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Abstract. We investigate the problem of permuting a sparse rectangular matrix into block-
diagonal form. Block-diagonal form of a matrix grants an inherent parallelism for solving the deriving
problem, as recently investigated in the context of mathematical programming, LU factorization, and
QR factorization. To represent the nonzero structure of a matrix, we propose bipartite graph and
hypergraph models that reduce the permutation problem to those of graph partitioning by vertex
separator and hypergraph partitioning, respectively. Our experiments on a wide range of matrices,
using the state-of-the-art graph and hypergraph partitioning tools MeTiS and PaToH, revealed that
the proposed methods yield very effective solutions both in terms of solution quality and runtime.
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1. Introduction. Block-diagonal structure of sparse matrices has been exploited
for coarse-grain parallelization of various algorithms such as decomposition methods
for linear programming, LU factorization, and QR factorization. In these methods,
block diagonals give rise to subproblems that can be solved independently, whereas
the border incurs a coordination task to combine the subproblem solutions into a
solution of the original problem and is usually less amenable to parallelization. The
objective of this work is to enhance these decomposition-based solution methods by
transforming the underlying matrix into a block-diagonal form with small border size
while maintaining a given balance condition on the sizes of the diagonal blocks.

Our target problem is permuting rows and columns of an M ×N sparse matrix
A into a K-way singly bordered block-diagonal (SB) form:

Aπ = PA Q =

⎡
⎢⎢⎢⎣

Aπ
11 . . . Aπ

1K
...

. . .
...

Aπ
K1 . . . Aπ

KK

Aπ
S1 . . . Aπ

SK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

B1

. . .

BK

R1 . . . RK

⎤
⎥⎥⎥⎦ = ASB ,(1.1)

where P and Q denote, respectively, the row and column permutation matrices to be
determined. In (1.1), each row of the Mc × N border submatrix R = (R1 · · · RK)
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PERMUTING A SPARSE MATRIX TO BLOCK-DIAGONAL FORM 1861

is called a column-coupling or simply coupling row. Each coupling row has nonzeros
in the columns of at least two diagonal blocks. The objective is to permute matrix A
into an SB form ASB such that the number (Mc) of coupling rows is minimized while
a given balance criterion is satisfied. The SB form in (1.1) is referred to here as the
primal SB form, whereas in the dual SB form they are the columns that constitute
the border. We also consider the problem of permuting rows and columns of a sparse
matrix A into a K-way doubly bordered block-diagonal (DB) form:

Aπ = PA Q =

⎡
⎢⎢⎢⎣

Aπ
11 . . . Aπ

1K Aπ
1S

...
. . .

...
...

Aπ
K1 . . . Aπ

KK Aπ
KS

Aπ
S1 . . . Aπ

SK Aπ
SS

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

B1 C1

. . .

BK CK

R1 . . . RK D

⎤
⎥⎥⎥⎦ = ADB .

(1.2)

In equation (1.2), each row and column of matrix R = (R1 · · · RK D) and C =
(CT

1 · · · CT
K DT )T is called a coupling row and a coupling column, respectively. The

objective is to permute matrix A into a DB form ADB such that the sum of the
number of coupling rows and columns is minimized while a given balance criterion is
satisfied.

The literature that addresses this problem is very rare and recent. Ferris and
Horn [12] proposed a two-phase approach for A-to-ASB transformation. In the first
phase, matrix A is transformed into a DB form ADB as an intermediate form. In
the second phase, ADB is transformed into an SB form through column-splitting as
discussed in section 3.3. Our initial results of this problem were presented in two con-
ference papers [38, 39]. In [38], we proposed the basics of our hypergraph model and
how to exploit this model to permute matrices to block-diagonal form. In our subse-
quent work [39] we proposed our graph models. Later Hu, Maguire, and Blake [24]
independently investigated the same problem without spelling out the exact model
to represent the sparsity structures of matrices or the details of their algorithm for
permutation. In this paper, we present a complete work on the problem of permuting
sparse matrices to block-diagonal form. We consider permutations to DB form as well
as permutations to primal and dual SB forms.

Our proposed graph and hypergraph models for sparse matrices reduce the prob-
lem of permuting a sparse matrix to block-diagonal form to the well-known problems
of graph partitioning by vertex separator (GPVS) and hypergraph partitioning (HP).
GPVS is widely used in nested-dissection-based low-fill orderings for factorization of
symmetric, sparse matrices, whereas HP is widely used for solving the circuit parti-
tioning and placement problems in VLSI layout design. Our models enable adoption
of algorithms and tools for these well-studied problems to permute sparse matrices to
block-diagonal form efficiently and effectively.

In this work, we show that the A-to-ADB transformation problem can be described
as a GPVS problem on the bipartite graph representation of A. The objective in the
K-way GPVS problem is to find a subset of vertices (vertex separator) of minimum
size that disconnects the K vertex parts while maintaining a given balance criterion
on the vertex counts of K parts. In this model, minimizing the size of the vertex
separator corresponds to minimizing the sum of the number of coupling rows and
columns in ADB .

We propose a one-phase approach for permuting A directly into an SB form. In
this approach, a hypergraph model—proposed in an earlier version of this work [38]—
is exploited to represent rectangular matrices. The proposed model reduces the
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1862 CEVDET AYKANAT, ALI PINAR, AND ÜMIT V. ÇATALYÜREK

A-to-ASB transformation problem into the HP problem. In this model, minimizing
the size of the hyperedge separator directly corresponds to minimizing the number of
coupling rows in ASB .

The organization of the paper is as follows: In the next section we will dis-
cuss how block-diagonal structure can be exploited in parallelization of various ap-
plications. Some preliminary information on graph and hypergraph partitioning and
ADB-to-ASB transformation are presented in section 3. Our proposed models for
A-to-ADB and A-to-ASB transformations are explained in sections 4 and 5, respec-
tively. Section 6 overviews recent graph and hypergraph partitioning algorithms and
tools. Experimental evaluation of the proposed models is presented in section 7. And
finally section 8 concludes the paper.

2. Applications. Block-diagonal structure of a matrix grants an inherent par-
allelism for the solution of the deriving problem. In this section, we will exemplify
how to exploit this parallelism in three fundamental problems of linear algebra and
optimization: linear programming, and LU and QR factorizations.

2.1. Linear programming. Exploiting the block-angular structure of linear
programs (LPs) dates back to the work of Dantzig and Wolfe [11], when the moti-
vation was solving large LPs with limited memory. Later studies investigated paral-
lelization techniques [15, 23, 34]. The proposed techniques [11, 31, 35] led to iterative
algorithms, where each iteration involves solving K independent LP subproblems
corresponding to the block constraints followed by a coordination phase for coordi-
nating the solutions of the subproblems according to the coupling constraints. These
approaches have two nice properties. First, as the solution times of most LPs in prac-
tice increase as a quadratic or cubic function with the size of the problem, it is more
efficient to solve a set of small problems than a single aggregate problem. Second, they
give rise to a natural, coarse-grain parallelism that can be exploited by processing the
subproblems concurrently. Coarse-grain parallelism inherent in these approaches has
been exploited in several successful parallel implementations on distributed-memory
multicomputers through the manager-worker scheme [12, 15, 23, 34]. At each iter-
ation, the LP subproblems are solved concurrently by worker processors, whereas a
serial master problem is solved by the manager processor in the coordination phase.

As proposed in [12], these successful decomposition-based approaches can be ex-
ploited for coarse-grain parallel solution of general LP problems by transforming them
into block-angular forms. In the matrix theoretical view, this transformation problem
can be described as permuting the rectangular constraint matrix of the LP problem
into an SB form, as shown in (1.1) with minimum border size, while maintaining
a given balance criterion on the diagonal blocks. Note that row and column per-
mutation correspond to reordering of the constraints and variables of the given LP
problem. Here, minimizing the border size relates to minimizing the size of the mas-
ter problem. The size of the master problem has been reported to be crucial for the
parallel performance of these algorithms [12, 34]. First, it affects the convergence of
the overall iterative algorithm. Second, in most algorithms the master problem is
solved serially by the manager processor. Finally, it determines the communication
requirement between phases. It is also important to have equal-sized blocks for load
balancing in the parallel phase.

It is worth noting that exploiting the block-angular structure of the constraint
matrices is not restricted to LPs and can be applied in different optimization problems
[36, 42].
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PERMUTING A SPARSE MATRIX TO BLOCK-DIAGONAL FORM 1863

2.2. LU factorization. In most scientific computing applications, the core of
the computation is solving a system of linear equations. Direct methods like LU
factorization are commonly used for the solution of nonsymmetric systems for their
numerical robustness. A coarse-grain parallel LU factorization scheme [24, 41] is
to permute the square, nonsymmetric coefficient matrix to a DB form, as shown
in (1.2). Notice that diagonal blocks of the permuted matrix constitute independent
subproblems and can be factored concurrently. Pivots are chosen within the blocks for
concurrency. Rows/columns that cannot be eliminated, including those that cannot
be eliminated due to numerical reasons, are permuted to the end of the matrix to
achieve a partially factored matrix in DB form as

⎡
⎢⎢⎢⎣

L1U1 U ′
1

. . .
...

LKUK U ′
K

L′
1 . . . L′

K F

⎤
⎥⎥⎥⎦ .

In this matrix, LkUk constitutes the factored form of Aπ
k = Bk after the unfactored

rows/columns are permuted to the end of the matrix. In a subsequent phase, the
coupling rows and columns, along with unfactored columns and rows from the blocks,
are factored. It is possible to parallelize this step with different (and usually less
efficient) techniques.

We stated two objectives during permutation to DB form. Our first objective is
to minimize the number of coupling rows and columns, which relates to minimizing
the work for the second phase, thus increasing concurrency. Our second objective of
equal-sized blocks provides load balance during factorization of the blocks.

2.3. QR factorization. Least squares is one of the fundamental problems in
numerical linear algebra and is defined as follows:

min
x

‖ Ax − b ‖2,

where A is an M ×N matrix with M ≥ N . QR factorization is a method commonly
used to solve least-squares problems. In this method, matrix A is factored into an
orthogonal M×M matrix Q and an upper triangular N×N matrix R with nonnegative
diagonal elements so that

A = Q

(
R
0

)
.

Then we can solve for Rx = b′ to get a solution, where b′ is composed of the first N
entries of vector b.

Computationally, this problem is very similar to LU factorization; thus we can
use the same scheme to parallelize QR factorization. Given a matrix in dual SB form,

⎡
⎢⎢⎢⎣

B1 C1

B2 C2

. . .
...

BK CK

⎤
⎥⎥⎥⎦ ,

the diagonal blocks of the matrix constitute the independent subblocks and can be fac-
tored independently. Thus, first phase is composed of factoring Bk and the associated

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1864 CEVDET AYKANAT, ALI PINAR, AND ÜMIT V. ÇATALYÜREK

coupling columns in Ck concurrently, so that

[Bk Ck] = Qk

[
Rk Sk

0 C ′
k

]
for k = 1, 2, . . . ,K.

In a subsequent phase, we factor C ′ =
[
C ′

1, . . . , C
′
K

]T
[4].

So, in permuting a given matrix A into a dual SB form, minimizing the number
of coupling columns minimizes the work on the second phase of the algorithm, and
equal-sized blocks provide load balance for the first phase.

3. Preliminaries. In this section we will provide the basic definitions and tech-
niques that will be adopted in the remainder of this paper.

3.1. Graph partitioning. An undirected graph G = (V, E) is defined as a set of
vertices V and a set of edges E . Every edge eij ∈ E connects a pair of distinct vertices
vi and vj . We use the notation Adj(vi) to denote the set of vertices adjacent to vertex
vi in graph G. We extend this operator to include the adjacency set of a vertex subset
V ′ ⊂ V, i.e., Adj(V ′) = {vj ∈ V − V ′ : vj ∈ Adj(vi) for some vi ∈ V ′}. The degree di
of a vertex vi is equal to the number of edges incident to vi, i.e., di = |Adj(vi)|. An
edge subset ES is a K-way edge separator if its removal disconnects the graph into at
least K connected components. A vertex subset VS is a K-way vertex separator if the
subgraph induced by the vertices in V − VS has at least K connected components.

The objective of graph partitioning is finding a separator, whose removal de-
composes the graph into disconnected subgraphs with balanced sizes. The separator
can be a set of edges or a set of vertices, and associated problems are called graph
partitioning by edge separator (GPES) and graph partitioning by vertex separator
(GPVS) problems, respectively. Both GPES and GPVS problems are known to be
NP-hard [5]. Balance among subgraphs is usually defined by cumulative effect of
weights assigned to vertices. Some alternatives have been studied recently [40]. We
proceed with formal definitions. ΠES = {V1,V2, . . . ,VK} is a K-way vertex partition
of G by edge separator ES ⊂ E if the following conditions hold: Vk ⊂ V and Vk �= ∅ for
1 ≤ k ≤ K; Vk ∩V� = ∅ for 1 ≤ k < � ≤ K;

⋃K
k=1 Vk = V. Edges between the vertices

of different parts belong to ES and are called cut (external) edges, and all other edges
are called uncut (internal) edges.

Definition 3.1 (GPES problem). Given a graph G = (V, E), an integer K,
and a balance criterion for subgraphs, the GPES problem is finding a K-way vertex
partition ΠES = {V1,V2, . . . ,VK} of G by edge separator ES that satisfies the balance
criterion with minimum cost. The cost is defined as

cost(ΠES) =
∑

eij∈ES

wij ,(3.1)

where wij is the weight of edge eij = (vi, vj).
The GPVS problem is similar, except that a subset of vertices, as opposed to

edges, serve as the separator. ΠV S = {V1,V2, . . . ,VK ;VS} is a K-way vertex partition
of G by vertex separator VS ⊂ V if the following conditions hold: Vk ⊂ V and Vk �= ∅
for 1 ≤ k ≤ K; Vk ∩ V� = ∅ for 1 ≤ k < � ≤ K and Vk ∩ VS = ∅ for 1 ≤ k < K;⋃K

k=1 Vk ∪ VS = V; removal of VS gives K disconnected parts V1,V2, . . . ,VK (i.e.,
Adj(Vk) ⊆ VS for 1 ≤ k ≤ K). A vertex vi ∈ Vk is said to be a boundary vertex of
part Vk if it is adjacent to a vertex in VS . A vertex separator is said to be narrow if
no subset of it forms a separator, and wide otherwise.
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PERMUTING A SPARSE MATRIX TO BLOCK-DIAGONAL FORM 1865

Definition 3.2 (GPVS problem). Given a graph G = (V, E), an integer K, and a
balance criterion for subgraphs, the GPVS problem is finding a K-way vertex separator
ΠV S = {V1,V2, . . . ,VK ;VS} that satisfies the balance criterion, with minimum cost,
where the cost is defined as

cost(ΠV S) = |VS | .(3.2)

The techniques for solving GPES and GPVS problems are closely related, as
will be further discussed in section 6. An indirect approach to solving the GPVS
problem is to first find an edge separator through GPES, and then translate it to
a vertex separator. After finding an edge separator, this approach takes vertices
adjacent to separator edges as a wide separator to be refined to a narrow separator,
with the assumption that a small edge separator yields a small vertex separator. The
approach adopted by Ferris and Horn [12] falls into this class. The wide-to-narrow
refinement problem is described as a minimum vertex cover problem on the bipartite
graph induced by the cut edges. A minimum vertex cover can be taken as a narrow
separator for the whole graph, because each cut edge will be adjacent to a vertex in
the vertex cover.

3.2. Hypergraph partitioning. A hypergraph H = (U ,N ) is defined as a set
of nodes (vertices) U and a set of nets (hyperedges) N among those vertices. We refer
to the vertices of H as nodes, to avoid the confusion between graphs and hypergraphs.
Every net ni ∈ N is a subset of nodes, i.e., ni ⊆ U . The nodes in a net ni are called
its pins and denoted as Pins(ni). We extend this operator to include the pin list of
a net subset N ′ ⊂ N , i.e., Pins(N ′) =

⋃
ni∈N ′ Pins(ni). The size si of a net ni is

equal to the number of its pins, i.e., si = |Pins(ni)|. The set of nets connected to a
node uj is denoted as Nets(uj). We also extend this operator to include the net list
of a node subset U ′ ⊂ U , i.e., Nets(U ′) =

⋃
uj∈U ′ Nets(uj). The degree dj of a node

uj is equal to the number of nets it is connected to, i.e., dj = |Nets(uj)|. The total
number p of pins denotes the size of H where p =

∑
ni∈N si =

∑
uj∈U dj . Graph is a

special instance of hypergraph such that each net has exactly two pins.
ΠHP = {U1,U2, . . . ,UK} is a K-way node partition of H if the following conditions

hold: Uk ⊂ U and Uk �= ∅ for 1 ≤ k ≤ K; Uk∩U� = ∅ for 1 ≤ k < � ≤ K;
⋃K

k=1 Uk = U .
In a partition ΠHP of H, a net that has at least one pin (node) in a part is said to
connect that part. Connectivity set Λi of a net ni is defined as the set of parts
connected by ni. Connectivity λi = |Λi| of a net ni denotes the number of parts
connected by ni. A net ni is said to be cut (external) if it connects more than one
part (i.e., λi > 1), and uncut (internal) otherwise (i.e., λj = 1). A net ni is said to
be an internal net of a part Uk if it connects only part Uk, i.e., Λi = {Uk}, which
also means Pins(ni) ⊆ Uk. The set of internal nets of a part Uk is denoted as Nk for
k = 1, . . . ,K, and the set of external nets of a partition ΠHP is denoted as NS . So,
although ΠHP is defined as a K-way partition on the node set of H, it can also be
considered as inducing a (K + 1)-way partition {N1, . . . ,NK ;NS} on the net set. NS

can be considered as a net separator whose removal gives K disconnected node parts
U1, . . . ,UK as well as K disconnected net parts N1, . . . ,NK .

Definition 3.3 (HP problem). Given a hypergraph H = (U ,N ), an integer
K, and a balance criterion for subhypergraphs, the HP problem is finding a K-way
partitioning ΠHP = {U1,U2, . . . ,UK} of H that satisfies the balance criterion, and
minimizes the cost, which is defined as

cost(ΠHP ) = |NS | .(3.3)
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Fig. 3.1. Column-splitting process.

The above metric of cost is often referred to as the cutsize metric in VLSI com-
munity. The connectivity metric is defined as

cost(ΠHP ) =
∑

ni∈NS

(λi − 1)(3.4)

and is frequently used in VLSI [32] and scientific computing communities [8].

3.3. Column-splitting method for ADB-to-ASB transformation. In the
second phase of the Ferris–Horn (FH) algorithm [12], ADB is transformed into an
SB form through the column-splitting technique used in stochastic programming to
treat anticipativity [37]. In this technique, we consider the variables correspond-
ing to the coupling columns. Consider a coupling column cj in submatrix C =
(CT

1 · · · CT
k · · · CT

K DT )T of ADB , and let Λj denote the set of Ck’s that have
at least one nonzero in column cj . The nonzeros of a coupling column cj is split into
|Λj | − 1 columns such that each new column includes nonzeros in rows of only one
block. That is, we introduce one copy ckj of column cj for each block Ck ∈ Λj to

decouple Ck from all other blocks in Λj on variable xj , so that ckj is permuted to be a
column of Bk. Then we add |Λj | − 1 coupling constraints as coupling rows into ADB

that force these variables {xk
j : Ck ∈ Λj} all to be equal. Note that this splitting pro-

cess for column cj increases both the row and column dimensions of matrix ASB by
|Λj |− 1. Figure 3.1 depicts the column-splitting process on the ADB matrix obtained
in Figure 4.2b.

4. Bipartite graph model for A-to-ADB transformation. In this section,
we show that the A-to-ADB transformation problem can be described as a GPVS
problem on the bipartite graph representation of A. In the bipartite graph model,
M ×N matrix A = (aij) is represented as a bipartite graph BA = (V, E) on M + N
vertices with the number of edges equal to the number of nonzeros in A. Each row and
column of A is represented by a vertex in BA so that vertex sets R and C representing
the rows and columns of A, respectively, form the vertex bipartition V = R∪ C with
|R| = M and |C| = N . There exists an edge between a row vertex ri ∈ R and a column
vertex cj ∈ C if and only if the respective matrix entry aij is nonzero. So, Adj(ri) and
Adj(cj) effectively represent the sets of columns and rows that have nonzeros in row i
and column j, respectively. Figure 4.2a displays the bipartite graph representation of
the sample matrix given in Figure 4.1.
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Fig. 4.1. A 15 × 18 sample matrix A.
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Fig. 4.2. (a) Bipartite graph representation BA of the sample A matrix given in Figure 4.1 and
3-way partitioning ΠV S of BA by vertex separator; (b) 3-way DB form ADB of A induced by ΠV S .

Consider a K-way partition ΠV S = {V1, . . . ,VK ;VS} of BA, where Vk = Rk ∪ Ck
for k = 1, . . . ,K and VS = RS ∪ CS with Rk,RS ⊆ R and Ck, CS ⊆ C. ΠV S can be
decoded as a partial permutation on the rows and columns of A to induce a permuted
matrix Aπ. In this permutation, the rows and columns associated with the vertices in
Rk+1 and Ck+1 are ordered after the rows and columns associated with the vertices
in Rk and Ck for k = 1, . . . ,K − 1, and the rows and columns associated with the
vertices in RS and CS are ordered last as the coupling rows and columns, respectively.

Theorem 4.1. Let BA = (V, E) be the bipartite graph representation of a given
matrix A. A K-way vertex separator ΠV S = {V1,V2, . . . ,VK ;VS} of BA gives a
permutation of A to K-way DB form ADB, where row and column vertices in Vk

constitute the rows and columns of the kth diagonal block of ADB, and row and column
vertices in VS constitute the coupling rows and columns of ADB. Thus,

• minimizing the size of the separator minimizes the border size;
• balance among subgraphs infer balance among diagonal submatrices.

Proof. Consider a row vertex ri ∈ Rk and a column vertex cj ∈ Ck of part Vk in
a partition ΠV S of BA. Since Adj(ri) ⊆ Ck ∪ CS , ri ∈ Rk corresponds to permuting
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all nonzeros of row i of A into either submatrix Aπ
kk or submatrices Aπ

kk and Aπ
kS

depending on ri being a nonboundary or a boundary vertex of Vk, respectively. So,
all nonzeros in the kth row slice Aπ

k∗ of Aπ will be confined to the Aπ
kk and Aπ

kS

matrices. Since Adj(cj) ⊆ Rk ∪RS , cj ∈ Ck corresponds to permuting all nonzeros of
column j of A into either submatrix Aπ

kk or submatrices Aπ
kk and Aπ

Sk of Aπ depending
on cj being a nonboundary or a boundary vertex of Vk, respectively. So, all nonzeros
in the kth column slice Aπ

∗k of Aπ will be confined to the Aπ
kk and Aπ

Sk matrices.
Hence, Aπ will be in a DB form, as shown in (1.2), with Aπ

kk = Bk, A
π
kS = Ck, and

Aπ
Sk = Rk for k = 1, . . . ,K, and Aπ

SS = D.

The number of coupling rows and columns in Aπ is equal to, respectively, the
number of row and column vertices in the separator VS , i.e., Mc = |RS | and Nc = |CS |.
So, in GPVS of BA, minimizing the separator size according to (3.2) corresponds to
minimizing the sum of the number of coupling rows and columns in Aπ, since |VS | =
|RS |+ |CS | = Mc +Nc. The row and column dimensions of the kth diagonal block Bk

of Aπ is equal to, respectively, the number of row and column vertices in part Vk, i.e.,
Mk = |Rk| and Nk = |Ck| for k = 1, . . . ,K. So, the row-vertex and column-vertex
counts of the parts {V1, . . . ,VK} can be used to maintain the required balance criterion
on the dimensions of the diagonal blocks {B1, . . . , BK} of Aπ. Figure 4.2a displays a
3-way GPVS of BA, and Figure 4.2b shows a corresponding partial permutation that
transforms matrix A of Figure 4.1 into a 3-way DB form ADB .

5. Hypergraph model for A-to-ASB transformation. In this section, we
show that A-to-ASB transformation can be described as an HP problem on a hyper-
graph representation of A. In our previous studies [7, 8, 38, 39], we proposed two
hypergraph models, namely, row-net and column-net models, for representing rectan-
gular as well as symmetric and nonsymmetric square matrices. These two models
are duals: the row-net representation of a matrix is equal to the column-net repre-
sentation of its transpose. Here, we describe and discuss only the row-net model for
permuting a matrix A into a primal SB form, whereas the column-net model can be
used for permuting A into a dual SB form. Because of the duality between the row-
net and column-net models, permuting A into a dual SB form using the column-net
model on A is the same as permuting AT into a primal SB form using the row-net
model on AT .

In the (row-net) hypergraph model, an M×N matrix A = (aij) is represented as a
hypergraph HA = (U ,N ) on N nodes and M nets with the number of pins equal to the
number of nonzeros in matrix A. Node and net sets U and N correspond, respectively,
to the columns and rows of A. There exist one net ni and one node uj for each row i
and column j, respectively. Net ni ⊆ U contains the nodes corresponding to the
columns that have a nonzero entry in row i, i.e., uj ∈ ni if and only if aij �= 0. That
is, Pins(ni) represents the set of columns that have a nonzero in row i of A, and in
a dual manner Nets(uj) represents the set of rows that have a nonzero in column j
of A. So, the size si of a net ni is equal to the number of nonzeros in row i of A,
and the degree dj of a node uj is equal to the number of nonzeros in column j of A.
Figure 5.1a displays the hypergraph representation of the 16 × 18 sample matrix in
Figure 4.1.

Recently, we exploited the proposed row-net (column-net) model for columnwise
(rowwise) decomposition of sparse matrices for parallel matrix-vector multiplication
[7, 8]. In that application, nodes represent units of computation and nets encode
multiway data dependencies. In [7, 8], we showed that a one-dimensional matrix
partitioning problem can be modeled as an HP problem in which the connectivity
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Fig. 5.1. (a) Row-net hypergraph representation HA of the sample A matrix shown in Figure 4.1
and 3-way partitioning ΠHP of HA; (b) 3-way SB form ASB of A induced by ΠHP .

metric in (3.4) is exactly equal to the parallel communication volume. The proposed
HP model overcomes some flaws and limitations of the standard GPES models, which
are also addressed by Hendrickson and Kolda [18, 19]. In this work, we show that the
A-to-ASB transformation problem can be described as an HP problem in which the
cutsize metric in (3.3) is exactly equal to the number of coupling rows in ASB .

Theorem 5.1. Let HA = (U ,N ) be the hypergraph representation of a given
matrix A. A K-way partition ΠHP = {U1, . . . ,UK} = {N1, . . . ,NK ;NS} of HA gives
a permutation of A to K-way SB form, where nodes in Uk and internals nets in Nk,
respectively, constitute the columns and rows of the kth diagonal block of ASB, and
external nets in NS constitute the coupling rows of ASB. Thus,

• minimizing the cutsize minimizes the number of coupling rows;
• balance among subhypergraphs infer balance among diagonal submatrices.

Proof. Consider a K-way partition ΠHP = {U1, . . . ,UK} = {N1, . . . ,NK ;NS} of
HA. ΠHP can be decoded as a partial permutation on the rows and columns of A
to induce a permuted matrix Aπ. In this permutation, the columns associated with
the nodes in Uk+1 are ordered after the columns associated with the nodes in Uk

for k = 1, . . . ,K − 1. The rows associated with the internal nets (Nk+1) of Uk+1 are
ordered after the rows associated with the internal nets (Nk) of Uk for k = 1, . . . ,K−1,
where the rows associated with the external nets (NS) are ordered last as the coupling
rows. That is, a node uj ∈ Uk corresponds to permuting column j of A to the kth

column slice Aπ
∗k =

(
(Aπ

1k)
T · · · (Aπ

Kk)
T (Aπ

Sk)
T
)T

of Aπ. An internal net ni of Uk

corresponds to permuting row i of A to the kth row slice Aπ
k∗ = (Aπ

k1 · · · Aπ
kK)

of Aπ, and an external net ni corresponds to permuting row i of A to the border
Aπ

S = (Aπ
S1 · · · Aπ

SK) of Aπ.
Consider an internal net ni ∈ Nk of part Uk in a partition ΠHP of HA. Since

Pins(ni) ⊆ Uk, ni ∈ Nk corresponds to permuting all nonzeros of row i of A into
submatrix Aπ

kk of Aπ. So, all nonzeros in the kth row slice Aπ
k∗ will be confined to the

Aπ
kk submatrix. Consider a node uj of part Uk. Since Nets(uj) ⊆ Nk ∪ NS , uj ∈ Uk

corresponds to permuting all nonzeros of column j of A into either submatrix Aπ
kk or

submatrices Aπ
kk and Aπ

kS depending on whether uj is a nonboundary or a boundary
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node of Uk, respectively. So, all nonzeros in the kth column slice Aπ
∗k will be confined

to the Aπ
kk and Aπ

Sk matrices. Hence, Aπ will be in an SB form, as shown in (1.1),
with Aπ

kk = Bk and Aπ
Sk = Rk for k = 1, . . . ,K.

The number of coupling rows in Aπ is equal to the number of external nets; thus
minimizing the cutsize according to (3.3) corresponds to minimizing the number of
coupling rows in Aπ. The row and column dimensions of the kth diagonal block Bk

of Aπ is equal to, respectively, the number of internal nets and nodes in part Uk, i.e.,
Mk = |Nk| and Nk = |Uk| for k = 1, . . . ,K. So, the node and internal-net counts of
the parts {U1, . . . ,UK} can be used to maintain the required balance criterion on the
dimensions of the diagonal blocks {B1, . . . , BK} of Aπ. Figure 5.1a displays a 3-way
partitioning ΠHP of HA and Figure 5.1b shows a corresponding partial permutation
which transforms matrix A in Figure 4.1 directly into a 3-way SB form.

6. Graph and hypergraph partitioning algorithms and tools. Recently,
multilevel GPES [6, 20] and HP [8, 17, 29] approaches have been proposed, leading
to successful GPES tools such as Chaco [21], MeTiS [27], and WGPP [16] and HP
tools hMeTiS [29] and PaToH [9]. These multilevel heuristics consist of 3 phases:
coarsening, initial partitioning, and uncoarsening. In the first phase, a multilevel
clustering is applied starting from the original graph/hypergraph by adopting various
matching heuristics until the number of vertices in the coarsened graph/hypergraph
decreases below a predetermined threshold value. Clustering corresponds to coalescing
highly interacting vertices to supernodes. In the second phase, a partition is obtained
on the coarsest graph/hypergraph using various heuristics including FM, which is an
iterative refinement heuristic proposed for graph/hypergraph partitioning by Fiduccia
and Mattheyses [13] as a faster implementation of the KL algorithm proposed by
Kernighan and Lin [30]. In the third phase, the partition found in the second phase
is successively projected back towards the original graph/hypergraph by refining the
projected partitions on the intermediate level uncoarser graphs/hypergraphs using
various heuristics including FM. In this work, we use the direct K-way GPES version
of MeTiS [28] (kmetis option [27]) for indirect GPVS in the A-to-ADB transformation
phase of the FH method and our multilevel HP tool PaToH [9] in our one-phase
A-to-ASB transformation approach.

One of the most important applications of GPVS is George’s nested-dissection
algorithm [14], which has been widely used in fill-reducing orderings for sparse ma-
trix factorizations. The basic idea in the nested-dissection algorithm is to reorder a
symmetric matrix into a 2-way DB form so that no fill can occur in the off-diagonal
blocks. The DB form of the given matrix is obtained through a symmetric row/column
permutation induced by a 2-way GPVS. Then both diagonal blocks are reordered by
applying the dissection strategy recursively. The performance of the nested-dissection
reordering algorithm depends on finding small vertex separators at each dissection
step. So, the nested-dissection implementations can easily be exploited for obtaining
a K-way DB form of a matrix by terminating the dissection operation after lg2 K
recursion levels and then gathering the vertex separators obtained at each dissection
step to a single separator constituting a K-way vertex separator. So, we obtain a
K-way DB form of matrix A in our two-phase approach by providing the bipartite
graph model of A as input to a nested-dissection-based reordering tool. Note that we
effectively perform a nonsymmetric nested dissection on the bipartite graph model of
the rectangular A matrix.

Direct 2-way GPVS approaches have been embedded into various multilevel nested-
dissection implementations [16, 22, 27]. In these implementations, a 2-way GPVS
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obtained on the coarsest graph is refined during the multilevel framework of the un-
coarsening phase. Two distinct vertex-separator refinement schemes were proposed
and used for the uncoarsening phase. The first one is the extension of the FM edge-
separator refinement approach to vertex-separator refinement as proposed by Ashcraft
and Liu [1]. This scheme considers vertex moves from vertex separator VS to both
V1 and V2 in ΠV S = {V1,V2;VS}. This refinement scheme is adopted in the onmetis
ordering code of MeTiS [27], the ordering code of WGPP [16], and the ordering code
BEND [22]. The second scheme is based on Liu’s narrow separator refinement al-
gorithm [33], which considers moving a set of vertices simultaneously from VS , in
contrast to the FM-based refinement scheme [1], which moves only one vertex at a
time. Liu’s refinement algorithm [33] can be considered as repeatedly running the
maximum-matching-based vertex cover algorithm on the bipartite graphs induced by
the edges between V1 and VS and between V2 and VS . That is, the wide vertex
separator consisting of VS and the boundary vertices of V1 (V2) is refined as in the
GPES-based wide-to-narrow separator refinement scheme. The network-flow-based
minimum weighted vertex cover algorithms proposed by Ashcraft and Liu [2], and
Hendrickson and Rothberg [22] enabled the use of Liu’s refinement approach [33] on
the coarse graphs within the multilevel framework. In this work, we use the publicly
available onmetis ordering code of MeTiS [27] for direct GPVS.

7. Experimental results. We tested the performance of the proposed models
and associated solution approaches on a wide range of large LP constraint matrices
obtained from [10] and [25]. Properties of these rectangular matrices are presented in
Table 7.1, where the matrices are listed in the order of increasing number of rows.

All experiments were performed on a workstation equipped with a 133 MHz
PowerPC processor with 512 KB external cache and 64 MB of memory. We have
tested K = 4-, 8-, and 16-way partitioning of every test matrix. For each K value,
K-way partitioning of a test matrix constitutes a partitioning instance. Partition-
ing tools MeTiS [27] and PaToH [9] were run 50 times starting from different random
seeds for each instance. We use averages of these runs for each instance in this section.
Figure 7.1 displays K = 4-, 8-, and 16-way sample primal SB forms of the matrix GE
obtained by PaToH.

In this section, we first compare different solution techniques for a model. Tables
7.2–7.3 present only the averages over the 13 matrices. Breakdown of the results for
each matrix can be found in [3]. Then we compare the effectiveness of the models for
their best solution technique, both in terms of solution quality (Tables 7.4–7.5) and
preprocessing times (Table 7.6). In these tables, %Mc denotes the percentage of the
number of coupling rows in both DB and primal SB forms, i.e., %Mc = 100×Mc/M .
%Nc denotes the number of coupling columns in the DB forms as percents of the
respective M values to enable the comparison of the Mc and Nc values under the
same unit, i.e., %Nc = 100×Nc/M . We measure the balance quality of the diagonal
blocks in terms of percent row imbalance %RI = 100× (Mmax/Mavg−1) and percent
column imbalance %CI = 100 × (Nmax/Navg − 1). Here, Mmax (Nmax) denotes
the row (column) count of the diagonal block with the maximum number of rows
(columns) in both SB and DB forms. Mavg = (M−Mc)/K in both SB and DB forms,
whereas Navg = (N −Nc)/K in DB forms and Navg = N/K in SB forms. It should
be noted here that more complicated balancing criteria might need to be maintained
in practical applications. For example, empirical relation T (M,N) = cM2.17N0.89

(where c is some constant) was reported in [34] for the solution time (with IMSL
routine ZX0LP [26]) of an LP subproblem corresponding to an M×N diagonal block.
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Table 7.1

Properties of rectangular test matrices.

Number of Number of nonzeros
Name rows cols Total per row per col

M N max avg max avg
NL 7039 9718 41428 149 5.89 15 4.26
CQ9 9278 13778 88897 390 9.58 24 6.45
GE 10099 11098 39554 47 3.92 36 3.56
CO9 10789 14851 101578 440 9.41 28 6.84
car4 16384 33052 63724 111 3.89 109 1.93
fxm4-6 22400 30732 248989 57 11.12 24 8.10
fome12 24284 48920 142528 228 5.87 14 2.91
pltexpA4-6 26894 70364 143059 30 5.32 8 2.03
kent 31300 16620 184710 960 5.90 18 11.11
world 34506 32734 164470 341 4.77 16 5.02
mod2 34774 31728 165129 310 4.75 16 5.20
lpl1 39951 125000 381259 177 9.54 16 3.05
fxm3-16 41340 64162 370839 57 8.97 36 5.78
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Fig. 7.1. Rectangular GE matrix with 10,099 rows and 11,098 columns: (a) original structure,
(b) 4-way SB form, (c) 8-way SB form, (d) 16-way SB form.
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Table 7.2

Performance of different techniques on the bipartite-graph (BG) model.

Indirect GPVS Direct GPVS
BG-model (FH) BG-model (onmetis)

K ADB ASB ADB ASB

%Mc %Nc %Mc %Mc %Nc %Mc

4 6.55 0.20 6.80 1.31 0.22 1.60
8 9.70 0.54 10.40 2.75 0.65 3.60

16 12.79 1.05 14.12 4.15 1.17 5.90
avg 9.68 0.60 10.44 2.74 0.68 3.70

Table 7.3

Effect of different balancing criteria in the performance of PaToH.

R-PaToH (R+C)-PaToH (R&C)-PaToH
K %Mc %RI %CI %Mc %RI %CI %Mc %RI %CI
4 1.62 9.1 15.0 1.69 10.1 10.2 1.72 8.2 10.1
8 3.15 15.6 26.3 3.31 16.7 16.6 3.43 14.5 17.2

16 4.79 23.5 37.1 4.98 25.6 23.9 5.17 21.3 24.6
avg 3.19 16.1 26.2 3.33 17.4 16.9 3.44 14.7 17.3

Table 7.2 presents the results of our experiments on the bipartite graph (BG)
model for both A-to-ADB transformation and two-phase A-to-ASB transformation.
On the BG model, we experimented with the built-in GPES tool kmetis of MeTiS
for indirect GPVS in the FH method and direct GPVS tool onmetis. Note that FH
corresponds to our implementation of the algorithm proposed by Ferris and Horn [12],
where we used kmetis to partition the bipartite graph. Since the GPES and GPVS
solvers of MeTiS maintain balance on vertices, balance on the sum of the row and
column counts of the diagonal blocks is explicitly maintained during partitioning.
Both schemes produce DB forms with comparable row and column imbalance values.
As seen in Table 7.2, the direct onmetis scheme produces substantially better DB
forms than the indirect FH scheme. Table 7.2 also displays the effect of the column-
splitting process used in the second phase of two-phase approaches. In the table,
(%MSB

c −%MDB
c )/%Nc = (MSB

c −MDB
c )/Nc shows the average number of coupling

rows induced by a coupling column during the ADB-to-ASB transformation. It can
easily be derived from the table that a coupling column induces 1.27 and 1.41 coupling
rows in the FH and BG-onmetis schemes, respectively, on average. This means that
vertex separators found by these two schemes contain column vertices with small
degree, e.g., 2.27 and 2.41. It is interesting to note that both schemes produce DB
forms with wide row borders and narrow column borders in general.

For this work, we enhanced PaToH for maintaining different balance criteria that
might be used in balancing diagonal blocks of the SB forms. Table 7.3 illustrates the
effect of these different balancing criteria in the performance of PaToH. R-PaToH
maintains balance on the number of internal nets of the parts during partitioning.
(R+C)-PaToH maintains balance on the sum of internal net and vertex counts of the
parts during partitioning. (R&C)-PaToH maintains balance on both the number of
internal nets and vertices of the parts during partitioning.

Note that, in the row-net hypergraph model, balancing the internal net and vertex
counts of the parts correspond, respectively, to balancing the row and column counts
of the diagonal blocks of the resulting SB form. As seen in Table 7.3, R-PaToH
performs better than (R+C)-PaToH, which performs better than (R&C)-PaToH in
terms of the number of coupling rows. This observation can be explained by the
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Table 7.4

Performance comparison of the hypergraph model (H-model) with the bipartite graph model
(BG-model) in A-to-ASB transformation in terms of the border size (%Mc).

H-model BG-model
Name K PaToH onmetis FH

4 5.02 5.22 27.71
NL 8 6.02 6.59 32.57

16 7.19 8.31 36.72
4 2.87 2.92 23.06

CQ9 8 4.10 4.03 27.76
16 5.40 5.28 30.50
4 3.01 2.53 4.71

GE 8 4.37 4.39 8.06
16 5.63 5.97 10.81
4 2.72 2.78 21.27

CO9 8 3.78 3.85 26.12
16 5.10 5.03 30.26
4 0.00 0.00 0.00

car4 8 0.00 0.52 1.29
16 0.00 1.83 1.29
4 0.64 0.41 0.49

fxm4-6 8 1.17 0.80 1.70
16 2.13 1.42 2.28
4 0.00 0.00 0.00

fome12 8 9.43 12.27 17.04
16 15.39 21.23 29.02
4 1.62 0.79 1.08

pltexpA4-6 8 3.02 2.15 1.98
16 5.32 4.42 4.77
4 0.34 0.15 0.66

kent 8 0.70 0.56 2.11
16 1.26 1.33 3.47
4 1.08 0.80 1.53

world 8 2.25 2.25 3.79
16 5.25 5.94 9.29
4 0.86 0.78 0.88

mod2 8 2.12 2.05 3.42
16 5.10 5.64 8.75
4 3.27 4.08 6.37

lpl1 8 5.40 6.58 9.03
16 6.17 8.76 15.96
4 0.52 0.33 0.56

fxm3-16 8 0.66 0.73 0.34
16 0.86 1.51 0.39
Averages over K
4 1.69 1.60 6.80
8 3.31 3.60 10.40

16 4.98 5.90 14.12
all 3.33 3.70 10.44

reduced solution space with increasing complexity of the balancing criterion.
Tables 7.4–7.6 present performance comparison of different schemes on A-to-ASB

transformation. Tables 7.4 and 7.5 display the quality of SB forms in terms of bor-
der size (%Mc) and diagonal-block imbalance (%RI and %CI), respectively, whereas
Table 7.6 displays the runtime performance. The FH algorithm effectively maintains
balance on the sum of the row and column counts of the diagonal blocks. The proposed
two-phase BG-onmetis scheme also works according to the same balance criterion be-
cause of the limitation of the direct GPVS solver onmetis. Therefore, for the sake of
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Table 7.5

Performance comparison of the hypergraph model (H-model) with the bipartite graph model
(BG-model) in A-to-ASB transformation in terms of the diagonal-block imbalance size.

H-model BG-model
Name K (R+C)-PaToH onmetis FH

%RI %CI %RI %CI %RI %CI
4 8.6 6.6 11.8 12.2 15.5 14.0

NL 8 13.0 11.3 17.6 18.5 23.4 19.2
16 18.3 15.3 23.7 24.5 28.9 22.2
4 17.0 22.6 17.8 17.6 19.5 17.8

CQ9 8 26.6 31.0 24.4 25.3 22.9 24.0
16 37.3 38.6 36.7 29.5 29.5 24.8
4 14.8 11.8 15.5 15.4 13.5 12.1

GE 8 21.5 19.8 19.3 20.0 19.0 19.4
16 29.9 27.6 27.0 27.7 28.2 22.9
4 10.9 19.3 14.7 12.1 18.8 17.1

CO9 8 14.4 27.5 21.2 16.9 20.7 24.4
16 27.9 33.0 30.1 22.2 26.7 25.4
4 0.6 0.9 3.3 5.9 22.6 25.0

car4 8 0.6 2.0 12.8 18.7 0.9 2.9
16 0.7 4.3 23.7 36.1 0.9 6.1
4 10.0 9.5 2.6 2.4 8.0 7.8

fxm4-6 8 14.7 13.8 10.9 11.0 14.8 14.3
16 23.2 22.5 19.1 20.2 15.1 15.1
4 0.0 0.0 0.0 0.0 0.0 0.0

fome12 8 9.6 8.3 12.8 10.7 16.6 13.3
16 19.4 13.8 24.9 22.3 25.9 16.8
4 5.9 4.8 2.9 3.2 11.4 11.7

pltexpA4-6 8 12.9 10.4 10.2 10.9 11.9 12.5
16 19.7 17.0 16.2 18.2 15.5 16.7
4 12.2 16.1 12.9 23.8 18.3 21.8

kent 8 19.3 24.6 21.3 35.0 22.9 18.8
16 26.7 41.7 31.8 48.5 28.8 32.9
4 9.8 11.5 10.3 10.0 10.5 10.0

world 8 17.8 20.6 17.8 19.8 15.4 17.5
16 30.9 28.3 31.0 30.4 22.6 20.0
4 9.6 10.3 10.6 10.6 11.8 10.7

mod2 8 17.2 18.3 18.4 20.4 15.0 17.1
16 30.2 26.7 28.7 29.6 22.0 20.4
4 18.4 6.8 11.7 5.5 13.4 12.3

lpl1 8 31.3 12.0 15.8 11.7 24.1 17.3
16 40.5 16.0 26.0 18.9 35.8 20.3
4 13.6 12.9 0.6 0.5 7.8 7.6

fxm3-16 8 17.6 16.6 1.3 1.2 2.4 1.8
16 27.7 26.4 2.9 2.6 4.6 3.7

Averages over K
4 10.1 10.2 8.8 9.2 13.2 12.9
8 16.7 16.6 15.7 16.9 16.2 15.6

16 25.6 23.9 24.8 25.4 21.9 19.0
all 17.4 16.9 16.4 17.2 17.1 15.8

a common experimental framework, the results of the (R+C)-PaToH, BG-onmetis,
and FH schemes are displayed in Tables 7.4–7.6.

As seen in Table 7.4, the proposed schemes perform significantly better than the
FH algorithm. For example, the number of coupling rows of the SB forms produced
by the FH algorithm are 3 times larger than those of PaToH, on overall average. The
one-phase approach PaToH produces approximately 11% fewer coupling rows than
the two-phase approach BG-onmetis, on average, which confirms the effectiveness of
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Table 7.6

Execution times of the partitioning algorithms given in Table 7.5 as percents of the solution
times of the LP problems by LOQO. Values in parentheses are the LP solution times in seconds.

Name LOQO K H-model BG-model
sol. time PaToH onmetis FH

4 0.211 0.140 0.090
NL 100 (804) 8 0.244 0.179 0.090

16 0.271 0.199 0.106
4 0.459 0.339 0.213

CQ9 100 (554) 8 0.571 0.447 0.229
16 0.672 0.538 0.263
4 0.220 0.273 0.136

GE 100 (403) 8 0.294 0.387 0.154
16 0.392 0.449 0.169
4 0.390 0.305 0.189

CO9 100 (708) 8 0.484 0.393 0.205
16 0.545 0.472 0.233
4 3.562 45.958 46.603

car4 100 (56) 8 5.168 50.529 54.329
16 6.704 52.429 58.326
4 1.978 1.976 0.944

fxm4-6 100 (191) 8 2.941 2.931 0.975
16 3.884 3.817 0.986
4 0.015 0.007 0.004

fome12 100 (62677) 8 0.024 0.014 0.005
16 0.028 0.018 0.007
4 1.576 1.470 0.782

pltexpA4-6 100 (278) 8 2.328 2.277 0.785
16 3.029 2.810 0.811
4 0.756 0.898 0.451

kent 100 (618) 8 1.117 1.333 0.487
16 1.385 1.662 0.534
4 0.427 0.317 0.169

world 100 (1163) 8 0.612 0.478 0.178
16 0.786 0.667 0.214
4 0.453 0.334 0.178

mod2 100 (1076) 8 0.632 0.509 0.186
16 0.843 0.710 0.221
4 0.833 0.341 0.169

lpl1 100 (3800) 8 1.086 0.482 0.178
16 1.221 0.662 0.198
4 1.365 1.387 0.719

fxm3-16 100 (449) 8 2.087 2.026 0.690
16 2.737 2.652 0.659

Averages over K
4 0.942 4.134 3.896
8 1.353 4.768 4.499

16 1.730 5.160 4.825
all 1.342 4.688 4.407

the hypergraph model to permute rectangular matrices into SB forms. As seen in
Table 7.4, the numbers of coupling rows of the SB forms produced by PaToH remain
below 5% for 16-way partitionings, on average. As seen in Tables 7.4–7.5, our methods
find balanced permutations, with very few coupling rows, which would lead to efficient
parallel solutions.

Table 7.6 displays execution times of the partitioning algorithms as percents of
the solution times of the respective LP problems by LOQO [43]. As seen in this table,
partitioning times are affordable when compared with the LP solution times. For
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example, LOQO [43] solves the lpl1 problem, which has the constraint matrix with
the largest M ×N product, in approximately 3800 seconds. As seen in Table 7.6, the
16-way partitioning times of all algorithms remain below 1.22% of the LOQO solution
time of this LP problem. As also seen in the table, partitioning times of all algorithms
remain well below 4% of the LOQO solution times of all LP problems except car4.

In two-phase approaches, hypergraph and bipartite representations of a rectan-
gular matrix are of equal size: the number of nonzeros in the matrix. However, the
clustering phase of an HP tool involves more costly operations than those of a GP
tool. Hence, two-phase approaches using a GP tool are expected to run faster than
the one-phase approach using an HP tool. As seen in Table 7.6, the two-phase ap-
proach BG-onmetis runs faster than PaToH in the partitioning of all test matrices
except GE, car4, and kent.

8. Conclusion. We investigated permuting a sparse rectangular matrix A into
doubly bordered (DB) and singly bordered (SB) block-diagonal forms ADB and ASB

with minimum border size while maintaining balance on the diagonal blocks. We
showed that the A-to-ADB transformation problem can be described as a graph par-
titioning by vertex separator (GPVS) problem on the bipartite-graph representation
of matrix A. We proposed a hypergraph model for representing the sparsity structure
of A so that the A-to-ASB transformation problem can be formulated as a hypergraph
partitioning (HP) problem. The performance of the proposed models and approaches
depends on the performance of the tools used to solve the associated problems as well
as the representation power of the models. We also overview solution techniques and
tools for solving the stated problems. Experimental results on a wide range of sparse
matrices were impressive and showed that our methods can effectively extract the
underlying block-diagonal structure of a matrix.
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