur. 
Any machine can be taken off line for maintenance at any time, (that is, it is 
not a periodic inspection or a periodic replacement.) The maintenance times 
are independently and identically distributed. Under these assumptions, many 
maintenance policies are performed when the expected profit rate is maximized.

CHAPTER 1. INTRODUCTION 9

The rest of the thesis is organized as follows: In Chapter 2, after analyzing 
the behaviour of items in the system, we present total control, partial (group) 
control and cyclic control in discrete time. Some reliability characteristics 
are discussed. We compare partial (group) control and cyclic control when we 
consider the number of failed units in the system. In Chapter 3, all analysis for 
discrete time is done in continuous time. In Chapter 4, some cost functionals 
are studied and the optimal replacement interval T* is obtained. A simulation 
of total control policy is provided and the comparison with analytical result is 
given. Finally, we present our conclusion in Chapter 5.



Chapter 2

DISCRETE TIME MODELS

In this chapter, we present modified multi-component block replacement 
policies in which units (items) are replaced only at prescribed discrete times 
r ,  2T ,.... In the first section, we will analyze the behaviour of items in the 
system and determine the number of failed units at time k, k = 0, 1, 2,... . In 
sequel sections, total control, partial (group) control and cyclic control policies 
for discrete time will be introduced.

2.1 Analysis of Behaviour of Items

Consider a discrete time control polic}c Suppo.se that there are N  independent 
items each of which is in good condition at the beginning in the system. 
Let Qk be the number of failed items at time k, k = 1,2,.... Assume that 
every unit may fail independently of the failures of the other units with the 
probability q. Thus, the distribution of failed items is a binomial distribution. 
Let Bin{N,q) denote the Binomial random variable with parameters N  and

q, that is, = 0  = ^ . j  p'q^'~' where p = I -  q and i -  0,1, 2,..., TV.

In future we will use also the notion of double stochastic binomial random 

variable.

10
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Definition 2.1 If  Z is some integer random variable with values {1,2,...}. 
We will denote a double stochastic binomial random variable Bin{Z,o:) such 
that

a H \ - a Y ~ ^ P { Z  ^ n ) .P{Btn{Z,a) = k ) ^ J 2
n

n > k  V k

Expectation of the double stochastic binomial random variable is

E[Bin{Z,a)] = aE{Z).

Then we can write the following stochastic relation between number of failed 
items at step k and A: + 1.

Qk+i — Qk + B infN  — Qi;̂  q). A: — 0,1,2,... ( 2 .1 .1 )

In order to find the expected number of failed items at each step, we can use 
the following recurrent relation. If mr- = E{Qk) is the expected number of 
failed items at step A;, k = 0,1,2,.... For step A: + 1,

mfc+i = mk + {N -  mk)q

or
m.k+1 = Nq + vikP where p = I — q. (2.1.2)

Since all units are in the good condition at the beginning, the expected number 
of failed items at initial step is zero, that is, m-o = 0. Then by Equation (2.1.2), 
we have the following,

mi = Nq.

m 2 — Nq + mip = Nq{l + p). 

m3 = Nq + 7TI2P = Nq{l + p + p' )̂.

mk = Nq + rrik-ip = Nq{l + p + p  ̂ + ...  + p^ 
1 -

= N { l - p ) ^ .
1 - p
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Therefore, we get

mk = N ( l -p '^ ) ,  ¿ = 0,1,2,... (2.1.3)

As a result, we can say that number of failed items at step ¿,  ̂ = 0,1,2,... has 
binomial distribution with parameters N  and 1 — for k = 0,1,2,....
If the number of failed units on the initial step is greater than zero, that is, 
Qo > 0, with mean nio then the recurrent relation (2.1.2) gives the following:

mi = Nq + mop.

Ш2 == Nq + mip = Nq{l + p) + p '̂mo. 

шз = Nq + Ш2Р -  Nq{l + p p ' ^ )  + p^mo.

Finally,

mk -  Nq + mk-ip = Nq{l + p + p -h . . .  + p ) + p^mo 

= N { l - p ) \ — — +p''mo.
1 - p

mk = N{1 -  p^) + p^mo, ¿ = 0,1,2,... (2.1.4)

When we compare Equation (2.1.3) and (2.1.4), there is an additional term 
containing expected number of failed units at the beginning in Equation (2.1.4).

Example:
In order to demonstrate the use of the model, the case N  = 1000 and q = 0.05 
is analyzed. The number of failed units were obtained by simulation and the 
expected number of failed units for each step was calculated analytically. Since 
N  = 1000 and q = 0.05 the function of expected number of failed items is given 

by
7Пк = 1000(1 — 0.95*") where ¿ = 0,1,2,... is any step.

At the end of 136 steps all units are failed. The graph of output is shown in 

Figure 2.1.
In Figure 2.1, the graph of number of failed items, which was obtained by
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Figure 2.1: The graph of simulated and expected number of failed units for 
N  = 1000 and q = 0.05
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adding simulated binomial random variables, Qk at time k = 1,2,..., is 
almost fitting into the graph of expected number of failed items.
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2.2 Total Control with Block Replacement

In this section, we study a control policy with modified block replacement. 
Again suppose that N  independent units with failure probability q are installed. 
We call this control policy as “Total Control” because all installed units are 
controlled at time jT ,  j  = 1,2,... where T  is some positive integer. While 
making replacement we can make a mistake which means that we may change 
the failed item with good one only with probability a. We assume that 
replacement, repair or inspection time is negligible. Replacement is allowed 
only at times jT ,  j  = 1,2,... for a fixed T > 0, that is, the failed units may be 
replaced only at discrete times T , 2T , ....
Consider the process at times jT ,  j  — 1,2,... and let Qjt be the number of 
failed items before control at time jT ,  j  = 1,2,... and

Mjr = E{QjT), j  = l , 2,...

and let Moo be the expected number of failed items before control in the long- 
run, that is,

Moo = lim MjT-j—*oo
(We will prove that this limit exits.)

Main Relations:
We denote the number of failed units before control at time jT ,  j  = 1,2,... by 
QjX and the number of failed items just after control at time jT ,  j  = 1,2,... 

by Qjx- Then,

QjT — QjT — Bin{QjT,0:) (2 .2 .1 )

Let

Then the expectation after control yields

Finally,

Mjy = Aljx — Mjxcx.

M fr  =  (1 -  o ) M ,T . (2 .2 .2 )
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Rewriting Equation (2.1.1) by putting instead of Qk, we have

Q{j+i)T = QJt + Bin{N — Q' x̂·, I — ) (2.2.3)

It follows that the recurrent relation for mean number of failed items is

= M/x + ( N -  m ;x)(i -  / ) .

Substitute M^x and rewrite M(j+i)x.

M(j+i)x = (1 *- a)Mjx + (N — (1 — a)Mjx)(l — p^)

= JMjx[l -  a -  (1 -  a )(l -  ; / ) ]  + fV(l -  p^).

M(j+i)x depending on Mjx is given by

M(j+i)x = Mjx(l -  a)p^ + A^(l -  p^).

In Equation (2.2.5), let

a = (1 — a)p^, 0 < a < 1

and

Then

h = N{\ — p^).

(2.2.4)

(2.2.5)

— aMjT + h.

Here note that number of failed units at time 0 is greater than or equal to zero, 

Mo > 0. We can get Mjj  depending on Mo, a and 6, that is,

Mx — ciMq -j- b.

M2T ~  Q·̂ Mq -(- cib "f b.

M̂ ,T ~ Mq “1“ b -f- Q.b b.
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M.JT = MMo + a^~^b+... + ab + b

= â A4o + bJ2 <î
k=0

( 1 - 0 ')
— Mo -|- b-

l — a

In general at timejiT, j  = 1,2,...

M,T = { Mo -  7 -^ " )  + ^1 — a j  \ — a
As the number of inspection times j  goes to oo, since 0 < a < 1, then we get

lim MjT - ------
j-*oo 1 — a ( 2 .2 .6)

Hence we can find average number of failed items before control in the long- 
run, Mco, by substituting a and b in Equation (2.2.6). Therefore,

ATI —p̂ )
(2-2-7)

The expected number failed units just after control in the long-run is the 
following:

M+ = M ^ - c x M ^

= (1 -  Q()Mco,

substitute Moo obtained in Equation (2.2.7) and get,

= T̂ (l -  P )(1 -a)_ .
l - ( l - a - ) p ^  ■  ̂ ^

We proved that limit, as the number of inspection times j  goes to infinity, 
exists. We can also find the limit directly from Equation (2.2.5). Thus,

lim M(j+iyr -  M

then.
Moo = {l-c^)MooP^ + N{ l - p ^ ) ,
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that implies

“  1- { 1 - Q y
(2,2.9)

In order to obtain the average long-run proportion of expected number of 
failures, we can use the following definitions and theorems:

Definition 2.2 I f  the random variable  ̂ ao, then we can denote it as

P lim (n = aon—+00 

Pwhere —> denotes converges'in probability and P lim means a limit in probability.

Definition 2.3 R(N^T^p^a) is the average long-run proportion of expected 
number of failed items in the system and it is represented as follows:

R { N ,T ,p ,a )=  lim - j ^ E Q u -

D efinition 2.4 Q{N,T,p^a) is the long-run average proportion of failed items 
in the system and given by

0 (A '.r ,p ,a )  = F  limn—♦•CO 77 ^ -
k = l

Lem m a 2.1 The limit of the expected value of j  = 0, 1 and
/ = 0,1,... exists and is given by

where

lim EQiT+j = EJ"'/—♦CO

E r  = M * + { N -  y  )(1 -  p>).

Proof:
EQiT+j can be expressed by using Equation (2.1.3) as

EQiT+, = MS- + ( N - M t r ) { l - p ’ )
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where M ^  is the expected number of failed items just after control at time IT^ 
I = 0,1,... Therefore, as / ^  oo, we ha.ve

lirn EQ,T+, = M+ + {N -  M +){1 -  jA).
i—*-oo

□

Lem m a 2.2 If  Uk as k —* oo then,

1 ”
— 7  aic a<x, as n —> oo.

Proof:

2^  \  ̂ 2 ^
I ^  ̂ ^oo| ^ y 1̂ /: ôo I — ^ V l̂ /c ^oo| "I" ^  ̂ |̂ /c

/:=! /c=l /c=l ^  ^-=L+lk=l
n< e- = e,
n

As ak goes to aco, then for any e > 0, there exists L such that k > 

\dk “  <̂co| < 7̂ then

1 ^
> U q q . □

T heorem  2.1 Let EQk be the expected number of failed units at time k, k 

1,2,.... The7i, we have

R[N, T, p. a) = lim i  E  e T “
"■ k=\ j=0

where Ef° is obtained by stochastic relation (2.2.5) in the long-run, that is,

E T  = W t  + (.'V -  M i)( l  -  f ) ] ·

Proof:
If n  =z T m ,  ^  Y fk = \ ^ Q k  can be written in the following form:

1 / 1 m 1 77i 1 m ''
”  X] EQ'ij H---- X  EQiT+\ + ... d----- X  EQiT+T-i
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Consider EQiT+j for 0 < j  < T, and refer to Lemma 2.1. As / —> oo, we get

EQ IT+j ET.

Using Lemma 2.2 we get for an}̂  j  as rn —> oo,

1
m T.EQ41T+İ ET.

l=l

where

E f  = [M+ + (A' -  W+)(l -  P’ )].

M ^  is the average long-run number of failed items just after control and {N — 
— pf) is average number of items failed during time (ITCT + j)  in the 

long-run. Consider the case n = Tm-\-i where 0 < i < T. ^ EQk can be 
written in the following form:

1 ( m m  m \ Tm-\-i

'^EQtr t Y^EQit+1 + ■■■+ '^EQiT+T-ij + EQj
1=1 1=1 1=1 J j=Tm

Tm i

Rewrite the equation then we get

'T 'm  \   ̂ ^  1 m 1 m ^
EQljr H---- EQiT-\-i + ... H--------- Y2 ^Ç/T+T-1Tm + i j  T \ m m 1=1 m 1=1

T  m + i

- E EQi
Note that

1 Tm+i jyf·

Tm + i

As m goes to infinity, the term (2.2.10) goes to zero and

T m ^
Tm + i

Therefore, we get the same situation when the case n = Tm.

(2.2. 10)

□

Theorem 2.2 In the long-run, average proportion of number of failed units 
Q(N,T,p,a)  exists and it is given by

1
Q{N,T,p,a) = ~ J 2 E·

k=0
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Proof:
Let us represent the value 1 /n  Qk hi the following way: Consider at fixed 
j  = 0 , 1 ,..., T -  1 a sequence Qir+j, I -  0 , 1 ,... and the case when n = Trn, 
then

■in i / - j m  - j m -1771 \
-  E  = 7̂  ( — £  QlT + — £  QiT+i + ··· + — S  QlT+r-1 In T  \ m 1=1 1=1

It can be easily see that this sequence Qir+j, I = 0 , 1 ,... forms a Markov 
process which is embedded for Qk- Lets find a limit of the value l /n ^ ¿ _ j  Qk- 
Consider first the sequence Qit, I = 0,1,... This sequence forms an irreducible 
Markov chain with finite state space {0,1,..., N}  and corresponding transition 
probabilities p,j, i j  = 0 ,1 ,...,//. Denote for any i — 0 ,1 ,...,//

C' = «-f Bin{N  — C l — P^) * = O5 1) ···//·

Then, transition probabilities are obtained by

Vгi = P[C =  i) > 0 C j =  0,1, ...Ah

Let 7r(f), i = 0,1,..., / /  denote the stationary distribution of the Markov chain 
Q iT-  According to weak la,w of large numbers for Markov chain, as m —> 0 0 , 

we get
1 “

m /=1

where

Now let us show .that

Remember that

N

¿=0

E,Q*  = M+.

— lim EQlj·k—̂oo
Let be the expected number of failed items just after control at time ¿T, 

k = 1,2,.... Hence,

v *  = EQt^r =
¿=1
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where PkT{^) — P{Qk:r — 0· QkT is ergodic Markov chain then as k —> oo,

P kr{ i )T ^{ i )  ¿ = 0 ,1 ,...,Ah

Thus, we have

= iiiTi EQl^r = ¿ * 7 t(z) = E^Q"^k—*oo i = l
In the same wa.y, we can prove that each j  = 1,2,..., T -  1, Qtx+j forms an 
ergodic Markov chain and

m ^  QiT+j E]7100
'j

1=1

Finally we get.
1 T-i

Q ( N , T , p , a )  =  - Y , E ^
 ̂ k=0

Similarly as in Theorem 2.1 the case when n = Tm + ¿, 0 < i < T is the same 
as the case n = Tm.  □

Corollary 2.1 The average long-run proportion of failed items in the system 
is equal to the average long-run proportion of expected number of failed items 
in the system. That is,

Q { N , r , p , a )  =  R ( N , T , p , a )

Proof;
It is obviously follows from Theorem 2.1 and Theorem 2.2. □

Corollary 2.2 The average long-run proportion of average number of failed 
items for total control in the system is the following:

\  /1  — '
iг(A^Γ,p,αO = ¿V 1 -  4

a
T \ l  — {1 — a)p'^J \  1 — p

( 2.2.11)

Proof:
Proof of this theorem based on Theorem 2.1.

1 r - i
i?(A^Γ,p,α) = jim  -  ^  EQ^t -  ^  ~ ^ 0 ( 1  "  P )]·n—*oo 72/:=1 k=0
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Equivalently,

1 r - l
R(N,T,p ,a)  = +

k=0
T-1

k=0 k=0

= N -  ^ ( N  -  M ^)  f :  p''
k=0

T k=0

1

substitute obtained at Equation (2.2.8), then

R ( N M  =

= TV 1 -  

Finally we have,

R(N,T,p ,a)  = N

1 - p  J
1 f  1 — p̂  + ap^ — I -\- a p^ — ap^
T

1 - 1

1 — (1 — a)p^

a \  f  I — p̂
T \  1 — (1 — a)p'^ J  \  I — p

. 1 - P
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2.3 Partial (Group) Control with Block Re
placement

In practical models it is difficult to inspect all units at the control times JT, 
j  = 1,2,... when the number of installed units are large at the beginning. 
Control of all operating units requires a large amount of spare units, money 
and workers. In order to avoid high cost, in this section, we will introduce 
a modified block replacement which depends on control of a partial choice of 
whole units in the .system.

Assume that there are N  units in the system. Each item ma.y fail with 
probability q. At each control time jT , j  = 1,2,... we take a sample of size 
n where n < N  units are selected randomly from the all units in the system. 
Assume that the probability of changing the failed unit with a good one in 
the sample is ¡5. Let QjT be the total number of failed items at time jT ,  
j  = 1,2,... and (5/r number of failed products just after control.
The sample contains HG{N,n,QjT)  faulty units at the inspection time, where 
HG{N,n,QjT)  is a double stochastic hypergeometric random variable with 
parameters N,n  and QjT, th3,t is.

N  -  QjT
n -  k

P{HG{N,n,Q,T) = k} =

where A: = 0,1,2, ...,n and E{R ) = n{MjTlN)
(Inspection technique is based on the model of Anisimov and Sereda [1].)

Suppose that MjT = E{QjT) and = ^(Q^t )· The following stochastic 
relation contains again a double stochastic binomial random variable as 
explained in Definition 1.1. Then, we get

Q + ^ Q ,T -B in {H G {N ,n ,Q ,T ) ,^ ) (2.3.1)



CHAPTER 2. DISCRETE TIME MODELS 25

If we take the expectation of both sides in Equation (2.3.1), then we have

(2.3.2)

If we consider the number of failed items at time {j + 1)T then,

MIt = M,T -  M j T ^ 0  = ( ^ 1 - ^ 0 )  M,T.

Q[j+i)T — Q'jT + Bin{N  — Q/t )  ̂ ~ P ) (2.3.3)

The stochastic relation between the avera.ge number of failed items before 
control at time [j + 1)T and and the average number of failed units just after 
control at time , j T  is the following:

n
= MjT (1 -  ) p‘ ' + yvil -  p’ ’). (2.3.4)

C orollary 2.3 Consider the partial (group) control with block replacement. 
The long-run average number of failed items before control in the system is 

given by

where

Jim MjT = Mooi 
*-00

_  i v ( i - p q
1 - ( ] - / ? §  )p^·

The expected number of failed units just after control in the long-run is the 

following:

<  = (1 -  /*^1

substitute Moo then,

, , ,  _ N { l - p n { l - 0 j , )
“  1 -  (1 -  0f,)p^ '
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The average long-run proportion of number of failed products is the following:

R {N ,T ,p ,n ,^ )  = N 1 -  4
0 — 1 —  p̂

T V i - p (2.3.5)

Proof:
Equation (2.3.4) is basic stochastic relation for partial control to obtain the 
long-run values given the theorem. When we compare the Equation (2.3.4) 
with Equation (2.2..5) which is basic for total control, ct is replaced by /3nfN. 
So, in Equations (2.2.2) and (2.2.7), a is replaced by the probability /3{nlN) 
and get analogous results for this model. □

Example:
If all failed units in the sample are changed with good ones, that is, /9 = 1, we 

have
QlT = Q jT -H G {N ,n ,Q ,T )

taking expectation of both sides yields.

The stochastic relation between the time jT  and (j + l)T  is 

Q(j+i)T = Q~jT + — Q̂ Ti  ̂~ P̂ )

and
M(j+i)T = MjT {l -  j ^ p ^  E N{\  -  p^).
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2.4 Cyclic Control with Block Replacement

In the previous model, the sample chosen for the control was selected randomly. 
In this model, we assume that N  installed units are divided into fixed r groups 
(parties) each of which has n independent items (that is, N  = nr). Figure 
2.2 shows the partition of N  items. Each item in the system may fail with

P a rty  1

P arty  2

>  N  = r.n

P a rty  r

Figure 2.2: The partition of N  units.

probability q in each step. Let jT ,  j  = 1,2,... be the control times. Party 1 is 
controlled at time T, party 2 is controlled at time 2T, party 3 is controlled at 
time 3T, this continues until inspection of party r at time rT. The first “cycle 
of control” is completed when party 1 is controlled again at time (r + and 
is equal to rT. Then, the second control cycle begins. Note that all units are 
inspected in party k, k — 1,2, ...,r. Figure 2.3 summarizes the control times 
of parties. We change the failed unit with good one with probability q· only

----------- ^ ^ ^ ^ ^ ^ ^ ^
T

t
2T

t
3T

f
(r-I)T

t
rT

f
(r+I)T

f
(r+2)T.

t1
Control

1
Control

1
Control

1
Control

1
Control

1
Control

1
Control

Party J Party 2 Party 3 Party (r-I) Party r Party J Party 2

Figure 2.3: Control times of parties, jT ,  j =  1 2 J. ,
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at times jT^ j  — 1,2,... lor a fixed T > 0. In this model we assume that 
replacement, repair or inspection time is negligible.
Before starting calculations, let us introduce the notation used. For j  — 1,2,..., 
k = 1,2,..., r and fixed T > 0:
Notation

M^'^ expected number of failed units for party k at time [k — \)T. 
q probability of failure for each item on each step. 
r number of parties in the system, 
n total number of items in party k.
a probability of changing the failed unit with a a good one at time control jT .  

Under assumption that all items are in the good condition at time 0, expected 
number of failed units for party k at time [k — l)?^. We get the following 
relations:

= 0

=

n(l - / )  

n(l -

If we know the average number of failed units for party 1 at any time jT ,
(Uj  = 1,2,... we can easily calculate that for other parties by changing M̂0 >

k = 2,3,4,... with Mq \  Note that kT^ {r + k)T, (2r + k)T, ..., (/r + k)T are 
the control times of party k, k — l ,2 ,...,r .

Corollary 2.4 Consider the cyclic control with block replacement. The long- 
run average number of failed units before control is the following,

amd the average number of failed items jtist after control,

M+ = (1 -  a)M^.
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The average long-run proportion of expected number of failed units is given by

(2.4.1)
p^^'{l — Ci))  \  I — P

Proof:
In cyclic control we divide the items into r different parties each of which has n 
items. Cyclic control can be thought as r different total control models having 
n units with operation time interval rT. So, if we put n and rT  instead of N  
and r ,  respectively, in the formulae of total control, we obtain the formulae 
for only one party of cyclic control. That is.

n{l — Q')(l —
1 —  (1 —  a )p ,rT

and
R{N,rT,p,n,(y) = n

1
1 -  ^

a ' I - p xT'

rT \1 — — oi))  y 1 — p

Since there are r parties in the system, we multiply M ^  and R{N^rT,p,n,a)  
by r to obtain final the formulae for the system. □
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2.5 Comparison of Partial (Group) Control 
and Cyclic Control

In previous sections some discrete time control models are introduced. As we 
stated before, in both partial (group) control and cyclic control we control n 
units of the system at prescribed control times j l \  j  — 1,2,.... A question 
may arise:

Which model is better if we consider the average number of failed 
units?

In order to answer this question average long run proportions of expected 
number failed items can be used. Recall Equations (2.3.5) and (2.4.1) under 
the assumption that all parameters N, T, p and n are the same for both models 
and probability of changing failed unit with good one /? and a are equal to 
each other for partial choice control and cyclic control, respectively:

Partial (Group) Control

R{N^ T,p^ 77,, a) = N
1

1 -  7̂
T U - ( l - c r ^ ) p ^

1 - /  
, 1 - p

Cyclic control

■R{N,rT,p,n,o)  = ^ - ^ ( i _ p ” i _ ^ ) ) ( V r 7 )

\  /1= N I - iT \ l — P''^(l — ce) J  \  I — P

Now we claim that the average number of failed units for “Cyclic Control” is 
less than the average number of failed units for “Partial Control” a.t any time.

If we examine Equations (2.3.5) and (2.4.1), it is enough to check the 

following inequality.
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an a?i
T  \ l  -  '̂■'̂ (1 -  a) J  \  I -  p J  ~ T \  l -  {I -  a^)p'^ J  \  I -  p J 

As defined before N  is equal to rn so we may put 1/r instead of n/A^ After 
cancellations, previous inequality yields,

1 - p tT
> 1 - p T

1 — p' '̂ (̂l — O') 1 — (1 — afr)p^
equivalently.

(1 -  p"^)[l -  (1 -  aVr)?/] > (1 -  p^)[l -  ? /^(l -  a)] 

after making some cancellations,

T  „ ( r + l ) T
------->prT_p{r+l)T

r r
Let put terms on the right to the left and denote this function f{T)

T  „ ( r + l ) T

f{T)  = ? - -  ^----------p'·  ̂+ ph+i)i'·
r r

Thus, if our claim is true, f{T)  > 0 should be satisfied.

T heorem  2.3 If  a ^  [0,1] and for any p € [0,1], fixed T  > 0, n < N  where 
N  = 1,2,... and r = N/n,  then,

rR(N, rT, p, ?7.) < R{N, r ,  p, n) (2.5.1)

that means the average long-run proportion of failed items for cyclic control 
is less than the average long-run proportion of failed items for partial (group) 

control.

Proof:
Consider the function f{T)

P^ + r I ilT
f(T)  i-----------p’·̂  +

r r

To show f{T)  > 0 we may take derivative with respect to T  and check whether 
it is greater than 0, that is, f ' (T )  > 0. However, it is not visible to show in
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this way. So, let

X = p

where 0 < p < 1 and T > 0, then 0 < x < 1. Function depending on x will be 
the following:

h(x) = ---- x’’ + ( l -----
1

it yields,
h{x) = —[1 — + x’’(r — 1)]

r
where x /r  is always positive since 0 < x < 1 and r = 2,3,4,.... Now let 
h{x) = (x/r)g{x)

g{x) = 1 — rx’’“  ̂ + x’’(r — 1)

Note that on boundary points of x, p(0) = 1 and p(l) =  0. Also, g{x) is 
continuous on [0,1]. Thus,

g'(x) = r(r — l)x ’’ r(r  —1)X
r - 2

— r(r — l)x '‘ ^(x — 1)

Since r(r — l)x ''“  ̂ > 0 and (x — 1) < 0, this means that g'{x) is less than zero. 
We can conclude that g{x) is strictly decreasing function on [0,1]. Therefore,

I  € (0,1)’S ’ [0.1]

Since 0 < g{x) < 1 for every x € [0,1], in conclusion, we can say that h{x) > 0, 
X G (0,1). Therefore our claim that the average number of failed items in 
“Cyclic Control” is less than or equal to the average number of failed items in 
“Partial Control” is true. Note that if 0 < p < 1, we have strict inequality in 

(2.5.1). □



Chapter 3

CONTINUOUS TIME  
MODELS

In this chapter some modified replacement policies will be studied with multi- 
component units in continuous time. We will consider their basic stochastic 
characteristics, such as the number of failed items at any replacement time 
jT^ j  = 1,2,..., where T  is fixed, its mean value and long-run proportion. 
In the first section, we will construct a model without rei^lacement in order to 
determine the number of failed units at an}̂  time t , t  > 0. In the second section, 
total control with periodic replacement will be studied. In this model, all failed 
units are replaced with good ones at time jT,,;' = 1,2,.... In sequel sections, 
partial choice control and cyclic control will be discussed for continuous time.

3.1 A Continuous Time Model without Re

placement

In this section, we construct a model which constitutes the core of our 
replacement models in the succeeding sections. N  identical units are installed 

at the beginning. Each unit in the system is assumed to fail with rate A.

33



CHAPTER 3. CONTINUOUS TIME MODELS 34

Let Q{t) denote the number of failed items at time t. Suppose that Q(0) = 
Qo and let

m{t) = E[Q{t)]

we will determine m{t) deriving and then solving a differential equation.

We start by deriving an equation for 7n{t + h) by conditioning on Q{t). This 

yields
m{t + h) = E[Q{t + h)] = E[E[Q{t + /i)|g(f)]]

Now, given the size of the system at time t then, ignoring events whose 
probability o(/i), the system at time t P h will increase in size 1 if a failure 
occurs in (i, t + h) or remain the same if no failures occurs. That is, given Q{t)

Q{t + /?.) — 

Therefore,

Q[t) with probability 1 — \ { N  — Q{t))h + o{h) 
Q{t) + 1 with probability X{N — Q{t))h + o{h)

E[Q{t + h)\Q(t)] = Q{t) + \ { N  -  Q{t))h + o{h)

Taking expectations yields

or equivalently

m.{t + h) = m{t) + A(jV — m{t))h + o{h)

m(t + h ) - n ^ ^  0(h)
h '■ ' h

Taking the limit as h 0 yields the differential equation

m (t) = \ { N  — 7n{t)) (3 .U )

then

Integration yields

= A.
A[Â  — m{t)]

-ln[X{N -  m(f))] = Ai + c
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Therefore,

X(N -  m(i)) = Ke -Xt

7Tl{t) = N
A

To determine the value of the constant we use the fact that ?7z(0) = mo and 
evaluate the preceding at t = 0.

This gives
\ { N  -  77lo) = K

Substituting this back in the preceding equation for m{t) yields the following

m{t) = N  — (N — rno)e~^^

If the number of failed products at the beginning is zero, that is, ( (̂O) = 0, 
then its expectation will be m(0) = 0. Therefore, we get

m{t) = N{1 — e i > 0 (3.1.2)

When we compare Equation (3.1.2) with Equation (2.1.3), for discrete timep*" 
is changed with for continuous case. In conclusion, the number of failed 
units at time i, t > 0 has binomial distribution with parameters N  and 1 — 

for t > 0.
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3.2 Total Control with Block Replacement

In this section we consider multi-component total control with periodic 
replacement for continuous time. At time zero N  units are in the good 
condition. After a fixed time period T, the replacement of some units are 
made with probability a. That is, while making replacement we make mistake 
with probability I — a. Total control is different from the block replacement in 
such a way that replacements are allowed only at times j T , j  — 1,2,... where 
T is a positive real value. Figure 3.1 summarizes total control. Marks between 
control times j T  and {j + 1)2' represent the failures.

Unlike block replacement, total control cannot be represented as a renewal

Installation 
N units

-3— X—  
0

Replacement 
with probability alpha

Replacement Replacement
with probability alpha with probability alpha

+ -------l · -X--X X— —̂ X-
T 2T 3T

Figure 3.1: Summary of Total Control.

Time

process because of making mistake in replacements at control times. We assume 
that replacement, repair or inspection are made immediately.

Before starting to calculate some stochastic characteristics of this model, 
we will define the notation. Note that the following notation will be used for 
all other continuous time models in this chapter.

Notation:
For j  = 1,2,...,

N  total number of items in the system.

a probability of changing the failed unit with good one.
A intensity of failure of each item.
Q{jT) number of failed items in the system at time jT  before control.
M{jT)  expected number of failed units in the system at time j T  before control. 

Q~^{jT) number of failed units in the system just after control at time jT .
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yV/+(jT) expected number of failed units in the system just after control 
at time jT .

C orollary 3.1 Consider the total control policy in continuous time. The 
recxLrrent relation for the number of failed items is given by

Q[{j + l) r ]  = g+(;T) + B m {N  -  g+(jT), 1 -  e (3.2.1)

where Bin{N — Q~^{jT), 1 — denotes the number of failed products during
operation time {jT,( j  + 1)T), j  — 1,2,.... And the recurrent relation for 
average mimber of failed items by using expected value of Equation (3.2.1) is 
the following,

M[{j + l) r ]  = (1 -  a)e-^^M{jT) + N{1 -  ) (3.2.2)

Proof:
Since there is a one to one correspondence between discrete time and continuous 
time, we simply put instead of p^ in Equations (2.2.3) and (2.2.5).
□

C orollary 3.2 The long-run average number of failed items before control for 

total control is the following:

N { l - e - ^ ^ )
1 -  (1 -  a)e-^T (3.2.3)

and the average number of faulty units in the system just after control is given 

by
M+ = ( l - a ) M ^ .

Proof:
We know that the limits exist when the number of inspection times goes to 

infinity. In Equation (3.2.2) j  goes to infinity, we have

Moo = (1 -  a)e-^^M ^  + 7V(1 -  e""'  ̂).-XT\
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And then we get the final average long-run equation. Since we change the 
failed item with good one with probabilit}^ a-, we have (1 — a )M ^  failed items 
just after control. □

T heorem  3.1 The average long-run proportion of the average number of failed 
items is given by

 ̂ [m ;  + (iV -  M i) ( l  -  e-^·)] dt
T Jo

as t oo.

Proof:
The average proportion of number of failed items at time t is the following:

1 U-  I  ElQ(t)]dt
L· <J 0

and when t = nT  we can write it in the following form:

1 ”  1 r(k+i)T

n f  JkT
{E[Q(kT)+] + { N -  E[Q{kTy]){l -  e-"“)} du.

As n goes to oo, then t goes to oo. Now we can use Lemma 2.2 and take into 

account that as A: —+ oo,
E[Q{kT)*] ^  M*.

Then as i —> oo, we have

i  f  B{Q{t)]dt (M i + (Ai -  Mi)(l -  du.

The case when t — nT i, i < T  is similar to the situation in Theorem 2.1. 

Therefore, it is the same with the case t = nT  in the long-run. □

C orollary 3.3 The average log-run proportion of failed units in the system for 

total control is obtained as

R{N,T,X,a) = N
1

1 -  ^

a 1
t (1 -T \ 1 -  { l - a ) e - ^ ^ J  A

(3.2.4)
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Proof:

By Theorem 3.1 the average long-run proportion of the average number of 
failed items can be calculated using average number of faulty units just after 
control in the long-run.

1 T
R ( N , T , \ , a )  = - j f  [m £  + (Ai -  0 ( 1  -  e -« ) dt

1 t=T

t +
¿=0

After taking integration,

,-AT 1
R(N,T,X ,a)  = V+ + i ( l V - o i r + ^ -

Substitute M ^  in the long-run equation. Then we get,

R{N,T,X ,a)  = 7V- 

Rewrite the equation,

N -
N{1 -  -  a)

1 -  (1 -  a)e-^^ J XT^ ( 1  -

R{N,T,X,a) = N - N

= N

1 — (1 — — '̂) 
1 — (1 — a')e”^^ 

a \ 1
(1 -

Vl -  (1 -Q )e-^^y  XT

Then we get the final formula for the long-run proportion. □

R em ark:
Note that the average long-run proportion of expected number of failed items 
for discrete time and that for continuous time are different, [See Equations 

(2.2.11) and (3.2.4)].
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3.3 Partial (Group) Control with Block Re
placement

In this section a multi-component modified block replacement policy is 
introduced for continuous time. Assume that there are N  components in the 
system and each unit may fail with intensity A. At time j T  where j  — 1,2,... 
we take a random sample of size n, n < N  and then replace faulty units 
with probability Figure 3.2 shows the summary of partial (group) control. 
Remark that this model also cannot be represented as a renewal process.

Installation Replacement of n units Replacement of n units Replacement of n units 
N units with probability beta with probability beta with probability beta

H— )(— -̂--- )(- X X X ---- —̂ X-
0 T 2T 3T

Figure 3.2; Summary of Partial (Group) Control.

Time

Additional notation which we will use:

n size of random sample taken from N  units.
¡3 probability of changing failed item with good one.

C orollary 3.4 Suppose that Q{jT) is the number of failed units at time jT ,  
j  = 1,2,... with expectation M{jT) for partial control. The number of failed 
units just after control is given by

QH j T) = QUT) -  Bm{HG\N.n.Q{]T)Ui}

after taking expectations of both sides,

M*(]T)  = M { j T ) - ^ 0 M ( 3 T )

= (i -  F'’)
The recurrent relation is given by

QIU + i)J’J = Q*UT) + Bin{N -  Q + u n  1 -  c ·” ')· (3,3.1)
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After taking expectation of both parts,

M[(j + 1)T] = M+{jT) + { N - M + { j T ) ) { l - e - ^ ^ )
n 
NM{jT)  (1 -  + A^(l -  (3.3.2)

Proof:
Since there is a one to one correspondence between discrete time and continuous 
time, we simply put instead of p'̂  in Equations (2.3.1), (2.3.2), (2.3.3) 
and (2.3.4).

C orollary 3.5 Consider the partial control in continuous time. The average 
number of failed items before control in the long-run is obtained as

N{1 — e“"''̂ )
Moo = i -  {l -  p f , )  c-^T

The average long-run number of faulty units just after control is given by 

The average long-run proportion of failed items in the system is given by

(3.3.3)

R{N,T, \ ,n , /3)  = N 1 -

1 8 — 1
(1 - . (3.3.4)

Proof:
When we compare the basic formula.e (3.3.1) and (3.3.2) for partial (group) 

control with that for total control (3.2.1) and (3.2.2) for continuous time, a in 
total control is replaced by /3n/N in partial control for expectations. Therefore, 
if we want to find the avera.ge long-run values for partial control, it is enough 
to put the coefficient /3nlN instead of a. □

R em ark:
Note that the average long-run proportion of expected number of failed items 
for discrete time and that for continuous time are different, [See Equations 

(2.3.5) and (3.3.4)].
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3.4 Cyclic Control with Block Replacement

In this section, cyclic control with modified block replacement for continuous 
time is studied. Total number of units, N^ in the system is divided into 
r independent groups each of that has n items. Replacements are allowed 
only at time jT  where j  — 1,2,.... We assume that faulty units are changed 
immediately, that is, no time is spent for replacement. The first control of 
group 1 is at time T. Failed units in group 2 are replaced at time 2T. As 
for time 3T, control of group 3 is made. Each failed unit is replaced with 
probability a. In general we can say that at time jT , j  = 1,2,... where j  = k 
(modulus r), /: = 0,1,2, ...,r — 1,

Control of Party
k if yi 0, 
r ]{ k — 0.

Note that this model also cannot be represented as a renewal process, because 
failed units in party k, k = 1,2, ...,r are changed with probability a.

C orollary 3.6 Consider the cyclic control in continuous time. The long-run- 
average number of failed units before control is the following,

1 _  (1 _

and the average number of failed items just after control,

= (1 -  a)M„.

The average long-run proportion of expected number of failed units is given by

a jr
rR { N ,r T , \ ,n ,a )  = N , . L ( 1 ^ jCL] L·

T [  a /  \ 1 - e - ^ ^ ^ ( l - c r ) _
. (3.4.1)

Proof:
As we stated before in discrete time, cyclic control model can be expressed as 

r different total control model. If we put in formula.e of total control n and 
rT  instead of N  and T, respectively, we get the formulae of cyclic control for
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a party. Since there are r parties in the system, we multiply the formulae 
obtained for only one party by r to get the long-run average values in the 

system. n

Remark:
Note that the average long-run proportion of expected number of failed items 
for discrete time and that for continuous time are different, [See Equations 
(2.4.1) and (3.4.1)].
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3.5 Comparison of Partial (Group) Control 
and Cyclic Control

In the the last section of previous chapter we have proved that cyclic control 
is better than partial (group) control if we consider the number of failed units 
in the system for the discrete time. In this chapter the following question may
arise:

Is cyclic control better than partial (group) control for continuous 
time if we consider the number of failed units?

We assume that probability of changing failed unit with good one is a for both 
models for comparison. Therefore, the average long-run proportion of faulty 
units in the system for partial (group) control is given by

i?(A ^r,A ,n ,a) =  7V

and for cyclic control,

r R [N y r , \ ,n ,o c )  = N

l - i
a/r 1

t (i -T \ l  -  {1 -  a/r)e-^^ J A

a / r
T \  A y

If the cyclic control is better than partial control, it is enough to check the 

following:

1 /1 -  e
f [

-rXT ' a / r 1
> n;

a / r 1
f ( i  -A J \ l  — e“''-''^(l — O')J T  \1 — {1 — alr)e~^'^)  A 

Rew’rite the statement after cancellations.

.-XT
-------- +

Let X be e Since A > 0 and T > 0, 0 < e < 1. Let y(x) be a function 
of X and it should be greater than 0 in order to show our claim being true.

r+1 0 < a: < 1.
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Note that y{x) is exactly the same with function h{x) obtained for discrete 
time. We have already proved in Theorem 2.5 that this function is greater 
than 0 analytically. So, cyclic control is better than partial (group) control if 
we consider the number of failed units in the system.
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3.6 Correspondence Between Discrete and 
Continuous Time

Consider time tk = kh, k — 1,2,.... q is the probability of failure of a unit in 
discrete time. Suppose

q = qk = \h  + o{h.) (3.6.1)

and
T = Th = [T/h].

It can be easily seen that from our formulae that as /i —> 0, a model in discrete 
time is equivalent to a model in continuous time. Let us show what it means. 
Consider the average long-run proportion of failed items given in (2.2.8) in 
discrete time. That is,

m

Now, if we take q as in Equation (3.6.1), then we have

p -  Pk = 1 -  \ h  + o{h).

Let T = Th = [T/h]. Then, we get

A (̂l - ( l - A / i  + o(/i))[^/^])
~ ~  I -  {1 -  a)(l -  Xh A o{h))H/iT

If we multiply [T/h] by A and divide by A, then, as /i —> 0,

lim Moo =h-*0
N { l - j l - X h  + o(/i))[^^/^^]j 

1 — (1 — o;)(l — Xh + o{h)H>'/>>·̂ ]')
N{1 - \ r

(3.6.2)
1 — (1 — Q')e“^^

Remark that Equation (3.6.2) is the long-run average number of failed items in 
continuous time. In the same way we can see that when h 0 there is a one 
to one correspondence between discrete time and continuous time in all other 
formulae such as long-run average number failed units just after control, the 

long-run proportion of failed items in the system etc.



CHAPTER 3. CON TIN UO US TIME MODELS 47

3.7 Cyclic Partial Control with Block Re
placement

In this section, we consider a c3'clic choice control policy with block 
replacement. Assume that there are items in the system. All items are 
divided into r parties each of which has n units, (that is, N — nr.) At 
inspection times j T , j  = 1,2,..., we take a sample of size m < n from a party 
according to inspection times of parties in cyclic control policy and controlled 
with probability That is, a sample is taken from party 1 and inspected at 
time r ,  another one is taken from party 2 and inspected at time 2T,...

C orollary 3.7 Consider the cyclic partial control with block replacement. The 
long-run average number of failed units just before control is the following,

_  iV(l -
1 -  (1 -

and the average number of failed items just after control is expressed as

M+ = (1 -  /3m/n)M^.

The average long-run proportion of expected number of failed units is given by

^R{N,rTJ,X ,m . ,n)  = N 1 -

1 ¡3m jn 1
t (1 -rT  \1  — (1 — Pmln)e~^^'^ j  X

Proof:
Since cyclic partial control is a combination of cyclic control and partial control, 
it can be reduced to partial control of r groups. Then, if we want to obtain the 
formulae of cyclic partial control, it is enough to put in the formula.e of total 
control ^ m /n  and rT  instead of a  and T, respectively. □

T heorem  3.2 If  ¡3 € [0,1] and for any X > 0, fixed T > 0, m < n < N  where 

N  = 1,2,... and r = N/n. Then, we have

rR{N,rT, P, X,m,n) < R{N,T, X,m, ¡3)
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means that the average long-run proportion of failed items for cyclic partial 
control is less than the average long-run proportion of failed items for partial 
(group) control.

Proof:
Consider the equations of long-run proportion for cyclic choice control and 
partial control. If the cyclic choice control is better than partial control when 
we consider the average number of failed items, it is enough to check the 
following:

1 ¡drain /3m/N 1
rT  — (1 — /3m/n)e~^^'^)  A'' " T \̂ 1 — (1 — ¡3m/N)e~^'^J X

After making cancellations, we have

1 — e- X tT
>

1 — e-XT

1 — (1 — Pm/n)e~^'^ 1 — (1 — /3m/N)e~^'^^

equivalently,

(1 -  + {¡3me-^^)/N] > (1 -  e"^^[l -  + {/3me-^^^)/n].

After making cancellations, we get
g - A T  g - A ( 7 - + l ) T  g-AT-T g - A ( r + l ) T

N N
> n n

Let

Then, we have

X — t -XT X € [0,1].

and f{x)  denotes the function of x, then

f{x)  = - r x ’̂ -^+rx^)  > 0.

Let g{x) denote a function which is a part of the f{x)· And it is given by

g{x) = 1 — a:’’ — rx'"~  ̂ -f r.r’'.

Note that
^(0) = 1 and c/(l) = 0.
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If we take the derivative of g(x) with respect to x, we get

g (x) = — — r(r —

— rx ’'“^(x — l)(r — 1)

Since r{r — l)x ’'“  ̂ is always greater than zero for r > 1 and (x — 1) < 0, 
then g'(x) is always less than zero. Therefore, g[x) is strictly monotonically 
decreasing function on (0,1). Finally we can say that since 0 < g{x) < 1 for 
every X G [0,1], f{x)  > 0 for every x € (0,1). Then, cyclic choice control 
is better than partial control when we consider the average number of failed 

items. □



Chapter 4

COST CONSIDERATIONS

In this chapter, we consider the cost functionals and optimal replacement 
interval T*. In usual block replacement policies, units are replaced at times 
jT ,  j  — 1,2,... and also at failure times. Thus, an almost new item may be 
replaced by a good one. However, in our models replacement is allowed only 
at prescribed times. If a unit is failed, it remains inactive until planned control 
time jT , j  = 1,2,.... Now, we will analyze cost functionals for total control, 
partial control and cyclic control in continuous time.

4.1 Formulation and Analysis

In all block replacement models to be considered, a fixed cost Co is incurred 
for the system inspection. A cost Ci is suffered for each failed item which is 
replaced. And a cost C2 is incurred for each failed item staying inactive until 
the next planned replacement time per unit of time. We denote the expected 
cost during [0,t] as B{t). The expected long-run cost per unit time for an 

infinite time span may be expressed as

C{T) = lim ^

50
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(See Barlow and Proschan [6] p.8o)

T heorem  4.1 The long-run expected cost C{T) per unit of time following a 
modified block replacement policy during time interval T  over an infinite time 
span is given by

C\T) =
T Co ■)· CiEcc +  C2 (  m(t)dt 

Jo

where E^o = cxMoo is the average number of failed items which is replaced in 
the long-run and m{t) may be expressed as

”>(i) = A?; + (A '-  M 5)(l -  e -"‘)

where is the long-run average number of failed items just after control.

Proof:
Consider the case t = nT. The expected cost per unit of time for a time 
interval [0,t] is the following:

“4 ^  = —{C o- \ -C iaM [(k1 )T ]
 ̂ ^  k=Q

+ C2 [ \M{kT)+ + { N -  M{kT)+){l -  e-^^)]dt]
Jo

as n —> 0 0 , then t 00. Now we can use Lemma 2.2. Note that

lim M[(k + 1)T] = M ^
k—*oo

and

Finally, we have

B{t) 1
Inn ——  = -
i-’«' t I

lim M{kT)* = M*.k-̂ oo

Co + C.aMoo +  C’2 / [Mi +  (Â  -  M+){1 -  e~̂ ]̂dt

where Foo = cxM^. Consider the case T  = nT i., D < i < T . It is the same 
with the case t = nT  as n goes to infinity. (Similar to proof of Theorem 2.1) 
□
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P roposition  4.1 The long-run expected cost per unit of time for total control 
is given by

C(T) = 1
aN ( l  -  / f t

» + 1  _ ( l _ a ) e - »  f t "  A (4.1.1)

Proof:
For total control

Eoo = oMoo

and note that 

T
r  m{t)dt =  C2R{N,T,a,X)  

Jo

= CoN 1 -
a

(1 -  e-^^)
FA Vl -  (1

R{N^ T, a, A) can be written in the following form:

a
R { N ,T ,a , \ )  = N - — M„

Then, C{T) is equal to the following:

C(T) = ^  + f t iv  -  2 ? ^

Co + ^ l f t - y ; ^
f t
A

If we put Moo obtained in Equation (3.2.3) again and get the final long-run 
cost function. □

P roposition  4.2 The long-run expected cost per unit of time for partial control 

is given by

C(T)  = C2N  + i ° 1 -  (1 -  ff)e-AT I 1 A

Proof:
Similar to proof of Proposition 4.1, if we put ^  instead of a and we use 
Moo obtained in Equation (3.3.3) we get the long-run cost for partial control. 
□
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P roposition  4.3 The long-run expected cost per unit of time for cyclic control 
is given by

C(T) = ft/V  + i
an(l -  e

1 -  (1 -  Q-)e-^’·̂  r '  A

Proof:
In cyclic control, each party in the system is inspected after rT  units of time. 
Thus, the system may be thought as r different total control model with n items 
and operational interval rT. Then, the long-run average number of failed items 
for a party is the following,

M -
~  1 - ( 1 -a je -» · '’··

The long-run expected cost for a party is given by

1
c(T) -  C2n +

rT
na{l -  e

° 1 — (1 — V  ̂ A
(4.1.2)

Since there are r different parties in the system, we multiply Equation (4.1.2) 
by r to find the long-run expected cost for the system. Hence, we get the final 
long-run expected cost. □

T heorem  4.2 The long-run expected cost per unit of time for cyclic control 
is less than that for partial control when C\ — {C2IN) < 0. Otherwise, the 
long-run expected cost per unit of time for partial control is less than that for 

cyclic control.

Proof:
Let us check that C{T)d = C(T)partiai — C{T)cydic > 0 when C\ — (C2/A) < 0.

an (l -  e-^^) (  C2
T[1 -  (1 -  a /r)e -^ r] V ' A

on(l -  ( p
T[l -  (1 -  a)e-^^^] V ' A

( 1  — e~^^) (1 -

Ay T  |_1 — (1 — alr)e~'^'^ 1 — (1 — a)e -XrT
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Since Cl — (C2/A) < 0 and {o:n)/T > 0, the remaining part should be less than 
zero. Hence,

( 1  -  e-^^) ^ ( 1  -
<

1 — (1 — Q;/?’)e 1 — (1 —
Let

then,

X = e - AT

\ — X
<

X e (0 , 1 ),

1 — ,'C'’
1 — (1 — Q'/r)a: 1 — (1 — Q')a:’' ’

1 — (1 — Qi)x̂  — X + (1 — a)x'̂ '̂  ̂ < 1 — x*" — (1 — alr)x + (1 — o;/r)x’’‘*'̂
After making necessary cancellations, we have

_ ax ax
ax — ax^ < ------------

r+l

if we take all terms to the left, then

1 x̂
ax ( x'’ — x ''------ 1---- j < 0.

r  j.

Let /(x ) be a function of x given by

On boundary points of x,

/(0) = - 1 / r  and /(1) = 0.

If we take the derivative with respect to x then we get,

f'{x ) = (r — l)x’'“  ̂ “  ~ l)x ''“^

= (r — l)x’’“^(l — x)

Since f'{x ) > 0 for X € (0,1), /(x ) is strictly monotonically increasing. Thus, 
the value of /(x ) is less zero. Note that /(x ) = 0 only if x = 1, but for any 

T  > 0 and A > 0, < 1. That means C{T)paTtiai > C { T ) c y d i c  for every
T > 0, A > 0 when Ci -  (C2/A) < 0 . □
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T heorem  4.3 The long-run expected cost per unit of time for total control is 
less than that for partial control when C\ — (C2/A) < 0. Otherwise, the long- 
run expected cost per unit of time for partial control is less than that for total 
control.

Proof:
Let us check that C d { T )  = C{T)totai — C { T )p a T tia i  > 0 when Ci — (C2 /A) > 0 
and for every a G [0,1] and our case a = ¡3.

CAT) = T|1- ( 1 - q)£-^’·) V ' \ )  T

an
N N { 1  -  e - ^ ^ )

1 -  ( 1  -  f )
C i -

A

= C i - A
C2\ aN {l -  e-^^)

T
1 n/fV

1 — ( 1  — a)e~^'^ 1 — [1 — (an)/A^]e“^^

Since C\ — (C'2/A) > 0 and o;A (̂l — e > 0 for every A > 0 and T > 0, the 
remaining part should be greater than zero. Thus,

1 n jN
1 — ( 1  — a)e~^'^ ^  1 — [1 — [an)IN]e~^'^

After making necessary cancellations, we have

1
n

> ^ ( i

then
( 1  -  e-^^)(l -  nIN) > 0

Since, 1 — > 0 and 1 — n jN  > 0 for every A > 0, T > 0 and n < N. Then

C { T ) to t a l  >  C { T ) p a r t ia l  when Ci -  (C2/A) > 0 . □

T heorem  4.4 The long-run expected cost per unit of time for total control is 
less than that for cyclic control when Ci — (C2/A) < 0. Otherwise, the long- 
run expected cost per unit of time for cyclic control is less than that for total 

control.

Proof:

Let us check that C d { T )  = C { T )c y c H c  — C { T ) to t a i  > 0 when C i  — (C2/A) < 0.

C d { T )  =  [ C l  -  ( C 2 / A ) ] o n
1 — ( 1  — Q')e“ ·̂’·̂  1 — ( 1  — a)e~^'^
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Since C\ — (C2IN) < 0 and an > 0 for every A > 0 and T > 0, the remaining 
part should be less than zero. That is,

1 — e-XrT
<

Denote

Then,

’(1 — e
1 — (1 — a)e~^^^ 1 — (1 — a)e~

0 < X < 1.

XT

X = e

l - x ^

-XT

<
'(1 — x)

(4.L3)

Note that

and

or equivalently.

1 — (1 — a)x'^ 1 — (1 — a)x

If we take the inverses of the both sides, then we get

1 — (1 — a)x’~ 1 — (1 — a)x
1 — .t’· r( l — x)

1 — (1 — a)x^ > 1 — (1 — a)x 

1 — a:’’ < r( l — x)

1 + X -t- rĉ  + ... + < r, 0 < X < 1, r > 1.

Therefore, inequality (4.1.3) holds for every 0 < x < 1 and r > 1. In conclusion, 

when Ci -(C '2/A) < 0, C{T)cycUc > C{T)totai· Otherwise, C{T)cycHc < C{T)totai 
holds. □
A Numerical Example:
Suppose that N  = 50, n = 10 and Co = 1. In Table 4.1, long-run expected 
costs for total control, partial control and cyclic control for different values of 
parameters are presented where

TC: Long-run expected cost for total control,

PC: Long-run expected cost for partial control,
CC: Long-run expected cost for cyclic control.
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T heorem  4.5 If Co < 7Va(C'2/A -  C\) where X > 0, N  = 1,2,... and 
Co,Ci,C 2 > 0, then the point of minimum. T* of the long-run cost function 
C{T) for total control exits and is unique. I f  this condition is not satisfied, 
then there is no sense to provide a control. (Note that necessary and sufficient 
condition for partial control and cyclic control is Cq < na{C2/X — Ci).J

Proof:
Consider the total control policy. In order to find the optimal T* which 
minimizes the cost, we take derivative of long-run cost function C{T) with 
respect to T. Then we have,

dC{T) Co (  C2\ m ! j T - m ^

where is the derivative of moo respect to T. Hence,

— (1 — o)e“ ·̂ ]̂ — Â A(1 — Oi)e“^^(l —

(4.1.4)

^oo = [1 — ( 1  — a)e~^'^Y

From Equation (4.1.4) and we get

CoA
= m . T  -  moo- (4.1.5)

Ĉ (Ci A - C 2)

Put and back into the Equation (4.1.5), then,

CqX NTXe~^'^[l — (1 — a')e"'^^] — jVTA(1 — a')e“^^(l — e“^^)
a{Ci X- C2)  "  [1 -  {1 -  cx)e-^T]2

A^(l -  e-'^^)

Let

1 — ( 1  — a)e“ ·̂ ^

C =

(4.1.6)

CoA
a( Ci X- C2}

After making necessary cancellations, we have

- C  = 7 V -e -^ ^ [2 C ( l-a )  + yV T A -A ^T A (l-a) + Â + A^(l-oO

-  e"2^^[-C (l -  o f  -  A^(l -  o)].
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We divide both sides by N  and let

Then,

Let

C = 1 -  e -^^ l-2 C (l - a ) - l · 2 - a  + AaT] 

-  -  a)[C(l -  a) -  1].

ai = 2 -  a - 2 C ( l  -  a) > 0 , 

a  ̂ = \c t>  0,

(4.1.7)

and
6 = 1 -  C(1 -  a) > 0.

If we denote by f {T)  the function on the right hand side of the Equation 

(4.1.7), we get

/(T ) = 1 — e + 0 2 T) + e ^^^(1 — Oi)h.

Note that

/(0) = 1 — e + 0 2 ^) + e — oi)h

= C { \ - a ^ ) < C

and
UmT-.oof{T) = 1 .

If we take the derivative of f {T)  with respect to T, we have

f \ T )  = e-^^(Aai -  02 + «2^ ) -  -  a)2\h

or equivalent]}' .̂

where

f ( T )  =

^{T)  = Afli -  02 + 02^ -  -  Q')2A6.
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Note that e~̂ '  ̂ > 0 for every A > 0 and T > 0. Then,

(/?(0) — Aai -  02 — (1 — a)2A6, 

after substituting 0 1 , 0 2  and b, we get

(,0 (0 ) = —2aC'A(l — cr) < 0.

Now, if we take the derivative of ^{T)  with respect to T, we have

^p'(T) = 02 + Ae“ '''^(l — a)2Xb > 0.

Therefore, <p{T) is monotonically increasing function T. That means that 
f^T) is increasing. Finally if 0 < C < 1, root of f (T)  — C is unique. As 
C(0) = + 0 0  and T* is a unique point of solution of C'(T) = 0. Then, T* is the 
point of minimum. Therefore, optimal T* exists for total control. Since the 
parameters in the condition that Co < n(C2/A — Ci) where X > 0, n < N  and 
Co,Ci,C 2 > 0, are common for all other control policies, the unique optimal 
solution T* exists for partial control and cyclic control also exists.
Suppose now that

C >  1.

Denote

where

C = Co
a ND

D = C2/A -  Cl and X = e-^^.

Then the second term in C{T) of total control without 1/T  can be written as

F{x) =
1

aND

Denote the numerator of F(x)  as

C — C(1 — a)x — I T X 
1 — (1 — a)x

(p(x) = C — C(1 — a)x — 1 + X

which is a linear function of x, 0 < x < 1. Remark that

Ŝ (0) = C -  1 > 0,
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and

(/?(!) = aC > 0.

Thus, i p { x )  > 0 for every 0 < x < 1 that means F { x )  > 0, 0 < x < 1. In 
conclusion, for any 0 < 2̂  < oo.

T
aNj l  -  _ C2 > 0.

But this means that C{T) can reach its minimal value only when T  = +oo, 
that is, there is no optimal T*. □

Example:
Consider the case a = 1. Then,

CoA
(C1 A - C 2)

NTXe~^^ -  N{1 -  e"^^)

NTXe-^'^ - N  + Ne~^^

and finally we have

CoA
= 1 -e-^^(A T  + l). (4.1.8)N { C 2 - C i X)

Note that Equation (4.1.8) is obtained by setting a equal to 1 in Equation 
(4.1.6),

Let us study the existence conditions of the root of Equation (4.1.8). (See 
Anisimov and Gürler [2] p. 15-16) Now, assume that

CoA
0 < < 1. (4.1.9)

N { C 2 - C , \ )

(If this condition is not satisfied, there is no optimal point.)

Denote
(f>{T) = 1 -  e-^^(AT + 1).

After taking derivative with respect to T, we get

^'{T) -  X^Te-^^

Since A > 0 and T > 0, < '̂(T) is positive. Thus, (f>{T) is strictly monotonically 
increasing from 0 to 1. If the condition (4.1.9) satisfied then there exists a
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root T* of (4.1.8) and it is unique. Also, it is easy to see that the sign of the 
derivative of C{T)  changes from negative to positive which implies that T* is 
unique point of minimum of C{T).  Assume that Co = 1, (7i =  0, C2 = 0.0125, 
N  = 100 and A = 1. Analytical solution of Equation (4.1.8) gives the optimal 
point T* = 3. Also in Figure 4.1, the graph of C{T) is given and point of 
minimum occurs when T = 3.

Figure 4.1; The graph of C{T) when Co = 1, Ci = 0, C2 = 0.0125, N  = 100 
and A = 1.

Results of Simulation:
Since a  = 1, there is no failed unit just after control at time jT , j  = 1,2,.... 
That is, beginning of each operation time there are N  = 100 good units. 
Assume that initial time is zero. Because each item may fail wdth rate A, the 
first item will fail after tq units of time where tq has exponential distribution 
with parameter Aq = lOOA. The second item will fail after ti units of time 
after the time of failure of the first item where ti has exponential distribution 
with parameter Ai = 99A. In the same way, the {k + l)th item will fail after Tk
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units of time after the time of failure of the kth item where Tk has exponential 
distribution with parameter = (100 -  k)X. Therefore, if there are iy{T) — k 
failed items during time interval (0, T) , then we can get the proportion of 
expected number of failed items per unit of time in (0,7") by the following:

^[o,T] = ^
k -1 k-1

Lt=o t=0

Then the expected cost which is suffered for the k failed items staying inactive 
until the next replacement time can be obtained by

X --1  /  k -1
J2iTi + k I t -.i= 0  V ¿ = 0

Finall}', when Ci = 0 we can generate C{T) in the following form:

C(T) = - { C o  + C2
V ( T ) - 1  /  ^ ( T ) - l

i - 0  \  ! = 0

(4.1.10)

where ĵ (7") is the number of failed items in (0,7"). Then, algorithm for the 
simulation of C{T)  is the following:

Algorithm:

Step 1; Set T = To·, to = 0, k — 0.
Step 2: Generate Uk ~  U N I F O R M {0,1).

Step 3.· Xk — (100 — k)X.
Step 4: Tk = -{llXk)lnUk·
Step 5: tk+i = tk A rt+j.
Step 6: If tk-ki < T  then, k = k + I and go to Step 2.
Step 7: Calculate C(7") = ^  {Co + C2 [EfjJ it, + k [T -  EfCo' гτ,·)]}

Now., optimal interval T* can be estimated by simulation. For different values 
of T — 0.1,0.2,..., 4, we simulate C{T) as given in Equation (4.1.10). Then, 
we run the program written in Matlab 100 times and take the average of all
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runs for each result of optimal T*. Table 4.2 shows some results. Note that all 
results are around 2.9. To get more reliable results we repeated this procedure 
60 times. If we take the a.verage of runs, we get T" = 2.8663 which is close to 
analytical solution.

Let us consider now a realistic system when we have to pay a cost for each 
inspected item in the system at time kT,  A: = 1 , 2 ,.... That means if we take a 
sample of size n at time kT,  A: = 1 , 2 ,..., we pay Cqu as an inspection cost. Now 
consider the comparison between cost functions of partial and total control. 
From Theorem 4.3 it is easy to obtain that in case if we pay a fixed cost Cq 
incurred for the system inspection, then the long-run expected cost per unit of 
time for partial control is less than that for total control when C\ — (C'2/A) > 0. 
That means it is enough to consider the case when C\ — (C'2/A) < 0.

T heorem  4.6 If Co is the inspection cost for each item in the system at tim.e 
kT, A: = 1 ,2,... Denote

/} = -A^ = (C2/A) -  Cl, where K  < 0

and

and put

7  ■ - n /N

Co

• If paHial control is better than total control.

• If  ̂  < 1, then there exists some T«, 0 < T» < 0 0  such that when T > T,, 

total control is better than partial control and when T < T,, partial control 
is better than total control.

Proof:
The the long-run expected cost per unit of time for total control is given by

C t { T )  = C,Ai + i N Co +
aN{l .-AT)

1 — ( 1  —
K
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A n d  t h a t  f o r  p a r t i a l  c o n t r o l  i s  g i v e n  b y

1
C t { T )  =  C 2 N  +

T

^  a n ( l  -  e  _

L e t  u s  i n v e s t i g a t e  t h e  c a s e  w h e n  C d { T )  — Ct{T) — C p { T )  >  0 .  T h e n ,

CAT)  = (N -  n)c„ -  ~

= a N D ( 1 - 7 )

1 — (1 — a)e 1 — (1 — a-y)e~^'^
Co 1 — ^  7 Â (1 — e“^^)

D e n o t e

ccD 1 — (1 — a)e 1 — (1 — 0'7 )e

Co

X = e-XT X € (0 , 1 ).

a n d

N o t e  t h a t

 ̂ 1 - 2; , 7 (1 - 3;)/ ( 3:) = g -  -----7;------^  +1 — (1 — a)x  1 — (1 — a-f)x

/ ( 0 ) = 5 - 1 + 7 ,

/ ( 1 ) =9·

I f  w e  r e w r i t e  f{x),  w e  h a v e

5 [ 1  — ( 1  — ocy)x — ( 1  — Q.')x(l — o.'y){l — a)x'^)
/ ( 3;) = 

+

[1 — ( 1  — q:)x] [ 1 — ( 1  — Q'7 ).t]
7 ( 1  —  a ; ) [ l  —  ( 1  —  a)x] —  ( 1  —  a ; ) [ l  —  ( 1  —  0 :7 )0;]

[ 1  —  ( 1  —  o ) a ; ] [ l  —  ( 1  —  o 7 ) x ]

L e t  9 ? ( x )  b e  t h e  n u m e r a t o r  o f  f { x ) ·

t p i x )  =  5 ( 1  —  ( 1  —  a ^ ) x  —  ( 1  —  Q ' ) a ;  +  (1 —  0 7 ) ( 1  —  o ) a ; ^ ]

—  1  +  ( 1  —  0 7 ) 0 ;  —  ( 1  —  0 ' 7 ) x ^  +  7 ( 1  —  r c )  —  ( 1  —  o ) 7 x ( l  —  x )

R e m a r k  t h a t

V ? ( 0 )  =  5 - 1 + 7

w h e r e  ( / ? ( 0 )  c a n  b e  l e s s  t h a n  0  o r  g r e a t e r  t h a n  0  a n d ,

( p { l )  =  o ^ 7 5  >  0 .
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In order to determine the behaviour of the function f{x),  we take the derivative 
of (pix) with respect to x.

(f' (x) = (—2 + « 7  + a)g + 2g{l — Q ' 7 ) ( 1  — a)x + 2(1 — a:)(l — 7 )

Then,
p>'{0) = ( - 2  + « 7  + a)g + 2 ( 1  -  7 ) 

which can be less than 0 or greater than 0 .

(p'(l) -- ga{2aj -  1 -  7 ).

Since

2 a 7  — 1 — 7  = Q' 7  + Q' 7  — 1 — 7

= 7(0; -  1) + (q'7 -  1) < 0,

(p'{l) is always less than 0 .

Note that the sign of f{x)  is defined by sign of </̂ (x). Table 4.3 shows the sign 

of f{x)·  We can summarize them as follows:

1 . If (̂ ’(0) < 0 and (/?(0) > 0,

9  >

and

2 (1 -7 )
2 -  q ; (1  + 7 ) 

g > l - ' f

then (p{x) > 0  0 < X < 1 .

2 . If (,¿’'(0) > 0 and (,¿>(0) > 0,

9  <

and

then v (̂x) > 0 .

2 (1 -7 )
2 — q ; (1  -f 7 )

5 > 1 - 7
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3. If > 0 and </?(0 ) < 0 ,

9 <
2 (1 -7 )

2 -  a (l + 7 )

and
^ < 1 -  7

then since (p{x) is continuous and a quadratic function, there exists a;,: 
= 0 and ip{x) < 0 when 0 < x < x,, ip{x) > 0 when x* < x < 1 . 

Thus, (p{x) < 0 when x < x, (that is, T > T,), ip{x) > 0 and when 
X >  X ,  (that is, T > T,).

Note that
2 ( 1 - 7 ) > 1 — 7

2 -  Q '( l  + 7 )
is always true. Then, if we combine the results 1 and 2 , we get g > I — ■j. The 
result 3 implies that p < l  — 7 . Ifp  = l — 7  then /(0) = 0 and /(x ) > 0.

Results:

• If ^  1> /(^ )  > 0 , 0 < X < 1 . Partial control is better than total 
control for any T.

• If ^  < 1 , /(x ) < 0 when X < x,, total control is better than partial 
control when T > T,. And /(x ) > 0 when x > x. that means partial 
control is better than total control when T < T,, where

r ,  = ——/?rx,.
A

□
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A a T Cl C2 K TC PC CC
1 0.6 2 3 2 1 114.2123 103.4470 103.4999
1 0.8 2 3 2 1 118.2744 104.4023 104.4999
1 0.7 3 4 1 3 84.0951 57.2824 57.3333
1 0.6 2 2 3 -1 136.7877 147.5553 147.5001
1 0.8 2 2 3 -1 132.7256 "146.5977 146.5001
1 0.7 3 1 4 -3 165.716 193.3843 193.3333
1 0.9 3 5 3 2 178.9824 156.2773 156.3333
2 0.8 3 4 1 3.5 96.9074 56.6630 59.6667
2 0.8 3 1 4 -3.5 187.0265 197.6677 197.6667
3 0.8 3 2 3 1 163.6654 152.9999 153.0000
3 0.8 3 3 ' 2 2.33 131.4414 106.5554 106.5556

Table 4.1: Long-run Expected Costs of Total Control, Partial Control and 
Cyclic Control for Different Values of Parameters.

2.801 2.933 2.851 2.836 2.893 2.851 2.839 2.831 2.875 2.846
2.916 2.887 2.883 2.852 2.811 2.905 2.862 2.817 2.963 2.864
2.907 2.841 2.840 2.900 2.831 2.818 2.886 2.773 2.810 2.799
2.971 2.901 2.847 2.869 2.910 2.763 2.831 2.862 2.865 2.863
3.020 2.827 2.824 2.914 2.854 2.924 2.887 2.800 2.814 2.995
2.889 2.935 2.875 2.988 2.850 2.754 2.786 2.866 2.887 2.868

Table 4.2: Simulated T* values when a  = 1, Co = 1, Ci = 0, C2 = 0.0124867, 
N  = 1 0 0  and A = 1 .

V̂ '(O) < 0 (,¿>'(0 ) > 0

/ ( 0 ) > 0 f{x) > 0 f i x)  > 0
/ ( 0 ) < 0 not

defined.
f i x )  < 0 when X < x"" 
f {x) > 0 when X > x'

Table 4.3: Signs of f{x)·  (If f{x) > 0 , partial control is better than total 
control.)



CHAPTER 4. COST CONSIDERATIONS 68

Comparisons with Some Models in the Literature:

There are many studies about block replacement policy and its modifications 
in the literature. Similarities and differences between the models in this study 
and the models in the literature are the following:

• The studies in the literature usually are devoted to the analysis of single
unit systems (See examples in Section 1 .1 ). We consider more than one 
unit (multi-unit) in our models.

• Since all units in the system are replaced by new ones at prescribed 
times j T ,  j  — 1 , 2 ,... in the literature, the known models are based 
on the renewal theory. In our models in the case of partial control or 
replacement with some probability, the points of control are not renewal 
points in our models. That is why the method of renewal theory is not 
applicable and we use asymptotic results for Markov process with discrete 
interference of chance.

• In our models, if an item is failed in an operating time, the system can 
continue to operate without replacement or repair unless all items in 
the system are failed. In contrast, if an item is failed during operation, 
it is usually replaced by a new one or perfectly or minimally repaired 

immediately in the literature. So the system can not continue to operate 
without renewal of the system.

• We found some analogies with the models in the following papers: 
Comparison of the model of Sheu [28]:

-  The model in [28] has the single-unit system whereas our models 
has the multi-unit system.

— Age of the unit determines the repair procedure in [28]. If the 
system fails at age ?/ in [(A: — 1 )T, {k — l)T  -b To) it is either replaced 
by a new one with probability p(y) or minimally repaired with 

probability q{y)·, and if [{k — 1)T + ToikT) it is either minimally 
repaired with probability p{y) or remains inactive until the next
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planned replacement with probability q{y). In our models, we allow 
the failed items to stay inactive until the next replacement time jT , 
j  = 1 , 2 ,... without taking into account of age of the unit.

-  If p{y) = 1 and To = T in [28], we get in particular total control 
policy when o; = 1 for a single-unit system.

Comparison with the model of Assaf and Shanthikumar [3]:

-  In both models the system is multi-unit and the lifetimes are 
exponential.

-  A repaired unit js considered as good as new in [3]. In our models 
a failed unit is considered as good as new after replacement.

-  In the model [3], it is assumed that the number of failed units in the 
system is unknown unless an inspection is carried out. And at the 
time of the inspection the current state of the system (the number 
of failed units) is known. In our models, the number of failed items 
in the system is unknown in an operation time and also at times of 
replacement jT^ j  = 1 , 2 ,...

-  In [3], upon an inspection, a decision must be made on whether to 
repair the failed machines or not based on the number of failed units 
in the system (a threshold value). In contrast there is no threshold 
value for the number of failed units in our models because we don’t 
have full information about the state of the system. And also each 
failed unit is replaced by new one with probability a at times jT ,  
i  = l , 2 ,...

-  In both models all considered costs are the same except for an 
overhead cost is performed in [3]. That means that the mutual 
part (intersection) of the results of paper [3] and our study is only 
the model of total control in the case a = 1. And if we compare the 
Equation (4.1.11) without an overhead cost (Co) in the paper [3] 
(see formula (24) in [3]) with the formula (4.1.1) for total control, 

in the case a  = 1 , r  = T, Cq = Co and Co = 0 , we have the same 
expression.
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W{r) = C^ + Coil -  + 7V(Ci -  (C2/A))(1 -

+ N C 2 (4.1.11)

* If Cl — (C2/A) > 0, partial control is better than total control 
under the same cost considerations (proved in Theorem 4.3).

* If we pay a cost for each inspected item, when Ci — (C2/A) < 0 
and under some cost relations (see in Theorem 4.6), the cost of 
partial control and cyclic control is less than the cost of total 
control.

That means that partial and cyclic control models are important for 
study and application since they decrease the cost of maintenance 
and control of the system.

In conclusion, our study is oriented in the direction when we don’t have total 
information about the current state of the system (the number of failed units). 
And we want to stress that models with the partial and cyclic control to the 
best of our knowledge were not considered in the literature in general are more 

efficient.
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CONCLUSION

• In this thesis, we proposed modified multicomponent block replacement 
policies that are oriented in the direction when we don’t have total 
information about the current state of the system (number of failed 
items). Three replacement models which can not be represented in terms 
of renewal processes were presented: Total control, partial (group) control 
and cyclic control.

• Main relations for any time t, t > 0 and the expected number of failed 
items just after control and just before control were obtained in the long- 
run for discrete and continuous time.

• In both discrete and continuous time, comparison of partial (group) 
control and cyclic control was given. We concluded that cyclic control 
is better than partial (group) control when we consider the number of 

failed items in the system.

• Cost functionals for these models were obtained. The costs of partial 
control, total control and cyclic control are compared. We concluded 
that

-  The long-run expected cost per unit of time for cyclic control is less 
than that for partial control when Ci — (C'2/A) < 0. Otherwise, the
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expected cost per unit of time for partial control is less than that 
for cyclic control.

-  The long-run expected cost per unit of time for total control is less 
than that for partial control when Ci — (C2/A) < 0 . Otherwise, the 
expected cost per unit of time for partial control is less than that 
for total control.

-  The long-run expected cost per unit of time for total control is less 
than that for cyclic control when C\ — (C'2/A) < 0 . Otherwise, the 
long-run expected cost per unit of time for cyclic control is less than 
that for total control.

Comparison is also illustrated by a numerical example for different values 
parameters.

• Necessary and sufficient conditions of the existence of optimal interval 
r*  which minimizes the long-run expected cost functions for all types 
of control policies are obtained. A numerical example with a simulation 
study for some values of parameters is included.

• If Co is the inspection cost for each item in the system at time kT,  
k = 1 , 2 ,...

-  If Co > C2 — CiA, partial control is better than total control.

-  If Co < C2 — CiA, then there exists some T», 0 < T, < 0 0  such that 
when T > T., total control is better than partial control and when 
r  < T,, partial control is better than total control.

• Comparison with existing models in the literature shows that some 
similar results for multi-unit systems are known only for total control 
case. Under some assumptions about the relations between parameters 
partial and cyclic control models are better (in the sense of cost functions) 
than total control models that means that our approach can give better 
results than the known multi-unit models in the literature.
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