
CONSTRUCTION OF MODULAR FORMS
WITH POINCARÉ SERIES
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ABSTRACT

CONSTRUCTION OF MODULAR FORMS WITH
POINCARÉ SERIES

Çisem Güneş

M.S. in Mathematics

Supervisor: Asst. Prof. Dr. Hamza Yeşilyurt

July, 2010

In this thesis, we construct holomorphic modular forms of integral weight k > 2

for the principle congruence subgroup Γ̄(N) by means of Poincaré series. We start

by providing the necessary background information on modular forms. Then, we

show that Poincaré series are in fact holomorphic modular forms and we obtain

explicit formulas for their Fourier coefficients. For the special case when Poincaré

series are Eisenstein series, their Fourier coefficients become relatively simple.

We give Fourier coefficients of the Eisenstein series belonging to the principle

congruence subgroup. Finally, as an application of what has been studied, we

construct Eisenstein series for the Hecke congruence supgroup.

Keywords: Poincaré series, Eisenstein series, modular forms, cusp forms, modular

group, congruence subgroups.
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ÖZET

MODÜLER FORMLARIN POINCARÉ SERİLERİ
KULLANILARAK OLUŞTURULMASI

Çisem Güneş

Matematik, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Hamza Yeşilyurt

Temmuz, 2010

Bu tezde, Poincaré serileri vasıtasıyla esas denklik altgrubu Γ̄(N) için 2’den büyük

tam sayı ağırlıklı analitik modüler formlar inşa ediyoruz. Modüler formlarla ilgili

gerekli temel bilgileri temin ederek başlıyoruz. Daha sonra, Poincaré serilerinin

aslında analitik modüler formlar olduğunu gösteriyoruz ve onların Fourier kat-

sayıları için açık formüller elde ediyoruz. Poincaré serilerinin Eisenstein serilerine

dönüştüğü özel durum için Fourier katsayıları oldukça basitleşiyor. Esas denklik

altgrubuna dahil olan Eisenstein serilerinin Fourier katsayılarını veriyoruz. En

sonunda, çalışılanların bir uygulaması olarak, Hecke denklik altgrubu için bir

Eisenstein serisi inşa ediyoruz.

Anahtar sözcükler : Poinkaré Serileri, Eisenstein Serileri, modüler formlar, cusp

formlar, modüler grup, denklik altgrupları .
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I thank to İpek, Akif and Deniz who offered help without hesitation and cared

about my works.

My thanks also goes to Ata Fırat who helped me about Latex with all his

patience.

The work that form the content of the thesis is supported financially by
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Chapter 1

Introduction

Let Γ be a subgroup of the full modular group

Γ(1) = SL2(Z) =

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
,

of finite index and υ be a multiplier system of real weight k on Γ (see definition

3.1.1). An unrestricted modular form is a meromorphic function f : H → C on

the upper half plane H satisfying

f(Tz) = υ(T )(cz + d)kf(z)

for all T =

(
a b

c d

)
∈ Γ, and all z ∈ H. The concept of modular forms first

arose in connection with the theory of elliptic functions in the first period of the

nineteenth century. The theory was further developed by Felix Klein in 1980s as

the concept of automorphic forms for one variable became understood. The term

modular form as a systematic description is usually attributed to Eric Hecke [6]

whose many contributions to the subject showed that modular forms have far

reaching applications in number theory.

There are many ways of constructing modular forms. Our special interest

shall be the one in which the Poincaré Series are employed as building blocks.

1



CHAPTER 1. INTRODUCTION 2

This method is particularly convenient for modular forms of real weight k > 2

and with arbitrary multiplier systems.

The foundation of the general theory of Poincaré series were laid by Petersson

whose work also applies more generally to automorphic forms on any horocyclic

group having a finite number of generators. Formulae for the Fourier coefficients

of Poincaré series are given in Petersson [15, 16, 17] and Selberg [22]. An al-

ternative method applied to the full modular group Γ(1) is given by Schwandt

[21].

Eisenstein series are special cases of Poincaré series. For many subgroups of

Γ(1) that are of interest to us, the Fourier coefficients of the Eisenstein series are

quite simple. The properties of Eisenstein series were first studied by Hecke [5],

who showed that if f is an entire modular form of weight k > 2 there exist a

linear combination F of Eisenstein series such that f −F is a cusp form. He also

gave the explicit formula for the Fourier coefficients of Eisenstein series in [5].

The main purpose of this thesis is to construct modular forms of integral

weight k > 2 for the congruence subgroup Γ̄(N) by means of Poincaré series

belonging to Γ̄(N). We aim to obtain explicit formulae for the Fourier coefficients

of the Eisenstein series on Γ̄(N). For that purpose we first calculate formulae for

the Fourier coefficients of the Poincaré series belonging to Γ̄(N) and apply these

results to the particular case when Poincaré series are Eisenstein series. We

also give an application in which we construct an Eisenstein series for the Hecke

congruence supgroup Γ0(N) with N > 2.

The content of this thesis is organized as follows:

In Chapter 2, we study necessary definitions and facts about the full modular

group Γ(1). We mainly follow [18], [4] and [20]. Special attention is given to

the subgroups of finite index in Γ(1), particularly to the congruence subgroups.

Next, mapping properties for the elements of Γ̂(1) are closely investigated so that

a complete classification of linear fractional transformations in Γ̂(1) is given.

In chapter 3, we explain the general theory of modular forms of arbitrary real
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weight by using the notations and results found in [18] and [8]. We present a

general approach to automorphic factors and multiplier systems defined for the

modular group and its subgroups. Then, we study unrestricted modular forms,

holomorphic modular forms, entire modular forms and cusp forms.

In chapter 4, we introduce Poincaré Series as in the form defined by Rankin

in [18] and use these series to construct modular forms of real weight k > 2 on

a subgroup Γ of Γ(1). We obtain Fourier expansions of the Poincaré series on

Γ. Then we restrict our attention to the case when Γ = Γ̄(N) and calculate the

explicit formula for the Fourier coefficients of the Poincaré series belonging to

Γ̄(N). Our ultimate goal, in this chapter, is to evaluate the Fourier coefficients of

the Eisenstein series belonging to Γ̄(N) with N > 1 by applying the results that

we found in previous sections.

In Chapter 5, we present an application which exemplifies the important re-

sults emphasized in foregoing chapters by constructing Eisenstein series for the

Hecke congruence subgroup Γ0(N).



Chapter 2

Modular Group

This chapter is concerned with the group of linear fractional transformations

Γ̂(1) which are associated by the matrices belonging to full modular group Γ(1).

The groups of particular interest shall be those on which modular functions and

modular forms defined. In this chapter, we shall first present necessary defini-

tions, properties and results about the modular group Γ(1) and its congruence

subgroups as an introduction to succeeding sections. Next, we shall introduce fun-

damental region R for the modular group Γ̂(1) and use this fundamental region R

to construct fundamental regions RΓ̂ for congruence subgroups whose coset repre-

sentations are known. Then we shall classify the linear fractional transformations

in Γ̂(1) and analyze parabolic and elliptic transformations in greater detail. This

classification give rise to a classification of the fixed points in C. We shall use the

standard notations and some facts specialized in [4], [8], and [18]. The content

of this chapter is standard and can be found in any books on modular forms (see

for example,[1] and [20]).

4



CHAPTER 2. MODULAR GROUP 5

2.1 The Modular Group and Congruence Sub-

groups

In this section we restrict our attention to the modular group and review some

of its basic properties. We start with the definition of the modular group.

Definition 2.1.1. The homogeneous modular group, denoted by Γ(1), is the

group of 2× 2 matrices defined by

Γ(1) :=

{(
a b

c d

)
|a, b, c, d,∈ Z and ad− bc = 1

}
= SL2(Z)

Definition 2.1.2. The inhomogeneous modular group, denoted by Γ̂(1), is the

group of linear fractional transformations T ,

T : z → az + b

cz + d
, ad− bc = 1,

where a, b, c, d,∈ Z and z ∈ C̄ = C ∪ {∞}.

We can identify each transformation T by the matrix

(
a b

c d

)
. The ma-

trices

(
a b

c d

)
and

(
−a −b
−c −d

)
clearly determine the same linear fractional

transformation. Therefore the group of distinct linear fractional transformations

is the quotient group Γ̂(1) ∼= Γ(1)/Λ where Λ denotes the subgroup consisting of

I and −I =

(
−1 0

0 −1

)
.

With each T ∈ Γ(1) we associate a linear fractional mapping T (z) = az+b
cz+d

defined on C̄ and we write for brevity Tz in place of T (z). By writing Γ for the

homogeneous group and Γ̂ for the associated inhomogeneous group we indicate

that we regard the latter as being determined by the former. This point of view is

especially convenient when we are concerned with algebraic properties of groups,

in particular,with multiplier systems.
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It is well known that Γ(1) is generated by the matrices

U :=

(
1 1

0 1

)
and S :=

(
0 −1

1 0

)
. (2.1)

The modular group Γ(1) has many subgroups of special interest in number

theory. An important class of subgroups of modular group consist of what are

called congruence subgroups. Let N be a positive integer, then

Γ(N) = {T ∈ Γ(1)| T ≡ I (mod N)}

is called the principle congruence group of level N . We also write

Γ̄(N) = {T ∈ Γ(1)| T ≡ ±I (mod N)}

These two homogeneous groups Γ(N) and Γ̄(N) give rise to the same inhomoge-

neous group which we denote Γ̂(N). Both Γ(N) and Γ̄(N) are normal subgroups

of the modular group Γ(1) and Γ̂(N) is a normal subgroup of Γ̂(1). Any subgroup

of the modular group Γ(1) which contains Γ(N) is called a congruence subgroup

of level N . The following examples are of interest to us.

Γ0(N) =

{(
a b

c d

)
∈ Γ(1)| c ≡ 0 (mod N)

}

Γ0(N) =

{(
a b

c d

)
∈ Γ(1)| b ≡ 0 (mod N)

}

Γ1(N) =

{(
a b

c d

)
∈ Γ(1)| c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}

The first one called the Hecke congruence group. We note

Γ(1) = Γ0(1) = Γ0(1) = Γ1(1) = Γ(1),

Γ(1) ⊃ Γ0(N) ⊃ Γ1(N) ⊃ Γ(N).
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Since −I ∈ Γ(N) if and only if n = 1 or n = 2 we have

Γ̂(N) ∼= Γ(N)/Λ ∼= Γ̄(N)/Λ (n = 1, 2)

Γ̂(N) ∼= Γ(N) ∼= Γ̄(N)/Λ (n ≥ 3).

Let n be a positive integer, since the number of incongruent matrices T modulo

n is clearly less than or equal to n4, [Γ̂(1) : Γ̂(n)] is clearly finite. Next theorem

gives the exact formula for [Γ̂(1) : Γ̂(n)].

Theorem 2.1.3. [4, Theorem 2.1.4]

[Γ̂(1) : Γ̂(n)] =

 n3
∏

p|n

(
1− 1

p2

)
if n = 1, 2

1
2
n3
∏

p|n

(
1− 1

p2

)
if n ≥ 3

(2.2)

Lemma 2.1.4.

[Γ̂0(n) : Γ̂(n)] =

 n2
∏

p|n

(
1− 1

p

)
if n = 1, 2

1
2
n2
∏

p|n

(
1− 1

p

)
if n ≥ 3

Proof. See [18], page 26.

Now we are able calculate index of Γ̂0(n) in Γ̂(1). By Lemma (2.1.4) and Theorem

2.1.3, we deduce

[Γ̂(1) : Γ̂0(n)] =
[Γ̂(1) : Γ̂(n)]

[Γ̂0(n) : Γ̂(n)]
= n

∏
p|n

(
1 +

1

p

)
(2.3)

2.2 Fundamental Regions

In this section a fundamental region R of Γ̂(1) shall be constructed and the

connection between R and standard fundamental region RΓ̂ of a subgroup Γ̂ of

Γ̂(1) shall be emphasized. For that connection, a coset representation set for Γ̂(1)

over Γ̂ shall be employed.

Definition 2.2.1. Let Γ be any subgroup of Γ(1) and H be the upper half plane.
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Two points z1, z2 ∈ H are said to be equivalent or congruent modulo Γ if there

exists T ∈ Γ̂ such that Tz1 = z2.

This is clearly an equivalence relation and we write

z1 ≡ z2 (mod Γ).

This equivalence relation divides the upper half plane H into a disjoint collection

of equivalence classes called orbits. The orbit Γ̂z is the set of all complex number

of the form Tz where T ∈ Γ̂.

Definition 2.2.2. Let Γ̂ ⊆ Γ̂(1) and RΓ̂ be an open subset of H. RΓ̂ is called a

fundamental region of Γ̂ if it has the following two properties;

(i) No two distinct point of RΓ̂ are equivalent under Γ̂.

(ii) If z ∈ H then, there exists z1 ∈ R̄Γ̂, in the closure of RΓ̂ such that z1 is

equivalent to z under Γ.

Theorem 2.2.3. A fundamental domain for Γ̂(1) is given by

R = {z ∈ H| |Rez| < 1

2
and |z| > 1}

Proof. See [8], page 15.

Remark 2.2.4. Once a fundamental region RΓ̂ of Γ̂ ⊆ Γ̂(1) is given, T (RΓ̂) is

again a fundamental region of Γ̂ for any T ∈ Γ̂.

Proof. See [18], page 50.

We now construct fundamental regions for subgroups Γ̂ ⊂ Γ̂(1). Suppose that Γ̂

is a subgroup of Γ̂(1) with [Γ̂(1) : Γ̂] = n so that Γ̂(1) can be written as a disjoint

union of n cosets

Γ̂(1) =
n⋃
i=1

Γ̂Ai

where the union is taken over a coset representation {A1, A2, . . . , An}.
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Once we know a set of coset representatives of Γ̂(1) over a subgroup Γ̂ of

finite index, we can construct a fundamental region RΓ̂ for the subgroup Γ̂. The

following theorem gives the connection between the fundamental region R of Γ̂(1)

and the fundamental region RΓ̂ of the subgroup Γ̂.

Theorem 2.2.5. [9, Theorem 12] Suppose Γ̂ is a subgroup of Γ̂(1) and [Γ̂(1) :

Γ̂] = n with Γ̂(1) =
⋃n
i=1 Γ̂Ai. Then RΓ̂ =

⋃n
i=1AiR is a fundamental region of

Γ̂ which we call the standard fundamental region.

Theorem 2.2.6. [9, Corollary 14] Suppose Γ̂1 and Γ̂2 are two conjugate sub-

groups of Γ̂(1) of finite index n with Γ̂2 = BΓ̂1B
−1. Then,

Γ̂(1) =
n⋃
i=1

Γ̂1Ai if and only if Γ̂(1) =
n⋃
i=1

Γ̂2(BAi)

Theorem 2.2.5 together with the Theorem 2.2.6 allows us to deduce the fol-

lowing corollary.

Corollary 2.2.7. Let Γ̂1 and Γ̂2 be two conjugate subgroups of Γ̂(1) of finite index

n with Γ̂2 = BΓ̂1B
−1 and Γ̂(1) =

⋃n
i=1 Γ̂1Ai, then

RΓ̂2
=

n⋃
i=1

BAi(RΓ̂(1)) is a fundamental region of Γ̂2. (2.4)

2.3 Mapping Properties

In this section, we classify the linear fractional transformations in Γ̂(1) as elliptic,

parabolic and hyperbolic transformations. This classification of mappings give

rise to the classification of the fixed points of C̄. We show that Γ̂z(1), the group

consisting of all T ∈ Γ̂(1) that fixes z, is a cyclic group.
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2.3.1 Fixed Points and Classification of Transformations

A point z ∈ C̄ is called a fixed point of a mapping M ∈ Γ̂(1) if and only if

Mz = z. The following theorem will be very useful in classification of fixed

points and transformations.

Theorem 2.3.1. If M ∈ Γ(1) and trM = t, then there exists an L ∈ Γ(1) such

that if L−1ML =

(
α β

γ δ

)
, then

|α− 1

2
t| ≤ 1

2
|γ|, |δ − 1

2
t| ≤ 1

2
|γ|, |γ| ≤ |β|, 3γ2 ≤ |t2 − 4|.

Proof. See, [18], page 9.

From Theorem 2.3.1, we deduce that

Corollary 2.3.2. Let U, S be given by (2.1) and M ∈ Γ(1), then

(i) If |trM | = 0, then M = ±L−1SL for some L ∈ Γ(1) .

(ii) If |trM | = 1, then M = ±L−1(SU)rL for some L ∈ Γ(1) and r = 1 or 2.

(ii) If |trM | = 2, then M = ±L−1UkL for some L ∈ Γ(1) and k ∈ Z.

Proof. See, [18], page 43− 45.

Let M =

(
a b

c d

)
and consider the equation Mz = z. Observe that M∞ =∞

if and only if M = Uk for some k ∈ Z. We assume in the first place that c 6= 0

so that z 6=∞. The equation Mz = z is equivalent to

cz2 + (d− a)z − b = 0,

which has two, not necessarily distinct, roots, namely

z1, z2 =
(a− d)± [(a+ d)2 − 4bc]1/2

2c
=

(a− d)± [(a+ d)2 − 4]1/2

2c

where in the last equation we use the fact ad− bc = 1. It is clear that the nature

of the roots z1, z2 depends upon the sign of the integer (a+ d)2 − 4.
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Case 1 : If |trM | > 2 then, z1 and z2 are distinct real numbers. In this case

M is called a hyperbolic transformation and z1 and z2 are called hyperbolic fixed

points. The fixed points of such transformations are less important in the theory.

It is easy to see that that they are all irrational numbers.

Case 2 : If |trM | = 2 then, z1 = z2 and we have one real fixed point. In this

case M is called a parabolic transformation and z1 is called a parabolic fixed pint

or a cusp.

Here trM = ±2 and by Corollary 2.3.2, M = ±L−1UkL for some L ∈ Γ(1)

and k ∈ Z(k 6= 0). Thus Mz1 = z1 is equivalent to Uk(Lz1) = Lz1, that is

Lz1 =∞ or z1 = L−1∞.

Since c 6= 0, z1 is a finite rational number. So far we have assumed that c 6= 0.

Now let c = 0, then M = ±Uk fore some k ∈ Z and trM = ±2. If k = 0

we obtain the identity transforation under which every point is fixed. Since

Uk∞ = ∞, z1 = ∞ is also considered as parabolic fixed point. The set of all

parabolic fixed points is denoted by P. Let C̄ = C ∪ {∞}, then

P = {z ∈ C̄|z = L−1∞, L ∈ Γ̂(1)}

Now it becomes clear that for a standard fundamental region all cusps are rational

(we assume ∞ = 1
0
). This result allows us to give an alternative definition of

parabolic points (cusps) of a standard fundamental region.

Definition 2.3.3. Let Γ̂ be a subgroup of Γ̂(1) and RΓ̂ be a fundamental region

of Γ̂. A parabolic point (or a cusp) of Γ̂ is any rational point q or q = ∞ such

that q ∈ R̄Γ̂

Case 3 : If |trM | < 2 then z1 and z2 are conjugate complex numbers, one of

which, say z1, lies in H. M is then called an elliptic transforation and z1 and z2

are called elliptic fixed points. There are two possibilities here:

(i) If trM = 0 then by Corollary 2.3.2, M = ±L−1SL for some L ∈ Γ(1).
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(ii) If trM = 1 then by Corollary 2.3.2, M = ±L−1(SU)rL for r = 1, 2 and

some L ∈ Γ(1).

In the case (i), Mz = z is equivalent to S(Lz) = Lz, which means Lz is a fixed

point for S and therefore Lz1 = i, Lz2 = −i. Hence we have

z1 = L−1i, z2 = L−1(−i) = z̄1

Here the bar denotes the complex conjugate. These points are called elliptic fixed

points of order 2. We denote by

E2 = {z ∈ C|z = L−1i, L ∈ Γ̂(1)}

the set of all elliptic fixed points of order 2 in C.

In the case (ii), Mz = z is equivalent to (SU)r(Lz) = Lz where r = 1 or 2.That

means Lz is a fixed point for SU or (SU)2. An elementary calculation shows that

SU and (SU)2 have fixed points

ρ = e2πi/3 and ρ2

so that Lz1 = ρ and Lz2 = ρ2. Hence

z1 = L−1ρ, z2 = L−1ρ2

These points are called elliptic fixed points of order 3. We denote by

E3 = {z ∈ C|z = L−1ρ, L ∈ Γ̂(1)}

the set of all elliptic fixed points of order 3 in C. We also write

E = E2 ∪ E3

We now assume Γ is a subgroup of Γ(1), The mappings T ∈ Γ̂ can be divide into

four classes similarly but some of these classes may be empty. For m = 2, 3 we

define the set of all elliptic fixed points in H of elliptic transformations of order
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m belonging to Γ̂ as follows,

E2(Γ) = {z ∈ H|z = L−1i, for some L ∈ Γ̂(1), L−1SL ∈ Γ̂}

E3(Γ) = {z ∈ H|z = L−1ρ, for some L ∈ Γ̂(1), L−1SUL ∈ Γ̂}

We write

E(Γ) = E2(Γ) ∪ E3(Γ)

2.3.2 Generators of the Stabilizer Groups

Suppose z ∈ H′ = H ∪ P. The stabilizer of z (mod Γ) is defined to be the subset

Γz of Γ consisting of all T ∈ Γ for which Tz = z. Clearly Γz is a subgroup of

Γ. For Γ = Γ(1) we write Γz(1). The corresponding inhomogeneous groups are

denoted by Γ̂z and Γ̂z(1). Evidently Γ̂z is a subgroup of Γ̂z(1). Observe that if

L ∈ Γ̂(1) then

L−1Γ̂LzL = (L−1Γ̂L)z. (2.5)

In particular with Γ̂ = Γ̂(1),

L−1Γ̂Lz(1)L = Γ̂z(1) (2.6)

We note that Γ̂∞(1) = 〈U〉, Γ̂i(1) = 〈S〉 and Γ̂ρ(1) = 〈SU〉. If z = L−1∞ is a

parabolic fixed point(a cusp), then by equation (2.6)

Γ̂z(1) = L−1Γ̂∞(1)L = 〈L−1UL〉.

If z = L−1i ∈ E2, then by equation (2.6)

Γ̂z(1) = L−1Γ̂i(1)L = 〈L−1SL〉.

If z = L−1i ∈ E3, then by equation (2.6)

Γ̂z(1) = L−1Γ̂ρ(1)L = 〈L−1SUL〉.
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We can summarize what we did above as follows,

Γ̂z(1) =


〈L−1UL〉 if z = L−1∞
〈L−1SL〉 if z = L−1i

〈L−1SUL〉 if z = L−1ρ

Λ̂ = {I} otherwise

where L ∈ Γ̂(1) and z ∈ H′ = H ∪ P. As it is summarized above, in all cases

Γ̂z(1) is a cyclic group.

We denote the order of z (mod Γ) by n(z,Γ) and define it to be

n(z,Γ) := [Γ̂z(1) : Γ̂z].

Now we develop a similar result for a smaller stabilizer group, namely the group

Γ̂z consisting of all transformations M ∈ Γ̂ that fixes z where Γ̂ is a subgroup of

Γ̂(1) and z is a cusp of Γ̂. For that purpose we will use next lemma which shows

that Γ̂z is also a cyclic group where z ∈ Q or z =∞ .

Lemma 2.3.4. [9, Lemma 2 ] Let z ∈ Q̄ = Q ∪∞ and Γ̂ be a subgroup of Γ̂(1).

Assume that Γ̂z = {M ∈ Γ|Mz = z}. Then Γ̂z is a nontrivial cyclic subgroup of

Γ̂.

Proof. Clearly Γ̂z ⊆ Γ̂. Since [Γ̂(1) : Γ̂] < ∞, there exists m ∈ N+ such that

Um ∈ Γ̂ (or else U,U2, U3, . . . represents infinitely many distinct cosets.) First

assume z =∞. Let m ∈ N be minimal such that Um ∈ Γ̂, then Um ∈ Γ̂∞ and so

Γ̂∞ 6= 〈I〉. We claim that Γ̂∞ = 〈Um〉. Given any M ∈ Γ̂∞ we have M∞ = ∞
and therefore M = Uk for some k ∈ Z. Assume without loss of generality that

k > 0 and write k = sm + r where s ∈ Z+ and 0 ≤ r < m. Then U r = Uk−sm

which is an element of Γ̂∞. This contradicts with the minimality of m unless

r = 0.

Now we suppose z ∈ Q and write q = a
b
6=∞ where (a, b) = 1. Pick integers x, y
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so that −ax− by = 1. Then

L =

(
x y

b −a

)
∈ Γ(1) and Lz =∞

Observe that LΓ̂zL
−1 is the subgroup of LΓ̂L−1 leaving ∞ fixed. By the first

part,

LΓ̂zL
−1 = 〈Um〉

where m is the least positive integer such that Um ∈ LΓ̂L−1. It follows that

Γ̂z = 〈L−1UmL〉. (2.7)

Since U j 6= I for j ∈ Z+, Γ̂z is actually infinite.

It is straightforward to verify that the number m above is independent of L, that

is, if there exists L1, L2 such that L1∞ = L2∞ = ∞, then the smallest integers

m1 and m2 such that Um1 ∈ L1Γ̂L−1
1 and Um2 ∈ L1Γ̂L−1

1 , respectively, are same.

From (2.7), we easily verify that

m = [Γ̂z(1) : Γ̂z] = n(z,Γ)

Therefore we conclude that with nL := n(L−1∞,Γ), we have

Γ̂z = 〈L−1UnLL〉 (2.8)

where nL is the least possible integer such that

UnL ∈ LΓ̂L−1.

This number nL is also called the width of the cusp z (mod Γ). By the remark

above nL1 = nL2 if L1z = L2z =∞.



Chapter 3

General Theory of Modular

forms

The main object of this chapter is to present basic definitions and fundamental

facts about modular forms. We start with a discussion of automorphic factors

and multiplier systems. Next we define modular forms by means of their Fourier

expansions. Most of the content of this chapter is taken from [18]. For additional

details about the materials in this chapter the reader is referred to [9], [13] or

[18].

3.1 Automorphic Factors and Multiplier Sys-

tems

In this section we shall be concerned with the properties of automorphic fac-

tors and multiplier systems. These properties will be needed when we construct

modular forms by means of Poincaré series. We start with the following basic

16
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notation. For any T ∈ Γ(1) and z ∈ C we define

T : z = cz + d where T =

(
a b

c d

)

By an elementary calculation we can obtain the identity

LT : z = (L : Tz)(T : z) (3.1)

for all L, T ∈ Γ(1) and z ∈ C. Throughout this section, we shall suppose that k

is a fixed real number, not necessarily an integer. For a nonzero z ∈ C, we adopt

zk := |z|keik arg z,

where −π ≤ arg z < π.

Definition 3.1.1. Let Γ be a subgroup of Γ(1). A function ν defined on Γ×H is

called an automorphic factor (AF) of weight k on Γ if the following four conditions

are satisfied:

(i) For each T ∈ Γ, ν(T, z) is a holomorphic function of z ∈ H.

(ii) For all z ∈ H and T ∈ Γ,

|ν(T, z)| = |T : z|k.

(iii) For all L, T ∈ Γ and z ∈ H,

ν(LT, z) = ν(L, Tz)ν(T, z). (3.2)

(iv) If −I ∈ Γ, then, for all T ∈ Γ and all z ∈ H,

ν(−T, z) = ν(T, z). (3.3)

The last condition indicates that ν can be regarded as a function on Γ̂ × H
so that T can be treated as a mapping. In this case the condition (iv) can be



CHAPTER 3. GENERAL THEORY OF MODULAR FORMS 18

omitted as being obvious. If we take L = T = I in (3.2), we find

ν(I, z) = 1 for all z ∈ H.

We note that the equation (3.1) is very similar to (3.2). Accordingly we define

for all T ∈ Γ and all z ∈ H,

µ(T, z) := (T : z)k. (3.4)

First observation is that if k is an even integer, then µ(−T, z) = µ(T, z) and in

that case it is clear that µ(T, z) is an AF of weight k on Γ. Now consider the

function
ν(T, z)

µ(T, z)

which has constant modulus and is holomorphic on H. Since a holomorphic

function of constant modulus on H have to be constant, we deduce

ν(T, z) = υ(T )µ(T, z) (3.5)

for all T ∈ Γ and all z ∈ H, where υ(T ) depends only on the matrix T and

|υ(T )| = 1.

We call υ(T ) a multiplier and the function υ defined by (3.5) on Γ is called a

multiplier system (MS) of weight k. Observe that if υ1 and υ2 are multiplier

systems of weight k1 and k2 for Γ, then υ1υ2 is a multiplier system of weight

k1 + k2 for Γ. If we take T = I in (3.5), we find that

υ(I) = 1.

Moreover, if −I ∈ Γ, we have by (3.3)and (3.5) that

υ(−I) = e−πik.

Therefore unlike the AF ν, the MS υ is defined on Γ but not, in general on Γ̂. If
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we insert (3.5) into (3.2), we obtain for any T, L ∈ Γ that

υ(TL) = σ(L, T )υ(L)υ(T ), (3.6)

where

σ(L, T ) :=
µ(L, Tz)µ(T, z)

µ(LT, z)
. (3.7)

By (3.4), we obtain

|σ(L, T )| = 1.

If k ∈ Z, by (3.1) and (3.4), for all L, T ∈ Γ

σ(L, T ) = 1.

Therefore if k ∈ Z, for any T, L ∈ Γ, (3.6) reduces to

υ(TL) = υ(L)υ(T ).

It follows that a multiplier system of weight k ∈ Z is just a unitary character on

the matrix group Γ which satisfies the consistency condition υ(−I) = e−πik.

For L ∈ Γ(1) let ΓL := L−1ΓL. It is easy to show that

νL(L−1TL, z) =
ν(T, Lz)µ(L, z)

µ(L,L−1TLz)

is an AF on ΓL × H which we call the conjugate AF. We denote the associated

multiplier system to υ by υL. Observe that

υL(L−1TL) = υ(T )/σ(L,L−1TL).

In particular, if k ∈ Z,

υL(L−1TL) = υ(T )
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for L ∈ Γ(1) and T ∈ Γ. Note that for any L1, L2 ∈ Γ(1)

υL1L2 = (υL1)L2 .

3.1.1 Cusp Parameter

Throughout this section we assume that Γ is a subgroup of Γ(1) of finite index

containing −I and that ν is an AF of weight k on Γ. Suppose further that

L ∈ Γ(1) and ζ = L∞ is a cusp. In this section we shall investigate νL(UnL , z)

where nL = n(L∞,Γ) and z ∈ H. This leads us to the definition of the cusp

parameter κL associated with the cusp L∞.

Recall that the conjugate AF νL is defined on ΓL × H and nL is the least

positive integer such that UnL ∈ L−1ΓL. Since UnL ∈ ΓL we have

νL(UnL , z) = υL(UnL)(UnL : z)k = υL(UnL) = υ(LUnLL−1) (3.8)

The cusp parameter κL = κ(L∞,Γ, υ) associated with the cusp L∞ and the MS

υ is defined by

υ(LUnLL−1) = νL(UnL , z) =: e2πiκL (3.9)

where 0 ≤ κL < 1 and nL = n(L∞,Γ). By (3.8) and (3.9) we have for any m ∈ Z,

e2πmκL = νL(UmnL , z) = υL(UmnL) = υ(LUmnLL−1). (3.10)

3.2 Modular Forms

The aim of this section is to explain the general theory of modular forms.

Throughout this section, we assume that Γ is a subgroup of Γ(1), ν is an au-

tomorphic factor of weight k ∈ R in Γ and υ is the associated multiplier system.

Suppose further that −I ∈ Γ.
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Definition 3.2.1. An unrestricted modular form of weight k for the group Γ is

a function f(z) defined on H which satisfies the following two properties:

(i) f is a meromorphic function on H.

(ii) For all T ∈ Γ and all z ∈ H

f(Tz) = ν(T, z)f(z) = υ(T )(T : z)kf(z)

where the multiplier υ(T ) is a complex number of unit modulus independent of

z.

The set of all unrestricted modular forms of weight k for the group Γ with

multiplier system υ is denoted by M ′(Γ, k, υ). If f ∈ M ′(Γ, k, υ) and L ∈ Γ(1),

the L-transform fL of f is defined by

fL(z) = f(z)|L = (L : z)−kf(Lz). (3.11)

Next theorem gives some basic properties satisfied by the function fL.

Theorem 3.2.2. [18, Theorem 4.1.1] Suppose that f ∈ M ′(Γ, k, υ) and that

L,L1, L2 ∈ Γ(1). Then we have

(i) fL ∈M ′(L−1ΓL, k, υL) where

υL(T ) = υ(LTL−1)
σ(LTL−1, L)

σ(L, T )
for T ∈ L−1ΓL.

(ii) f |(L1L2) = σ(L1, L2)(f |L1)|L2 where σ(L1, L2) is defined by (3.7).

(ii) T ∈ Γ, fTL = σ(T, L)υ(T )fL; in particular fT = υ(T )f and f−L = e±πikfL

(iv) If ζ = L∞, then

fL(z + nL) = e2πiκLfL(z) (3.12)

for all z ∈ H, where nL = n(L∞,Γ) is the width of the cusp ζ (mod Γ) and κL is

its parameter.

We now impose a further restriction on the behavior of unrestricted modular
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form f near each cusp. Let us write

t = tL = e2πiz/nL

where nL is the width of the cusp ζ = L∞ (modΓ) and define the function FL(t)

by

FL(t) = e−2πiκLz/nLfL(z) (3.13)

By (3.12), FL(t) is well defined for 0 < |t| < 1 and is a meromorphic function of

t. If, in particular fL is holomorphic on {z ∈ H| Im(z) > y} where y ≥ 0, then

FL becomes holomorphic for all t such that 0 < |t| < e−2πy/nL . Therefore, FL has

a convergent Laurent series expansion at t = 0, valid for 0 < |t| < e−2πy/nL , i.e.

there exist αL > 0 such that

FL(t) =
∞∑

m=−∞

am(L)tm

for 0 < |t| < αL. Hence, by (3.13)

fL(z) = e2πiκLz/nL

∞∑
m=−∞

am(L)e2πimz/nL =
∞∑

m=−∞

am(L)e2πiz(m+κL)/nL

for Im z > yL where yL = (nL/2π) log(1/αL) which we call the Fourier series

expansion of fL(z) at point ∞ or the Fourier series expansion of f at the cusp

L∞. Additionally, if FL(t) is a meromorphic function at t = 0, i.e, fL(z) is a

meromorphic function at the point ∞ then there exist an integer NL such that

fL(z) = e2πiκLz/nL

∞∑
m=NL

am(L)e2πimz/nL (3.14)

where Im z > yL for some yL > 0. This expression determines the behavior of fL

near the point ∞.

Definition 3.2.3. Let f ∈ M ′(Γ, k, υ), f is called a modular form of weight k

for the group Γ with MS υ if it satisfies the following additional condition

(iii)f is meromorphic at each cusp of the standard fundamental region of Γ.
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The class of all modular forms of weight k for the group Γ with MS υ is denoted

by M(Γ, k, υ). We observe in particular that if f = 0 then f ∈ M(Γ, k, υ). Let

now f ∈ M(Γ, k, υ) be such that f 6= 0, then the Fourier series of fL(z) starts

with the term aNL
(L)tNL+κL where t = e2πiz/nL . The number κL + NL is called

the order of f at the cusp L∞ (mod Γ) and write

ord(f, L∞,Γ) := κL +NL

We define for z ∈ H

ord(f, z,Γ) :=

{
1
m
ord(f, z) if z ∈ Em(Γ)

ord(f, z) if z 6∈ Em(Γ)

Definition 3.2.4. Let f ∈M(Γ, k, υ), f is called an entire modular form if f is

regular in H and f is regular at each parabolic point z (mod Γ), i.e. ord(f, z,Γ) ≥
0 for all z ∈ H′ = H ∪ P. If, in addition, f has a zero of positive order at each

parabolic point z (mod Γ), f is called a cusp form, i.e. ord(f, z,Γ) > 0 for all

z ∈ P or f = 0.

We denote by H(Γ, k, υ) the subset of M(Γ, k, υ) consisting of all forms f that

are holomorphic on H. The class of all entire modular forms of weight k for the

group Γ with MS υ is denoted by {Γ, k, υ} and the class of all such cusp forms is

denoted by {Γ, k, υ}0. We note that

{Γ, k, υ}0 ⊆ {Γ, k, υ} ⊆ H(Γ, k, υ) ⊆M(Γ, k, υ) ⊆M ′(Γ, k, υ)

Definition 3.2.5. If f is a modular form on Γ with k = 0 and υ(T ) = 1 for all

T ∈ Γ then f is called a modular function on Γ.

We close this chapter with the following well known results about the modular

functions.

Theorem 3.2.6. Every entire modular function is constant.

Proof. See [1], page 115.
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Corollary 3.2.7. [9, Corollry 9] If f is a modular function on Γ and f is

bounded in H, then f is constant.

Proof. Since f is meromorphic and and bounded in H it is actually regular in

H. Moreover by the equation (3.14), the expansion of the function fL(z) at the

point ∞ has the form

fL(z) = e2πiκL/nL

∞∑
m=NL

am(L)e2πimz/nL

for all z with Im z > yL for some yL > 0. Since f ∈ M(Γ, 0, 1), fL(z) = f(Lz)

and it follows that the expansions of the function f(z) at each cusp L∞

f(z) = e2πiκL/nL

∞∑
m=NL

am(L)e2πimL−1z/nL

If a term with m < 0 actually appeared in the expansion at a cusp L∞, then

f(z) would not be bounded as z → L∞ from within the fundamental region of

Γ. Hence the expansion is of the form,

f(z) = e2πiκL/nL

∞∑
m=0

am(L)e2πimL−1z/nL

Therefore f is an entire modular function and hence, by theorem above, is con-

stant.



Chapter 4

Construction of Modular Forms

with Poincaré Series

Let Γ be a subgroup of finite index in Γ(1) with a multiplier system υ of weight

k > 2 and assume m ∈ Z. In this chapter, we shall be concerned with the

Poincaré series GL(z,m,Γ, k, υ) studied by Rankin in [18]. We shall first define

the Poincaré series GL(z,m,Γ, k, υ) for any m ∈ Z and show that they are indeed

holomorphic modular forms of weight k on Γ. Then we study a decomposition

theorem which is due in its simplest form to Hecke [5] and which asserts a holomor-

phic modular form can be written as a sum of a cusp form and linear combination

of Poincaré series GL(z,m,Γ, k, υ) with m ≤ 0. Next we shall obtain an explicit

formulae for the Fourier coefficients of the Poincaré series GL(z,m,Γ, k, υ). Then

our particular interest shall be the Poincaré series belonging to Γ̄(N). We shall

apply the results about the Fourier coefficients of GL(z,m,Γ, k, υ) to the partic-

ular case when Γ = Γ̄(N) and k is an integer and obtain explicit formulae for

the Fourier coefficients of GL(z,m, Γ̄(N), k, υ) which is indeed the main purpose

and therefore the main result of this chapter. Finally we shall consider the series

GL(z,m, Γ̄(N), k, υ) with m = 0, the Eisenstein series, in greater detail and con-

clude this chapter by evaluating the explicit formulae for the Fourier coefficients

of the Eisenstein series belonging to Γ̄(N).

25
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4.1 Poincaré Series

The main purpose of this section is to construct a modular form belonging to

H(Γ, k, υ) as sum of an infinite series, namely the Poincaré Series. The theorems

and results of this section are taken form [18]. We start with a preliminary result.

Theorem 4.1.1. Let A be a nonnegative constant, k a real number greater than

2, and suppose that for each pair of integers µ, ν with µ 6= 0, a function fµ,ν is

defined on H and that

|fµ,ν(z)| ≤ eAy/|µz+ν|
2

for all z ∈ H, where y = Im z then the double series

∞∑
µ=−∞
µ6=0

∞∑
ν=−∞

fµ,ν(z)

|µz + ν|k
(4.1)

is absolutely convergent for all z ∈ H and absolutely uniformly convergent on

every compact subset of H. Further, for every ε > 0, there exist a positive number

B, depending only on A, k and ε, such that if F (z) is the sum of the series (4.1),

then

|F (z)| ≤ BeA/|z|(|z|−k + |z|−
1
2
k) (4.2)

for all z ∈ Aε, where

Aε := {z ∈ H|ε ≤ arg z ≤ π − ε}.

Proof. See [18], page 136.

Now, let Γ be a subgroup of finite index in Γ(1) and assume ν is an AF of wight

k on Γ and υ is the associated MS. Moreover let −I ∈ Γ and ζ = L−1∞ be any

point in P where L ∈ Γ(1). For convenience we put M = L−1 and for brevity we
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write

n := n(L−1∞,Γ) = nM and κ := κ(L−1∞,Γ, υ) = κM , (4.3)

where nM is the width of the cusp ζ and κM is its parameter. It follows that

Un ∈ LΓL−1 and hence L−1UnL ∈ Γ. Then by (3.9),

e2πiκ = νM(Un, z) = υM(Un) = υ(MUnM−1) = υ(L−1UnL)

for all z ∈ H. Let

Γ̂ = Γ̂ζ ·RL (4.4)

where RL is a set of right coset representatives of Γ̂ modulo Γ̂ζ which is not

necessarily finite.

We now own the tools which we need to define Poincaré series. For any

m ∈ Z, L ∈ Γ(1) and k > 2 the Poincaré series is defined by

GL(z,m,Γ, k, υ) = GL(z,m) :=
∑
T∈RL

exp
(

2πi(m+κ)
n

LTz
)

µ(L, Tz)ν(T, z)
. (4.5)

The modular properties of Poincaré series are given by next theorem.

Theorem 4.1.2. [18, Theorem 5.1.2] The series (4.5) defines GL as a holo-

morphic function on H, when k > 2. The series absolutely convergent on H and

absolutely uniformly convergent on every compact subset of H. Its sum GL(z,m)

does not depend upon the choice of transversal RL, and GL(z,m) ∈ H(Γ, k, υ).

More generally for any S ∈ Γ(1),

GL(z,m,Γ, k, υ)|S = {σ(L, S)}−1GLS(z,m,ΓS, k, υS). (4.6)

(a) If m + κ > 0, then GL ∈ {Γ, k, υ}0 and may vanish identically; here κ is

defined by (4.3).

(b) If m + κ = 0 (so that m = κ = 0), then GL ∈ {Γ, k, υ} and is called an

Eisenstein Series; it does not vanish identically and ord(GL, L
−1∞,Γ) = 0.
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(c) If m + κ < 0 (so that m ≤ −1), GL does not vanish identically and

ord(GL, L
−1∞,Γ) = m+ κ

In both cases (b) and (c), ord(GL, ζ,Γ) > 0 at every cusp ζ 6≡ L−1∞ (modΓ).

Proof. Let n, κ be defined as in (4.3). We present the proof in three parts.

First we establish the analytic properties of the sum (4.5). Next we examine

that the definition of GL(z,m,Γ, k, υ) does not depend on the particular choice

of RL and lastly we prove GL(z,m,Γ, k, υ) is a modular form satisfying the given

properties.

Part I: We claim that there is at most one term in the series (4.5) for which

the matrix LT has a given second row. In order to prove this claim, let T, T ′ ∈ RL

and assume LT and LT ′ are two matrices with the same second row, then it is

easy to see that LT ′ = U sLT for some s ∈ Z. It follows that T ′T−1 = L−1U sL.

Since TT ′ ∈ Γ, we have s ≤ n, therefore TT ′ ∈ Γz which implies T = T ′ and this

proves the claim. In particular, there is at most one term in the series (4.5) for

which LT ∈ Γ̂U where Γ̂U = 〈U〉. Let this term, if it exists, be removed from the

series (4.5) and observe for the remaining series that∣∣∣∣∣∣
exp

(
2πi(m+κ)

n
LTz

)
µ(L, Tz)ν(T, z)

∣∣∣∣∣∣ =
exp

(
−2π(m+κ)y
n|LT :z|2

)
|LT : z|k

(4.7)

where y = Im z and LT : z = µz + ν with µ 6= 0. Then the remaining series is of

the form (4.1) with

fµ,ν(z) =

 exp
(
−2π(m+κ)y
n|LT :z|2

)
if (µ, ν) = 1

0 otherwise

Then

|fµ,ν(z)| ≤ eAy/n|LT :z|2 where A = max{0,−2π(m+ κ)/n}

Then by Theorem (4.1.1), the series (4.5) is absolutely convergent on H and

absolutely and uniformly convergent on every compact subset of H. Moreover

since each term of the series is holomorphic on H, GL(z,m,Γ, k, υ) is holomorphic
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on H.

Part II: It suffices to show that in any term of the series (4.5), T can be

replaced by L−1UnLT . Let L−1UnL = R, we investigate what kind of the changes

occur in the denominator of each term in (4.5), if T is replaced by RT .

µ(L,RTz)ν(RT, z) = µ(L,RTz)µ(RT, z)υ(RT )

= υ(R)υ(T )σ(L, T )µ(L, Tz)

= υ(R)µ(L, Tz)ν(T, z).

By (3.9) we have υ(R) = υ(L−1UnLT ) = e2πiκ, hence

µ(L,RTz)ν(RT, z) = e2πiκµ(L, Tz)ν(T, z).

Now we observe the changes in the nominator of each term in (4.5) when T is

replaced by RT

exp

(
2πi(m+ κ)

n
L(RT )z

)
= exp

(
2πi(m+ κ)

n
(LTz + n)

)
= e2πiκ exp

(
2πi(m+ κ)

n
LTz

)
Therefore no change occurs in any term of the series if T is replaced by RT . This

proves part II.

Part III: Let S ∈ Γ(1) and consider the transform

GL(z,m,Γ, k, υ)|S = µ(L, S)−1GL(Sz,m,Γ, k, υ)

=
∑
T∈RL

exp
(

2πi(m+κ)
n

LTSz
)

µ(S, z)µ(L, TSz)ν(T, Sz)
.

Let ζ ′ := S−1ζ = S−1L−1∞ and R′LS := S−1RLS. Then by (2.5) and (4.4),

Γ̂S = S−1Γ̂S = S−1Γ̂ζS ·R′LS = Γ̂Sζ′ ·R′LS. (4.8)

As T runs through RL, T ′ = S−1TS runs through R′LS so that TS = ST ′.
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Therefore if we write T in place of T ′

GL(z,m,Γ, k, υ)|S =
∑

T∈R′LS

exp
(

2πi(m+κ)
n

LSTz
)

µ(S, z)µ(L, STz)ν(STS−1, Sz)
. (4.9)

Moreover it is easy to observe that

µ(S, z)µ(L, STz)ν(STS−1, Sz) = µ(LS, Tz)νS(T, z)σ(L, S).

Hence,

GL(z,m,Γ, k, υ)|S = {σ(L, S)}−1
∑

T∈R′LS

exp
(

2πi(m+κ)
n

LSTz
)

µ(LS, Tz)νS(T, z)
. (4.10)

Since ζ ′ = S−1LS−1∞, n(ζ ′,ΓS) = n. Further

κ′ := κ(ζ ′,ΓS, υS) = κ(S−1M∞,ΓS, υs)

so that

e2πiκ′ = υSS
−1M(Un) = υM(Un) = e2πiκ,

which means κ′ = κ. Then from (4.10),

GL(z,m,Γ, k, υ)|S = {σ(L, S)}−1GLS(z,m,ΓS, k, υS),

which is (4.6).

In particular, if S ∈ Γ that is Γ = ΓS, we have by (4.8), Γ̂ = Γ̂ζ ·R′LS. Further

µ(S, z)µ(L, STz)ν(STS−1, Sz) =
µ(L, STz)ν(S, Tz)

υ(S)
.

Therefore, by (4.9), when S ∈ Γ,

GL(z,m,Γ, k, υ)|S = υ(S)
∑

T∈R′LS

exp
(

2πi(m+κ)
n

LSTz
)

µ(L, STz)ν(S, Tz)

= υ(S)GL(z,m,Γ, k, υ),
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which proves that GL is an unrestricted modular form. In order to conclude that

GL is a modular form, we need to analyze the behavior of GL|S at ∞. Taking

into consideration (4.6), we need to consider the behavior of GLS(z,m,ΓS, k, υS)

near ∞. We write

nS = (S∞,Γ) and κS = (S∞,Γ, υ).

It is shown in Part I that LT ∈ Γ̂U for at most one term in the series. If LT = U s

for some T ∈ RL and s ∈ Z, then the corresponding term in the series is

exp (2πi(m+ κ)(z + s)/n)

µ(L,L−1U sz)ν(L−1U s, z)
=: δL exp(2πi(m+ κ)z/n),

where δL is given by

δL = δL(Γ,m, υ) =
exp(2πis(m+ κ)/n)

µ(L,L−1U sz)ν(L−1U s, z)
=

exp(2πis(m+ κ)/n)

υ(L−1U s)σ(L,L−1)
. (4.11)

We now define δL to be zero if LT 6∈ Γ̂U for all T ∈ Γ. Hence, we have the

following definition for δL

δL(Γ,m, υ) =

{
exp(2πis(m+κ)/n)
υ(L−1Us)σ(L,L−1)

LT ∈ Γ̂U for some T ∈ Γ

0 LT 6∈ Γ̂U for all T ∈ Γ
(4.12)

Further by (4.2),

|GL(z,m,Γ, k, υ)− δL exp(2πi(m+ κ)z/n)| ≤ BeA/|z|
(
|z|−k + |z|

−1
2
k
)
. (4.13)

for all z ∈ H such that 0 < ε ≤ arg z ≤ π − ε, where B is a nonnegative number

depending on ε, k and m. Now let δ′LS = (ΓS,m, υS). Then by definition of δL,

δ′LS = 0 except when LTS ∈ Γ̂U for some T ∈ Γ̂S and |δ′LS| = 0. This implies

δ′LS 6= 0 if and only if LST ∈ Γ̂U for some T ∈ Γ̂, that is TS∞ = L−1∞. It follows

that δ′LS 6= 0 if and only if S∞ ≡ L−1∞ (modΓ) which means nS = n = n(ζ ′,ΓS)

and κS = κ = κ′.

Now we are ready to examine the behavior of GLS(z,m) near ∞. We make a

similar analysis as it is done in (3.13). Note that GLS(z,m) exp(−2πiκSz/nS) is
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periodic with period nS for all S ∈ Γ(1) so that we can assume 0 ≤ Re z ≤ nS

and |z| ≥ 1. Then we have ε ≤ arg z ≤ π − ε. It follows by (4.13) that

∣∣GLS(z,m,ΓS, k, υS)− δ′LS exp(2πi(m+ κS)z/nS)
∣∣ ≤ Bε|z|

−1
2
k.

Let t = e2πiz/nS , then GLSt
−κs − δ′LS can be expressed as a Laurent series in

powers of t where 0 < |t| < 1 so that we have

GLS(z,m,ΓS, k, υS) = tκs

(
δ′LSt

m +
∞∑
j=0

gjt
j

)
(4.14)

where g0 = 0 if κS = 0. We therefore conclude that GL ∈ M(Γ, k, υ). Since

δ′LS 6= 0 if and only if S∞ ≡ L−1∞ (modΓ), all the results of the theorem follow.

We now present a theorem which formalize the relation between Poincaré

series on a group and on one of its normal subgroups.

Theorem 4.1.3. [18, Theorem 5.1.5] Suppose that k > 2 and that −I ∈ ∆ ⊆
Γ, where ∆ is normal in Γ and let µ = [Γ̂ : ∆̂]. Let υ be a MS on Γ (and therefore

on ∆) of weight k. Define n and κ by (4.3), where L ∈ Γ(1) and ζ = L−1∞, and

put

n′ = n(ζ,∆) and κ′ = κ(ζ,∆, υ).

Then n′ = nl and κ′ = {lκ}(fractional part), where l is a positive integral divisor

of µ. Let

∆̂ = ∆̂ζ ·R

where ∆̂ζ is the stabilizer of ζ modulo ∆, then there exist a set L of µ/l matrices

Lj(1 ≤ j ≤ µ/l) in Γ such that

Γ̂ = Γ̂ζ ·R · L,
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and for any m ∈ Z,

GL(z,m,Γ, k, υ) =

µ/l∑
j=1

GLLj
(z, lm+ [lκ],∆, k, υ)

υ(Lj)σ(L,Lj)

Proof. It follows from the definitions of n and n′ that n′ = nl where l is a

positive integral divisor of µ. If we put m = l in (3.10) we get

e2πilκ = υ(L−1UnlL) = υ(L−1Un′L) = e2πilκ′

which indicates that κ′ = {κl} since 0 ≤ κ′ < 1. For the existence of the set L

we refer reader to the Theorem 1.1.3 in [18]. Then by (4.5),

GL(z,m,Γ, k, υ) =

µ/l∑
j=1

∑
T∈R

exp
(

2πi(m+κ)
n

LTLjz
)

µ(L, TLjz)ν(TLj, z)
(4.15)

we observe that
m+ κ

n
=
lm+ lκ

ln
=
lm+ [lκ] + {lκ}

n′

and by using the properties of the function ν, we have

µ(L, TLjz)ν(TLj, z) = µ(L, TLjz)ν(T, Ljz)υ(Lj)µ(Lj, z).

Therefore by (4.6) and (4.15),

GL(z,m,Γ, k, υ) =

µ/l∑
j=1

GL(Ljz, lm+ [lκ],∆, k, υ)

υ(Lj)µ(Lj, z)

=

µ/l∑
j=1

GL(z, lm+ [lκ],∆, k, υ)|Lj
υ(Lj)

=

µ/l∑
j=1

GLLj
(z, lm+ [lκ],∆Lj , k, υLj)

=

µ/l∑
j=1

GLLj
(z, lm+ [lκ],∆, k, υ)

υ(Lj)σ(L,Lj)
,
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where in the last equation we use ∆Lj = ∆ and υLj = υ since ∆ is normal in Γ.

We now study a decomposition theorem introduced by Hecke in [5] which shows

that a holomorphic modular form can be written as a sum of a cusp form and a

linear combination of Poincaré series GL(z,m) with m ≤ 0. For that, we need

the following definition. Let L ∈ Γ(1), if

L 6= −U r, ∀r ∈ Z

then L is called a regular matrix.

Theorem 4.1.4. Let f ∈ H(Γ, k, υ), where k > 2 and let Ω be a set of λ regular

matrices such that the λ cusps L∞ (L ∈ Ω) are incongruent modulo Γ. Further

suppose that for each L ∈ Ω,

fL(z) = e2πiκLz/nL

∞∑
m=−∞

am(L)e2πimz/nL (z ∈ H),

where only a finite number of coefficients am(L) for m ≤ 0 are, of course, nonzero.

Let

H(z) := f(z)−
∑
S∈Ω

∑
m+κS≤0

am(S)GS−1(z,m,Γ, k, υ).

Then H ∈ {Γ, k, υ}0. In particular if f ∈ {Γ, k, υ}, then

H(z) = f(z)−
∑
S∈Ω
κS=0

a0(S)GS−1(z, 0,Γ, k, υ)

and H ∈ {Γ, k, υ}0.

Proof. Let S, L ∈ Ω and t = e2πiz/nL and assume S 6= L, then by (4.6) and



CHAPTER 4. CONSTRUCTION OF MODULAR FORMS WITH POINCARÉ SERIES35

(4.14),

GS−1(z,m,Γ, k, υ)|L = {σ(S−1, L)}−1GS−1L(z,m,ΓL, k, υL)

= {σ(S−1, L)}−1tκL

(
δ′S−1Lt

m +
∞∑
j=0

gjt
j

)

= {σ(S−1, L)}−1

(
δ′S−1Lt

m+κL +
∞∑

j+κL>0

gjt
j+κL

)
.

Since S, L ∈ Ω, the cusps S∞ and L∞ are incongruent modulo Γ it follows that

δ′S−1L = 0 as discussed earlier. Therefore,

GS−1(z,m,Γ, k, υ)|L =
∑

j+κL>0

cj(S, L)tj+κL

where cj = {σ(S−1, L)}−1gj. In the case when S = L we have

GL−1(z,m,Γ, k, υ)|L = {σ(L−1, L)}−1GI(z,m,Γ
L, k, υL)

= {σ(L−1, L)}−1

(
δ′It

m+κL +
∞∑

j+κL>0

gjt
j+κL

)
.

Since L is regular, σ(L−1, L) = 1 and we also have δ′I = 1, hence

GL−1(z,m,Γ, k, υ)|L = tm+κL
∑

j+κL>0

cj(L
−1, L)tj+κL .

It follows that H ∈M(Γ, k, υ) and for all L ∈ Ω

HL(z) =
∑

j+κL>0

hj(L)tj+κL .

which means H is a cusp form.

It is obvious that the families M(Γ, k, υ), H(Γ, k, υ), {Γ, k, υ} and {Γ, k, υ}0 are

vector spaces over the field of complex numbers. If S denotes any one of these

families, and f, g ∈ S then αf + βg ∈ S for any complex numbers α, β.

Theorem 4.1.5. [18, Theorem 5.2.3] Let k > 2. The vector space {Γ, k, υ}0

is spanned by the set of Poincaré series GL(z,m,Γ, k, υ) with m+ κM > 0.
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By this Theorem and Theorem 4.1.4, it is straightforward to deduce the fol-

lowing theorem.

Theorem 4.1.6. The set of Poincaré series GL(z,m,Γ, k, υ) spans the space

H(Γ, k, υ) with k > 2.

4.2 The Fourier Coefficients of Poincaré Series

The object of this section is to obtain an explicit formulae for the Fourier coeffi-

cients of the Poincaré series GL(z,m,Γ, k, υ) where m ∈ Z. For that, we employ

certain standard formulae for Gamma and Bessel functions. First observation

here is that since the space of holomorphic modular forms H(Γ, k, υ) is spanned

by Poincaré series with m ∈ Z, if we have explicit formulae for the Fourier coef-

ficients of Poincaré series with m ∈ Z then we can have information about the

Fourier coefficients of any f ∈ H(Γ, k, υ). We start with the following formula

for the gamma function Γ(k) given by Whittaker and Watson in [26] (§12.2).

∫ ∞+ic

−∞+ic

w−keπiµwdw = (2π)k
µk−1e−

1
2
kπi

Γ(k)
(4.16)

where µ, c ∈ R+ and k > 1 and the integral is taken along the line Im(w) = c.

Here no confusion should arise between the gamma function Γ(k) and the group

Γ(k). We also require certain properties of the Bessel functions Jk−1 and Ik−1

which are defined by the absolutely convergent infinite series

Jk−1(z) =
∞∑
m=0

(−1)m(1
2
z)2m+k−1

m! Γ(m+ k)

and

Ik−1(z) =
∞∑
m=0

(1
2
z)2m+k−1

m! Γ(m+ k)
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for all z ∈ C. The following integral representation of Jk−1 can be found in

[25](§6.2),

Jk−1(z) =
1

2πi

(
1

2
z

)k−1 ∫ (0+)

−∞
w−ke

(
w− z2

4w

)
dw (4.17)

for all nonzero z ∈ C and k ∈ R. Here
∫ (0+)

−∞ means the path of integration starts

starts at −∞ on the negative real axis, encircles the origin in a counterclockwise

direction and returns to the starting point. In the case when k > 1, from the

formula given in (4.17), by making a contour deformation and a change of variable,

we can deduce the following two formulae (see [26], §6.2),

∫ ∞+ic

−∞+ic

w−ke−2πi(µ1w+µ2w−1)dw = 2π

(
µ1

µ2

) 1
2

(k−1)

e−
1
2
kπiJk−1(4π

√
µ1µ2). (4.18)

and∫ ∞+ic

−∞+ic

w−ke−2πi(µ1w+µ2w−1)dw = 2π

(
µ1

µ2

) 1
2

(k−1)

e−
1
2
kπiIk−1(4π

√
µ1µ2). (4.19)

where µ1 , µ2 and c are positive real numbers.

The following theorem which uses the results above shall be required to obtain

Fourier coefficients of the Poincaré series GL(z,m,Γ, k, υ).

Theorem 4.2.1. Suppose that z ∈ H, k > 1 and that κ and λ are real numbers.

Write

Fk(z, κ, λ) =
∞∑

h=−∞

(z + h)−k exp

(
−2πi

(
κh+

λ

z + h

))
. (4.20)

The series is absolutely uniformly convergent on every compact subset of H and

defines Fk(z) as a holomorphic function on H. Further, Fk(z, κ, λ) can be ex-

pressed as a fourier series

Fk(z, κ, λ) =
∑
r+κ>0

gre
2πi(r+κ)z

which is absolutely and uniformly convergent on every compact subset of H. The
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Fourier coefficients gr are given by the formulae

gr =
(2π)k

Γ(k)
e−

1
2
kπi(r + κ)k−1 when λ = 0, (4.21)

gr = 2πe−
1
2
kπi

(
r + κ

λ

) 1
2

(k−1)

Jk−1(4π
√
λ(r + κ) ) when λ > 0, (4.22)

gr = 2πe−
1
2
kπi

(
r + κ

|λ|

) 1
2

(k−1)

Ik−1(4π
√
|λ|(r + κ) ) when λ < 0.(4.23)

Proof. It is obvious that the series given by (4.20) is absolutely uniformly

converges on every compact subset of H. Therefore it defines Fk(z, κ, λ) as a

holomorphic function of z on H. We observe that

Fk(z + 1, κ, λ) = e2πiκFk(z, κ, λ).

Write t = e2πiz and define

G(t) := e−2πiκzFk(z, κ, λ).

As in (3.13) and the paragraph following it, G(t) is well defined for all t such

that 0 < |t| < 1. Since Fk(z, κ, λ) is holomorphic on H, G(t) is holomorphic

on {t : 0 < |t| < 1} and has a convergent Laurent series on this punctured

neighborhood of origin, i.e.

G(t) =
∞∑

r=−∞

grt
r

by Cauchy integral formula, we have

gr =
1

2πi

∮
|t|=ρ

G(t)

tr+1
dz

where 0 < ρ < 1. We choose ρ = e−2πc with c > 0, then

gr =

∫ 1+ic

ic

e−2πi(r+κ)Fk(z, κ, λ) dz.

Since the series in (4.20) is uniformly convergent, we can interchange the places
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of integration and summation so that we have

gr =
∞∑

h=−∞

∫ 1+ic

ic

(z + h)−ke−2πi(r+κ)z exp

[
−2πi

(
κh+

λ

z + h

)]
dz

=
∞∑

h=−∞

∫ 1+ic+h

ic+h

(z + h)−k exp [−2πi{(r + κ)z + λ/z}] dz

=

∫ 1+ic+h

ic+h

(z + h)−k exp [−2πi{(r + κ)z + λ/z}] dz.

If r + κ ≤ 0, then Re(−2πi(r + κ)z) = 2π(r + κ)Im(z) ≤ 0 and the path of

integration can be changed by a large semicircle in H. Then, by using the fact

that k > 1, we can conclude gr = 0. We may therefore assume that r + κ > 0.

If λ = 0, then by taking µ = r + κ in (4.16), we obtain (4.21). If λ 6= 0, then

by taking µ1 = r + κ and µ2 = |λ| in (4.18) and in (4.19), we obtain (4.22) and

(4.22).

This theorem shall be required when we investigate the Fourier coefficients of

GL(z,m,Γ, k, υ) with k > 2. For the rest of this section we use the following

notation

n1 := nI = n(∞,Γ), κ1 := κI = κ(∞,Γ, υ) (4.24)

and

n2 := nM = n(L−1∞,Γ), κ2 := κM = κ(L−1∞,Γ, υ). (4.25)

We also write

Γ̂1 := Γ̂ζ1 = 〈Un1〉, Γ̂2 := Γ̂ζ2 = 〈L−1Un2L〉 (4.26)

where ζ1 =∞ and ζ2 = L−1∞. Then, as before,

Γ̂ = Γ̂2 ·RL.

The group Γ̂ can be expressed as a disjoint union of double cosets Γ̂2T Γ̂1 for

T ∈ Γ̂. If we denote a representative set of these double cosets by T, we have

Γ̂ = Γ̂2TΓ̂1
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so that for any S ∈ Γ̂ there exists a unique T ∈ T such that S ∈ Γ̂2T Γ̂1. Now we

write

TL := LT− Γ̂U .

It is convenient to consider TL as a set of matrices rather then transformations.

As it is explained in great detail in [18], the set TL can be taken to be the following

disjoint union

TL =
∞⋃
γ=1

TL(γ)

where TL(γ) is the set of all matrices S ∈ LΓ of the form

(
α β

γ δ

)
such that

0 ≤ δ < γn1, 0 ≤ α < γn2. (4.27)

We define the generalized Kloosterman sum to be

W (r,m, γ) :=
∑

S∈TL(γ)

exp
[

2πi
γ

(
(m+κ2)α

n2
+ (r+κ1)δ

n1

)]
υ(MS)σ(L,M)

σ(M,S). (4.28)

We now have the material required for the following theorem which indeed

achieves the main goal of this section.

Theorem 4.2.2. Let L ∈ Γ(1), m ∈ Z, k > 2 and put M = L−1. Then

GL(z,m,Γ, κ, υ) = δLe
2πi(m+κ1)z/n1 +

∑
r+κ1>0

a(r,m, L)e2πi(r+κ2)z/n2 ,

where n1, κ1 and n2, κ2 are defined by (4.24) and (4.25) respectively, and δL = 0

except when MU s ∈ Γ for some s ∈ Z, in which case n1 = n2 and κ1 = κ2 and

δL =
e2πis(m+κ1)/n1

υ(MU s)σ(L,M)
.
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The coefficients are given by the following formulae for r + κ1 > 0:

a(r,m, L) =
(2π)k

Γ(k)
e−

1
2
kπi(r + κ1)k−1

∞∑
γ=1

W (r, 0, γ)

(n1γ)k
when m = κ2 = 0,

a(r,m, L) = 2πe−
1
2
kπin

1
2

(k−1)

2

n
1
2

(k+1)

1

(
r + κ1

m+ κ2

) 1
2

(k−1)

×
∞∑
γ=1

W (r,m, γ)

γ
Jk−1

4π

γ

√
(r + κ1)(m+ κ2)

n1n2

 when m+ κ2 > 0,

a(r,m, L) = 2πe−
1
2
kπin

1
2

(k−1)

2

n
1
2

(k+1)

1

∣∣∣∣ r + κ1

m+ κ2

∣∣∣∣ 12 (k−1)

×
∞∑
γ=1

W (r,m, γ)

γ
Ik−1

4π

γ

√
(r + κ1)|m+ κ2|

n1n2

 when m+ κ2 < 0.

Proof. See [18], page 162.

4.3 Poincaré Series Belonging to Γ̄(N)

In the previous section we obtained the Fourier series expansion of the Poincaré

series GL(z,m,Γ, k, υ) with m ∈ Z and k > 2. In this section we shall apply

the results of §4.2 to the particular case when Γ = Γ̄(N), N ≥ 1, in order to

determine an explicit formulae for the Fourier coefficients of the Poincaré series

GL(z,m, Γ̄(N), k, υ) where m ∈ Z and k is an integer. We start with choosing

a multiplier system. Throughout this section we assume that υ(T ) = 1 for all

T ∈ Γ(N), it follows that υ(T ) = (−1)k for all T ∈ Γ̄(N) − Γ(N). If N = 1 or

2, we suppose k is even so that υ(T ) = 1 for all T ∈ Γ(N). Therefore, in all

cases, υ(T ) = 1 when T ∈ Γ(N). Moreover let L ∈ Γ(1) and put M = L−1. As

discussed earlier in §2.3, the order of the cusp M∞ (modΓ) is the least positive

integer nM such that UnM ∈ M−1Γ̄(N)M . In this case we find that nM = N .
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Therefore, we deduce that

n(M∞, Γ̄(N)) = nM = N for all M ∈ Γ(1)

The cusp parameter κM is defined by υ(MUnMM−1) = e2πiκM and since the

matrix MUnMM−1 belongs to Γ(N), we have e2πiκM = 1. Then we conclude that

κ(M∞, Γ̄(N), υ) = κM = 0 for all M ∈ Γ(1)

We now consider the Kloosterman sum W (r,m, γ) defined by (4.28) for the case

Γ = Γ̄(N). Recall that n1, n2 and κ1κ2 are defined by (4.24) and (4.25) and we

have n1 = n2 = N and κ1 = κ2 = 0. Write L =

(
A B

C D

)
. The set TL(γ) is

empty except when

γ > 0 and γ ≡ εC (modN)

where ε = ±1. We note that, in this case TL(γ) consists of all matrices S ∈ LΓ̄(N)

for which (4.27) holds. If S ∈ LΓ̄(N) we have S ≡ εL (modN). Then by (4.27),

if S ∈ TL(γ) we have

0 ≤ δ < γN, 0 ≤ α < γN, (4.29)

[α, δ] ≡ ε[A,D] (modN), αδ ≡ 1 + εβγ (modN). (4.30)

and this determines S uniquely. Moreover since S ≡ εL (modN), υ(MS) = εk

where ε = ±1. Then by (4.28) we have in the case when Γ = Γ̄(N) that

W (r,m, γ) =
∑

εk exp

(
2πi

Nγ
(mα + rδ)

)
(4.31)

where the summation is taken over all α, δ satisfying (4.29) and (4.30).

The next items which needs to be analyzed for the case we are considering

are the set RL and δL introduced in (4.4) and in (4.12) respectively. One can

expect that the structures of RL and δL is simplified by taking Γ = Γ̄(N). For

the Poincaré series GL(z,m, Γ̄, k, υ), the matrices in RL belong to Γ̄(N). Since
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each term in the series (4.5) is unaltered when T ∈ RL is replaced by −T , we

may take the matrices in RL to belong to Γ(N), i.e the set LRL may be taken to

consist of all matrices S = LT satisfying

(i) S ≡ L (modN)

(ii) If S1 and S2 are two different matrices in LRL then [γ1, δ1] 6= ±[γ2, δ2] where

[γ1, δ1] and [γ2, δ2] are second rows of S1 and S2 respectively.

Recall that for our particular case we have n(M∞, Γ̄(N)) = N and

κ(M∞, Γ̄(N), υ) = 0 for all M ∈ Γ(1). Then by (4.5) we have

GL(z,m, Γ̄(N), k, υ) =
∑

S∈LRL

exp
(

2πim
N
Sz
)

ν(S, z)/υ(L)
(4.32)

=
′∑

S≡L (modN)

(S : Z)−k exp

(
2πim

N
Sz

)
(4.33)

where the prime indicates that the summation is subject to the conditions (i) and

(ii) introduced above. Now we make use of the definition δL given in (4.12), in

order to determine its form when Γ = Γ̄(N). By definition δL = 0 except when

LT = U s for some T ∈ RL and s ∈ Z. Therefore in our case δL = 0 except when

L ≡ εU s (modN) (ε = ±1) for some s ∈ Z. If we put n = N and L−1U s = T in

(4.11), we get

δL = δ(Γ̄(N),m, υ) =
e2πism/N

υ(T )σ(L,L−1)
= εke2πism/N

It follows since L ≡ εU s (modN) that

δL =


e2πimB/N if C ≡ 0, D ≡ 1 (modN)

(−1)ke−2πimB/N if C ≡ 0, D ≡ −1 (modN)

0 otherwise.

(4.34)

We now have covered all the necessary calculations required to restate the Theo-

rem 4.2.2 for the particular case when Γ = Γ̄(N). Next theorem gives the explicit

formulae for the Fourier coefficients of the Poincaré series GL(z,m, Γ̄(N), k, υ).
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Theorem 4.3.1. [18, Theorem 5.5.1] Let L ∈ Γ(1), m ∈ Z and let MS υ be

subject to the restrictions imposed at the beginning of this section. Then

GL(z,m, Γ̄(N), k, υ) = δLe
2πimz/N +

∞∑
r=1

a(r,m, L)e2πirz/N (4.35)

where for r ≥ 1,

a(r, 0, L) =

(
2πr

Ni

)k
1

rΓ(k)

∞∑
γ=1

γ≡±C (modN)

γ−kW (r, 0, γ),

a(r,m, L) =
2π

Nik

( r
m

) 1
2

(k−1)

×
∞∑
γ=1

γ≡±C (modN)

γ−1W (r,m, γ)Jk−1

(
4π
√

(rm)/(Nγ)
)

for m > 0,

a(r,m, L) =
2π

Nik

(
r

|m|

) 1
2

(k−1)

×
∞∑
γ=1

γ≡±C (modN)

γ−1W (r,m, γ)Ik−1

(
4π
√

(r|m|)/(Nγ)
)

for m < 0.

Here δL defined by (4.34) and W (r,m, γ) by (4.31).

4.3.1 Eisenstein Series Belonging to Γ̄(N)

In this section we restrict our attention to the Fourier coefficients of the Poincaré

series GL(z,m, Γ̄(N), k, υ) in the case when m = 0, i.e. GL is an Eisenstein

series. One can observe from (4.33) that GL(z,m, Γ̄(N), k, υ) depends only on

the second row [C,D] of the matrix L, hence we denote the Eisenstein series

GL(z, 0, Γ̄(N), k, υ) by Ek(z, C,D,N) so that we have

Ek(z, C,D,N) =
∑

γ≡C, δ≡D (modN)
(γ,δ)=1

(γz + δ)−k.
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where the summation is subject to the condition (ii). Since [C,D] is the second

row of the matrix L belonging to Γ(1), C and D are relatively prime. Since they

arise only congruences modulo N , it is only necessary to assume that (C,D,N) =

1. Moreover if we write for the coefficients a(r, 0, L) given in theorem 4.3.1 that

a(r, 0, L) = a(r, C,D,N)

then we have by (4.35)

Ek(z, C,D,N) = δL +
∞∑
r=1

a(r, C,D,N)e2πirz/N (4.36)

where δL is given by (4.34) with m = 0.

Now our aim is to obtain a formula for a(r, C,D,N) which is simpler than given

in the Theorem (4.3.1). For that purpose, we shall define a related modular form

E∗k(z, C,D,N) and obtain its Fourier coefficients. Then by using the relations

which we shall establish between the functions Ek(z, C,D,N) and E∗k(z, C,D,N),

we evaluate the fourier coefficients of Ek(z, C,D,N). We define for any integers

C and D

E∗k(z, C,D,N) :=
∑

m≡C, n≡D(modN)
(m,n)6=(0,0)

(mz + n)−k

where z ∈ H and k is an integer greater than 2. We observe that if (C,D,N)=h,

then

E∗k(z, C,D,N) = h−kE∗k(z, C/h,D/h,N/h)

and (C/h,D/h,N/h) = 1. Therefore, we may assume that (C,D,N) = 1 We

now state the theorem which provides the desired relations between the functions

Ek and E∗k .

Theorem 4.3.2. Let (C,D,N) = 1 and k be an integer greater than 2. Then if
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N > 2,

E∗k(z, C,D,N) =
N∑
h=1

(h,N)=1

 ∞∑
m=1

mh≡1 (modN)

m−k

Ek(z, Ch,Dh,N)

and

Ek(z, C,D,N) =
N∑
h=1

(h,N)=1

 ∞∑
m=1

mh≡1 (modN)

µ(m)

mk

E∗k(z, Ch,Dh,N) (4.37)

where µ(m) is the Möbius function. Further,

E∗k(z) := Ek(z, C,D, 1) = 2ζ(k)Ek(z, C,D, 1) := 2ζ(k)Ek(z)

and

E∗k(z, C,D, 2) = 2(1− 2−k)ζ(k)Ek(z, C,D, 2), (4.38)

where ζ(k) is the Riemann zeta function. Finally, for all N ≥ 1 and all T ∈ Γ(1)

E∗k(z, C,D,N)|S = E∗k(z, Cα +Dγ,Cβ +Dδ,N). (4.39)

Proof. See [18] page 176.

The theorem above shows that E∗k(z, C,D,N) are also modular forms. Let

E∗k(z, C,D,N) = δ∗L +
∞∑
r=1

a∗(r, C,D,N)e2πirz/N .

We employ the functions

σk−1(r) =
∑

d|r, d>0

dk−1

σk−1(r, C,D,N) =
∑

d|r, d∈Z
r
d
≡C (modN)

dk−2|d|e2πidD/N
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in the next theorem which gives the formulae for a∗(r, C,D,N).

Theorem 4.3.3. Let (C,D,N)=1, the constant term in the Fourier expansion of

E∗k(z, C,D,N) is

δ∗L =

{ ∑
r≡D (modN) r

−k when C ≡ 0 (modN),

0 othewise.
(4.40)

Further for r ≥ 1,

a∗(r, C,D,N) =
(2π/Ni)k

Γ(k)
σk−1(r, C,D,N)

Proof. We require the Theorem 4.2.1 with κ = λ = 0 and in place of z we

put either (mz +D)/N or −(mz +D)/N according to m > 0 or m < 0 in order

not to violate the condition in theorem 4.2.1 that z ∈ H. Only in the case when

C ≡ 0 (modN) we take m = 0 and obtain the constant term δ∗L. We first observe

that

Fk

(
mz +D

N
, 0, 0

)
= Nk

∞∑
h=−∞

(mz +D + hN)−k =
∑

n≡D (modN)

(mz + n)−k

where in the last equation we put n = D + hN . Similarly we have

Fk

(
−(mz +D)

N
, 0, 0

)
= Nk

∞∑
h=−∞

(−mz −D + hN)−k = (−1)kNk
∑

n≡D (modN)

(mz + n)−k

where in the last equation we write n in place of D − hN . It follows that

E∗k(z, C,D,N) =
∑

m≡C, n≡D(modN)
(m,n) 6=(0,0)

(mz + n)−k

=
∑
n≡D

n6=0 (m=0)

n−k +
∑
m≡C
m>0

∑
n≡D

(mz + n)−k +
∑
m≡C
m<0

∑
n≡D

(mz + n)−k

= δ∗L +
∑
m≡C
m>0

N−kFk

(
mz +D

N
, 0, 0

)
+ (−1)k

∑
m≡C
m<0

N−kFk

(
−(mz +D)

N
, 0, 0

)
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the congruences under the summations above are taken modulo N . According to

the Theorem 4.2.1, Fk(z, 0, 0) is given by

Fk(z, 0, 0) =
∞∑
r=1

gre
2πirz

where, since λ = 0,

gr =
(2π)k

Γ(k)
i−krk−1

Therefore, we have

E∗k(z, C,D,N) = δ∗L +
(2π/Ni)k

Γ(k)

∑
m≡C
m>0

∞∑
n=1

nk−1e2πin(mz+D)/N (4.41)

+ (−1)k
∑
m≡C
m<0

∞∑
n=1

nk−1e−2πin(mz+D)/N

 (4.42)

where congruences are modulo N . Since both of the series on the right hand side

of the above equation are absolutely convergent, we can rearrange them in powers

of e2πirz/N with r = nm for the first one and r = −nm for the second. This gives

a∗(r, C,D,N) =
2π/(Ni)k

Γ(k)

 ∑
d|r,d>0
r
d
≡C

dk−1e2πidD/N −
∑
d|r,d<0
r
d
≡C

dk−1e2πidD/N


=

2π/(Ni)k

Γ(k)

∑
d|r

r
d
≡C

dk−2|d|e2πidD/N

so that we have for r ≥ 1

a∗(r, C,D,N) =
2π/(Ni)k

Γ(k)
σk−1(r, C,D,N)

as desired.

From the Theorem 4.3.3, we immediately deduce the following theorem.
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Theorem 4.3.4. Let (C,D,N) = 1 where N > 1 and k is an integer greater than

2; k is supposed even when N = 2. Then the Fourier coefficients a(r, C,D,N) of

the Eisenstein series Ek(z, C,D,N) in (4.36) are given by the following formulae:

(i)If N > 2 and r ≥ 1,

a(r, C,D,N) =
(2π/Ni)k

Γ(k)

N∑
h=1

(h,N)=1

N∑
m=1

mh≡1 (modN)

µ(m)

mk
σk−1(r, hC, hD,N).

(ii)If N = 2 and r ≥ 1,

a(r, C,D, 2) =
(π/2)k

2(1− 2−k)ζ(k)Γ(k)
σk−1(r, C,D, 2).

Proof. (i)Let N > 2. For r ≥ 1, by (4.37), we have

a(r, C,D,N) =
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk
a∗(r, hC, hD,N).

We also have by the previous theorem that

a∗(r, hC, hD,N) =
2π/(Ni)k

Γ(k)
σk−1(r, hC, hD,N). (4.43)

It follows that

a(r, C,D,N) =
2π/(Ni)k

Γ(k)

N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk
σk−1(r, hC, hD,N).

(ii)Now let N = 2, by (4.39) we have for all r ≥ 1

a∗(r, C,D, 2) = 2(1− 2−k)ζ(k)a(r, C,D, 2).

so that by (4.43) we get

a(r, C,D, 2) =
(π/i)k

2(1− 2−k)ζ(k)Γ(k)
σk−1(r, C,D, 2)
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where

σk−1(r, C,D, 2) =
∑

d|r, d∈Z
r
d
≡C (mod 2)

dk−2|d|eπidD

=
∑

d|r, d>0
r
d
≡C (mod 2)

dk−2d(−1)dD +
∑

d|r, d<0
r
d
≡C (mod 2)

dk−2(−d)(−1)dD

= 2
∑

d|r, d>0
r
d
≡C (mod 2)

dk−1(−1)dD.



Chapter 5

Construction of an Eisenstein

Series for Γ0(N)

This chapter is devoted to the applications of the important results found in

chapter 4. In the previous chapter we studied Eisenstein series belonging to the

congruence subgroup Γ̄(N). In what follows, as an application of the results

given in the previous chapter, we shall construct Eisenstein series for the Hecke

congruence supgroup Γ0(N) where N > 2.

Firstly we shall present two more results form [18] which is necessary to apply

Theorem 4.1.3 in our construction. Next, we shall introduce necessary definitions

and results about Dirichlet characters, Gauss sums and Dirichlet-L functions

which we employ to simplify our calculations. To facilitate the reading let us

restate the Theorem 4.1.3.

Theorem 5.0.5. Suppose that k > 2 and that −I ∈ ∆ ⊆ Γ, where ∆ is normal

in Γ and let µ = [Γ̂ : ∆̂]. Let υ be a MS on Γ (and therefore on ∆) of weight k.

Define n and κ by (4.3), where L ∈ Γ(1) and ζ = L−1∞, and put

n′ = n(ζ,∆) and κ′ = κ(ζ,∆, υ).

Then n′ = nl and κ′ = {lκ}(fractional part), where l is a positive integral divisor

51
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of µ. Let

∆̂ = ∆̂ζ ·R

where ∆̂ζ is the stabilizer of ζ modulo ∆, then there exist a set L of µ/l matrices

Lj(1 ≤ j ≤ µ/l) in Γ such that

Γ̂ = Γ̂ζ ·R · L,

and for any m ∈ Z,

GL(z,m,Γ, k, υ) =

µ/l∑
j=1

GLLj
(z, lm+ [lκ],∆, k, υ)

υ(Lj)σ(L,Lj)

To determine the matrices Lj(1 ≤ j ≤ µ/l) in the Theorem 5.0.5, we employ

the following theorem.

Theorem 5.0.6. [18, Theorem 1.1.2] Let Γ2 be a subgroup of finite index µ in

a group Γ1 and let T be a fixed member of Γ1. Then there exists a finite number

of elements L1, L2, . . . , Lm, say, in Γ1 and m disjoint sets

Si =
⋃
{LiT k : 0 ≤ k < σi} (1 ≤ i ≤ m),

where

σi = min{k : T k ∈ L−1
i Γ2Li, k ∈ Z+}, (5.1)

such that

µ = σ1 + σ2 + · · ·+ σm (5.2)

and

Γ1 = Γ2 ·
m⋃
i=1

Si.

Moreover if T has finite order σ, then σi divides σ for 1 ≤ i ≤ m. Also, if Γ2 is
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normal in Γ1, then σi = σ0, say, for 1 ≤ i ≤ m and so

µ = mσ0.

Proof. Take any L1 ∈ Γ1 and define σ1 by (5.1); since L−1
1 Γ2L1 has finite index

µ in Γ1, σ1 is a finite positive number and the member of S1 belong to σ1 different

right cosets of Γ2 in Γ1. If µ = σ1, this completes the proof and m = 1 in his

case. If µ > σ1 we take any L2 not belonging to Γ2S1 and define σ2 by (5.1). The

σ2 elements L2T
k (0 ≤ k < σ2) belong to different right cosets of Γ2. Moreover

L2T
k 6∈ Γ2S1; for if L2T

k ∈ Γ2S1 then L2 ∈ Γ2S1T
−k = Γ2S1, which is not true.

If µ = σ1 +σ2 the theorem follows; if µ > σ1 +σ2, we choose an L3 6∈ Γ2(S1

⋃
S2)

and proceed similarly. Since µ is finite and σi > 0 for each i, there exists a posi-

tive integer m such that (5.2) holds and the process then terminates, giving the

required result. The two final sentences are immediate consequences.

Theorem 5.0.7. [18, Theorem 1.1.3] Let Γ2 be a normal subgroup of finite

index µ in a group Γ1 and let T be a fixed member of Γ1. Let σ be the least positive

integer such that T σ ∈ Γ2 and write

S =
⋃
{T k : 0 ≤ k < σ}.

Then there exists m = µ/σ distinct elements L1, L2, . . . , Lm of Γ1 such that

Γ1 = S · Γ2 · L, (5.3)

where L =
⋃
{Li : 1 ≤ i ≤ m}. Also if Γ∗1 and Γ∗2 are the subgroups of Γ1

generated by T and T σ, respectively, and Γ2 = Γ∗2 ·R, then

Γ1 = Γ∗1 ·R · L.

Proof. The equation given in (5.3) can be proven similarly to that of theorem
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5.0.6. The normality of Γ2 in Γ1 comes in when we infer from

T kM2Li = T lM ′
2Lj (0 ≤ l ≤ k < σ; M2,M

′
2 ∈ Γ2),

that Lj ∈ SΓ2Li, therefore Lj = Li, k = l and M ′
2 = M2. Since Γ∗1 = S · Γ∗2, we

have

Γ1 = S · Γ2 · L = S · Γ∗2 ·R · L = Γ∗1 ·R · L,

which completes the proof.

While we are dealing with the construction of an Eisenstein series for the con-

gruence group Γ0(N) (N > 2), in order to reduce our results to simpler forms, we

shall require the following knowledge about Dirichlet characters, Gauss sums an

Dirichlet-L functions.

Recall that a reduced residue system modulo k is a set of ϕ(k) integers

{a1, a2, . . . , aϕ(k)} incongruent modulo k, each of which is relatively prime k. For

each integer a the corresponding residue class â is the set of all integers congruent

to a modulo k:

â = {x : x ≡ a (mod k)}.

Definition 5.0.8. Let G be a group of reduced residue classes modulo k. Corre-

sponding to each character f of G we define an arithmetical function χ = χf as

follows:

χ(n) = f(n̂) if (n, k) = 1,

χ(n) = 0 if (n, k) > 1.

The function χ is called Dirichlet character modulo k. The principal character

χ1 is defined by

χ1(n) =

{
1 if (n, k) = 1

0 if (n, k) > 1.

Definition 5.0.9. Let χ be a Dirichlet character mod k and let d be any positive

divisor of k. A character χ modulo k is said to be induced by a character χ′
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modulo d if

χ(n) = χ′(n (mod d))

A character which is not induced by any other character is called a primitive

character.

Now we define Gauss sums associated with the Dirichlet character χ and

Dirichlet-L functions.

Definition 5.0.10. For any Dirichlet character χ mod k the sum

G(n, χ) =
k∑

m=1

χ(m)e2πimn/k (5.4)

is called Gauss sum associated with χ.

Theorem 5.0.11. [2, Theorem 8.15] Let χ be a primitive Dirichlet character

mod k, then for all n we have

G(n, χ) = χ̄(n)G(1, χ) (5.5)

where χ̄ denotes the complex conjugate of χ.

Definition 5.0.12. Let s ∈ C with <s > 1, and χ be a Dirichlet character then

the Dirichlet L-functions L(s, χ) is defined by the series

L(s, χ) =
∞∑
n=1

χ(n)

ns
. (5.6)

Here, by applying Möbius inversion formula to the Dirichlet-L function L(s, χ)

(see [2], Theorem 11.5), we have

1

L(s, χ)
=
∞∑
n=1

χ(n)µ(n)

ns
(5.7)

where µ(n) is the Möbius function of n.
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In what follows, we construct the Eisenstein series for the group Γ0(N) corre-

sponding to the cusp ζ = ∞. Each incongruent cusp modulo Γ0(N) give rise to

an Eisenstein series belonging to Γ0(N). The explicit formulas of all the Eisentein

series for the congruence subgroup Γ0(N) can be found in [3]. For convenience we

put ζ = I−1∞. Firstly, we note that −I ∈ Γ̄(N) and the group Γ̄(N) is normal

in Γ0(N) so that we can apply the theorem 5.0.5 with Γ = Γ0(N) and ∆ = Γ̄(N).

Now assume υ is a multiplier system on Γ0(N) that is constant on Γ(N) of integer

weight k > 2. We write

n := n(∞,Γ0(N)) κ := κ(∞,Γ0(N), υ)

and

n′ := n(∞, Γ̄(N)) κ′ := κ(∞, Γ̄(N), υ).

We now calculate these numbers as they are required in theorem 5.0.5. First

consider n, the width of the cusp ζ =∞ (modΓ0(N)), as it is explained in §2.3.2,

n equals to the least positive integer s such that U s ∈ IΓ0(N)I−1 = Γ0(N), i.e.,

we search for the least positive integer s such that(
1 s

0 1

)
∈ Γ0(N).

It follows that n = 1. Similarly, n′ equals to the least positive integer s′ such that

U s′ ∈ Γ̄(N). Therefore n′ = N . Then the inhomogeneous stabilizer group of the

cusp ζ = I−1∞ modulo Γ̄(N) is generated by UN , i.e.,

ˆ̄Γζ(N) = 〈UN〉

Note that ˆ̄Γ(N) = Γ̂(N), hence we have

Γ̂(N) = Γ̂ζ(N) ·R = 〈UN〉 ·R. (5.8)

where R is a set of right coset representatives of Γ̂(N) over Γ̂ζ(N).
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To calculate the values of κ and κ′, we need to choose a particular MS υ

satisfying our assumptions. Observe that any Dirichlet character modulo N with

χ(−1) = (−1)k satisfies the consistency condition υ(−I) = (−1)k so that we can

set

υ(T ) = χ(d) for all T =

(
a b

c d

)
∈ Γ0(N).

We also assume that χ is nonprinciple and primitive. This MS is constant on

Γ(N) as it is desired. Then with this MS, we deduce that

e2πiκ = υ(I−1UnI) = υ(U) = υ

((
1 1

0 1

))
= χ(1) = 1.

Therefore κ = 0. Similarly

e2πiκ′ = υ(I−1Un′I) = υ(UN) = υ

((
1 N

0 1

))
= χ(1) = 1

so that κ′ = 0.

We now calculate the index of ˆ̄Γ(N) = Γ̂(N) in Γ̂0(N), i.e., the number µ in

the theorem 5.0.5. By lemma 2.1.4, we have

[Γ̂0(n) : Γ̂(n)] =

 n2
∏

p|n

(
1− 1

p

)
if n = 1, 2

1
2
n2
∏

p|n

(
1− 1

p

)
if n ≥ 3

It follows since N > 2 that,

[Γ̂0(N) : Γ̂(N)] =
1

2
N2
∏
p|N

(
1− 1

p

)
=

1

2
Nϕ(N).

Since n′ = N and n = 1, the number l in the Theorem 5.0.5 turns out to be N .

Then by theorem 5.0.5, with Γ = Γ0(N), ∆ = Γ̄(N) and ζ = ∞, there exists a

set L of µ/l = 1
2
Nϕ(N)/N = ϕ(N)

2
matrices Lj (1 ≤ j ≤ ϕ(N)

2
) in Γ0(N) such that

Γ̂0(N) = (Γ̂0(N))ζ ·R · L



CHAPTER 5. CONSTRUCTION OF AN EISENSTEIN SERIES FOR Γ0(N) 58

where R is given by (5.8). These ϕ(N)
2

matrices Lj’s are found by applying the

algorithm explained in theorem 5.0.6 and 5.0.7 with Γ1 = Γ̂0(N), Γ2 = Γ̂(N),

T = U and σ = N . We can take the matrices Lj to be(
d̃j 1

dj d̃j − 1 dj

)
, 1 ≤ j ≤ ϕ(N)

2

where dj runs through the first ϕ(N)
2

coprime integers to N and d̃j’s are the

inverses of dj’s modulo N .

Then by the last part of the Theorem 5.0.5, the Eisenstein series for Γ0(N)

corresponding to the cusp ζ = I−1∞, is given by

GI(z, 0,Γ0(N), k, υ) =

ϕ(N)
2∑
j=1

GILj
(z, l.0 + [lκ], Γ̄(N), k, υ)

υ(Lj)σ(L,Lj)

Here, as calculated above κ = 0 and since k is an integer, σ(L,Lj) = 1. We also

set above that υ(Lj) = χ(dj) where χ is a primitive character. Therefore we have

GI(z, 0,Γ0(N), k, υ) =

ϕ(N)
2∑
j=1

GLj
(z, 0, Γ̄(N), k, υ)

χ(dj)

=

ϕ(N)
2∑
j=1

Ek(z, dj d̃j − 1, dj, N)

χ(dj)

where the sum is taken over the first ϕ(N)
2

integers dj’s that are coprime to

N . Here, let us first consider the constant term δI of the Eisenstein series

GI(z, 0,Γ0(N), k, υ). By the relation above, we have

δI =

ϕ(N)
2∑
j=1

δLj

χ(dj)
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where δLj
is the constant term of the Eisenstein series Ek(z, dj d̃j − 1, dj, N) be-

longing to Γ̄(N). Hence δLj
is given by 4.34 with m = 0, i.e,

δLj
=


1 if dj ≡ 1 (modN)

(−1)k if dj ≡ −1 (modN)

0 otherwise

Since for all dj’s in the summation we have that (dj, N) = 1 and 1 ≤ dj < N ,

δLj
is nonzero only when dj = 1. Therefore there is only one nonzero term

corresponding to dj = 1 in the above summation. Hence we deduce that

δI = 1.

Now, let us denote GI(z, 0,Γ0(N), k, υ) by Ek(z,Γ0(N)). Since the sum is taken

over the first ϕ(N)
2

integers dj’s which are coprime to N , the summation can be

written as

Ek(z,Γ0(N)) =

N−1
2∑

d=1
(d,N)=1

χ̄(d)Ek(z, dd̃− 1, d,N) (5.9)

Then by 4.37, we have

Ek(z,Γ0(N)) =

N−1
2∑

d=1
(d,N)=1

χ̄(d)
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk
E∗k(z, h(dd̃− 1), hd,N)

(5.10)

Here, we need to recall the equation 4.41 which asserts

E∗k(z, C,D,N) = δ∗L +
(2π/Ni)k

Γ(k)

∑
m≡C
m>0

∞∑
n=1

nk−1e2πin(mz+D)/N

+ (−1)k
∑
m≡C
m<0

∞∑
n=1

nk−1e−2πin(mz+D)/N


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For brevity, we set tN = e2πi/N and q = e2πiz and let C = c+ uN where u, c ∈ Z
with 0 ≤ c < N . In our case, since the matrices Lj’s belongs to the group Γ0(N),

c = 0. Then we have for E∗k in 5.10 that

E∗k = δ∗L +
(2π/Ni)k

Γ(k)

∑
m≥1
n≥1

nk−1qnmtnhdN + (−1)kt−nhdN (5.11)

= δ∗L +
(2π/Ni)k

Γ(k)

∞∑
n=1

nk−1 qn

1− qn
(
tnhdN + (−1)kt−nhdN

)
. (5.12)

If we insert 5.12 into 5.10, we get

Ek(z,Γ0(N))− δI =
(2π/Ni)k

Γ(k)

N−1
2∑

d=1
(d,N)=1

χ̄(d)
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk

×

(
∞∑
n=1

nk−1 qn

1− qn
(
tnhdN + (−1)kt−nhdN

))
.

We calculate the right hand side of the above equation as follows,

N−1
2∑

d=1
(d,N)=1

χ̄(d)
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk

∞∑
n=1

nk−1 qn

1− qn
(
tnhdN + (−1)kt−nhdN

)

=
∞∑
n=1

nk−1 qn

1− qn
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk

N−1
2∑

d=1
(d,N)=1

χ̄(d)
(
tnhdN + (−1)kt−nhdN

)

Since χ is a primitive Dirichlet character, χ̄ = 0 if (d,N) > 1 so that we can

remove the restriction (d,N) = 1 under the last summation above. Furthermore

if we write N−d instead of d in the second part of the last summation, we obtain,

∞∑
n=1

nk−1 qn

1− qn
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk

N∑
d=1

χ̄(d)tnhdN

Here, we notice that the last summation above is a Gauss sum defined in (5.4),
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hence the expression above can be written in terms of the Gauss sum G(nh, χ̄)

as

∞∑
n=1

nk−1 qn

1− qn
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

µ(m)

mk
G(nh, χ̄) (5.13)

Since χ is a primitive Dirichlet character, we have by theorem 5.0.11 that

G(nh, χ̄) = χ(nh)G(1, χ̄) := χ(nh)G(χ̄)

Then the expression given in (5.13) takes the form

G(χ̄)
∞∑
n=1

nk−1χ(n)qn

1− qn
N∑
h=1

(h,N)=1

∞∑
m=1

mh≡1 (modN)

χ̄(m)
µ(m)

mk

= G(χ̄)
∞∑
n=1

nk−1χ(n)qn

1− qn
∞∑
m=1

χ̄(m)
µ(m)

mk
.

Here if we use the identity given in (5.7) for the last summation above, we finally

obtain,

Ek(z,Γ0(N))− δI =
(2π/Ni)k

Γ(k)

G(χ̄)

L(χ̄, k)

∞∑
n=1

χ(n)nk−1 qn

1− qn
(5.14)

where L(s, χ) is the Dirichlet-L function defined by (5.6). Finally if we insert

δI = 1 into (5.14), we can conclude that the Eisenstein series belonging to the

Hecke congruence subgroup Γ0(N) with N > 2 associated to the cusp ζ = ∞ is

of the form

Ek(z,Γ0(N)) = 1 +
(2π/Ni)k

Γ(k)

G(χ̄)

L(χ̄, k)

∞∑
n=1

χ(n)nk−1 qn

1− qn
.

This last equation can be expressed in terms of generalized Bernoulli numbers

Bn,χ which are defined as follows:
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Definition 5.0.13. Let χ be a Dirichlet character modulo N over C. The gen-

eralized Bernoulli numbers Bn,χ are defined by

x

eNx − 1

N∑
k=1

χ(k)ekx =
∞∑
n=0

Bn,χ
xn

n!
. (5.15)

In the case when χ is a nonprinciple Dirichlet character such that χ(−1) =

(−1)k, the generalized Bernoulli numbers Bn,χ defined by (5.15) is calculated in

[24] as

Bk,χ = (−1)k−1 2k!

G(χ̄)

(
N

2πi

)k
L(χ̄, k).

By using the last identity above, we conclude that

Ek(z,Γ0(N)) = 1− 2k

Bk,χ

∞∑
n=1

χ(n)nk−1 qn

1− qn
.
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