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ABSTRACT

A STUDY OF EXTENSIONS OF THE STABLE RULE FOR ROOMMATE

PROBLEMS

İşbilen, Asu

M.A., Department of Economics

Supervisor: Asst. Prof. Dr. Tarık Kara

August 2018

Roommate problems might not have a stable solution. But for such problems

we are still faced with the problem of matching the agents. One natural ap-

proach would be to match the agents in such a way that the resulting matching

is “close” to being stable. Such solution concepts should select stable matchings

when they exists and select matchings “close” to being stable when the problem

does not have any stable matchings. We work with the following solution con-

cepts, Almost Stability, Maximum Irreversibility, Maximum Internal Stability,

P-stability and Q-stability, and define a new solution concept, called Iterated

P-stability. We investigate consistency, population monotonicity, competition

sensitivity and resource sensitivity of these solution concepts. We also explore

Maskin monotonicity of these solution concepts.

Keywords: Competition Sensitivity, Maskin Monotonicity, Population Mono-
tonicity, Resource Sensitivity, Roommate Problem,
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ÖZET

ODA ARKADAŞI PROBLEMİ İÇİN KARARLI KURALLARIN

UZANTILARI ÜZERİNE BİR ÇALIŞMA

İşbilen, Asu

Yüksek Lisans, İktisat Bölümü

Tez Danışmanı: Dr. Öğr. Üyesi Tarık Kara

Ağustos 2018

Her oda arkadaşı probleminin kararlı bir çözümü olmayabilir ama kararlı çö-

züm olmasa bile kişileri eşleştirme problemiyle karşı karşıya kalabiliriz. Bu tarz

problemlere doğal bir yaklaşım kişilerin kararlı eşleşemeseler bile kararlıya “ya-

kın” eşleştirilmesidir. Bu tarz çözüm kavramları eğer varsa kararlı eşleşmeleri

seçmeli, eğer yoksa kararlıya “yakın” eşleşmeleri seçmelidir. Bu çalışmada “Ne-

redeyse Kararlılık”, “Maksimum Geri Dönülmezlik”, “Maksimum İçten Kararlı-

lık”, “P-kararlılık”, “Q-kararlılık” çözüm kavramları çalışılmış ve “Yinelemeli P-

kararlılık” adıyla yeni bir çözüm kavramı tanımlanmıştır. Bu çözüm kavramları

için tutarlılık, popülasyon monotonluğu, rekabet duyarlılığı, kaynak duyarlılığı

ve Maskin monotonluğu özellikleri araştırılmıştır.

Anahtar Kelimeler: Kaynak Duyarlılığı, Maskin Monotonluğu, Oda Arkadaşı

Problemi, Popülasyon Monotonluğu, Rekabet Duyarlılığı,
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CHAPTER 1

INTRODUCTION

Matching problems in economic theory are concerned with matching members

of a group of agents with one or more members of a disjoint or same group of

agents. A two-sided matching problem is a problem which matches the mem-

bers of one group of agents with the members of another group of agents such

as men and women, students and schools or patients and kidneys. A one-sided

matching problem is a problem which matches the members of the same group

of agents with each other.

Roommate problems which is introduced by Gale & Shapley (1962) are one-

sided matching problems. Some real-life examples of such problems are prob-

lems of assigning students as roommates and pairing students for a project. A

matching is stable if there are no two agents who are not roommates and who

prefer each other to their actual roommates and no agent strictly prefers being

single to being matched with his current roommate. In a roommate problem,

we deal with the following question: “Is there a stable way to assign agents into

roommate pairs?”.

Gale & Shapley (1962) showed that there always exists a stable matching for

marriage problems. On the other hand, they showed that there might not

exist stable matchings for roommate problems. The question “Which condi-

tions guarantee the existence of stable matchings for roommate problems?” has
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arisen after Gale & Shapley (1962)’s paper. The investigation of the conditions

which guarantee the existence of stable matchings for a roommate problem,

one of the problems we are interested in, is studied with various aspects. Tan

(1991) identifies the necessary and sufficient conditions for the existence of a

complete stable roommate matching1; namely, the non-existence of any odd

party. Tan works with strict preferences.

Chung (2000) gives a sufficient condition, called “no odd ring” condition2, for

the existence of a stable roommate matching under weak preferences. Marriage

problems always satisfy no-odd ring condition, this is the reason for the exis-

tence of stable matchings for marriage problems. Chung also states several suf-

ficiency conditions for the existence of stable matchings for roommate problem,

such as preferences being dichotomous or single-peaked.

On the other hand, Irving (1985) proposes an algorithm which determines if

a complete stable matching exists or not. If it exists, it finds such a match-

ing, if it does not exist, then the algorithm reports the non-existence of a com-

plete stable matching. Irving only considers cases where the number of agents

is even and he is interested in finding a complete stable matching. Gusfield

(1988) extends the Irving Algorithm in order to find the set of all complete sta-

ble matchings for roommate problems. In our study, we have no restriction on

the number of agents. We study not only complete stable matchings but also

stable matchings. We have a condition which can be used to check the non-

existence of a stable matching.

Roommate problems might not have stable solutions. But in such problems

we are still faced with the problem of matching the agents. One natural ap-

1A matching is complete if every agent is paired with another agent.

2An odd ring is a cycle between an odd number of agents such that; agent i’s best raking
is agent j, agent j’s best ranking is agent k and agent k’s best raking is agent i.
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proach would be to match the agents in such a way that the resulting matching

is “close” to being stable. Such solution concepts should select stable matchings

when they exist and select matchings “close” to being stable when the problem

does not have any stable matchings. Several such solution concepts has been

introduced in the literature. An Almost stable matching, introduced by Abra-

ham et al. (2006), is a matching that has a minimum number of blocking pairs.

A Maximum internally stable matching, proposed by Tan (1990), is a match-

ing such that there exist a maximal set of agents that are matched to agents

within this set and this matching is a complete stable matching among these

agents. Tan (1990) introduces the notion of stable partitions and defines a nec-

essary and sufficient condition which based on this notion for the existence of a

stable roommate matching. A P-stable matching which is based on stable par-

tition notion, is introduced by Iñarra et al. (2008). A P-stable matching is a

matching such that there is an ordering of agents in which ith agent matched

with the (i− 1)th or (i+ 1)th agent under a stable partition.

We observe that under P-stable solutions, there might exist unmatched agents

even if they are acceptable to each other. In our study, we propose a new so-

lution concept, called iterated P-stable matchings, which iteratively construct

a matching by applying the P-stability matching concept to the set of un-

matched agents at each step.

Biró et al. (2016) propose a core consistent solution concept, called Maximum

irreversible matchings, which finds the matchings with a maximum number of

pairs that are stable within a set of agents. They introduced a new solution

concept, called Q-stability, which is the intersection of maximum irreversibility

and maximum internal stability.

In roommate problems, we can consider agents as both consumers and re-

sources. When newcomers are considered as additional consumers, the arrival

3



of agents might have a negative effect on the existing agents since the new-

comers will be competing for possible roommates. In such situations, we would

expect all the agents to be effected in the same direction. This requirement,

called Competition Sensitivity, is introduced by Thomson (1983). Otherwise,

when newcomers are considered as additional resources, the arrival of agents

might have a positive effect on the existing agents since the newcomers will be

additional possible roommates. In such situations, we would expect all agents

to be affected in the same direction. This requirement, called Resource Sen-

sitivity, is also introduced by Thomson (1983). Klaus (2011) proves that, on

the domain of solvable roommate problems, any selection of the stable solution

concepts satisfies competition and resource sensitivity.

Population monotonicity requires the solution concepts to response to changes

in populations in such a way that, it is possible for all agents to be affected

in the same direction. We investigate population monotonicity, resource and

competition sensitivity of the aforementioned solution concepts especially on

the unsolvable domain of roommate problems.

A notable property, Maskin monotonicity, is introduced by Maskin (1999),

requires that if a matching is a solution for a roommate problem for some

preference profile and if the ranking of pairs under this matching improved,

then that matching should be a solution for the new preference profile. Klaus

(2011) study Maskin monotonicity and unanimity properties for solvable room-

mate problems. We study Maskin monotonicity on an unrestricted domain of

roommate problems. We show that there is no solution concept which satis-

fies Maskin monotonicity among the solution concepts which we define in this

thesis.

Can & Klaus (2013) characterize the core by using population sensitivity, con-

sistency and unanimity properties on various domains of roommate problems.
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Consistency of a solution concept requires the situations to be such that when-

ever a set of matched agents leave the problem, then the remaining agents

should still be paired as before. We show that there is no solution concept

which satisfies consistency among the aforementioned solution concepts.
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CHAPTER 2

PRELIMINARIES

2.1 Roommate Problems

We are interested in matching a set of agents among themselves. Agents have

preferences over to whom they want to match. N = {1, 2, 3, . . . , n} denotes a

finite set of agents and for each agent i ∈ N . �i is a complete, transitive and

asymmetric preference of agent i on N and (�i)i∈N denotes a preference pro-

file. A roommate problem is a pair of a finite set of agents N , and a preference

profile of these agents (�i)i∈N and is denoted by (N, (�)i∈N).

Agent j is unacceptable for agent i if i �i j. In this case, agent i prefers being

unmatched to being matched with agent j.

A preference profile satisfies mutual acceptability if and only if for all i, j ∈ N , i

is acceptable for j iff j is acceptable for i.

A matching is a function that assigns each agent to at most one agent such

that if an agent i, is assigned to an agent j, then the agent j is assigned to the

agent i. In this case, i and j become roommates. If an agent is assigned to her-

self then we will say that she remains single. We give the formal definitions

below.

Definition 1. A matching µ : N → N is a bijection such that for all {i, j} ⊆

6



N µ(i) = j if and only if µ(j) = i. If µ(i) = i, then agent i is said to be single

or unmatched under matching µ.

Definition 2. A matching satisfies individual rationality (IR) if no agent is

assigned an agent who is unacceptable to him, i.e., for all i ∈ N , µ(i) �i i

Definition 3. A matching µ is blocked by a pair {i, j} ⊆ N , if each prefers the

other to their roommates under µ, i.e, j �i µ(i) and i �j µ(j).

Definition 4. A matching is stable if it isn’t blocked by any pair of agents and

no agent is assigned an unacceptable roommate.

Definition 5. A roommate problem is solvable, if the set of stable matchings is

non-empty.

Definition 6. A matching is complete if every agent is paired.

A complete stable matching is a stable matching under which there is no un-

matched agent.

7



CHAPTER 3

IRVING’S ALGORITHM

The Roommate Problem is proposed by Gale & Shapley (1962). They show

that each marriage problem1 has at least one stable matching then they give

the roommate problem as an example of a situation in which there might not

exist stable matching. Irving proposes an algorithm which determines whether

a complete stable matching exists or not. If it exists, it finds such a matching,

if it does not exist, it reports the non-existence of a complete stable matching.

In Irving’s algorithm, the preferences of agents are inputs and a complete sta-

ble matching or a report of the nonexistence of a complete stable matching is

the output.

We assume that the preference profile satisfies mutual acceptability. For each

agent i ∈ N , Ei is the set of agents which are eliminated from agent i’s prefer-

ence.

The Irving Algorithm is as follows;

Phase 1

1. Take an ordering of N , let i = 1. For each agent i ∈ N , Ei = ∅

1The marriage problem consists of two disjoint set of agents, a set of men, denoted by
M and a set of women, denoted by W and a preference relation for each agent. A matching
µ :M ∪W →M ∪W is a mapping which assigns each men at most one women.

8



2. WLOG, agent i proposes to her most preferred agent, let say agent j,

from N \ Ei

2.1. if agent j does not have an agent at hold2, then agent j holds agent

i’s proposal,

2.1.1. if agent j is the last agent of the ordering, then the algorithm

terminates.

2.1.2. otherwise, agent i + 1 becomes new proposer, we set i as i + 1.

The algorithm goes to step 2.

2.2. if agent j holds a proposal,

2.2.1. if agent j holds a better proposal than agent i, then agent j re-

jects agent i’s proposal. We set Ej as Ej∪{i} and Ei as Ei∪{j}.

The algorithm goes to step 2.

2.2.2. if agent j does not hold a better proposal than agent i, then

agent j holds agent i’s proposal and rejects the proposal that

she currently holds, let l be the agent who is rejected by agent

j. We set El as El ∪ {j} and Ej as Ej ∪ {l},

2.2.2.1. agent l becomes proposer and agent l proposes her most pre-

ferred agent, let say agent k, from N \ El.

2.2.2.1.1. if agent k does not have an agent at hold, then agent k

holds agent l’s proposal. We set i as i + 1 and the algo-

rithm goes to step 2.

2.2.2.1.2. if agent k holds a proposal,

2.2.2.1.2.1. if agent k holds a better proposal than agent l, then

agent k rejects agent l’s proposal. We set Ek as Ek ∪{l}

and El as El ∪ {k}. The algorithm goes to step 2.2.2.1

2We are using the word hold as a meaning of temporarily acceptance
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2.2.2.1.2.2. if agent k does not hold a better proposal than agent

l, then agent k holds agent l’s proposal and rejects the

proposal that she currently holds, let m be the agent

who is rejected by agent k. We set Em as Em ∪ {k} and

Ek as Ek ∪ {m}, agent m becomes new proposer, the

algorithm goes to step 2.2.2.1.

3. This phase will terminate when

• each agent holds a proposal, or

• an agent is rejected by every other agent

4. If an agent is rejected by every other agent, then there is no complete

stable matching and the algorithm terminates. Otherwise,

5. If each agent holds a proposal, then we proceed to the elimination step.

Assume that agent j keeps a proposal from agent i, we eliminate from

Ej;

• all those to whom agent j prefers agent i, and

• j from all person’s preference list who is deleting from i’s preference.

6. After elimination;

• if there is an agent i ∈ N , such that Ei = N \ {i} (whose prefer-

ence list is completely eliminated), then there is no complete stable

matching and the algorithm terminates.

• if every agent’s preference contains only one agent, then these pref-

erences yield a complete stable matching.

• if there is an agents who has more than one person in her prefer-

ence, then the algorithm continues with Phase 2.

Phase 2

10



1. Find a rotation R = (a1, . . . , ar) | (b1, . . . , br) which is a pair of sequence

of agents such that; bi is the first person on ai’s preference and the first

person bi is the second person on ai−1 (mod r).

2. Then eliminate this rotation in such a way;

• all agents to whom bi prefers ai−1

• bi from all agent’s preference who is deleted from bi’s preference in i

3. After eliminating the rotation;

• if there exists an empty preference then there is no complete stable

matching and the algorithm terminates.

• if each agent has just one person then these preferences yield a com-

plete stable matching

• if an agent has more than one person in her preference after elimina-

tion, then find a new rotation exposed from reduced preference and

the algorithm goes to step 1 of phase 2.

We study an extension of the Irving Algorithm with stable matchings for both

even and odd number of agents and agents can be paired or remain single un-

der the matchings.

In Irving Algorithm, if an agent is rejected by everyone then the algorithm

terminates. In order to extend the algorithm for finding stable matchings, we

continue the execution of the algorithm until everybody holds a proposal or

rejected by everyone.

Proposition 1. For any problem (N,�) with an even number of agents, in

phase 1 of Irving Algorithm, if an odd number of agents are rejected by all

agents who are acceptable for each of them, then there does not exist a stable

matching.

11



Proof. We prove this statement using proof by contradiction.

Let S = {i1, i2, . . . , ik} be the set of agents in which each of the agents is re-

jected by all agents who are acceptable for her and let µ : N → N be a stable

matching for (N,�) and for all i ∈ N Ai be the set of acceptable agents for

agent i. Now our claim is;

Claim 1. For all j ∈ Ai, if agent j rejects agent i, then {i, j} cannot be a pair

under a stable matching µ.

Proof. If agent j rejects agent i, we know that agent j holds an agent who is

preferred to agent i. Assume that agent j has agent k at hold. Then agent k

cannot be paired with any agent that she prefers to agent j.

Now, suppose {i, j} be paired under matching µ. Then the pair {j, k} blocks

the matching µ. Therefore, {i, j} cannot be paired.

We have that each agent from the set S is rejected by everyone who is accept-

able to her. Therefore, all agents from the set S are single under µ. We have

even number of agents there must be at least one more agent who is single

and she is not rejected by everyone. Let agent r be single and suppose agent

k holds agent r. This means that agent k cannot be paired with any agent that

she prefers to agent r. Then {k, r} blocks the matching µ, this gives a contra-

diction to stability of matching µ.

12



CHAPTER 4

SOLUTION CONCEPTS

4.1 Solution Concepts

A solution concept is a systematic way of finding matchings for roommate

problems i.e., a correspondence that maps each roommate problem to a set of

matchings.

It is well-known that the roommate problems might not have stable solutions.

But in such problems we are still faced with the problem of matching the

agents. One natural approach would be to match the agents in such a way that

the resulting matching is “close” to being stable. Such solution concepts should

select stable matchings when they exist and select matchings “close” to being

stable when the problem does not have stable matchings. Several such solution

concepts have been introduced in the literature. In this section we define sev-

eral of them.

4.1.1 Maximum Irreversibility

Maximum irreversibility is introduced by Biró et al. (2016). They define

maximum-irreversibility as a suitable way for searching a matching that is as

stable as possible.
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A matching is T -irreversible if there exist a set of agents and a complete stable

matching between these agents and no agent would prefer an agent outside of

this set to her pair. A maximum irreversible matching is a matching which is

T -irreversible with a largest such a set.

Definition 7. Let T ⊆ N . A matching µ is T -irreversible if and only if µ|T is

a complete stable matching for (T, (�i)i∈T ) and for all i ∈ T , for all j ∈ N \ T ,

µ|T (i) �i j.

Definition 8. A matching µ is a maximum irreversible matching if and only if

there exist T ⊆ N such that µ is a T -irreversible matching and for any T ′ ⊆ N ,

such that T ⊆ T ′, µ is not a T ′-irreversible matching.

The maximum irreversible solution concept, denoted MI, selects the set of all

maximum irreversible solutions for each matching problem.

4.1.2 Maximum Internal Stability

Tan (1990) proposes a solution concept which is called maximum stability.

This solution concept assigns matchings with a maximum number of stable

pairs.

Biró et al. (2016) modify Tan’s maximum stable matching concept. A match-

ing is T -internally stable if there exist a set of agents that are matched to

agents within this set and a complete stable matching among these agents. A

maximum internally stable matching is a matching which is T -internally stable

with a largest such a set. We give formal definitions below.

Definition 9. Let T ⊆ N . A matching µ is T -internally stable if and only if

µ|T is a complete stable matching for (T, (�i)i∈T ).

Definition 10. A matching µ is a maximum internally stable matching if and

14



only if there exist T ⊆ N such that µ is a T-internally stable matching and for

any T ′ ⊆ N , such that T ⊆ T ′, µ is not a T ′-internally stable matching.

The maximum internally stable solution concept, denoted MIS, selects the set

of all maximum irreversible solutions for each matching problem.

4.1.3 Almost Stability

An almost stable matching, introduced by Abraham et al. (2006), is a match-

ing that has a minimum number of blocking pairs. We give the formal defini-

tion below.

We will denote the set of blocking pairs of the matching µ by bp(µ), i.e.,

bp(µ) = {{i, j} ⊆ N : {i, j} block µ}.

Definition 11. An almost stable matching is a matching with minimum num-

ber of blocking pairs, i.e., a matching µ is almost stable if and only if for any

µ′,
∣∣bp(µ)∣∣ ≤ ∣∣bp(µ′)∣∣.

The almost stability solution concept, denoted AS, selects the set of all almost

stable solutions for each matching problem.

4.1.4 P-stability

Tan (1991) proposes a notion of stable partition to introduce a necessary and

sufficient condition for the existence of a stable roommate problem. Iñarra et

al. (2008) defines a solution concept by using stable partitions. We give formal

definitions below.

Definition 12. Let A = {a1, . . . , ak} be an ordered set of agents (subscript

modulo k);

15



• A is a ring, if k ≥ 3 and for any l ∈ {1, . . . , k} al+1 �al al−1 �al al,

• A is mutually acceptable agents, if k = 2 and for any l ∈ {1, 2}, al+1 �al

al

Given a roommate problem (N,�), a partition P of N is a set of nonempty

subsets of N such that,
⋃
A∈P A = N and for any A,B ∈ P , (A 6= B), A ∩ B =

∅.

Definition 13. A partition P of N is a stable partition if

• for all A ∈ P , A is a ring, a pair of mutually acceptable agents or a sin-

gleton and

• for all A = {a1, . . . , ak} and B = {b1, . . . , bl} in P (possibly A = B), we

have;

∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . , l} bj �ai ai−1 =⇒ bj−1 �bj ai. (bj 6= ai+1)

Iñarra et al. (2008) introduce a solution concept, called P-stability which is

characterized by stable partitions.

Definition 14. Let P be a stable partition for (N,�), a matching µ is a P-

stable matching if for each A = {a1, . . . , ak} ∈ P ,

• for any i ∈ {1, . . . , k}, µ(i) ∈ {i+ 1, i− 1}

• if k is odd, there exists j ∈ {1, . . . , k} such that µ(j) = j

The P-stability solution concept, denoted P , selects the set of all P-stable so-

lutions for each matching problem.
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4.1.5 Q-stability

Biró et al. (2016) study the relations between solution concepts; maximum irre-

versibility, almost stability and maximum internal stability. They define a new

solution concept, called Q-stability, as the intersection of maximum irreversibil-

ity and maximum internal stability. They also introduce an efficient algorithm

to find Q-stable matchings.

Definition 15. A matching is Q-stable if it is maximum internally stable and

maximum irreversible.

The Q-stability solution concept, denoted Q, selects the set of all Q-stable so-

lutions for each matching problem.

4.1.6 Iterated P-stability

We observe that there might exist unmatched agents even if they are accept-

able to each other under P-stable solutions. We propose iterated P-stability

solution concept which gives solutions that match iteratively to agents who re-

main single and acceptable to each other.

The algorithm first finds P-stable matchings then the algorithm holds P-stable

matching’s pairs. Then for each P-stable matching, the algorithm finds new P-

stable matchings with unmatched agents in each step. It terminates when there

are no agents who are unmatched and acceptable to each other.

We will denote the set of agents in N who are unmatched under the matchig µ

with s(µ,N).

Given any roommate problem (N,�) construct a matching µ, which we will

call a iterated P-matching, for the problem (N,�) as follows. Let N1 = N .
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1) Choose µ1 ∈ P (N1,� |N1) and define µ on N1 \ s(µ1, N1) as for all

i ∈ N1 \ s(µ1, N1), µ(i) = µ1(i)

...

k ≥ 2) Given Nk−1 and µk−1, let Nk = s(µk−1, Nk−1)

– If Nk = ∅, then µ has been defined on N .

– If Nk 6= ∅, then choose µk ∈ P (Nk,� |Nk)

∗ if s(µk, Nk) = Nk, then define µ on Nk as for all i ∈ Nk µ(i) =

i. With this µ would be defined on N .

∗ if s(µk, Nk) 6= Nk, then repeate step k with Nk−1 replaced with

Nk and µk−1 replaced with µk.

Note that since N is finite, this algorithm will terminate after a finite number

of steps.

The Iterated P-stability solution concept, denoted IP , selects the set of all it-

erated P-stable solutions for each matching problem.

4.2 Properties

In roommate problems, agents are the commodities therefore, we can consider

agents as both consumers and resources. This allows us to study aforemen-

tioned solution concepts’ behaviors when the set of agents changes. We explain

the effects of changes to the population by population monotonicity, resource

and competition sensitivity and consistency.

Furthermore, we also study Maskin monotonicity which is the necessary con-

dition for a solution concept to be implementable, for unsolvable roommate

problem domains.

18



4.2.1 Population Monotonicity

Population monotonicity states that, if there is a change in the population,

then each agent who exists before and after should be affected in the same di-

rection. Population monotonicity may seem to be a solidarity property, each

agent should be affected in the same way as a result of newcomers. We give

formal definitions below.

A roommate problem (N ′,�′) is an extension of (N,�) if and only if N ⊂ N ′

and the preference profile �′ over N ′ such that; for all i ∈ N and for all k, l ∈

N , k �i l if and only if k �′i l.

Definition 16. (Population Monotonicity) A solution concept ϕ is population

monotonic if and only if for any problem (N,�), for any extension (N ′,�′) of

(N,�), and for any µ ∈ ϕ(N,�), there exists µ′ ∈ ϕ(N ′,�′) such that, for any

i ∈ N , µ(i) �i µ′(i) or for any i ∈ N , µ′(i) �i µ(i).

In this set up, a solution concept is a correspondence, we might not have

single-valued solution sets. We need to compare two different sets. There might

be various techniques to compare these sets. For example; any solutions from

one set with any solutions from the other set or any solution from one set and

one solution from the other one. We use the definition which is stated above,

since the literature has used this one.

Proposition 2. Maximum irreversibility solution concept does not satisfy pop-

ulation monotonocity.

Proof. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and � be the preference profile illus-
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trated below; 1 2

1 : 2 3 4 6 5 7 8 9 10 1

2 : 3 1 10 5 6 7 8 4 9 2

3 : 1 2 4 5 6 7 8 9 10 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 10

The matchings;

µ1 = {{1, 2}, {3}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ2 = {{1, 3}, {2}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ3 = {{2, 3}, {1}, {4, 8}, {5, 9}, {7, 6}, {10}}

are maximum irreversible matchings for (N,�), since for T = {4, 5, 6, 7, 8, 9},

1Agents are enumerated in the first column and in the other columns, there is an order-
ing of agents to whom the given agent may be matched with. The ordering is a ranking of
agents from most preferred to the least preferred.

2This preference profile is given by Biró et al. (2016)
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the matchings;

µ1|T = µ2|T = µ3|T = {{4, 8}, {5, 9}, {7, 6}}

are complete stable matchings for (T, (�i)i∈T ). For T , µ1, µ2, µ3 are T -

irreversible and for any T ′, such that T ⊆ T ′, µ1, µ2, µ3 are not T ′-irreversible;

therefore, these matchings are maximum irreversible.

Let N ′
= {11} and let N̂ = N ∪ N ′ and �̂ be the preference profile illustrated

below;

1 : 2 3 4 6 5 7 8 9 10 1

2 : 11 3 1 10 5 6 7 8 4 9 2

3 : 1 2 4 5 6 7 8 9 10 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 11 9 10

11 : 2 10

The matching µ′ = {{1, 3}, {2, 11}, {4, 8}, {5, 9}, {7, 6}, {10}} is unique

maximum irreversible matching since for T̂ = {2, 4, 5, 6, 7, 8, 9, 11}, µ|T ′ =

{{2, 11}, {4, 8}, {5, 9}, {7, 6}} is a complete stable matching for the roommate

problem (T̂ , (�̂i)i∈T̂ ). For T̂ , µ is T̂ -irreversible and for any T ′′, T̂ ⊆ T ′′, µ is

not T ′′-irreversible.
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A change from µ1 to µ′ makes agent 1 worse off and agent 3 better off. There-

fore maximum irreversible stable solution concept does not satisfy population

monotonicity.

Proposition 3. Maximum internal stability solution concept does not satisfy

population monotonicity.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-

low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 5 3 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P = {{1, 2, 3}, {4, 5}, {6}} is the unique stable partition for (N,�). The maxi-

mum internal stable matchings are

µ1 = {{1, 2}, {4, 5}, {3, 6}}

µ2 = {{1, 2}, {4, 5}, {3}, {6}}

µ3 = {{1, 3}, {4, 5}, {2, 6}}

µ4 = {{1, 3}, {4, 5}, {3}, {6}}

µ5 = {{2, 3}, {4, 5}, {1, 6}}

µ6 = {{2, 3}, {4, 5}, {1}, {6}}
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Let N ′
= {7, 8} and N̂ = N ∪ N ′ , N̂ = {1, 2, 3, 4, 5, 6, 7, 8}, and �̂ be the

preference profile illustrated below;

1 : 2 8 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 7 5 3 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 8 2 3 7 4 5 6

7 : 4 8 6

8 : 6 1 7

P = {{1, 2, 3}, {4, 7}, {6, 8}, {5}} is a stable partition for (N̂ , �̂). This stable

partition yields the maximum internally stable matching µ′ for (N ′
,�′) where;

µ′ = {{1, 2}, {3, 5}, {7, 4}, {6, 8}}

A change from µ1 to µ′ makes agent 3 better off and agent 5 worse off. The-

fore, this solution concept does not satisfy population monotonicity.

Proposition 4. Almost stability solution concept does not satisfy population

monotonicity.

Proof. Let N = {1, 2, 3, 4, 5, 6, 7, 8} and � be the preference profile3 illustrated

3This preference profile is given by Biró et al. (2016)
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below;

1 : 2 3 8 5 4 7 6 1

2 : 3 1 4 5 6 7 8 2

3 : 4 1 2 5 6 7 8 3

4 : 5 3 1 6 7 8 2 4

5 : 4 6 3 2 7 8 1 5

6 : 5 8 7 4 1 2 3 6

7 : 8 6 4 5 1 2 3 7

8 : 6 7 1 5 4 2 3 8

For the problem (N,�), the matching µ = {{1, 2}, {3, 4}, {5, 6}, {7, 8}} is the

unique almost stable matching since {{4, 5}} is the only blocking pair under

the matching µ and there is no other matching which has one blocking pair.

Let N ′
= {9, 10} and let N̂ = N

′ ∪ N , N̂ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and �̂ be
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the preference profile illustrated below;

1 : 2 3 8 5 4 7 6 1

2 : 3 1 4 5 6 7 8 2

3 : 4 1 2 5 6 7 8 3

4 : 5 3 1 6 7 8 2 4

5 : 4 10 6 3 2 7 8 1 5

6 : 5 8 7 4 1 2 3 6

7 : 8 9 6 4 5 1 2 3 7

8 : 6 10 7 1 5 4 2 3 8

9 : 7

10 : 8 5

For problem (N̂ , �̂), the matching µ′ = {{1, 2}, {3, 4}, {5, 10}, {6, 8}, {7, 9}}

is the unique almost stable matching since {{4, 5}} is the only blocking pair

under the matching µ′ and there is no other matching which has one blocking

pair.

A change from µ to µ′ makes agent 8 better off and agent 6 worse off. There-

fore, almost stability solution concept does not satisfy population monotonoc-

ity.

Proposition 5. P-stability solution concept does not satisfy population

monotonocity.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-
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low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P = {{1, 2, 3}, {4, 5}, {6}} is the unique stable partition for (N,�) and the

matchings

µ1 = {{1, 2}, {4, 5}, {3}, {6}}

µ2 = {{1, 3}, {4, 5}, {2}, {6}}

µ3 = {{2, 3}, {4, 5}, {1}, {6}}

are P-stable matchings. Let N ′
= {7, 8} and let N̂ = N ∪ N ′ and N̂ =

{1, 2, 3, 4, 5, 6, 7, 8}. R̂ be the preference profile illustrated below;

1 : 2 8 3 5 4 6 1

2 : 3 1 4 5 8 6 2

3 : 1 2 5 4 8 6 3

4 : 3 5 1 2 8 6 4

5 : 4 2 1 3 8 6 5

6 : 7 1 2 3 4 5 8 6

7 : 8 6

8 : 1 2 3 4 5 6 7 8
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The matching

µ′ = {{1, 2}, {3}, {4, 5}, {7, 6}, {8}}

is P-stable for the problem (N̂ , �̂). A change from µ3 to µ′ makes agent 1 bet-

ter off and agent 2 worse off. Therefore, P-stability does not satisfy population

monotonicity.

Proposition 6. Q-stability solution concept does not satisfy population mono-

tonicity.

Proof. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and � be the preference profile illus-

trated below; 4

1 : 2 3 4 6 5 7 8 9 10 1

2 : 3 1 10 5 6 7 8 4 9 2

3 : 1 2 4 5 6 7 8 9 10 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 10

4This preference profile is given by Biró et al. (2016)

27



The matching

µ = {{1, 2}, {3}, {4, 8}, {5, 9}, {7, 6}, {10}}

is Q-stable. Let N ′
= {11} and let N̂ = N

′ ∪ N , N̂ =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and �′ be the preference profile shown below;

1 : 2 3 4 6 5 7 8 9 10 1

2 : 11 3 1 10 5 6 7 8 4 9 2

3 : 1 2 4 5 6 7 8 9 10 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 11 10

11 : 2 10

The matching µ′ = {{1, 3}, {2, 11}, {4, 8}, {5, 9}, {7, 6}, {10}} is Q-stable for

the problem (N̂ , �̂). A change from µ to µ′ makes agent 1 worse off and agent

3 better off. Therefore, Q-stability solution concept does not satisfy population

monotonicity.

Proposition 7. Iterated P-stability solution concept does not satisfy population

monotonicity.
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Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-

low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P = {{1, 2, 3}, {4, 5}, {6}} is a stable partition for (N,�) and the match-

ings µ1 = {{1, 2}, {4, 5}, {3}, {6}}, µ2 = {{1, 3}, {4, 5}, {2}, {6}} and

µ3 = {{2, 3}, {4, 5}, {1}, {6}} are P-stable matchings.

The sets of pairs of P-stable matchings;

νµ1 = {{1, 2}, {4, 5}}

νµ2 = {{1, 3}, {4, 5}}

νµ3 = {{2, 3}, {4, 5}}

The set of single agents of matching µ1 is {{3}, {6}}, let N ′ = {3, 6}. P ′ =

{{3, 6}} is the unique stable partition for (N ′,�N ′) and µ′P ′ = {{3, 6}} then

the iterated P-stable matching is

µIµ1 = {{1, 2}, {4, 5}, {3, 6}}

By the same process, P-stable matchings which are illustrated above yields the

29



iterated P-stable matchings;

µIµ2 = {{1, 3}, {4, 5}, {2, 6}}

µIµ3 = {{2, 3}, {4, 5}, {1, 6}}

Let N ′
= {7, 8} and let N̂ = N ∪ N ′ so N̂ = {1, 2, 3, 4, 5, 6, 7, 8}, �̂ be the

preference profile illustrated below;

1 : 2 8 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 7 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 8 7 2 3 4 5 6

7 : 4 8 6

8 : 6 1 7

P ′ = {{1, 2, 3}, {4, 7}, {6, 8}, {5}} is a stable partition for (N̂ ,�N̂) and the

iterated P-stable matchings are

µIµ1′ = {{1, 2}, {4, 7}, {6, 8}, {3, 5}}

µIµ2′ = {{1, 3}, {4, 7}, {6, 8}, {2, 5}}

µIµ3′ = {{2, 3}, {4, 7}, {6, 8}, {1, 5}}

A change from µIµ1 to µIµ1′ makes agent 3 better off and agent 5 worse off.

Therefore, iterated P -stability does not satisfy population monotonicity.
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4.2.2 Competition and Resource Sensitivity

If there exist newcomers in a roommate problem, then these newcomers might

affect any of the incumbent agents negatively or positively. Competition sensi-

tivity means that if two existing agents become newly paired after newcomers

arrived, then at least one of them becomes worse off. This property captures

the negative effects of newcomers. A formal definition is given below.

Definition 17. (Competition sensitivity) A solution concept ϕ is competition

sensitive if and only if for any roommate problem (N,�) and for any extension

(N ′,�′) of (N,�), and for any µ ∈ ϕ(N,�), there exists µ′ ∈ ϕ(N ′,�′) such

that for any i ∈ N , µ(i) �i µ′(i).

Resource sensitivity captures the possible positive effects of newcomers on ex-

isting agents. Resource sensitivity means that if two incumbent agents become

newly paired after newcomers arrived, then at least one of them becomes better

off.

Definition 18. (Resource sensitivity) A solution concept ϕ is resource sen-

sitive if and only if for any roommate problem (N,�) and for any extension

(N ′,�′) of (N,�), and for any µ ∈ ϕ(N,�), there exists µ′ ∈ ϕ(N ′,�′) such

that, for any i ∈ N , µ′(i) �i µ(i).

We have that if a solution concept does not satisfy population monotonicity,

then it does not satisfy competition or resource sensitivity. Since there is no

aforementioned solution concept which satisfies population monotonicity, there

is also no solution concept that satisfies competition or resource sensitivity.

31



4.2.3 Maskin Monotonicity

Maskin Monotinicity introduced by Maskin (1999). A solution concept is

Maskin monotonic if and only if a matching is a solution for a roommate prob-

lem under a solution concept, then it is also a solution for a roommate problem

which is constructed by a Maskin monotonic transformation. Maskin mono-

tonic transformation basically means that a solution improved in the all agents’

preference rankings.

For any agent i ∈ N and a matching µ, the lower contour set of �i at µ is

L(�i, µ) = {µ′|µ �i µ′}. A preference profile �′ is obtained by a Maskin

monotonic transformation of � at µ if for all i ∈ N , L(�i, µ) ⊆ L(�′i, µ).

Let MT (�, µ) be the set of preference profiles which are obtained by a Maskin

monotonic transformation of �.

Definition 19. (Maskin Monotonicity) A solution concept ϕ is

Maskin monotonic if and only if for all roommate problems (N,�), and all

µ ∈ ϕ(N,�) , if �′∈MT (�, µ), then µ ∈ ϕ(N,�′).

Proposition 8. Maximum irreversible solution concept does not satisfy Maskin

Monotonicity.

Proof. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and � be the preference profile illus-

trated below; 5

5This preference profile is given by Biró et al. (2016)
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1 : 2 3 4 6 5 7 8 9 10 1

2 : 3 1 10 5 6 7 8 4 9 2

3 : 1 2 4 5 6 7 8 9 10 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 10

The matchings;

µ1 = {{1, 2}, {3}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ2 = {{1, 3}, {2}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ3 = {{2, 3}, {1}, {4, 8}, {5, 9}, {7, 6}, {10}}

are maximum irreversible matchings for (N,�), since for T = {4, 5, 6, 7, 8, 9},

the matchings;

µ1|T = µ2|T = µ3|T = {{4, 8}, {5, 9}, {7, 6}}

are complete stable matchings for (T, (�i)i∈T ). For T , µ1, µ2, µ3 are T -

irreversible and for any T ′, such that T ⊆ T ′, µ1, µ2, µ3 are not T ′-irreversible.

Let �′ , a Maskin Monontonic transformation of � at µ3, be the preference pro-
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file illustrated below;

1 : 3 2 4 6 5 7 8 9 10 1

2 : 3 1 10 5 6 7 8 4 9 2

3 : 1 2 4 5 6 7 8 9 10 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 10

The matching

µ′ = {{1, 3}, {2}, {4, 8}, {5, 9}, {7, 6}, {10}}

is unique maximum irreversible matching, since for T ′ = {1, 3, 4, 5, 6, 7, 8, 9},

µ |T ′= {{1, 3}, {4, 8}, {5, 9}, {7, 6}} is a complete stable matching for the room-

mate problem (T ′, (�′i)i∈T ′). For T ′, µ′ is T ′-irreversible and for any T̂ such

that T ′ ⊆ T̂ , µ′ is not T̂ -irreversible.

The matching µ3 is not maximum irreversible for (N,�′). Therefore, this solu-

tion concept does not satisfy Maskin Monotonicity.

Proposition 9. Maximum internal stability solution concept does not satisfy

Maskin Monotonicity.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-
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low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

The matching µ = {{1, 2}, {4, 5}, {3, 6}} is maximum internally stable for

(N,�).

Let �′, a Maskin monotonic transformation of � at µ, be the preference profile

illustrated below;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 2 1 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

The matchings µ′ = {{2, 3}, {4, 5}, {1, 6}} and µ′′
= {{2, 3}, {4, 5}, {1}, {6}}

are maximum internally stable matchings. The matching µ is not maximum

internally stable for the problem (N,�′). Thefore this solution concept is not

Maskin monotonic.

Proposition 10. Almost stability solution concept does not satisfy Maskin

monotonicity.
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Proof. Let n = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-

low;

1 : 5 2 3 6 4 1

2 : 4 1 5 3 6 2

3 : 2 4 1 5 6 3

4 : 5 1 2 3 6 4

5 : 4 2 6 1 3 5

6 : 2 4 1 5 3 6

The matching µ = {{1, 2}, {3, 4}, {5, 6}} is unique almost stable matching for

the problem (N,�) with only blocking pair {{4, 5}} as a blocking pair.

Let �′, a Maskin monotonic transformation of � at µ, be the preference profile

illustrated below;

1 : 5 2 3 6 4 1

2 : 4 1 5 3 6 2

3 : 2 4 1 5 6 3

4 : 2 5 1 3 6 4

5 : 6 4 2 1 3 5

6 : 2 4 1 5 3 6

(N,R
′
), µ′

= {{1, 3}, {2, 4}, {5, 6}} is almost stable for (N,�′) and µ is not

almost stable for (N,�′). Therefore, almost stability solution concept does not

satisfy Maskin Monotonicity.

Proposition 11. P-stability solution concept does not satisfy Maskin Mono-

tonicity.
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Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-

low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P = {{1, 2, 3}, {4, 5}, {6}} is the unique stable partition for (N,�) and the

matchings

µ1 = {{1, 2}, {4, 5}, {3}, {6}}

µ2 = {{1, 3}, {4, 5}, {3}, {6}}

µ3 = {{2, 3}, {4, 5}, {1}, {6}}

are P-stable matchings.

Let �′, a Maskin monotonic transformation of � at µ1, be the preference pro-

file shown below;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 2 1 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6
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P = {{1, 6}, {2, 3}, {4, 5}} is a stable partition for (N,�′). The matching

µ′ = {{2, 3}, {4, 5}, {1, 6}} is the unique P-stable matching for (N,�′) and the

matching µ1 is not a solution for the problem (N,�′). Therefore this solution

concept does not satisfy Maskin Monotonicity.

Proposition 12. Q-stability solution concept does not satisfy Maskin Mono-

tonicity.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile shown below;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

The matching µ = {{1, 2}, {4, 5}, {3}, {6}} is Q-stable for (N,�).

Let �′, a Maskin monotonic transformation of � at µ, be the preference profile

illustrated below;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 2 1 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6
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The matching µ′
= {{2, 3}, {4, 5}, {1, 6}} is Q-stable. The matching µ is not a

Q-stable solution for the problem (N,�′). Thefore this solution concept is not

Maskin Monotonic.

Proposition 13. Iterated P-stability solution concept does not satisfy Maskin

Monotonicity.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-

low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P = {{1, 2, 3}, {4, 5}, {6}} is a stable partition for (N,�) and the match-

ings µ1 = {{1, 2}, {4, 5}, {3}, {6}}, µ2 = {{1, 3}, {4, 5}, {2}, {6}} and

µ3 = {{2, 3}, {4, 5}, {1}, {6}} are P-stable matchings.

The sets of pairs of P-stable matchings;

νµ1 = {{1, 2}, {4, 5}}

νµ2 = {{1, 3}, {4, 5}}

νµ3 = {{2, 2}, {4, 5}}

The set of single agents of matching µ1 is {3, 6}. If N ′ = {3, 6}, then P ′ =

{{3, 6}} is unique stable partition of (N ′,�N ′) and µ′P ′ = {{3, 6}} then the
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iterated P-stable matching is

µIµ1 = {{1, 2}, {4, 5}, {3, 6}}

By the same process, P-stable matchings which are illustrated above yields the

iterated P-stable matchings;

µIµ2 = {{1, 3}, {4, 5}, {2, 6}}

µIµ3 = {{2, 3}, {4, 5}, {1, 6}}

Let �′, a Maskin Monontonic transformation of � at µIµ1 , be the preference

profile illustrated below;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 2 1 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P ′ = {{2, 3}, {4, 5}, {1, 6}} is a stable partition for (N ′,�′) then the iterated

P-stable mathing is

µIµ′ = {{2, 3}, {4, 5}, {1, 6}}

The matchings µIµ1 is not a solution for (N ′,�′); therefore, iterated P-stability

does not satisfy Maskin Monotonicity.
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4.2.4 Consistency

Consistency requires that if there exist a set of matched agents who leave the

problem, then the remaining agents should still be paired as before.

A roommate problem (N ′,�′) is a reduced problem of (N,�) at µ to N ′ if and

only if N ′ ⊂ N and the preference profile �′ over N ′ such that; for all i ∈ N ′,

for all k, l ∈ N ′, k �′i l ⇐⇒ k �i l and �N ′= (�′i)i∈N ′ . The restriction of µ

to agents in N ′ is µN ′ .

Definition 20. (Consistency) A solution concept ϕ is consistent if and only

if for any roommate problem (N,�) and for any reduced problem (N ′,�′) of

(N,�), for any µ ∈ ϕ(N,�) implies µN ′ ∈ ϕ(N ′,�N ′).

Proposition 14. Maximum irreversibility solution concept does not satisfy

consistency.

Proof. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and � be the preference profile illus-

trated below; 6

6This preference profile is given by Biró et al. (2016)
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1 : 2 3 4 6 5 7 8 9 10 1

2 : 3 1 10 5 6 7 8 4 9 2

3 : 1 2 10 5 6 7 8 9 4 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 10

The matchings;

µ1 = {{1, 2}, {3}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ2 = {{1, 3}, {2}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ3 = {{2, 3}, {1}, {4, 8}, {5, 9}, {7, 6}, {10}}

are maximum irreversible matchings. Let N ′ = {3, 4, 5, 8, 9, 10} and (N ′,�N ′)

be the reduced problem of (N,�). Let T ′ = {3, 4, 5, 8, 9, 10} and µ′ =

{{3, 10}, {4, 8}, {5, 9}} is T ′-irreversible. There is no T̂ ⊆ N ′, s.t T ′ ⊆ T̂ ; there-

fore, µ′ is the unique maximum irreversible matching for (N ′,�N ′). We have

that µ1N ′ = {{3}, {4, 8}, {5, 9}, {10}} and µ1N ′ is not a maximum irreversible

matching for (N ′,�′). Therefore, maximum irreversibility does not satisfy con-

sistency.
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Proposition 15. Maximum internal stability solution concept does not satisfy

consistency.

Proof. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and � be the preference profile illus-

trated below;7

1 : 2 3 4 6 5 7 8 9 10 1

2 : 3 1 10 5 6 7 8 4 9 2

3 : 1 2 10 5 6 7 8 9 4 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 10

7This preference profile is given by Biró et al. (2016)
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The matchings;

µ1 = {{1, 2}, {3}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ1 = {{1, 2}, {3, 10}, {4, 8}, {5, 9}, {7, 6}}

µ2 = {{1, 3}, {2}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ2 = {{1, 3}, {2, 10}, {4, 8}, {5, 9}, {7, 6}}

µ3 = {{2, 3}, {1}, {4, 8}, {5, 9}, {7, 6}, {10}}

µ3 = {{2, 3}, {1, 10}, {4, 8}, {5, 9}, {7, 6}}

are maximum internally stable. Let N ′ = {3, 4, 5, 8, 9, 10} and (N ′,�N ′) be a

reduced problem of (N,�). We have that µ1N ′ = {{3}, {4, 8}, {5, 9}, {10}}. For

the reduced problem, for T = {3, 4, 5, 8, 9, 10}, µ′ = {{3, 10}, {4, 8}, {5, 9}}

is the unique maximum internally stable matching for (N ′,�N ′). Since µ1N ′ is

not a maximum internally stable matching for (N ′,�N ′), the maximum inter-

nal stability does not satisfy consistency.

Proposition 16. Almost stability solution concept does not satisfy consistency.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-

low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 4 1 2 5 6 3

4 : 5 3 1 6 2 4

5 : 4 6 3 2 1 5

6 : 5 4 1 2 3 6
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The matching µ = {{1, 2}, {3, 4}, {5, 6}} is almost stable for the problem

(N,�). Let N ′ = {3, 4, 5, 6} and (N ′,�′) be a reduced market of (N,�).

µ′ = {{3, 6}, {4, 5}} is the unique almost stable matching for (N ′,�′). We have

that µN ′ = {{3, 4}, {5, 6}}. The matching µN ′ is not almost stable; therefore,

this solution concept does not satisfy consistency.

Proposition 17. P-stability solution concept does not satisfy consistency.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile shown below;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P = {{1, 2, 3}, {4, 5}, {6}} is a stable partition for (N,�) and the match-

ings µ1 = {{1, 2}, {4, 5}, {3}, {6}}, µ2 = {{1, 3}, {4, 5}, {2}, {6}} and

µ3 = {{2, 3}, {4, 5}, {1}, {6}} are P-stable. Let N ′
= {3, 4, 5, 6} and (N

′
,�N ′ )

be a reduced problem of (N,�). P = {{3, 4, 5}, {6}} is a stable partition

for (N ′,�N ′). The matching µ′ = {{3, 4}, {5}, {6}} is P-stable matching for

(N
′
,�N ′ ). The matching µ1N ′ is not P-stable matching for (N ′

,�N ′ ). There-

fore, this solution concept does not satisfy consistency.

Proposition 18. Q-stability solution concept does not satisfy consistency.

Proof. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and � be the preference profile illus-

trated below;8

8This preference profile is given by Biró et al. (2016)
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1 : 2 3 4 6 5 7 8 9 10 1

2 : 3 1 10 5 6 7 8 4 9 2

3 : 1 2 10 5 6 7 8 9 4 3

4 : 8 9 3 6 7 10 1 2 5 4

5 : 9 1 6 8 7 4 2 3 10 5

6 : 4 5 7 8 9 2 3 1 10 6

7 : 6 8 9 5 1 2 3 4 10 7

8 : 5 7 4 6 1 2 9 10 3 8

9 : 7 4 5 1 2 3 6 8 10 9

10 : 1 2 3 4 5 6 7 8 9 10

The matching

µ = {{1, 2}, {3}, {4, 8}, {5, 9}, {7, 6}, {10}}

is Q-stable. Let N ′ = {3, 4, 5, 8, 9, 10} and (N ′,�N ′) be a reduced problem of

(N,�). We have that µN ′ = {{3}, {4, 8}, {5, 9}, {10}}. For the reduced prob-

lem, the matching µ′ = {{3, 10}, {4, 8}, {5, 9}} is the unique Q-stable match-

ing for (N ′,�N ′). Since µN ′ is not a Q-stable matching for (N ′,�N ′), the Q-

stability does not satisfy consistency.

Proposition 19. Iterated P-stability solution concept does not satisfy consis-

tency.

Proof. Let N = {1, 2, 3, 4, 5, 6} and � be the preference profile illustrated be-
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low;

1 : 2 3 5 4 6 1

2 : 3 1 4 5 6 2

3 : 1 2 5 4 6 3

4 : 3 5 1 2 6 4

5 : 4 2 1 3 6 5

6 : 1 2 3 4 5 6

P = {{1, 2, 3}, {4, 5}, {6}} is a stable partition for (N,�) and the match-

ings µ1 = {{1, 2}, {4, 5}, {3}, {6}}, µ2 = {{1, 3}, {4, 5}, {2}, {6}} and

µ3 = {{2, 3}, {4, 5}, {1}, {6}} are P-stable matchings.

The sets of pairs of P-stable matchings;

νµ1 = {{1, 2}, {4, 5}}

νµ2 = {{1, 3}, {4, 5}}

νµ3 = {{2, 2}, {4, 5}}

The set of single agents of matching µ1 is {3, 6}. If N ′ = {3, 6}, then P ′ =

{{3, 6}} is unique stable partition of (N ′,�N ′) and µ′P ′ = {{3, 6}} then the

iterated P-stable matching is

µIµ1 = {{1, 2}, {4, 5}, {3, 6}}

By same process, P-stable matchings which are illustrated above yields the it-
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erated P-stable matchings;

µIµ2 = {{1, 3}, {4, 5}, {2, 6}}

µIµ3 = {{2, 3}, {4, 5}, {1, 6}}

Let N ′
= {3, 4, 5, 6} and (N

′
,�N ′ ) be a reduced problem of (N,�).

P = {{3, 4, 5}, {6}} is a stable partition for (N ′
,�N ′ ). The matching µ′ =

{{3, 4}, {5, 6}} is iterated P-stable matching for (N ′
,�N ′ ). The matching

µIµ1N ′ is not an iterated P-stable matching for (N ′
,�N ′ ); therefore, this solu-

tion concept does not satisfy consistency.
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CHAPTER 5

CONCLUSION

It is well-known that roommate problems are one-sided matching problems

which might not have any stable solutions. Therefore, the question “Which

conditions guarantee the non-existence of stable matchings for roommate prob-

lems?” has arisen after Gale & Shapley (1962)’s paper. On the other hand,

when there exist stable roommate matchings, “How we can find the stable

mathcings for roommate problems?” is another question. We are first inter-

ested in Irving Algorithm which finds a complete stable matching if it exists.

In our study, we have no restriction on the number of agents. We study not

only complete stable matchings but also stable matchings. We have a condition

which can be used to check the non-existence of stable matchings.

In this work, we study to match the agents in a such a way that the resulting

matching is “close” to be stable. Such solution concepts should select stable

matchings when they exist and select matchings “close” to being stable when

the problem does not have any stable matchings. Several solution concepts

such as Almost Stability, Maximum irreversibility, Maximum Internal stabil-

ity, P-stability and Q-stability has introduced in the literature. In this study,

we introduce a new solution concept, called Iterative P-stability in which we

extend P-stability by an iterative algorithm.

Finally, we study population monotonicity, resource and competition sensitiv-
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ity, consistency and Maskin monotonicity of these solution concepts. We show

that there are no aforementioned solution concepts which satisfies population

monotonicity, competition sensitivity and resource sensitivity and consistency.

There are also no aforementioned solution concepts which satisfies Maskin

monotonicity.
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Table 1: Summary of Results

Solution
Concepts

Population
Mono-
tonicity

Competition
Sensitivity

Resource
Sensitivity

Maskin
Mono-
tonicity

Consistency

Almost
Stability No No No No No

Maximum
Internal
Stability

No No No No No

Maximum
Irre-
versibility

No No No No No

P -stability No No No No No

Q-stability No No No No No

Iterated
P-stability No No No No No

Stable
Rule

Yes Yes Yes Yes Yes
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