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ABSTRACT 

We study how to invest optimally in a stock market having a 
finite number of assets from a signal processing perspective. 
In particular, we introduce a portfolio selection algorithm 
that maximizes the expected cumulative wealth in i.i.d. two­
asset discrete-time markets where the market levies propor­
tional trans action costs in buying and selling stocks. This is 
achieved by using "threshold rebalanced portfolios ", where 
trading occurs only if the portfolio breaches certain thresh­
olds. Under the assumption that the relative price sequences 
have log-normal distribution from the Black-Scholes model, 
we evaluate the expected wealth under proportional trans­
action costs and find the threshold rebalanced portfolio that 
achieves the maximal expected cumulative wealth over any 
investment period. 

Index Terms- Portfolio management, threshold rebal­
ancing, transaction cost, discrete-time market, continuous dis­
tribution. 

1. INTRODUCTION 
Recently financial applications attracted a significant interest 
from the signal processing community since the recent global 
crises demonstrated the importance of sound financial mod­
eling and reliable data processing [1, 2]. Stock markets pro­
duce vast amount of temporal data ranging from stock prices 
to interest rates making them ideal mediums to apply signal 
processing methods. Furthermore, due to the integration of 
high performance, low-Iatency computing recourses and fi­
nancial data collection infrastructures, a wide range of signal 
processing algorithms could be readily leveraged with full po­
tential in stock markets. This paper specifically focuses on the 
portfolio selection problem, wh ich is one the most important 
financial applications and has already attracted substantial in­
terest from the signal processing cOlmnunity [3-8]. 

Determination of the optimum portfolio and the best port­
folio rebalancing strategy that maximize wealth in discrete­
time markets with no transaction lees is heavily investigated 
in information theory [9, 10], machine learning [11-l3] and 
signal processing [14-17] fields. Assuming that the portfolio 
rebalancings, i.e., adjustments to the portfolio by buying and 
selling stocks, require no transaction fees and with some fur­
ther mild assumptions on the stock prices, the portfolio that 
achieves the maximum expected wealth is shown to be a con­
stant rebalanced portfolio (CRP) [10, 18]. A CRP is a portfo­
lio strategy where the distribution of funds over the stocks are 

reallocated to a predetermined structure, also known as the 
target portfolio, at the start of each investment period. How­
ever, we emphasize that maintaining a CRP requires poten­
tially significant trading due to possible rebalancings at each 
investment period [14]. As shown in [14], even the perfor­
mance of the best CRP is severely affected by moderate trans­
action fees rendering CRPs ineffective in real life stock mar­
kets. Clearly, one can potentially obtain significant gain in 
wealth by incIuding unavoidable transactions fees in the mar­
ket model and perform reallocation accordingly. 

In these Iines, the optimal portfolio selection prob­
lem under transactions costs is extensively investigated for 
continuous-time markets [19-22], where growth optimal poli­
cies that keep the portfolio in cIosed compact sets by trading 
only when the portfolio hits the compact set-boundaries are 
introduced. It has been shown in [23] that under certain 
mild assumptions on the sequence of stock prices, similar no 
trade zone portfolios achieve the optimal growth rate even for 
discrete-time markets under proportional transaction costs. 
For markets having two stocks, i.e., two-asset stock markets, 
these no trade zone portfolios correspond to threshold port­
folios, i.e., the no trade zone is defined by thresholds around 
the target portfolio. In particular, unlike a calendar rebalanc­
ing portfolio, e.g., a CRP, a threshold rebalanced portfolio 
(TRP) rebalances by buying and selling stocks only when the 
portfolio breaches the preset boundaries, or "thresholds ", and 
otherwise does not perform any rebalancing. Intuitively, by 
limiting the number of rebalancings due to these non rebal­
ancing regions, threshold portfolios are able to avoid hefty 
transactions costs associated with excessive trading unlike 
calendar portfolios. Although TRPs are shown to be opti­
mal in i.i.d. discrete-time two-asset markets (under certain 
technical conditions) [23], finding the TRP that maximizes 
the expected growth of wealth under proportional transaction 
costs is not solved, except for basic scenarios [23], to the best 
of our knowledge. 

In this paper, we first evaluate the expected wealth 
achieved by a TRP over any finite investment period given 
any target portfolio and threshold for two-asset discrete-time 
stock markets subject to proportional transaction fees. We 
emphasize that we study the two-asset market for notation al 
simplicity and our derivations can be readily extended to 
markets having more than two assets as provided in the paper 
where needed. We consider i.i.d. discrete-time markets repre­
sented by the sequence of price relatives (defined as the ratio 
of the cIosing prices of stocks in consecutive days), where 
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the sequence of price relatives follow log-normal distribu­
tions. Note that the log-normal distribution is the assumed 
statistical model for price relative vectors in the well-known 
Black-Scholes model [24, 25] and this distribution is shown 
to accurately model real life stock prices by many empirical 
studies [24]. Under this setup, we provide an iterative relation 
that efficiently and recursively calculates the expected growth 
over any period in any i.i.d. discrete-time market. This ex­
pected growth is then optimized by a brute force method to 
yield the optimal target portfolio and threshold to maximize 
the expected wealth over any investment period. We also 
illustrate the performance of our algorithm under different 
scenarios demonstrating its effectiveness. 

We begin with the detailed description of the market and 
the TRPs in Section 2. We then calculate the expected wealth 
using a TRP in an i.i.d. two-asset discrete-time market un­
der proportional transaction costs over any investment period 
in Section 3. We provide an iterative relation to recursively 
calculate the expected wealth growth. The paper is then con­
cluded with the simulations of given algorithm in Section 4. 

2. PROBLEM DESCRIPTION 
In this paper, all vectors are column vectors and represented 
by lower-case bold letters. Consider a market with m stocks 
and let { x( t) h> 1 represent the seq uence of price relative vec­
tors in this market, where x(t) = [X1(t),X2(t), ... , Xm(t)]T 
with Xi(t) E lR+ for i E {l, 2, ... , m} such that Xi(t) rep­
resents the ratio of the closing price of the ith stock for the 
tth trading period to that from the (t - 1 )th trading period. 
At each investment period, say period t, b (  t) represents the 
vector of portfolios such that bi (t) is the fraction of money in­
vested on the ith stock. We allow only long-trading such that 
2::;:1 bi (t) = 1 and bi (t) ;::: O. After the price relative vector 
x(t) is revealed, we earn bT(t)x(t) at the period t. 

We denote a TRP with a target vector b and a threshold E 
(with certain abuse of notation) as "TRP with (b , E)". For a 

sequence of price relatives vectors xn � [x(1), x(2), ... , x( n ) ] 
with x E lR;t;" a TRP with (b , E) rebalances the portfolio to 
b at the first time T satisfying 

bj n;=l Xj(t) ,-f 
[ ] 

,\,m b nr x (t) 'F- bj -Ej, bj + Ej 
�k=l k t=l k 

(1) 

for any j E {1, 2, ... , m}, thresholds Ej, and does not re­
balance otherwise, i.e., while the portfolio vector stays in the 
no rebalancing region. Starting from the first period of a no 
rebalancing region, i.e., where the portfolio is rebalanced to 
the target portfolio b, say t = 1 for this example, the wealth 
gained during any no rebalancing region is given by 

m n 
S(xnlbn E [�C) = L bk rr Xk(t), (2) 

k=l t=l 

where bn = [b(1), b(2), ... , b(n)], b(t) is the portfolio at 
the period t and [�C is the length n no rebalancing region 
defined as 

[�C = {bn I b(1) = b ,  bj(t) E (bj -Ej, bj + Ej), 
jE{1,2, ... ,m},tE{1,2, ... ,n}}. (3) 

A TRP pays a transaction fee when the portfolio vector leaves 
the predefined no rebalancing region, i.e., goes out of the no 
rebalancing region [�C, and rebalanced back to its target port­
folio vector b. Since the TRP may avoid constant rebalanc­
ing, it may avoid excessive trans action fees while securing the 
portfolio to stay close to the target portfolio b, when we have 
heavy trans action costs in the market. 

For notational clarity, in the remaining of the paper, we 
assume that the number of stocks in the market is equal to 2, 
i.e., m = 2. Note that our results can be readily extended 
to the case when m > 2. Then, the threshold rebalanced 
portfolios are described as folIows. 

Given a TRP with target portfolio b = [b,1 - b]T with 
b E [0,1] and a threshold E, the no rebalancing region of a 
TRP with (b , E) is represented by (b -E, b + E) . Given a TRP 
with (b - E, b + E), we only rebalance if the portfolio leaves 
this region, which can be found using only the first entry of 
the portfolio (since there are two stocks), i.e., if b1,old (t) rf­
(b -E, b + E). In this case, we rebalance b1,old (t) to b. 

In this paper, we assume that the price relative vectors 
have a log-normal distribution following the well-known 
Black-Scholes model [24]. This distribution, wh ich is ex­
tensively used in the financial literature, is shown to model 
empirical price relative vectors close to accurate in many 
tests [26]. Hence, we assume that x(t) = [Xl (t), X2(t)]T has 
an i.i.d. log-normal distribution with mean I.L = [Ml, M2l 
and standard deviation a = [0'1,0'2], respectively, i.e., 
x(t) rv InN(I.L, a2). 

3. THRESHOLD REBALANCED PORTFOLIOS 

In this section, we analyze the TRPs in a discrete-time mar­
ket with proportional transaction costs as defined in Section 2. 
We first introduce an iterative relation, as a theorem, to recur­
sively evaluate the expected achieved wealth of a TRP over 
any investment period. The terms in this iterative equation 
are calculated using a certain form of multivariate Gaussian 
integrals. We then use the given iterative equation to find the 
optimal E and b that maximize the expected wealth over any 
investment period. 

3. 1. An Iterative Relation to CaIculate the Expected 
Wealth 
In this section, we introduce an iterative equation to evaluate 
the expected cumulative wealth of a TRP with (b - E, b + E) 
over any period n, i.e., E[S(n)]. For a TRP with (b-E, b+E), 
any investment scenario can be decomposed as the union of 
consecutive no-crossing blocks such that each rebalancing in­
stant, to the initial b, signifies the end of a block. Hence, 
based on this observation, the expected gain of a TRP between 
consecutive crossings, i.e. the gain during the no-rebalancing 
regions, is directly proportional to the overall wealth growth. 
Therefore, in the next we first calculate the conditional ex­
pected gain of a TRP over no rebalancing regions and then 
introduce the iterative relation based on these derivations. 

For a TRP with (b - E, b + E), we call a no rebalancing 
region of length n as "period n with no-crossing " such that the 
TRP with the initial and target portfolio b = [b, 1 - b] stays 
in the (b -E, b + E) interval for n - 1 consecutive investment 
periods and crosses one of the thresholds at the nth period. 

8718 



We next calculate the expected gain of a TRP over any no­
crossing period as follows. 

The wealth growth of a TRP with (b- E, b+E) for a period 
T with no-crossing can be written as [27] 

T T 
(4) 

t=l t=l 

!:::,. !:::,. where (1 = b - 2c(b - b2), (2 = 1 - b + 2c(b - b2) for b + E 

hitting and (1 � b+2c(b- b2), (2 � 1- b- 2c(b- b2) for b- E 
hitting and c represents the symmetrical commission cost, to 
rebalance two stocks, i.e., bl,old (T + 1) to b, and b2,old (T + 
1) = 1- h,old (T + 1) to 1- b. Thus, the conditional expected 
gain of a TRP conditioned on that the portfolio stays in a no 
rebalancing region until the last period of the region can be 
found by calculating the expected value of (4). 

In order to calculate the expected wealth E[S(n)] itera­
tively, let us first define the variable R(T), wh ich is the ex­
pected cumulative gain of all possible portfolios that hit any 
of the thresholds first time at the Tth period, i.e., 

(5) 

where E�c denotes the set of all possible portfolios with initial 
portfolio band that stay in the no rebalancing region for T -1 
consecutive periods and hits one of the b - E or b + E boundary 
at the Tth period, i.e., 

E!C � {bT E ßT(b, E) I b(l) = b, b(i) E (b - E, b + E) 
ViE{2, . . .  , T- 1} , b(T)if-(b- E, b + E) }. (6) 

Here, ßT(b, E) is defined as the set of all possible threshold 
rebalanced portfolios with initial and target portfolio band a 
no rebalancing interval (b - E, b + E). Similarly we define the 
variable T( T), which is the expected growth of all possible 
portfolios of length T with no threshold crossings, i.e., 

(7) 

where E�c denotes the set of portfolios with initial portfolio 
band that stay in the no rebalancing region for T consecutive 
periods, i.e., I 

E�C � {bT E ßT(b, E) I b(l) = b, b(i) E [b - E, b + E] 
Vi E {2, . . .  , Tn. (8) 

Given the variables R(T) and T(T), we next introduce 
a theorem that iteratively calculates the expected wealth 
growth of a TRP over any period n. Hence, to calculate 
the expected achieved wealth, it is sufficient to calculate 
R( T), T( T), threshold crossing probabilities P (bn E E:n 
and P (bn E E�C), which are explicitly evaluated in the next 
section. 

'nlis is the special case of the definition in (3) for m = 2. 

Theorem 3. 1 The expected wealth growth of a TRP (b-E, b+ 
E) , i.e., E[S(n)], over any i.i.d. sequence of price relative 
vectors xn = [x(l) , x(2) , . . .  , x(n)], satisfies 

n 

E[S(n)] = L P(E;C)R(i)E[S(n -i)] + P(E�C)T(n), (9) 
i=l 

where we define So = 1, R(n) in (5) , T(n) in (7) , Efc in (6) 
and E�c in (8). 

The proof of the Theorem 3.1 can be found in [27]. Theo­
rem 3.1 provides a recursion to iteratively calculate the ex­
pected wealth growth E[S(n)], when R(T) and T(T) are ex­
plicitly calculated for a TRP with (b - E, b + E). Hence, if 
we can obtain P (E�c) R( T) and P (E�C) T( T) for any T, then 
(9) yields a simple iteration that provides the expected wealth 
growth for any period n. We next give the explicit definitions 
of the events b T E E�c and b T E E�c in order to calculate 
the conditional expectations R( T) and T( T). Following these 
definitions, we calculate P (E�c) R(T) and P (E�C) T(T) to 
evaluate the expected wealth growth E[S( T)], iteratively from 
Theorem 3.1 and find the optimal TRP, i.e., optimal band E, 
by using a brute force search. 

We next provide the conditions for the market portfolios 
to cross the corresponding thresholds and calculate the prob­
abilities for the events bT E E�c and bT E E�c. We then 
calculate the conditional expectations R( n) and T( n) as cer­
tain multivariate Gaussian integrals. 

Hence, we can explicitly describe the event that the mar­
ket threshold portfolio (b - E, b + E) does not hit any of the 
thresholds for T consecutive periods, b T E E�c, as the inter­
section of the events as [27] 

bT E E�c == n h2Ih(i) ::::; Ih(i) ::::; '")'1Ih(i)}, (10) 
i=l 

where Ih(i) � n�=l Xl(t), Ih(i) � n�=l X2(t) ,"1'1 !:::,. 
b(1-b+E) d !:::,. b(1-b-E) S' '1 1 h f h (l-b)(b-E) an '"'(2 = (l-b)(bH)' 11lll ar y, t e event 0 t e 

market threshold portfolio (b - E, b + E) hitting any of the 
thresholds first time at the T-th period, bT E E�c, can be de­
fined as the intersections of the events [27] 

T-1 
bT E [�C == n h2II1(i) ::::; II2(i) ::::; 11II1(i)} 

i=l 

(11) 

yielding the explicit definitions of the events b T E E�c in (11) 
and bT E E�c in (10). The definitions of bT E E�c and 
bT E E�c can be readily extended for the case m > 2 by 
using the updated definitions of IIl, II2, . . .  , IIm. 

Using the quantitative definitions of the events bT E E�c 
and bT E E�c, we can express P (E�C) T(T) as [27] 

P (E�C) T(T) = {OO j"Y17l"1 (b1l"l + (1- b)1l"2) P(II1(T) = 1l"1, 
Jo /'27rl 

II2(T) = 1l"2)P (�; E [�-(h, � -82], �3 E [�-81, � -82], 

. .. , �� E [�-81, � -82]) d1l"2d1l"1, (12) 

8719 



wh ich follows from the definition of �� where r;, � In 
71"2 

• 
< 

71"1 
The first probability in (12) can be caIculated as [27] 

wh ich follows since II1(T) � n;=1 Xl (t) and II2(T) � 
n;=IX2(t) and we have II1(T) rv InN(TJ-il,mi) and 
II2(T) rv InN(TJ-i2, Td). 

Similarly we can express P ([�C) R (T) as [27] 

P ([;c) R(T) = r= 1= ((17l"1 + (27l"2) P(Ih(T) = 7l"1, Ja 
')'17("1 

Ih(T) =7l"2)P (�; E [1\;-81,1\;-82],�� E [1\;-81,1\;-82] 

r= ('I27r1 
, ... ,�� E [I\;-81,1\;-82]) d7l"2d7l"1+ Ja Ja ((37l"1 + (47l"2) 

P(Ih(T) = 7l"1, Ih(T) = 7l"2)P (�; E [I\; -81, K -82], 

... ,�� E [1\;-81,1\;-82]) d7l"2d7l"1 , (14) 

where the probability P(II1 (T) = 7l"1,II2(T) = 7l"2) can be 
obtained via (l3). 

Hence to caIculate P ([�C)T(T) and P ([�C) R(T), we 

need to caIculate the probability p( �2 E [r;, - BI, r;, -

B2],�3 E [r;,-Bl,r;,-B2], . . .  ,�� E [r;,-B1,r;,-B2l ) in (12) 
and (14). We emphasize that the given multivariate probabil­
ity cannot be caIculated in a closed form [28], however there 
are some algorithms proposed in the literature to caIculate 
it with small errors. In this paper, we use the randomized 
Quasi-Monte Carlo (QMC) algorithm, provided in [27, 28]. 

4. SIMULATIONS 
In this section, we illustrate the performance our algorithm 
under different scenarios. We use our algorithm over the his­
torical data set collected from the New York Stock Exchange 
over a 22-year period [9, 14] and illustrate the average perfor­
mance. In these simulations, we compare the performance of 
our algorithm with portfolio selection strategies from [9, 14, 
29]. 

To remove any bias on a particular stock pair, we show 
the average performance of the TRP algorithm over randomIy 
selected stock pairs from the historical data set from [9]. The 
total set includes 34 different stocks, where the Iroquois stock 
is removed due to its peculiar behavior. We first randomly se­
lect pairs of stocks and invest using: the sequential TRP al­
gorithm with the sequential ML estimators, the Cover's uni­
versal portfolio algorithm, the Iyengar's universal portfolio 
algorithm and the SCRP algorithm. The sequential selection 
of the optimal TRP parameters are performed similar to the 
previous case, i.e., we use ML estimators on an investment 
block of 1000 days and use the caIculated optimal TRP in the 
next block of 1000 days. For each stock pair, we simulate the 
performance of the algorithms over 4651 days. In Fig. 1, we 

12_TRP 
_Buy&Holdl 

IO-Buy&Hold1 

'·'·'SCRP 

"""'Cover 

s···lyengar 

500 1000 1500 2000 2500 3000 3500 4000 4500 

12'_---=TR�P -,--,-----,------,----,----,-----,--,----,-, 
_ßuy&Holdl 

10 _ßuy&Hold1 

'·'·'SCRP 
1I"'''Cover 

S·· .. lycngar 

500 1000 1500 2000 2500 3000 3500 4000 4500 

Fig. 1. Average performance of various portfolio invest­
ment algorithms on independent stock pairs under a moderate 
(c=O.OI) and a hefty transaction cost (c=0.025). 

present the wealth achieved by these algorithms, where the 
results are averaged over 10 independent trials. We present 
the achieved wealth over random sets of stock pairs under a 
hefty transaction cost c = 0.025 and a moderate transaction 
cost c = 0.01, where c is the fraction paid in commission for 
each transaction, i.e., c = 0.01 is a 1 % cOlmnission, in Fig. 1. 
We observe that the performance of the TRP algorithm read­
ily outperforms the other algorithms for different transaction 
costs on this historical data set. Moreover, the relative gain is 
larger for the large transaction cost since the TRP approach, 
with the optimal parameters chosen as in this paper, can hedge 
more effectively against the trans action costs. 

5. CONCLUSION 
In this paper, we studied an important financial application, 
the portfolio selection problem, from a signal processing per­
spective. We investigated the portfolio selection problem in 
i.i.d. discrete-time markets having a finite number of assets, 
when the market levies proportional transaction fees for both 
buying and selling stocks. We introduced algorithms based 
on threshold rebalanced portfolios that achieve the maximal 
growth rate when the sequence of price relatives have the 
log-normal distribution from the well-known Black-Scholes 
model [24]. Under this setup, we provide an iterative relation 
that efficiently and recursively caIculates the expected wealth 
in any i.i.d. market over any investment period. As predicted 
from our derivations, we significantly improve the achieved 
wealth over portfolio selection algorithms from the literature 
on the historical data set from [9]. 
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