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We analyze the point NS contact conductivity taking into account the depression of su-
perconductivity at high-injection current density and Andreev reflection at the adaptive
NS boundary. The dependence of the excess current on the voltage, as well as conduc-
tivity of contact at arbitrary voltage is obtained.

1. Introduction

Andreev-reflection point contact spectroscopy is based on the measurements of the

transformation of the quasiparticles to Cooper pairs, which happens at least at the

distance of coherence length ξ from the interface between a normal metal N and

superconductor S.1 Electronic transport in NS boundary is described by the Arte-

menko,Volkov and Zaitsev,2 Zaitsev3 and by the BTK (Blonder-Tinkham-Klapwijk)

formalism,4 which was developed for the ballistic junctions. In this regime a point

contact consists of the normal metal N and superconductor S, whose radius r0 is

significantly less than the mean free path l. The ratio of conductance inside and

outside the gap voltage predicted by the BTK is a factor of 2. However, fit of the ex-

perimental values gave much smaller ratios.5 Similar amplitude reduction have been

observed in phonon point-contact experiments of short mean-free-part materials.6

The typical contact size estimation from recent point contact spectroscopy in dif-

ferent superconductors gives7,8 r0 = 5–60 nm. Effects of impurity scattering taken

into account by including scattering region with size smaller than the electronic

mean-free-parth. Theory of diffusive NS contact was developed in Ref. 2 and it was

fist time shown that the zero-bias conductance of such contact GNS = GNN in

contrast to the ballistic case, when GNS = 2GNN . With development of new tech-

nique of producing well conrtrolled constrictions of nanoscale size9 it is important
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to develop the theory for the explanation quantitatively point contact spectrum of

the materials with a short mean-free-part.

As soon as the radius of the contact becomes comparable with superconducting

coherence length ξ, the nonequilibrium phenomena may occur in NS junctions.

This can be lead to suppression of the gap by (a) nonequilibrium population of

normal electrons and phonons with high energy, (b) penetration of the magnetic flux

vortices generated by the current through the contact, (c) heating of the contact

region. A number of interesting features in the current-voltage characteristics of

Ag/Ta junctions was reported in Ref. 10. For the explanation of this experimental

data was suggested theory of nonequilibrium NcN ′S point contact.11,12 In NS point

contact with “high energy” quasiparticle injection allowing for phonon production,

a non-equilibrium situationis produced. Radius of nonequilibrium region increases

with increasing voltage biase. However, in this calculations explicit expression for

the excess current was not derived. Other modified variant of the NcN ′S junctions

was applied for the description of cuprate NS junctions, where effect of a near pair

potential suppression taken into account.13 Heating effects in NS junctions at high

voltages, which can lead to reduction or even destruction of superconducting order

parameter discussied by Khlus and Omelyanchuk.14

It is quite natural to expect that in the case of nanoscale size point contacts even

the moderate bias in the NS junctions well lead to destruction of the order param-

eter within the superconducting side by the high injection current, which exceeds

depairing current. We assume that a normal half-sphere will be developed within the

superconducting half-space by the increasing of the applied current (Fig. 1). Such

model of a contact has previously been proposed,15,16 termed “spherical spread

out” model which assumes that two metals are glued along the sphere of raduis r0

resulting in one dimensional r-dependent current density in both (N and S) sides of

contact. It is a limiting form of the hyperbolic contact model17 with the thickness

of connection ∆z → 0. In this paper we will investigate the influence of the above

mentioned behavior on the differential conductance GNS(V ) and excess current

Iexc.

2. Basic Equations

As a model for the NS point contact we consider metal connection in the form

of an orifice in an impenetrable screen, as descibed above, i.e. “orifice”is actu-

ally a spherical surface of surface 4πr2
0 (Fig. 1). We will assume that the right

side of contact is s-wave superconductor. At low voltages, when the condition

V < Vc = ∆/e is satisfied, the whole voltage drops in the left side is

V1 = R1I , (1)

where R1 is the resistance of the left N-side, which can be calculated (see below).

When current density at the orifice will reach the depairing current density j0
18
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Fig. 1. (a) Sketch of the orifice-shaped point contact in impenetrable screen.Dotted line is an
adaptive N ′S boundary; (b) Schematic view of “spherical spread out” model of 2d contact.

with total current

I0 = 4πr2
0j0 (2)

within the right superconducting half-space will develop a normal half-sphere, the

center of which coincides with the center of the orifice. The radius of this half-sphere

for the values of current I > I0 is determined from

I = 4πr2j0, r =

(

I

4πj0

)1/2

. (3)

Voltage drop in the right side is

V2 = R2I , (4)

where R2 is the resistance of the spherical sector. On the other hand, according to

the Ohmic law (here considered that l < r0, otherwise we have ballistic regime, for

which Ohmic law is not applicable)

V2 =

∫

Edr =
Iρ2

2π

∫

dr

r2
=

Iρ2

2π
(r−1

0 − r−1
1 ) , (5)

where ρ2 is the resistivity of the right half space in the normal state. For the left

N-space, using the last expression in the case when r1 → ∞, we receive

R1 =
ρ1

2πr0
, (6)

where ρ1 is the resistivity of the left side. For the total voltage we receive the

following expression:

V = RM I −
ρ2(4πj0I)1/2

2π
, (7)
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where RM = (ρ1 + ρ2)(1 + Z2)/2πr0 is so-called Maxwell resistance. The dimen-

sionless parameter Z is the normalized strength of the δ functional barrier localized

in the orifice (a notation comprizing that of the BTK paper4). Last equation can

be rewritten as

i =
ρ1v

ρ1 + ρ2
+ (

ρ2

ρ1 + ρ2
)2

(

1 +

(

1 + 2((
ρ1

ρ2
)2 +

ρ1

ρ2
)v

)1/2
)

, (8)

where the following notations are introduced : i = I/I0, v = V/R1I0(1 + Z2). As

follows from Eq. (1), voltage Vc = R1I0(1+Z2). As can be seen from Eq.(8), even in

the case of absence of Andreev reflection there is an excess current due to developing

normal half-sphere within the SC half-space. For the differential conductance we

receive:

GNS

GNN
=

di

dv
=

ρ1

ρ1 + ρ2






1 +

1
(

1 + 2(
ρ2

1

ρ2

2

+ ρ1

ρ2

)v
)1/2






. (9)

In taking into account the Andreev reflection4 at the N ′S boundary, the last for-

mula can be rewritten as (we assume that the barrier strength at the N ′S boundary

is zero)

GNS

GNN
=























2 at v < 1

ρ1

ρ1+ρ2



1 + 1−(1−v−2)1/2

1+(1−v−2)1/2
+ 1

(

1+2(
ρ2

1

ρ2

2

+
ρ1

ρ2
)v

)

1/2



 at v > 1 , (10)

where the second term in the curly brackets represents the Andreev contribution.4

As can be seen from the last equation at high voltage, v � 1, the behavior of the

conductance is determined mostly by the non-Andreev contriburion since Andreev

term rapidly decreases, as v−2, in comparision with the third term in curly brackets.

As follows from the last formula, conductance at v � 1 is determined by the ratio

of resistances ρ1/ρ2. As pointed out in Ref. 4, excess current in the case of zero-

barrier strength due to Andreev reflection in N ′S boundary can be calculated from

the following formula

Iexc =
1

eRM

∫

∞

0

A(E)dE =
π∆

2eRM
, (11)

where A(E) is the probability of Andreev reflection.4 For the total excess current

we can get

Iexc =
π∆

2eRM
+ I0



1 +

(

1 + 2

(

(

ρ1

ρ2

)2

+
ρ1

ρ2

)

v

)1/2




(

ρ2

ρ1 + ρ2

)2

. (12)

As shown by the expression (8), non-Andreev contribution to the excess current

depends on the applied voltage to the NS junctions.
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Fig. 2. Current versus voltage for various barrier strengths Z = 50, 10, 0.5, 0 (from bottom to
top, dashed line marks the NN ′ case) at κ ≈ 1 and T = 0.

3. Discussion

We have proposed a simple theory for the point NS nonballistic junction. It is

shown that total excess current is represented as the sum of two contributions:

Andreev reflection at the adaptive (i.e. moving toward interior of superconductor

at increasing current) N ′S boundary and non-Andreev contribution, related to the

developing N-half sphere in superconducting half-space. The calculated I−V curve

for the different barrier strength is presented in Fig. 2 for the parameter κ ≈ 1

(see below). In general case, excess current depends on the applied voltage. At

inceasing barrier strength, the excess current decreases. The latter result is directly

accessible to experiment, and should be helpful in interpreting the wide variety of

experimentally observed I-V curves.

In principle, the problem of conductance of a contact in the form of an orifice

between two normal metals which differ one from another by the effective mass

of carriers, free mean path and other physical properties, is not considered yet.

In general case the calculation of the conductance of two dissimilar metals can be

achieved with the help of the Landauer formula, or by using directly the Boltz-

mann approach.16 Early attempt for the calculation excess resistance in periodic

NS structures with different resistivity of N and S layers was made by Atremenko,

Volkov and Sergeev.19 Such theory in agreement with experimental data for the
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excess current of periodical systems of NS boundaries.20 However, influence of the

dissimilarity of the two metals on the I-V curve, differential conductivity is not con-

sidered yet. From this point investigation nanoscale size nonballistic NS junctions

with dissimilar electrodes is interesting.
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Here we develop simple phenomenological theory in which the dissimilarity of

two metals is introduced as the ratio of resistivity of the left and right sides, κ =

ρ1/ρ2. This parameter strongly affects the non-Andreev excess current. For the case

κ → ∞, only Andreev excess current remains. In the opposite limit, κ → 0, the

non-Andreev excess current (in units of I0) is constant, i.e. is equal approximately

to 1. For the case κ ≈ 1, excess current increases two times only at v ≈ 14. As can

be seen from the expression for the differential conductance (10), in case κ → ∞

the ratio of conductances inside and outside the gap voltage is a factor of 2, as

predicted by BTK theory. In the case of κ ≈ 1, this ratio becomes smaller than 2.

Further decreasing of the parameter of dissimilarity, κ, leads to enhancement of the

conductance ratio of NS nonballistic junction inside and outside the gap voltage.

Comparision of the theorethical results with experimental data for nanoscale size

NS junctions with dissimilar electrodes due to a lot of experiments seems very hard

and may be presented in furute.

Thus, the analysis presented in this paper shows that I − V curve of high-

current density junction differs from that in ballistic NS junction. The formula for

the excess current and differential conductance taking into account the developing

of the normal half-sphere within the SC is obtained.
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