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ABSTRACT

INTEGRATION OF PRODUCTION,
TRANSPORTATION AND INVENTORY DECISIONS IN

SUPPLY CHAINS

Utku Koç

Ph.D. in Industrial Engineering

Supervisors:

Prof. Dr. İhsan Sabuncuoğlu

Assist. Prof. Dr. Ayşegül Toptal

January, 2012

This dissertation studies the integration of production, transportation and

inventory decisions in supply chains, while utilizing the same vehicles in the

inbound and outbound. The details of integration is studied in two levels:

operational and tactical. In the first part of the thesis, we provide an operational

level model for coordination of production and shipment schedules in a single

stage supply chain. The production scheduling problem at the facility is modelled

as belonging to a single process. Jobs that are located at a distant origin are

carried to this facility making use of a finite number of capacitated vehicles.

These vehicles, which are initially stationed close to the origin, are also used for

the return of the jobs upon completion of their processing. In the first part, a

model is developed to find the schedules of the facility and the vehicles jointly,

allowing effective utilization of the vehicles for both in the inbound and outbound

transportation.

In the second part of the dissertation, we provide a tactical level model

and study a manufacturer’s production planning and outbound transportation

problem with production capacities to minimize transportation and inventory

holding costs. The manufacturer in this setting can use two vehicle types for

outbound shipments. The first type of vehicle is available in unlimited number.

The availability of the second type, which is less expensive, changes over time. For

each possible combination of operating policies affecting the problem structure,

we either provide a pseudo-polynomial algorithm for general cost structure or

prove that no such algorithm exists even for linear cost structure. We develop

general optimality properties, propose a generic model formulation that is valid

iv
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for all problems and evaluate the effects of the operating policies on the system

performance.

The third part of the dissertation considers one of the problems defined in

the second part in detail. Motivated by some industry practices, we present

formulations for three different solution approaches, which we refer to as the

uncoordinated solution, the hierarchically-coordinated solution and the centrally-

coordinated solution. These approaches vary in how the underlying production

and transportation subproblems are solved, i.e., sequentially versus jointly, or,

heuristically versus optimally. We provide intractability proofs or polynomial-

time exact solution procedures for the subproblems and their special cases.

We also compare the three solution approaches to quantify the savings due to

integration and explicit consideration of transportation availabilities.

Keywords: supply chain scheduling, coordinated schedules, outbound

transportation, hierarchical solution, integrated solution, tabu search, beam

search.



ÖZET

TEDARİK ZİNCİRLERİNDE ÜRETİM, TAŞIMA VE
ENVANTER KARARLARININ ENTEGRASYONU

Utku Koç

Endüstri Mühendisliği, Doktora

Tez Yöneticileri:

Prof. Dr. İhsan Sabuncuoğlu

Yrd. Doç. Dr. Ayşegül Toptal

Ocak, 2012

Bu tezde tedarik zincirlerinde üretim, taşıma ve envanter kararlarının

entegrasyonu üzerine çalışılmıştır. Entegrasyon detayları iki düzeyde ele

alınmaktadır. Tezin ilk aşamasında, tek aşamalı bir tedarik zincirinde üretim

ve sevkiyat programlarının koordinasyonunu sağlayan operasyonel seviyede

bir model kullanılmıştır. Tesisin üretim planlaması problemi tek bir süreç

olarak modellenmiştir. Tesisten uzakta bulunan işler sonlu sayıda kapasiteli

araçlar kullanılarak tesise getirilmektedir. İşlerin kaynağına yakın olarak

konuşlandırılmış olan bu araçlar, işlenmesi bitmiş işlerin teslimatında (dağıtım)

da kullanılmaktadır. Tezin ilk aşamasında hem üretim tesisinin hem de araçların

çizelgelerini oluşturan bir model geliştirilmiştir. Bu model aynı araçların hem

tedarik hem de dağıtımda etkin olarak kullanılmalarına olanak sağlamaktadır.

Tezin ikinci aşamasında, üretim kapasitelerini göz önüne alan, üretim

planlama ve dağıtım problemi için taktik seviyede bir model geliştirilmiştir.

Modelin amacı toplam taşıma ve envanter maliyetlerini en azlamaktır. Bu

sistemdeki üretici, dağıtımı iki tip araç kullanarak yapabilmektedir. İlk tip araç

sınırsız sayıda kullanılabilirken, maliyeti daha düşük olan ikinci tip araçların

sayısı zamana bağlı olarak değişmektedir. Problem yapısını etkileyen operasyonel

faktörlerin her bir kombinasyonu için ya en genel maliyet yapısı için sözde

polinom bir algoritma geliştirilmiş ya da doğrusal maliyet fonksiyonları için bile

böyle bir algoritmanın var olamayacağı ispatlanmıştır. Tüm kombinasyonlar

için geçerli en iyilik koşulları incelenmiş, tüm problemler için geçerli kapsamlı

bir formülasyon geliştirilmiş ve operasyonel faktörlerin sistem maliyetleri üzerine

etkileri incelenmiştir.
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Tezin üçüncü aşamasında, önceki aşamada önerilen problemlerden biri

daha detaylı olarak incelenmiştir. Sanayi uygulamalarından esinlenerek üç

çözüm yaklaşımı önerilmiş (koordine-edilmemiş, aşamalı-koordineli ve merkezi-

koordineli) ve bunların formülasyonu yapılmıştır. Bu yaklaşımlar arasındaki

temel fark alt problemlerin çözüm şeklidir (bütünleşik veya sırayla, sezgisel

veya en iyi). Alt problemler ve bunların özel durumları için tam çözüm

yöntemleri geliştirilmiş ve bunların zorlukları ispatlanmıştır. Bu üç yaklaşım

sayısal analizler kullanılarak karşılaştırılmış, bu sayede entegrasyonun kıymeti

farklı taşıma koşulları için değerlendirilmiştir.

Anahtar sözcükler : tedarik zinciri çizelgelemesi, koordine çizelgeler, dağıtım,

hiyerarşik çözüm, bütünleşik çözüm, tabu taraması, ışın taraması.
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expertise, patience, tolerance, encouragement and unreserved support during my

whole graduate study. I am indebted to Prof. Toptal for her keen and eager

guidance and embracement of this dissertation as well. I am further indebted to
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Chapter 1

Introduction

Supply, production and delivery are among the key functions for manufacturing

companies. Although these functions are managed independently in many tradi-

tional systems, recent studies in supply chain management show that there is sig-

nificant opportunity for savings if the related decisions are coordinated (Thomas

and Griffin [23], Dawande et al. [8]). Coordination of decisions among the vari-

ous stages and functions of the supply chain is an issue that prevails at different

phases of planning. Some examples are: innovation, pricing at the strategic level;

inventory control, lot sizing at the tactical level; and scheduling at the operational

level.

Transportation of finished goods to the customers is an important logistical

activity that has to be planned by companies along with production and inven-

tory management. Efficient utilization of transportation alternatives provides a

great opportunity in reducing costs, energy consumption and pollution. In tradi-

tional supply-chain research and in many industries, planning activities revolve

around production, and transportation decisions typically follow the production

and inventory decisions. A growing body of research, on the other hand, em-

phasize the importance of making these decisions in an integrated manner, and

in particular accounting for transportation issues (vehicle routing, cost, delivery

time, etc.) at earlier stages of production planning, to reduce overall costs and to

increase service levels (Hall and Potts [11], Chen [7]). Such integration can take

1
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place at various circumstances: Joint decision making for production and vehicle

schedules, coordination of scheduling, batching and delivery decisions, integration

of inventory and inbound/outbound transportation decisions, etc.

In keeping with this trend, we consider the production scheduling problem of

a company with transportation considerations in a single stage supply chain. In

particular, we solve the joint transportation and production planning problem of a

company for different transportation circumstances. Specifically, in the first part

of this dissertation, we focus on coordination of production and transportation

schedules of a company, where a finite number of capacitated vehicles are used

for both inbound and outbound transportation activities. In the later parts, we

consider production and outbound transportation problem of a company that

faces varying vehicle availabilities. For the problems studied in this dissertation,

we consider the length of the planning horizon to be in the order of a month.

The problems studied in this dissertation are motivated by production, supply

and delivery activities of a worldwide home appliance manufacturer in Turkey,

which imports a significant amount of its raw materials and exports a major

portion of its end products. The company uses maritime transportation for im-

port and export. The manufacturing facility is located inland whereas the two

warehouses–one for holding the imported raw materials and one for holding the

end products to be exported, are located at the harbor. Transportation of ma-

terials between the manufacturing facility and the harbor is done via contain-

ers. Traditionally, the company arranges for transportation after the production

schedule is made. This hierarchical decision making results in many contain-

ers being used only one way and travelling empty the other way. The company

thinks that transportation costs can be reduced significantly if the inbound and

outbound shipment schedules are coordinated so that the containers are utilized

both ways.

In practice, using the same vehicle for both inbound and outbound trans-

portation is reasonable since some suppliers and customers are close to each

other. Especially when import and export is done by sea, both suppliers and
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customers are reached at the ports. Hence, inbound vehicles can be used for out-

bound transportation to reduce supply chain costs. Coordination of inbound and

outbound transportation schedules with the production schedule by utilizing the

same vehicles in both ways is a great opportunity to decrease costs. Moreover,

economical utilization of commercial vehicles naturally leads to a decrease in en-

ergy consumption and pollution as well. Coordinating inbound and outbound

transportation decisions with the production schedule is especially suitable when

part of the production process is outsourced or the supplier and customer loca-

tions are close.

Despite the broad literature on supply chain scheduling with transportation

consideration, there are only few studies that consider using the same vehicle for

both inbound and outbound transportation. This research aims at solving the

production planning and transportation problem while utilizing inbound vehicles

for outbound transportation. Specifically, inspired by the recent developments

in the literature and the above real practice, we seek answers for the following

questions throughout the dissertation:

• How the production and transportation activities can be coordinated if the

same vehicles are utilized for both inbound and outbound transportation?

• How the production and outbound transportation problem can be inte-

grated with the inbound transportation schedule? What are the possible

generalizations?

• What are the factors that affect the structure of production and outbound

transportation problem? How do these factors affect the system perfor-

mance?

• What are the alternative solution approaches, and how do these approaches

vary? What are the benefits of solving production and transportation prob-

lems jointly? How do the problem parameters affect the value of integra-

tion?
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These are the basic motivations behind our study that we formulate the op-

timization problems and develop exact and heuristic procedures, and test their

performances under various experimental conditions. Considering different prob-

lem structures and solution procedures, the dissertation is divided into three

consecutive parts, each corresponding to a problem domain.

1.1 Scheduling-Transportation Problem

Shipment schedules of incoming materials and outbound delivery schedules in any

system are linked to the production schedule through the inventories of unpro-

cessed and processed jobs, respectively. In this research, our focus is on coordina-

tion of scheduling decisions involving production as well as inbound and outbound

transportation. We consider a setting consisting of two close warehouses–one for

unprocessed jobs and the other for processed jobs, and a production facility far

away from the warehouses. The unprocessed jobs are transferred to the produc-

tion facility using a finite number of capacitated vehicles. Each unprocessed job

requires processing in the production facility which is represented by a single

process. Upon completion of the process, the end products are delivered to the

warehouse using the same set of vehicles allowing effective utilization of the same

vehicles both in the inbound and outbound transportation. This kind of plan-

ning offers an opportunity but at the same time it turns out to be a challenge,

because there is a limit on the time that a vehicle can be held at the facility.

In this particular setting, the inventory holding costs for both types of jobs at

the production facility, transportation costs and times between the facility and

the warehouses are significant. Therefore, planning for effective interaction of the

schedules for the production facility and the vehicles, serves as an important tool

for lowering total inventory holding and transportation costs. The objective of

the proposed model is to minimize the sum of transportation costs and inven-

tory holding costs. Transportation characteristics such as travel times, vehicle

capacities, waiting limits are explicitly accounted for.

The first part of the dissertation contributes to the literature on supply chain
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scheduling under transportation considerations by modeling a practically moti-

vated problem, proving that it is stronglyNP-Hard, and conducting an analytical

and a numerical investigation of its solution. In particular, properties of the so-

lution space are explored, lower bounds on the optimal costs of the general and

the one-vehicle cases are developed, polynomially solvable cases are explored, and

a computationally-efficient heuristic is proposed for solving large-size instances.

The performances of the heuristic and the lower bounds are examined with an

extensive numerical analysis.

1.2 Production-Delivery Problem

In the second part of this dissertation, we study a specific problem in which

production planning and outbound transportation decisions are coordinated. The

system considered here can be viewed as a manufacturer that schedules a certain

number of orders on a single machine. Jobs have to be completed and delivered to

customers before their deadlines. Holding costs are incurred for items that stay

in the inventory. Deliveries can be made using a combination of heterogeneous

vehicles. Mainly, there are two vehicle types that are different in their availability

and costs over time. We study the manufacturer’s scheduling problem to minimize

total inventory holding and outbound transportation costs.

This coordination problem is motivated by a practice of home appliance man-

ufacturer in Turkey. This company produces hundreds of different types of prod-

ucts in their facilities, however, many of the raw materials needed for production

are the same in their product spectrum. Thus, the company plans procurement of

raw materials in advance, without regarding the exact product mix. Hence, from

the production planning perspective, it can be assumed that production facility

has a predetermined inbound transportation schedule which is almost known at

the beginning of the planning horizon. The vehicles arriving at the facility accord-

ing to the predetermined inbound transportation schedule can also be utilized for

outbound shipments.
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Note that, this common input characteristic can also be observed in auto-

motive and furniture industries. Although the final products are different, raw

materials are common for all end products. Plastic, lumber and steel are ex-

amples for common raw materials. For home appliance industry, certain plastic

materials are used in most of the products. Similarly, the same type of lumber

can be used to produce a variety of furniture. In all these industries, supply

decisions for common raw materials can be made in advance, allowing effective

utilization of inbound vehicles in the outbound transportation.

The manufacturing company in our setting, delivers the finished goods to

the customers by utilizing newly hired vehicles and/or by arranging for extended

use of incoming vehicles that have been already hired for inbound shipments.

When the manufacturer resorts to the latter option, an additional fee is paid in

proportion to the extended usage time of a vehicle. Using an already hired vehicle

may be less costly than hiring a new vehicle depending on this extra time. There

is no limit on the number of vehicles that can be hired, however, the number of

incoming vehicles is limited and changes over time. The manufacturer decides

the composition of vehicles to be used for each delivery after a production plan

is made and given the arrival times of incoming vehicles.

The idea of utilizing inbound vehicles for outbound transportation can be

generalized. In this extended setting, there are two types of vehicles with the same

capacity. The first type represents the newly hired vehicles which is expensive

and unlimited in number. Extended use of inbound vehicles are represented by

a second type, which is cheaper but its availability changes over time. In other

words, inbound vehicles that are used for outbound transportation are considered

to be a different type with less cost and varying availability.

In the detailed analysis of the problem, we identify three operating policies

that affect the structure of the problem. The combinations of the operating

policies lead to six different problem settings. For each possible combination of

operating policies affecting the problem structure, we either provide a pseudo-

polynomial algorithm for general cost structure or prove that no such algorithm

exists even for linear cost structure. We develop general optimality conditions and
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propose a generic model formulation that is valid for all possible combinations of

operating policies. We also evaluate the effects of the operating policies on the

system performance with an extensive computational analysis.

1.3 Hierarchical versus Central Coordination

The third part of the dissertation is dedicated to a detailed analysis of one of

the problems defined in the second part. In this part, we assume that an order

destined to a specific customer cannot be delivered in multiple batches and orders

of different customers cannot be delivered in the same vehicle. We propose math-

ematical formulations representing different decision making approaches (i.e., se-

quential versus integrated, optimal versus heuristic) and compare their solutions

in terms of overall costs.

As reported in many recent papers on supply chain scheduling (e.g., Chen

[7], Chen and Vairaktarakis [6], Wang and Lee [27]) and evidenced in our rela-

tions with this manufacturer as well with others, we have come to the conclusion

that it is a common practice in the industry that outbound transportation de-

cisions (e.g., transport mode choice, schedules of vehicles, routing of vehicles)

are made following a production plan. Furthermore, as objectives related to

production and customer service are given more priority, transportation costs

are either ignored, or it becomes too late to come up with a less costly deliv-

ery plan after the production is complete and orders are ready for delivery. In

keeping with this observation, we have identified three solution approaches re-

garding the decision making process for planning the production and outbound

transportation of orders. We refer to them as the uncoordinated solution, the

hierarchically-coordinated solution and the centrally-coordinated solution. These

approaches vary in how the underlying production and transportation subprob-

lems are solved, i.e., sequentially versus jointly, or, heuristically versus optimally.

We provide intractability proofs or polynomial-time exact solution procedures

for the subproblems and their special cases. We also compare the three solution

approaches over a numerical study to quantify the savings due to integration and
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explicit consideration of transportation availabilities.

The rest of the dissertation is organized as follows: next, we provide the re-

view of the related literature in Chapter 2. In Chapter 3, we develop a model to

find the schedules of the facility and the vehicles jointly, allowing effective utiliza-

tion of the same vehicles for both in the inbound and outbound transportation.

Chapter 4 is dedicated to the analysis of the integrated production and outbound

transportation problem with varying vehicle availabilities. The explanations of

different solution approaches within the specific context of our problems, and the

value of centralization are discussed in Chapter 5. Our major findings and contri-

butions are summarized and future research directions are discussed in Chapter

6.



Chapter 2

Literature Review

Supply chain scheduling with transportation considerations has received signifi-

cant attention over the past decade (e.g., Chang and Lee [3], Chen and Vairak-

tarakis [18], Li and Ou [17], Hall and Potts [11]). A common property of the

studies in this area is that they model the factory as performing a single pro-

cess on one machine or parallel machines, and consider the scheduling of a group

of jobs taking into account transportation times, capacities and/or costs in the

inbound and/or the outbound. In these models, a job requires some processing

at the shop floor (scheduling) and upon the completion of processing activities,

each job needs to be delivered to a customer or next facility for further processing

(transportation). The scheduling objectives are functions of delivery time rather

than completion time. As far as transportation issues are concerned, most pa-

pers focus on the delivery side (e.g., Chang and Lee [3], Li et al. [18], Wang and

Lee [27], Chen and Vairaktarakis [6], Chen and Pundoor [5], Wang and Cheng

[28], Zhong et al. [30]) while a few take into account both the inbound and the

outbound transportation (e.g., Li and Ou [17], Wang and Cheng [29]). Another

feature that differentiates these studies from one another, is the objective func-

tion they consider. Many of the papers reviewed, optimize a scheduling related

objective such as makespan or total tardiness (e.g., Chang and Lee [3], Li and

Ou [17], Li et al. [18], Wang and Cheng [28], Zhong et al. [30], Wang and Cheng

[29]) whereas others take account of a combined measure of transportation costs

9
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and scheduling objectives (e.g., Wang and Lee [27], Chen and Vairaktarakis [6],

Chen and Pundoor [5], Hall and Potts [11]).

In terms of the above attributes, the first part of our study models transporta-

tion issues both in the inbound and the outbound as Li and Ou [17], Wang and

Cheng [29] do. These two studies consider minimization of makespan whereas

our study aims to minimize total inventory holding and transportation costs.

Moreover, our study differs from Li and Ou [17] and Wang and Cheng [29] in the

characteristics of the settings, concerning the number of vehicles used and the lo-

cations they operate in-between. Wang and Cheng [29] assume that there are two

vehicles–one for carrying items in the inbound from the warehouse to the factory,

and one for carrying items in the outbound from the factory to a single customer

location. Another distinguishing feature of our study is that, the same vehicles

are used for both inbound and outbound transportation. Li and Ou [17], on the

other hand, model the availability of one vehicle travelling between a factory and

a warehouse where both the unprocessed and processed jobs are held. In fact,

within the context of supply chain scheduling with transportation considerations,

Li and Ou [17] stands out as the only paper that models utilization of the same

vehicle both in the inbound and outbound. Note that, in this kind of a setting,

production and vehicle schedules affect one another, and hence, they should be

made jointly.

In summary, the first part of our study is different from the existing literature

in the following ways: (i) we consider detailed scheduling model with transporta-

tion and inventory costs rather than scheduling related costs, (ii) both inbound

and outbound transportation decisions are coordinated with production schedule,

(iii) a finite number of capacitated vehicles are used and (iv) the benefit of using

the same vehicle for inbound and outbound transportation is explicitly modeled.

It is important to note that, a majority of the papers on supply chain schedul-

ing with transportation considerations model the existence of a single type of

transportation (e.g., Chang and Lee [3], Li et al. [18], Chen and Vairaktarakis

[6], Wang and Cheng [28], Hall and Potts [11]). Chen and Lee [4], Stecke and

Zhao [22], and Wang and Lee [27] are examples of the few studies that account
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Table 2.1: Summary of the studies in the literature
Transportation

Measure Outbound Inbound &
Single type Multiple types outbound

Scheduling Chang & Lee [3] Li & Ou [17]
Li et al. [18] Wang &

Wang & Cheng [28] Cheng [29]
Zhong et al. [30]

Scheduling + Chen & Wang & Lee [27]
Transportation Vairaktarakis [6] Chen & Lee [4]

Hall & Potts [11]
Chen and Pundoor [5]

Transportation Chen and Pundoor [5] Stecke & Zhao [22]

for different transportation choices. However, in all these studies the difference

among the transportation choices stems from delivery time and cost. Mainly,

it is assumed that the transportation alternative with a shorter delivery time is

more costly. Transportation costs are part of the objective function, and deliv-

ery times of orders either contribute to the costs (see Chen and Lee [4], and the

second problem in Wang and Lee [27]) or they are incorporated in a constraint

allowing for no tardiness (see Stecke and Zhao [22], and the first problem in Wang

and Lee [27]). In the second and third parts of our study, vehicle costs and ca-

pacities are explicitly modeled, and vehicles are considered as heterogeneous due

to the differences in their costs and availabilities. Mainly, the less costly vehicle

is less available. Furthermore, we take minimization of inventory holding and

transportation costs as an objective and do not allow for any job to be tardy. A

brief summary of the literature for supply chain scheduling with transportation

considerations is provided in Table 2.1. The columns of the table correspond to

different transportation considerations whereas the rows correspond to the objec-

tive measures each study consider. In the second row, the studies that consider a

scheduling related objective such as makespan or tardiness are given. The studies

in the third row consider a combined measure of scheduling related objectives and

transportation costs.

Integrated production and transportation planning problems are extensively

studied in the supply chain literature (e.g., Hwang and Jaruphongsa [12], Lee et
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al. [16], Cetinkaya and Lee [1], Cetinkaya et al. [2], Lee et al. [15]). A common

characteristic for these studies is providing a lot sizing model to investigate the

trade off between production and transportation or inventory holding costs (e.g.,

Hwang [13], Lee et al. [15], Cetinkaya and Lee [1]). Production cost, especially

production setup cost, is an important part of the total cost for this line of

research. In most of the studies in this literature, early deliveries are not allowed.

There are studies that use demand time windows to allow early or tardy deliveries

with a penalty cost (Hwang and Jaruphongsa [12], Lee et al. [16]). Hwang [13] and

Lee et al. [15] are examples in which only late deliveries are allowed (backlogging)

in order to save transportation costs.

In the second and third parts of our study, however, early deliveries are allowed

without any cost. A variety of production and transportation cost functions are

studied for the deterministic demand cases in the literature. Moreover, alternative

stochastic demand structures are also studied (Cetinkaya and Lee [1], Cetinkaya

et al. [2]). Although majority of the studies in the literature consider only

outbound transportation decisions and ignore inbound activities, there are a few

studies that consider inbound transportation (Toptal et al. [24], Jaruphongsa

et al. [14], Lee et al. [15]). In the majority of the papers, production capacity

is assumed to be infinite, however, there is a number of multilevel and multi

facility models with finite production capacities (Hoesel et al. [25], Lee et al.

[15], Eksioglu et al. [9]).

The second and third parts of this study are different from the literature

in the following ways: (i) vehicles used for inbound transportation are utilized

for outbound transportation, (ii) vehicles are considered as heterogenous due to

the differences in their costs and availabilities, (iii) there is a finite production

capacity with no production setup cost, (iv) multiple orders can be defined for

the same period, and (v) early deliveries are allowed without penalty.

It is a common practice in the industry that outbound transportation decisions

follow production decisions (e.g., Chen [7], Chen and Vairaktarakis [6], Wang and

Lee [27]). This leads suboptimal transportation decisions. Although integration

of production and transportation decisions reduces the total costs, the value of
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integration is not well studied in the literature except two papers (Chen and

Vairaktarakis [6], Pundoor and Chen [19].

The third part of the dissertation contributes to the literature by quantifying

the value of integration via comparing uncoordinated, hierarchically-coordinated

and centrally-coordinated solutions over an extensive computational test bed.

We now continue with the analysis of the first problem.



Chapter 3

Scheduling-Transportation

Problem

14



Coordination of Inbound and

Outbound Transportation

Schedules with the Production

Schedule

In this chapter, we study the problem of jointly finding the production schedule

of the facility and the schedules of a finite number of capacitated vehicles subject

to a waiting limit constraint at the facility. The objective is to minimize the total

inventory holding and transportation costs for a certain number of unprocessed

jobs to travel from an origin to a distant facility, get processed and return back to

the origin. All vehicles are assumed to be identical but their capacities, defined

in terms of the number of jobs they can carry, are allowed to be different in the

inbound and outbound.

The proposed model and its solution are also applicable in a setting where jobs

travel to and from a subcontractor for some of their operations to be performed.

The aforementioned appliance manufacturer outsources a portion of injection

molding process from a number of small subcontractors. Due to economies of

scale, the company imports and stores the raw materials in its facilities. When

there is a need for injection process, the raw materials are sent to subcontractors

and the molded parts are then shipped back to the factory using a finite number

of vehicles. A similar situation is valid for the textile industry in the US. Some

US textile manufacturers cut fabrics in the US and send cut fabrics to a low wage

15
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country for assembly. The assembled products are then returned to the US for

finishing. This kind of manufacturing relations are so common that, there are

even international agreements between the US and Mexico on reducing the duty

for outsourcing textile production activities from a subcontractor (Sen [21]). In

such cases, each production batch can be considered as a job, and our model may

be of use if the objective is to minimize the sum of transportation costs and the

inventory holding costs at the subcontractor.

The rest of the chapter is organized as follows: In the next section, we begin

with a detailed description of the problem and present a mixed integer linear

programming formulation. In Section 3.2, we establish the computational com-

plexity of the problem and present lower bounds on the optimal value of the

objective function. We also present some properties of a class of solutions for

the general case and a special case of the problem. Polynomial algorithms for

some special cases are provided in Section 3.3. This is followed by a description

of the proposed heuristic in Section 3.4. In Section 3.5, we report the results of

a computational study.

3.1 Problem Definition and Formulation

The system under consideration consists of two warehouses and a production

facility. The warehouses, the first for unprocessed jobs and the second for end

products, are close to each other. Therefore, they can be considered as in the

same location, that is the origin. The production facility is far away from the

warehouses. Unprocessed jobs are transferred from the first warehouse to the

production facility and end products are transported from the facility to the

second warehouse with m identical vehicles. The vehicle capacity of is k1 for

unprocessed jobs and k2 for the processed jobs. Waiting time of a vehicle at

the production facility is limited to l time units. A tour is referred to as the

run made by a vehicle which starts and ends at the first warehouse, and visits

the production facility and the second warehouse in that order. All vehicles are

initially located in close proximity to the first warehouse. Total duration of a
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tour, excluding the waiting time, loading and unloading times, is called tour time

and denoted by τ . The production facility is modeled as a single machine. An

unprocessed job i requires pi time units of processing at the facility. Loading and

unloading times are negligible.

A transportation cost c is incurred whenever a vehicle makes a tour, regardless

of the number of jobs carried. An unprocessed job waiting at the facility incurs an

inventory holding cost of $h1 per unit time until its processing starts. Similarly,

the inventory holding cost per unit per time of an end product at the facility

is denoted by h2. No inventory holding cost is incurred for the jobs while they

are being transported on the vehicles. The objective is to minimize the sum of

inventory holding costs at the facility, and inbound and outbound transportation

costs. A feasible solution to this problem should include the schedules of the

vehicles and the production facility, and an assignment of the jobs to the vehicles

for both inbound and outbound transportation.

The problem is first modeled as a nonlinear integer program. Then, an effec-

tive way for its linearization is proposed. Before presenting the model, we briefly

summarize our main assumptions and introduce additional notation for decision

variables.

Assumptions

• Each job occupies the same size on vehicle

• Tour cost and tour time are independent of the number of jobs carried

• All jobs have the same unit holding cost
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N : Set of jobs

σi : Starting time of the processing of job i. ∀i ∈ N.

αi : Arrival time of job i to the facility. ∀i ∈ N.

δi : Departure time of job i from the facility. ∀i ∈ N.

sij :

 1, if job i is to be processed before job j

0, otherwise
∀i, j ∈ N

at :
Arrival time of the vehicle in tour t

to the facility.
t = 1, . . . , 2 |N |

dt :
Departure time of the vehicle in tour t

from the facility.
t = 1, . . . , 2 |N |

ψt :

 1, if tth tour is utilized

0, otherwise
t = 1, . . . , 2 |N |

xit :


1,

if job i arrives at the facility

with tour t

0, otherwise

∀i ∈ N, t = 1, . . . , 2 |N |

yit :


1,

if job i departs from the facility

with tour t

0, otherwise

∀i ∈ N, t = 1, . . . , 2 |N |

M : A very big number
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min h1
∑
i∈N

(σi − αi) + h2
∑
i∈N

(δi − (σi + pi)) + c

2|N |∑
t=1

ψt

subject to

σj ≥ σi + pisij −M(1− sij) ∀i, j ∈ N (3.1)

σi ≥ αi ∀i ∈ N (3.2)

σi + pi ≤ δi ∀i ∈ N (3.3)

sij + sji = 1 ∀i, j ∈ N (3.4)
2|N |∑
t=1

xit = 1 ∀i ∈ N (3.5)

2|N |∑
t=1

yit = 1 ∀i ∈ N (3.6)∑
i∈N

xit ≤ k1ψt t = 1, 2, .., 2 |N | (3.7)∑
i∈N

yit ≤ k2ψt t = 1, 2, .., 2 |N | (3.8)

at+m ≥ dt + τ t = 1, . . . , 2 |N | −m (3.9)

dt ≥ at t = 1, . . . , 2 |N | (3.10)

dt ≤ at + l t = 1, . . . , 2 |N | (3.11)

αi =

2|N |∑
t=1

atxit ∀i ∈ N (3.12)

δi =

2|N |∑
t=1

dtyit ∀i ∈ N (3.13)

σi, αi, δi, at, dt ≥ 0 ∀i ∈ N, t = 1, . . . , 2 |N | (3.14)

sij, ψt, xit, yit ∈ {0, 1} ∀i, j ∈ N, t = 1, . . . , 2 |N | (3.15)

The first and the second terms of the objective function are inventory holding

costs for unprocessed and processed jobs, respectively. The third term corre-

sponds to the transportation costs. Constraint set (3.1) assures that there is

no overlap of the processing of different jobs. The set of constraints in (3.2) and

(3.3) restrict the processing of a job to be between its arrival and departure times.
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The sequence of jobs is maintained by Expression (3.4). Constraint sets (3.5) and

(3.6) ensure that each job is assigned to a tour for its arrival to and departure

from the production facility. Vehicle capacity constraints are modeled by (3.7)

and (3.8). (3.9)–(3.11) establish the link between arrival and departure times of

the tours. Finally, (3.12) and (3.13) make sure that arrival and departure times

of the jobs are consistent with the arrival and departure times of the tours they

are assigned to. Even though the constraint sets as defined by Expressions (3.12)

and (3.13) are nonlinear, they can easily be linearized as follows:

αi ≥ at − (1− xit)M ∀i ∈ N, t = 1, . . . , 2 |N |

αi ≤ at + (1− xit)M ∀i ∈ N, t = 1, . . . , 2 |N |

δi ≥ dt − (1− yit)M ∀i ∈ N, t = 1, . . . , 2 |N |

δi ≤ dt + (1− yit)M ∀i ∈ N, t = 1, . . . , 2 |N |

Since the vehicles are identical, there is no need to provide a different schedule

for each vehicle. Instead, we index the tours and decide on the arrival and

departure times of each tour. The maximum number of tours is 2|N |, in which

case each job arrives and departs with a different tour. The indexed tours are

assigned to vehicles in a uniform manner. If there are m vehicles, the first vehicle

makes the 1st, (m+1)st, (2m+1)st, ... tours, the second vehicle makes the 2nd, (m+

2)nd, (2m+ 2)nd, ... tours, etc. Without loss of generality, we assume that vehicle

k makes the tours k+mj where j ∈ Z+ ∪ {0}. An optimal solution of the above

integer program is post-processed and translated to an optimal solution of the

original problem. The post-processing is briefly assigning arrival and departure

times of the tours to the vehicles. If tour k is utilized (i.e., ψk = 1), its arrival

and departure times, to and from the production facility, are taken as those of

vehicle k at the first time it is used. Similarly, if tour k + mj is utilized, then

vehicle k is used at least j times, and the jth arrival and departure times of this

vehicle can be inferred from those of tour k +mj.
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3.2 Analysis of the Problem

In this section, we first show that the problem described in Section 3.1 is NP-

Hard in the strong sense. Therefore, the rest of our analysis aims at identifying

some properties of an optimal solution to reduce the set of feasible solutions. We

also propose some lower bounds on the optimal objective function value.

Theorem 3.1 The decision version of the problem (referred to as problem P) is

NP-Complete in the strong sense.

Proof: In the proof we consider the special case of one vehicle. Clearly the

generalization is also NP − Complete and P is in NP . Proof is done by a

reduction from 3-Partition(3P) problem. 3P is defined as follows.

3P: Given a set G of 3t elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for

each a ∈ A such that B/4 < s(a) < B/2 and such that
∑

a∈G s(a) = tB, can

G be partitioned into t disjoint sets G1,G2, . . . ,Gt such that
∑

a∈Gi s(a) = B for

i = 1, 2, .., t(note that each Gi must therefore contain exactly three elements from

G)?

REDUCTION: Given an instance of 3P, the instance of P is constructed as

follows: for each element a in set G, a job a is defined in set N with processing

time equal to s(a). Thus, N = G, |N | = 3t, pa = s(a),∀a ∈ G, τ = B, c = 4tB,

h1 = h2 = 1, z∗ = (t + 1)c + c
2
, k1 = k2 = 3, l = 0. We prove that there is a

solution to 3P if and only if there is a solution to P with objective less than or

equal to z∗.

Suppose that there is a feasible solution to P such that the cost z is less than

or equal to z∗. We show that there also exists a feasible solution to 3P. Since

l = 0, the vehicle is not allowed to wait at the facility. Therefore, the first tour

departs from the facility empty. As k1 = k2 = 3, the vehicle makes at least t+ 1

tours, with a transportation cost of c(t+ 1). Since z ≤ z∗ < c(t+ 2), the vehicle

makes exactly t + 1 tours. Therefore, tour i (i = 1, . . . , t) carries exactly three

jobs (whose total processing times is denoted by p̃i) to the facility, which should
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be processed by the time of the next arrival of the vehicle. At tour i, whatever

the processing sequence is, the inventory holding cost incurred is at least 2p̃i.

This is because, each job waits for the other two either after or before being

processed and h1 = h2 = 1. Then, the total inventory holding cost is at least

2
∑t

i=1 p̃i = 2
∑

a∈G pa = 2tB = c/2, that is z = z∗, which in turn implies that

the total inventory holding cost is exactly c/2. Note that p̃i ≥ τ, ∀i. Otherwise,

there would be an extra inventory holding cost incurred by all three jobs waiting

after or before being processed. However,
∑t

i=1 p̃i = tB, thus, we should have

p̃i = τ, ∀i. Then, one can obtain a feasible solution to 3P by taking Gi as the set

which includes the processing times of the jobs arriving with tour i. Conversely,

if there exists a feasible solution to 3P, a feasible solution to P can be obtained

by assigning the jobs whose processing times are the numbers in Gi to arrive with

tour i. Note that the parameter settings in the reduction are polynomial in the

size of the problem. Consequently, decision version of P is NP − Complete in

the strong sense.

The mathematical program in Section 3.1 formulates the problem of interest

in its most general form. This leads to many alternative solutions. However,

some of these solutions can be further eliminated by the following observation:

Vehicles are allowed to wait l time units at the production facility. This may

lead to alternative solutions in which some vehicles arrive early at the production

facility or depart late without affecting the rest of the schedule and without

exceeding the waiting time limit. In the rest of the section, we do not consider

such alternative solutions that involve unnecessary waiting of the vehicles at the

production facility. More specifically, we look into only the feasible solutions with

the following characteristics:

• Every tour t departs from the production facility at dt = max
(
at, δ(t)

)
.

Here, δ(t) is the latest completion time of processing among those of all the

jobs that depart from the production facility with tour t (if no such job

exists, δ(t) is taken as 0).

• Every tour t arrives at the production facility at at = min (dt, σ(t)) where

σ(t) is the earliest start time of processing among those of all the jobs that
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arrive to the production facility with tour t (if no such job exists, σ(t) is

taken as ∞).

We note that a solution may be optimal even though dt > max
(
at, δ(t)

)
for some

tour t as long as dt ≤ at + l. Similarly, a solution may be optimal even though

at < min (dt, σ(t)) for some tour t as long as at ≥ dt − l. However, we eliminate

these solutions for practical purposes. Furthermore, due to the identicalness of the

vehicles, indexing the tours with ψt = 1 such that a1 ≤ a2 ≤ . . ., an assignment

of vehicles to the tours can be made for any solution to also have d1 ≤ d2 ≤ . . .

The sequence of jobs in their nondecreasing order of arrival times to the fa-

cility is referred to as the inbound transportation sequence. As several items may

arrive to the facility in the same vehicle, an inbound transportation sequence re-

lated to a production sequence may not be unique. The sequence of jobs in their

nondecreasing order of departure times from the facility is referred to as the out-

bound transportation sequence. Similarly, an outbound transportation sequence

related to a production sequence may not be unique. The following two theorems

jointly imply that there is an optimal solution in which inbound and outbound

transportation sequences are in compliance with the production sequence.

Proposition 3.1 Every feasible solution can be converted to an alternative one

in which for all job pairs (i, j), if job i precedes job j in the production sequence,

job i arrives at the facility no later than job j.

Proof: Let S be a feasible solution such that job i precedes job j in the

production sequence but arrives at the facility later (i.e., σi < σj and αj < αi).

We have αj < αi ≤ σi < σj. Consider a new solution S ′ in which job i and job j

are swapped for their assignment to vehicles in inbound transportation. That is,

we now have α′i = αj and α′j = αi, where α′i and α′j are the arrival times of jobs

i and j in solution S ′, respectively. Note that S and S ′ have the same outbound

transportation and production schedules. Let TC(S) denote the cost of solution

S. TC(S) and TC(S ′) differ only in terms of inventory holding costs of jobs i

and j while they are waiting as unprocessed at the production facility. It follows
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that TC(S)−TC(S ′) = (σi−αi+σj−αj)h1− (σi−α′i+σj−α′j)h1 = 0. Thus, S ′

is equivalent to S in its objective function value. Continuing in this fashion and

swapping the inbound vehicle assignments all such (i, j) in S, results in another

feasible solution in which production sequence is in compliance with the inbound

transportation sequence.

Proposition 3.2 Every feasible solution can be converted to an alternative one

in which for all job pairs (i, j), if job i precedes job j in the production sequence,

job i departs from the facility no later than job j.

Proof: Similar to that of Proposition 3.1.

Proposition 3.1, Proposition 3.2 and their proofs imply that there exists an

optimal solution in which if job i precedes job j in the production sequence,

then job i arrives at the facility and departs from the facility no later than job j

does. This can be accomplished by a pairwise interchange of job assignments to

the vehicles for their inbound and outbound transportation. The following two

propositions present additional properties involving the jobs that arrive at and

depart from the production facility together.

Proposition 3.3 If h1 < h2, there exists an optimal solution in which jobs that

arrive at and depart from the production facility together, are processed in LPT

(Longest Processing Time first) order.

Proof: We know from Proposition 3.1, Proposition 3.2 and their proofs that

there exists an optimal solution in which if job i precedes job j in the production

sequence, then job i arrives at the facility and departs from the facility no later

than job j. The proof of the current theorem will follow by showing that, if

h1 < h2, in such an optimal solution, jobs that arrive to and depart from the

facility together are processed in LPT order. Hence, in case of h1 < h2, there

exists an optimal solution with the property stated in the theorem.

Take an optimal solution S in which inbound, outbound and production se-

quences are in compliance. Note that, in this solution, jobs that arrive to and
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depart from the production facility together are processed consecutively. Assume,

by contradiction, that S does not comply with the theorem. Therefore, there ex-

ists at least a pair of adjacent jobs i and j in the production schedule that arrive

to and depart from the facility together (αi = αj, δi = δj), however, job i precedes

job j in the production schedule (σi < σj = σi + pi) despite pi < pj.

Construct another feasible solution S ′ from S by interchanging jobs i and j

in the production sequence. We now have σ′j = σi, σ
′
i = σ′j + pj, where σ′i and σ′j

are the starting times of processing of jobs i and j in S ′, respectively. Note that,

S and S ′ are only different in their production schedules of these two jobs. Let

TC(S) denote the total cost of solution S. We have

TC(S) −TC(S ′) =

[(σi − αi + σj − αj)h1 + (δi − (σi + pi) + δj − (σj + pj))h2]

−
[
(σ′i − αi + σ′j − αj)h1 +

(
δi − (σ′i + pi) + δj − (σ′j + pj)

)
h2
]
,

which leads to

TC(S)− TC(S ′) = (σi + σj − σ′i − σ′j)(h1 − h2)
= (pj − pi)(h2 − h1).

Since pj > pi and h2 > h1, the above expression is greater than zero. This

implies TC(S ′) < TC(S), which contradicts with the optimality of S. Therefore,

if h1 < h2, jobs that arrive to and depart from the production facility together,

should be processed in LPT order.

Proposition 3.4 If h1 > h2, there exists an optimal solution in which jobs that

arrive at and depart from the production facility together are processed in SPT

(Smallest Processing Time first) order.

Proof: Similar to that of Proposition 3.3.

3.2.1 Lower Bound Scheme

In this section, we propose two lower bounds on the optimal value of the objective

function. The first lower bound, which is presented in Corollary 3.1, concerns the
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general case where there may be more than one vehicle. The second lower bound,

which is presented in Corollary 3.2, applies to the case of one vehicle. Recall that,

the objective function is composed of inventory holding and transportation costs.

Given the number of tours, which will be denoted by ω, transportation cost is

fixed and is equal to c × ω. Note that, ω may range from
⌈

|N |
min (k1,k2)

⌉
to 2|N |.

For a specified value of ω, Theorem 3.2 and Theorem 3.3 introduce lower bounds

on inventory holding costs considering the general case and the one-vehicle case,

respectively. A lower bound on the objective function value of an optimal solution

in each case is then given by the minimum, over all possible ω values, of the sum

of lower bound on inventory holding costs and the value c×ω. The lower bounds

in Corollary 3.1 and Corollary 3.2 rely on this fact.

We start with presenting a lower bound on inventory holding costs for the

general case.

Theorem 3.2 Given the number of tours, i.e. ω, the following is a lower bound

on the total inventory holding costs:

LB′I(ω) =


|N |∑
i=1

⌊
i− 1

ω

⌋
p(i)

 (h1 + h2).

Here, bxc refers to the largest integer that is smaller than or equal to x, and, (i)

refers to the index of the job with the ith longest processing time.

Proof: Total inventory holding costs are composed of inventory holding costs

for unprocessed jobs and processed jobs. For the proof of the theorem, we will

first find lower bounds individually for each component, and later, we will sum

them up. In reaching a lower bound for unprocessed jobs, we will ignore the effect

of any scheduling decision on the inventory holding costs of the processed jobs.

This is equivalent to momentarily assuming that h2 = 0. Likewise, in deriving a

lower bound for processed jobs, we will assume that h1 = 0.

Let us start with the inventory holding costs of the unprocessed jobs. The

production facility will never be idle as long as there is some job waiting to be

processed. Therefore, the inventory holding costs of unprocessed jobs are given
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by
∑|N |

i=1 µ
1
i pih1, where µ1

i is the number of jobs that wait for job i as unprocessed.

Since there are ω tours, we have at most ω jobs with µ1
i = 0, at most ω jobs with

µ1
i = 1 and so on. The expression

∑|N |
i=1 µ

1
i pih1 is minimized when jobs with

longer processing times have smaller µ1
i values as multipliers. That is, when the

longest ω number of jobs are chosen to have µ1
i = 0, the next longest ω number

of jobs are chosen to have µ1
i = 1 and so on. This is achieved by assigning each

of the first ω jobs with longer processing times to a different tour and processing

it the last among all the jobs in that tour. Similarly, each of the next longest ω

number of jobs is assigned to one of ω different tours, and placed as second from

the end in the processing sequence of all the jobs in that tour, and so on. This

leads to
|N |∑
i=1

µ1
i pih1 ≥

|N |∑
i=1

µ1
(i)p(i)h1, (3.16)

where µ1
(i) =

⌊
i−1
ω

⌋
and (i) is the index of the job with the ith largest processing

time. Hence, the right side of the above inequality is a lower bound on the

inventory holding costs of unprocessed jobs.

A lower bound on the inventory holding costs of the processed jobs can be

derived in a similar way. Let µ2
i be the number of jobs that wait for job i as

processed. Then, the inventory holding costs of the processed jobs are given by∑|N |
i=1 µ

2
i pih2. With a similar argument as in the case of unprocessed jobs, we have

|N |∑
i=1

µ2
i pih2 ≥

|N |∑
i=1

µ2
(i)p(i)h2,

where µ2
(i) =

⌊
i−1
ω

⌋
and (i) is the index of the job with the ith largest processing

time. The right side of the above inequality is a lower bound on the inventory

holding costs of the processed jobs. Therefore, its summation with the right side

of inequality (3.16) gives a lower bound on the total inventory holding costs for

a given value of number of tours (i.e., w).

Next, based on the above theorem, we present a lower bound on the objective

function value of an optimal solution.

Corollary 3.1 A lower bound on the total cost of an optimal solution is given
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by

LB1 = min⌈
|N|

min (k1,k2)

⌉
≤ω≤2|N |

{LB′I(ω) + cω}.

The following theorem provides a lower bound on inventory holding costs for

the one-vehicle case.

Theorem 3.3 Given the number of tours, i.e. ω, the following is a lower bound

on the total inventory holding costs when there is a single vehicle:

LB′′I (ω) =

|N |∑
i=1

{
I(i)
(
τ − p(i)

)
min(h1, h2) +

⌊
i− 1

ω

⌋
p(i)|h1 − h2|

}
.

Here, (i) refers to the index of the job with the ith longest processing time and I(i)

is an indicator variable with the following value:

I(i) =

{
1, if τ > p(i) > l

0, otherwise.

Proof: The proof of Theorem 3.3 follows based on a similar idea which underlies

the proof of Theorem 3.2. In general, a job may contribute to the total inventory

holding costs in two ways; one is due to the waiting of the job for its delivery until

the departure of next available vehicle (it may wait processed or unprocessed), and

the other is the inventory holding cost of a job while it waits for the processing of

the other jobs. Note that some of these waiting times may overlap. Theorem 3.2

and its proof build on a consideration of the second cause for waiting of any job.

Herein, we will also take into account the waiting of jobs for their pickup until a

vehicle becomes available. Notice that, this is easier to do in case of one vehicle,

because in this case, we know that the time between the drop-off and pick-up of

a job, if τ > pj > l, is at least τ . The remaining part of the proof relies on this

observation and accounts for the two reasons of waiting.

If τ > pj > l for some job j, the job has to wait for the return of the vehicle as

long as at least τ −pj time units. Ignoring other jobs at the facility momentarily,

if h1 < h2, the inventory holding cost due to the waiting of this job for the return
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of the vehicle can be minimized if the job is held unprocessed during its waiting

time. That is, the machine is kept idle for τ −pj time units, during which the job

contributes to the total inventory holding costs in an amount of at least h1(τ−pj).
If h2 < h1, the job’s contribution to the total inventory holding costs is decreased

if it is held processed. This, in turn, leads to an inventory holding cost of at

least h2(τ − pj). Thus, the inventory holding cost incurred by this job due to the

first reason is at least (τ − pj)min(h1, h2), and this is valid for all jobs for which

τ > pj > l.

Note that summing up (τ −pj)min(h1, h2) for all jobs, we already include the

waiting time of a job either in its unprocessed or processed state. Recall that

Theorem 3.2 proposes
∑|N |

i=1

⌊
i−1
ω

⌋
p(i)(h1 + h2) as a lower bound on inventory

holding costs due to the waiting of the jobs for one another. The cost of waiting

due to the vehicle unavailability is incorporated in the above calculations by

considering a job’s state at which the inventory holding cost rate is minimum.

Therefore, the waiting of jobs in their minimum cost state is already penalized. To

that, we add the term
⌊
i−1
ω

⌋
p(i)|h1−h2| for each job to account for the incremental

cost of waiting of jobs for one another, which has not been incorporated in the

(τ − pj)min(h1, h2) term.

Based on Theorem 3.3, the following corollary provides a lower bound on the

objective function value of an optimal solution when m = 1.

Corollary 3.2 In case of a single vehicle, a lower bound on the total cost of an

optimal solution is given by

LB2 = min⌈
|N|

min (k1,k2)

⌉
≤ω≤2|N |

{max(LB′I(ω), LB′′I(ω)) + cω}.

3.2.2 A Special Case: Restricted Outbound Transporta-

tion Policy

For the problem of interest, a mathematical model is presented in Section 3.1.

Even in small-sized instances, this model has very long solution times (e.g., in the
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order of a week for 10 jobs). Due to the proposed lower bounds and some char-

acteristics of the optimal solutions, computational times decrease significantly.

However, they are still too long to be considered as practical. Upon the analysis

of the optimal solutions for some small sized instances (i.e., up to 10 jobs), we

have detected a property which reveals itself commonly. It involves a certain

relation between inbound and outbound transportation sequences. In the rest

of this section, we restrict our analysis to the set of solutions which exhibit this

property. The heuristic approach that will be presented in Section 3.4 also utilizes

this property. We next present it as an assumption.

Assumption 3.1 A job arriving with the tth tour either departs with the same

tour (i.e., tour t) or the next tour (i.e., tour t+ 1).

The set of solutions restricted to the above assumption does not always include

an optimal one. However, numerical evidence shows that the cost of an optimal

solution under this policy is close to that of a global optimum in practical cases.

Moreover, if the number of vehicles is one or the waiting limit is zero, the set

of solutions that have the above property would include an optimal solution.

Furthermore, combining Proposition 3.1 and Proposition 3.2, one can conclude

that there exists an optimal solution under this assumption with the following

characteristics: The sequence of jobs in the production schedule can be grouped

into blocks such that the first block consists of the jobs that both arrive and

depart with the first tour, the second block consists of the jobs that arrive with

the first tour and depart with the second tour, and so on. We refer to this

characteristic of a sequence as a block structure. In Figure 3.1, an illustration of

a sequence displaying this structure is presented. The arrows pointing inwards

the figure coincide with inbound transportation times and the arrows pointing

outwards coincide with the outbound transportation times.

In the next two propositions, we present some characteristics of an optimal

solution exhibiting the block structure under Assumption 1.

Proposition 3.5 For a setting where h1 ≥ h2, consider an optimal solution

under Assumption 1 which exhibits the block structure. In this solution, if two
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Figure 3.1: Block structure of a solution.

jobs arrive at the facility together but depart from the facility with different tours,

then the processing time of the job which departs later must be greater than that

of the other.

Proof: Consider an optimal solution S under Assumption 1 which exhibits the

block structure. Assume, in contradiction to the proposition, that there exist two

jobs u and v that arrive at the facility together, u departs earlier than v, and

pu > pv. Figure 3.2 is an illustration of such a solution. A, B, C and D in the

figure refer to sets of jobs with certain common characteristics. More specifically,

A and B are groups of jobs that arrive at the facility with job u at time t0 and

leave the facility with job u at time t1. Jobs in A are processed before job u and

jobs in B are processed after job u. Jobs in C and D also arrive at the facility with

job u, however, they leave the facility with job v and at time t2. In mathematical

terms,

αi = t0 ∀i ∈ A ∪B ∪ C ∪D ∪ {u, v},
δi = t1 ∀i ∈ A ∪B ∪ {u},
δi = t2 ∀i ∈ C ∪D ∪ {v}.

Note that, any of the sets A, B, C and D may be empty.

Figure 3.2: An illustration of a solution in contradiction to Proposition 3.5.
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Now, consider a new solution S ′ that is formed by interchanging the positions

of jobs u and v in the production sequence and their assignments to vehicles in

the outbound transportation. Figure 3.3 is an illustration of such a solution.

Figure 3.3: An illustration of the updated solution S ′.

Denoting σi as the starting time of processing of job i in solution S, in the

new schedule S ′ we have

α′i = t0 ∀i ∈ A ∪B ∪ C ∪D ∪ {u, v},
σ′i = σi ∀i ∈ A ∪D,
σ′i = σi − pu + pv ∀i ∈ B ∪ C,
δ′i = t1 − pu + pv ∀i ∈ A ∪B ∪ {v},
δ′i = t2 ∀i ∈ C ∪D,
δ′u = t2, σ′u = σv − pu + pv, σ′v = σu.

As the number of tours in S ′ remains the same as the one in S, the total costs of

the two solutions differ only in their inventory holding cost component, and the

difference is

TC(S)− TC(S ′) =∑
i∈A∪B∪C∪D∪{u,v}

(σi − t0)h1 + (δi − σi − pi)h2 − (σ′i − t0)h1 − (δ′i − σ′i − pi)h2,

which reduces to

TC(S)− TC(S ′) =
∑

i∈∈A∪B∪C∪D∪{u,v}

(σi − σ′i)h1 + {(δi − δ′i) + (σ′i − σi)}h2.

When the values of δi, σ
′
i, δ
′
i are plugged in the above expression for each group

of jobs, it can be rewritten as
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TC(S)− TC(S ′) =∑
i∈A

(σi − σi)h1 + {t1 − (t1 − pu + pv) + (σi − σi)}h2

+
∑
i∈B

(σi − (σi − pu + pv))h1

+
∑
i∈B

{(t1 − (t1 − pu + pv)) + ((σi − pu + pv)− σi)}h2

+
∑
i∈C

(σi − (σi − pu + pv))h1 + {(t2 − t2) + ((σi − pu + pv)− σi)}h2

+
∑
i∈D

(σi − σi)h1 + {(t2 − t2) + (σi − σi)}h2

+(σu − (σv − pu + pv))h1 + {(t1 − t2) + ((σv − pu + pv)− σu)}h2
+(σv − σu)h1 + {(t2 − (t1 − pu + pv)) + (σu − σv)}h2.

After some cancelations and rearrangement of terms, the above expression reduces

to

TC(S)− TC(S ′) =∑
i∈A

(pu − pv)h2 +
∑
i∈B

(pu − pv)h1 +
∑
i∈C

(pu − pv)(h1 − h2) + (pu − pv)h1,

which is equivalent to

TC(S)− TC(S ′) = (pu − pv) (|A|h2 + |B|h1 + |C| (h1 − h2) + h1) .

Note that under the h1 ≥ h2 condition of this proposition, we assume h1 > 0 be-

cause, otherwise we would have h1 = h2 = 0, which would be trivial. Combining

with pu > pv, we conclude that TC(S)− TC(S ′) > 0. This contradicts with the

optimality of S.

Proposition 3.6 For a setting where h2 ≥ h1, consider an optimal solution

under Assumption 1 which exhibits the block structure. In this solution, if two

jobs depart from the facility together but arrive at the facility with different tours,

then the processing time of the job which arrives earlier must be greater than that

of the other.

Proof: Similar to that of Proposition 3.5.
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3.3 Polynomial Algorithms for Special Cases

In this section we identify two polynomially solvable versions of the problem.

In the first one, we assume that the production schedule of the facility is given

and we provide an exact algorithm to find inbound and outbound transportation

schedules for a single vehicle. If the number of vehicles (m) is greater than 1, the

algorithm can be modified to find a good feasible solution by dividing τ by m.

In the second version, we have the number of tours and the production sequence

known, an exact algorithm is developed under Assumption 1 for the cases where

the number of vehicles is one or each vehicle makes at most one tour.

3.3.1 Exact Solution when Production Schedule is Known

Production plan of a facility does not solely depend on transportation or in-

ventory decisions. In order to optimize some other performance measures, the

production schedule may be predetermined. Moreover, the integrated problem

is NP − Hard in the strong sense as proven in Theorem 3.1. For this type of

complex problems, practitioners usually use a hierarchical approach and solve

the subproblems sequentially. In such a setting, production scheduling decision

is made first in the hierarchy. Then, the transportation scheduling decision is

made according to the production schedule. In this section we develop a dynamic

programming formulation that can be used to solve the transportation problem in

polynomial time for a single vehicle. For the sake of clarity of the exposition, first

a pseudo-polynomial version is introduced, then it is proven than the algorithm

may in fact run in polynomial time after some modifications.

3.3.1.1 Pseudo-polynomial Algorithm

By Propositions 3.1 and 3.2 we know that there is an optimal solution in which the

processing and transportation sequences are the same. We relabel jobs according

to the processing sequence such that the first job in the sequence is labeled as

job1, and so on. We assume that all temporal data is integer. The time spent
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by a vehicle for the transportation from the first warehouse to production facility

is denoted by τ1, and let σi and φi be the start and completion times of job i,

respectively, at the given schedule.

Algorithm 3.1 Define:

C(t, i, j, 1) :

Minimum cost accumulated by time t if the first i jobs have

arrived to the facility and the first j jobs (j ≤ i) have

departed from the facility and the vehicle is at the facility.

C(t, i, j, 0) :

Minimum cost accumulated by time t if the first i jobs have

arrived to the facility and the first j jobs (j ≤ i) have

departed from the facility and the vehicle is at the warehouse.

h(t1, t2, i, j) =

Inventory holding cost incurred between times t1 and t2 if

the first i jobs have arrived to the facility and first j

jobs (j ≤ i) have departed from the facility.

Specifically, we have

h(t1, t2, i, j) =
i∑

w=j+1

[h2(t2 −max(φw, t1))
+ + h1(min(σw, t2)− t1)+]

where X+ := max(0, X).

The recursion is as follows:

C(t, i, j, 1) = min
0≤λ≤l

{ min
0≤k≤k1


C(t− τ1 − λ, i− k, j, 0)+

h(t− τ1 − λ, t− λ, i− k, j)+
h(t− λ, t, i, j)

}

C(t, i, j, 0) = min


min
0≤λ≤t

{C(t− λ, i, j, 0) + h(t− λ, t, i, j)}

min
0≤k≤k2

{
C(t− (τ − τ1), i, j − k, 1)+

C + h(t− (τ − τ1), t, i, j)

}

Note that the calculation of function h takes O(|N |) time. The optimal objective

function value is C(T, |N | , |N | , 0) where T is the makespan of the schedule. This

value can be found by the above recursions and initial conditions. An optimal

solution to the problem can be found by standard backtracking techniques.
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If the vehicle is at the facility, assume that the vehicle is waiting at the facility

for λ time units (0 ≤ λ ≤ l). The vehicle must have departed from the facility

at time t − τ1 − λ and arrived at the facility at time t − λ. If the vehicle is

carrying any jobs, then the last k (0 ≤ k ≤ k1) jobs must have been arrived at

the facility with this tour. The vehicle was at the facility at time t− τ1 − λ with

jobs (1, . . . , i − k) arrived at the facility and j jobs departed from the facility.

At that time the cost was C(t− τ1 − λ, i− k, j, 0). Two kinds of inventory costs

accumulates during (t− τ1−λ, t). The first one is while the vehicle is on the way

to the facility. This is between t− τ1−λ and t−λ and in this time interval, jobs

j+1, j+2, . . . , i−k incur inventory holding cost of h(t−τ1−λ, t−λ, i−k, j). The

second inventory cost is incurred between the times t− λ and t. Jobs j + 1, . . . , i

incur inventory holding cost of (t− λ, t, i, j) units.

If the vehicle is at the origin, there are two possibilities. Either the vehicle

is at the origin waiting for some time (λ), or has just arrived. If the vehicle is

waiting for the last λ time units, the cost is C(t− λ, i, j, 0) plus the accumulated

inventory cost during this interval which is h(t− λ, t, i, j). If the vehicle has just

arrived at the warehouse, it must have been departed from the facility at time

t − (τ − τ1) and it carries the last k (0 ≤ k ≤ k2) jobs from the facility to the

warehouse. The cost corresponding to this case is C(t− (τ − τ1), i, j − k, 1). The

jobs j−k+ 1, j−k+ 2, . . . , j are carried with this last tour. As these jobs depart

from the facility at time t− (τ − τ1) the inventory cost incurred during this time

is h(t − (τ − τ1), t, i, j). As the tour has just completed, single tour cost C is

added to the total cost.

Without loss of generality we assume that the schedule starts at time 0, and

the first tour departs from the first warehouse at time −τ1.

C(−τ1, 0, 0, 0) = 0

C(t, i− 1, j, 0) = C(t, i− 1, j, 1) =∞ ∀t, i, j : t > σi

C(t, i, j, 0) = C(t, i, j, 1) =∞ ∀t, i, j : t < φj

C(t, i, j, 0) = C(t, i, j, 1) =∞ ∀t, i, j : i < j

C(t, i, j, 0) = C(t, i, j, 1) =∞ ∀t, i, j : −τ1 6= t < 0
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Note that calculation of C(t, i, j, 0/1) requires O(T |N |2) operations, and is

calculated for O(T |N |2) times, resulting in a time complexity of O(T 2 |N |4).
Thus, this algorithm is unary-polynomial.

3.3.1.2 Polynomial Algorithm

This algorithm is similar to the previous one except, C(t, i, j, 0/1) values are

calculated only at a polynomial number of time points.

Recall that, we only consider solutions in which, every tour t departs from the

production facility either as soon as it arrives or at the latest completion time of

processing among those of all the jobs that depart from the production facility

with tour t. Similarly, we assume that in feasible solutions, every tour t arrives at

the production facility either at the earliest start time of processing among those

of all the jobs that arrive to the production facility with tour t or it coincides

with the departure time.

Hence, we only need to calculate C(t, i, j, 0/1) values at possible arrival and

departure times, one of which should correspond to the starting or completion

time of some job. One can, therefore, form the set of possible arrival and de-

parture times of the tours by offsetting the starting and/or completion times of

the jobs in the production schedule by integer multiples (including negative ones)

of tour time τ . Note that there are O(|N |) starting or completion times in the

production schedule which forms O(|N |) intervals on the real line. At each inter-

val, there can be O(|N |) possible arrivals or departures. For example, consider

the interval during which job j receives its processing. In that interval, there

can be at most j − 1 departures (jobs 1, 2, ..., j − 1) and at most |N | − j arrivals

(jobs j + 1, ..., |N |). Thus, there are O(|N |) intervals and O(|N |) possible arrival

and departure times within each interval leading to a total of O(|N |2) possible

arrival and departures. Consequently, we have O(|N |) offsets within each inter-

val, resulting in O(|N |3) offsets (i.e. possible arrival or departure times). With

this modification, evaluating C(t, i, j, 0/1) at O(|N |3) instead of O(T ) points is

enough. Therefore, replacing O(T ) with O(|N |3), the time complexity of this
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algorithm is O(|N |10). Note that for this algorithm there is no need for temporal

data to be integer.

Thus, if the production schedule is known in advance and there is a single

vehicle, an optimal transportation schedule can be found in O(|N |10) time which

is polynomial in the size of the problem.

3.3.2 Exact Solution when Production Sequence and

Number of Tours is Known under Assumption 1

In this section, we develop a polynomial time algorithm when the production

sequence (rather than schedule) is known and the number of tours made is pre-

determined. The algorithm works either for the case with a single vehicle or the

number of vehicles is not less then the number of tours (i.e, each vehicle makes

at most one tour). The algorithms are first derived for the single vehicle cases,

then, a modification of the algorithms is proposed for the case where each vehicle

makes at most one tour. Throughout this section, without loss of generality, we

assume that the sequence of jobs is (1, 2, . . . , n) where n = |N |.

3.3.2.1 Number of tours is 2

The sequence can be divided into three blocks as shown in Figure 3.4. The first

block arrives at and departs from the facility with the first tour. The second block

arrives with the first tour but departs with the second tour. The jobs in the last

block arrives at and departs from the facility with the second tour. Solving the

problem is equivalent to deciding jobs i and j (i.e. the last jobs of the first and

second blocks). We define a partial cost function for each block of jobs in Figure

3.4 (C1 for the first block, C2 for the second block and C3 for the last block).

Define partial cost functions and the feasibility set as follows.
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Figure 3.4: Solution with 2 tours

Algorithm 3.2

C1(i) =
i∑

u=1

{
u−1∑
v=1

h1pv +
i∑

v=u+1

h2pv

}

C2(i, j) =

j∑
u=i+1

{
u−1∑
v=1

h1pv +
n∑

v=u+1

h2pv + (τ −
j∑

v=i+1

pv)
+ min (h1, h2)

}

C3(j) =
n∑

u=j+1

{
u−1∑
v=j+1

h1pv +
n∑

v=u+1

h2pv

}

X :=

(i, j) :

1 ≤ i ≤ j ≤ n,∑i
v=1 pv ≤ l,

∑n
v=j+1 pv ≤ l,

j ≤ k1, n− j ≤ k1,

i ≤ k2, n− i ≤ k2


The optimal objective function value with 2 tours is

z∗ = min
(i,j)∈X

{C1(i) + C2(i, j) + C3(j) + 2c}

Note that the complexity of the algorithm is O(n4) as calculation of C1, C2 and

C3 takes O(n2) operations and the minimization is taken over O(n2) values. If

the number of vehicles is greater than 1, the problem can still be solved optimally

with the modification of C2(i, j) as follows:

C2(i, j) =

j∑
u=i+1

{
u−1∑
v=1

h1pv +
n∑

v=u+1

h2pv

}

3.3.2.2 Number of tours is 3

The sequence can be divided into five parts as shown in Figure 3.5. The first

part arrives at and departs from the facility with the first tour. The second
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part arrives with the first tour but departs with the second tour, and so on. In

other words, (odd, even) consecutive pairs arrive at the facility and (even, odd)

consecutive pairs depart from the facility together. Similar to the previous case

define partial cost functions and feasibility set as follows.

Figure 3.5: Solution with 3 tours

Algorithm 3.3

C1(i) =
i∑

u=1

{
u−1∑
v=1

h1pv +
i∑

v=u+1

h2pv

}

C2(i, j, k) =

j∑
u=i+1

{
u−1∑
v=1

h1pv +
k∑

v=u+1

h2pv + (τ −
j∑

v=i+1

pv)
+ min (h1, h2)

}

C3(j, k) =
k∑

u=j+1

{
u−1∑
v=j+1

h1pv +
k∑

v=u+1

h2pv

}

C4(j, k, `) =
∑̀
u=k+1

{
u−1∑
v=j+1

h1pv +
n∑

v=u+1

h2pv + (τ −
∑̀
v=k+1

pv)
+ min (h1, h2)

}

C5(`) =
n∑

u=`+1

{
u−1∑
v=`+1

h1pv +
n∑

v=u+1

h2pv

}

X :=


(i, j, k, `) :

1 ≤ i ≤ j ≤ k ≤ ` ≤ n,
i∑

v=1

pv ≤ l,
k∑

v=j+1

pv ≤ l,
n∑

v=`+1

pv ≤ l,

j ≤ k1, `− j ≤ k1, n− ` ≤ k1,

i ≤ k2, k − i ≤ k2, n− k ≤ k2


The optimal objective function value when number of tours is 3 is

z∗ = min
(i,j,k,`)∈X

{C1(i) + C2(i, j, k) + C3(j, k) + C4(j, k, `) + C5(`) + 3c}

Note that the calculation of z∗ can be done in O(n6) operations. This is the

case for single vehicle. If the number of vehicles is greater than 3, the problem can
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still be solved optimally with a proper modification of C2(i, j, k) and C4(j, k, `)

similar to the case where the number of tours is 2.

In general, if the number of tours is ω, one can formulate the partial cost

functions and feasibility set by dividing the production sequence into 2ω−1 parts.

The first and the last partial costs are functions of a single variable. The odd and

even numbered partial costs are functions of two and three variables, respectively.

Each partial cost can be evaluated in O(n2) time. The minimization is done on

O(n2ω−2) total cost values, each having ω summations, leading to a O(ωn2ω) time

complexity. Given the number of tours, the problem can be solved in polynomial

time.

3.4 Heuristic Procedure

In this section, we present a heuristic based on Assumption 3.1, Proposition 3.3

and Proposition 3.4. Recall that, due to Proposition 3.1 and Proposition 3.2, there

exists a solution with the block structure which is optimal under Assumption 3.1.

The underlying idea behind the proposed heuristic is to find this solution, which

obviously is restricted to the set of policies satisfying Assumption 3.1–and hence

not necessarily optimal for the original problem. Furthermore, the procedure for

finding an optimal solution that exhibits the block structure is based on beam

search. Therefore, the output of the proposed procedure constitutes a heuristic

solution for this problem as well.

The heuristic evolves over a search tree with the following characteristics: At

level 0 of the search tree, there is a single node with no information, that is the

root node. We first branch on the number of tours ω. Note that w may range from⌈
|N |

min (k1,k2)

⌉
to 2|N |. Figure 3.6 illustrates part of the search tree for a sample

problem with
⌈

|N |
min (k1,k2)

⌉
= 1. Conditioning on the value of w, Theorem 3.2

implies that LB′I(ω) + cω is a lower bound on total costs when m > 1. Similarly,

Theorem 3.3 suggests that max{LB′I(ω), LB′′I(ω)} + cω is a lower bound on the

total costs when m = 1. In subsequent parts of the search tree, we branch on
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different blocks for a given w value, and at each level, we consider the assignment

of a job to one of the blocks. Figure 3.6 shows how further branching is performed

at the second level conditioning on w = 4. Note that, in this case, there are seven

blocks, each block referring to a different pair of assignments of a job to a tour for

its inbound and outbound transportation. For example, when a job is assigned

to block 2-3, it is implied that the job arrives at the facility with the second tour

and leaves the facility with the third tour. In general, if there are w tours, then

there are 2w − 1 number of different blocks that a job can be assigned to.

Figure 3.6: An illustration of the search tree.

We refer to the tree structure that emanates from a node at the first level a

subtree. Notice that, there are at most 2|N | number of subtrees in a search tree.

Our search for the best solution over the search tree gives full consideration to all

the subtrees in order of increasing w. However, only a certain number of nodes

are kept for further consideration at each level of a subtree. Therefore, our search

for the best solution conditioning of a value of w, unfolds in accordance with the

beam search approach. The number of nodes that are explored further at each

level of the subtree is a parameter of this approach, and is referred to as the beam

width.
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Since the subtrees corresponding to different values of w are explored sequen-

tially, a feasible solution may be obtained from the search of each subtree. The

total costs associated with such feasible solutions set upper bounds on the min-

imum cost. Therefore, if a lower bound at any node in upcoming steps of the

search exceeds the smallest upper bound, then this node is pruned. The nodes

at the first level of each subtree (i.e., the second level of the main search tree)

store partial solutions incorporating the possible assignments of the job with the

longest processing time to a block. In general, at level i (i = 1, · · · , |N |) of a

subtree, an assignment of the ith longest job to a block is made. We would like to

note that in assigning jobs to blocks, two issues are taken into account. First, the

vehicle capacity constraints should not be exceeded. Secondly, the waiting time

of a vehicle at the facility should be less than or equal to the limit l. When a new

assignment is made to a block, the sequence of the jobs in that block are updated

using Proposition 3.3 and Proposition 3.4, and if the new sequence improves the

lower bound, it is revised based on the underlying approach of Theorem 3.2 and

its proof.

The search for a solution conditioning on a w value, evolves using the following

approach recursively at each level of the corresponding subtree: All the children

nodes are created and their corresponding lower bounds are updated based on

the partial solutions they carry. The children nodes with lower bounds greater

than or equal to the objective value of the best known solution are eliminated.

Remaining partial solutions in the promising nodes are then rapidly completed to

a full solution. The completion algorithm is simply scheduling the next job to the

position where the lower bound is minimum. The value of the global evaluation

function for each child is the objective function value of the completed solution.

The children nodes are then sorted according to the global evaluation function

values. If a completed solution has a better objective value than the best known

solution, the smallest upper bound is updated. When all the nodes at the current

level are examined, the most promising beam-width number of them are chosen

for further exploration. At this point, since more than one child node originating

from the same parent node can be kept for further consideration, the proposed

method constitutes a dependent beam search.
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After all jobs are assigned to blocks, the assignments are converted to a sched-

ule in terms of the arrival and departure times of vehicles, and start and com-

pletion times of processing. As an example of such an assignment and how it

is converted to a schedule, consider the illustrative representation in Figure 3.7.

There are 5 jobs with the following processing times: p1 = 1, p2 = 2, p3 = 3,

p4 = 4 and p5 = 5. The jobs are assigned to 3 blocks, which implies that the

number of tours is 2. Jobs 4 and 1 arrive at and depart from the facility with the

same tour. Job 5 reaches to the facility with the same tour as of jobs 4 and 1, but

it leaves the facility with the second tour. Jobs 3 and 2 arrive at and depart from

the facility with the second tour. Figure 3.7 also shows the sequence of processing

among the jobs that are in the same block. That is, job 4 is processed before job

1, and job 3 is processed before job 2. Proposition 3.3 hints that in this example

h1 < h2.

Figure 3.7: An illustration of block assignments to jobs.

Let us first assume that there are 2 vehicles (i.e., m = 2), tour time is 5 units

(i.e., τ = 5), and waiting time limit is 5 (i.e., l = 5). First, the tours are assigned

to vehicles. Vehicle 1 makes the odd numbered tours (1, 3, 5, . . . ) and vehicle

2 makes the even numbered tours (2, 4, 6, . . . ). Since there are only two tours,

each vehicle makes a single tour. Jobs 4, 1 and 5 arrive at time 0 with vehicle 1,

and the vehicle waits at the facility until the processing of jobs 4 and 1 finishes.

At time 5, vehicle 1 departs from the facility with jobs 4 and 1. Job 5 is then

processed until time 10. Vehicle 2 arrives at the facility with jobs 3 and 2 at time

10, and the processing of job 3 starts immediately. Job 2 follows job 3 starting

at time 13 and jobs 5, 3 and 2 depart from the facility with vehicle 2 at time 15.

For the same assignment illustrated in Figure 3.7, now assume that only the

number of vehicles and the tour time attain different values, those are m = 1

and τ = 10. In this case, job 5 waits an extra 5 time units for the return of the
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vehicle and there is an inserted idleness in the production schedule in front of job

5. Since h1 < h2, idleness is inserted before job 5, otherwise the job has to wait

for 5 time units after its processing is completed.

We close this section by noting that beam search is an approach that has been

successfully used to solve various complex scheduling problems. We cite Erenay

et al. [10], Sabuncuglu and Karabuk [20] as examples of beam-search applications

in the scheduling area.

3.5 Computational Experiments

In this section, we discuss the design and the results of our numerical analysis.

The objectives of this analysis are: i) to test how the lower bounds, Proposi-

tion 3.1 and Proposition 3.2 affect the running time of the optimization model

presented in Section 3.1, ii) to assess the tightness of the lower bounds, iii) to

evaluate the quality of the proposed heuristic.

All the computational experiments have been carried out on a 2.6 GHz 2xAMD

Opteron 252 Server running Centos version 2.6.9 with 2 GBs of physical mem-

ory. GAMS version 22.6 has been used to solve the mixed integer programming

formulation of the problem.

3.5.1 The Effects of the Lower Bounds and the Proposi-

tions on the Computational Time

The integer programming models provided in Section 3.1 can only be used to

solve small size problems. This is due to the large number of alternative fea-

sible solutions and the slow progress of the LP relaxations through the branch

and bound tree. The number of alternative solutions can be decreased utilizing

Proposition 3.1 and Proposition 3.2. Similarly the progress through the branch

and bound tree can be improved based on the lower bounds provided in Corollary
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3.1 and Corollary 3.2. Our objective in this section is to test the effects of the

results provided in these propositions and corollaries on the computational time

of the integer programming formulation, under different problem parameters.

With the above objective in mind, 720 instances are generated based on 72

experimental settings and 10 instances for each setting. These experimental set-

tings are given by the different combinations of the parameter values summarized

in Table 3.1. The number of jobs in all the instances is taken as 5. The processing

times of the jobs are sampled from a discrete uniform distribution U [5, 25]. As

seen in Table 3.1, we have h1 ≤ h2 in all the (h1, h2) pairs under consideration.

It is important to note that an optimal solution to a problem where h1 > h2

can be obtained by first exchanging the values of h1 and h2, and the values of k1

and k2; and secondly, reversing the schedule of an optimal solution for this new

problem. Therefore, (1, 0) and (2, 1) are not considered among the different levels

of (h1, h2).

Table 3.1: Parameter Settings
Parameter Levels
l 0, 30, 250
(k1, k2) (3,3), (3,6), (6,3), (6,6)
(h1, h2) (0,1), (1,2), (1,1)
m 1, 3
τ 15
c 25

In order to see the effects of the lower bounds and the properties stated in the

propositions, all instances are solved using the following four models:

Model I: Linearized version of the integer programming formulation pre-

sented in Section 3.1.

Model II: Linearized version of the integer programming formulation with

the incorporation of Proposition 3.1 and Proposition 3.2.

Model III: Linearized version of the integer programming formulation with

the incorporation of the lower bounds.
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Model IV: Linearized version of the integer programming formulation with

the incorporation of Proposition 3.1, Proposition 3.2 and the lower bounds.

In Model II and Model IV, the following constraints are added to the formu-

lation to incorporate Proposition 3.1 and Proposition 3.2:

αi ≤ αj + (1− sij)M ∀i, j ∈ N,

δi ≤ δj + (1− sij)M ∀i, j ∈ N.

In Model III and Model IV, to employ the lower bounding scheme, the fol-

lowing set of constraints are included in the formulation for all t = 1, . . . , 2 |N |;

h1
∑
i∈N

(σi − αi) + h2
∑
i∈N

(δi − (σi + pi)) ≥ (ψt − ψt+1) ∗ LB(t)

where LB(t) = max(LB′(t), LB′′(t)). The left hand side of the inequality is the

total inventory holding cost. If the number of tours is t, then (ψt−ψt+1) = 1 and

the total inventory holding cost is bounded from below by LB(t).

Table 3.2 presents the average solution times over 10 instances for each exper-

imental setting. The rows and the columns of the table correspond to different

settings of m, k1, k2 and h1, h2, l, respectively. There are four values in each cell.

The first value is the average time spent in CPU seconds to solve Model I, the

second value is the average time to solve Model II, and so on. As can be seen

in the table, in general, the second and third values are smaller than the first

one. This indicates that both the properties stated in the propositions and the

lower bounds save from the computational time when they are considered one at

a time. Also, the decrease in the computational time is much more significant

due to the usage of lower bounds, and hence, lower bounds are more effective

than the properties stated in the propositions.

Another observation is that, in settings where h1 = 0, solving the problem

is easier (see columns 3, 6 and 9). When rows 1-4 are compared to rows 5-8, it

can further be concluded that, the lower bounds and the properties become more

effective in reducing the computational time as the number of vehicles increase. If

vehicles are not allowed to wait at the facility, and inventory holding costs for both
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Table 3.2: Comparison of the computational times of the four models (CPU
seconds)

1 2 3 4 5 6 7 8 9
h1 1 h1 1 h1 0 h1 1 h1 1 h1 0 h1 1 h1 1 h1 0
h2 1 h2 2 h2 2 h2 1 h2 2 h2 2 h2 1 h2 2 h2 2
l 250 l 250 l 250 l 30 l 30 l 30 l 0 l 0 l 0

1 24.06 23.18 4.50 16.08 11.94 3.21 18.05 12.10 3.38
m 1 22.89 24.49 6.26 11.88 12.36 3.26 15.49 10.67 5.45
k1 3 5.82 8.03 0.27 3.93 5.77 0.24 12.85 5.77 0.34
k2 3 5.95 10.19 0.30 3.25 5.22 0.25 12.42 6.07 0.30

2 24.86 23.15 3.61 11.65 10.55 3.06 15.47 10.26 10.33
m 1 22.83 20.87 5.38 11.90 13.43 2.98 10.99 10.18 7.39
k1 3 4.65 7.19 0.29 3.68 4.24 0.30 13.90 6.05 0.33
k2 6 6.28 7.18 0.38 3.97 4.97 0.38 12.25 5.53 0.25

3 24.58 22.33 2.60 11.45 10.69 1.87 17.14 12.14 2.37
m 1 22.47 20.01 3.35 10.30 9.20 2.22 14.14 9.68 2.76
k1 6 6.56 6.96 0.21 3.77 4.51 0.20 11.71 6.81 0.19
k2 3 6.78 8.13 0.32 3.67 4.23 0.24 11.40 5.97 0.16

4 27.61 29.02 2.92 13.52 15.82 1.89 16.74 9.51 2.71
m 1 29.12 38.66 3.21 10.41 11.09 2.19 11.82 8.69 3.70
k1 6 5.80 6.20 0.22 3.94 4.39 0.22 11.91 5.88 0.20
k2 6 5.53 8.54 0.27 3.50 4.36 0.21 12.31 6.56 0.21

5 75.71 101.63 7.66 19.28 35.82 4.44 32.96 17.53 7.20
m 3 75.22 96.37 8.65 20.88 31.46 4.98 25.66 17.20 8.28
k1 3 1.47 0.45 0.20 2.27 0.54 0.27 22.61 9.61 0.35
k2 3 1.12 0.82 0.32 2.79 1.16 0.44 24.42 8.30 0.50

6 71.61 114.92 7.23 22.65 35.69 4.78 32.37 21.08 12.34
m 3 65.04 103.45 8.05 18.68 29.33 4.63 27.75 21.95 8.16
k1 3 1.36 0.40 0.19 1.85 0.70 0.25 23.07 7.27 0.30
k2 6 0.98 0.68 0.28 2.04 0.88 0.33 19.44 9.08 0.35

7 74.99 100.57 9.62 20.28 35.34 4.15 30.25 19.36 4.71
m 3 83.11 95.77 8.18 19.47 36.27 4.07 26.40 15.74 4.62
k1 6 1.74 0.34 0.20 1.54 0.71 0.21 20.88 8.86 0.19
k2 3 1.35 0.77 0.28 2.16 0.88 0.31 20.34 7.44 0.28

8 96.78 141.43 5.58 20.33 23.71 3.46 27.30 19.24 3.62
m 3 95.01 159.14 8.37 20.64 32.95 3.75 25.30 18.01 3.94
k1 6 1.08 0.64 0.23 2.10 0.54 0.23 20.89 8.54 0.23
k2 6 0.96 0.50 0.30 2.41 0.70 0.23 21.63 8.86 0.20
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raw materials and finished goods are the same, the effects of the lower bounds

and the properties diminish (see column 7). In some cases, the computational

time that Model IV requires is more than that of Model III. This may be due to

the possibility that, in small problems, the additional computational burden of

processing both types of constraints simultaneously does not justify their benefits.

Our findings in this section imply that, the lower bounds and the properties

stated in Proposition 3.1 and Proposition 3.2, are quite effective in decreasing

the running time of the model presented in Section 3.1.

3.5.2 Quality of the Lower Bound

In this section, we discuss our findings on the assessment of the quality of the

proposed lower bound. The experimental setting is based on extending the one

described in the previous section to consider additional levels for the number of

jobs. Namely, 3600 instances with number of jobs equal to 5, 10, 15, 20 or 25, are

solved. The lower bound is compared to the objective function value of the best

solution for each instance. The best solution is obtained by solving each instance

using Model IV and an extended version of the proposed heuristic. The latter is

simply the heuristic procedure applied with a large value of the beam width so

that all nodes at each level are examined.

Both Model IV and the extended heuristic are limited to run for 10 min-

utes. Among all the feasible solutions obtained for an instance, the one with the

minimum cost is chosen as the best solution. Table 3.3 presents a summary of

the results. The values of m, k1, k2 are changed over the rows and the values of

h1, h2, l are changed over the columns. In each cell, three statistics are reported

based on the 50 instances, which include jobs of all sizes with varying processing

times. The first statistic corresponds to the number of optimally solved problems.

It can be observed that, the number of such instances is greater than or equal to

10 in each cell, because the 10 instances with 5 jobs are always optimally solved.

The second value is the average gap between the objective function value and the

lower bound over all problems for which an optimal solution is obtained. As a
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Table 3.3: Summary of the Analysis for Measuring the Quality of the Lower
Bound

h1 1 h1 1 h1 0 h1 1 h1 1 h1 0 h1 1 h1 1 h1 0
h2 1 h2 2 h2 2 h2 1 h2 2 h2 2 h2 1 h2 2 h2 2
l 250 l 250 l 250 l 30 l 30 l 30 l 0 l 0 l 0

m 1 10 10 50 10 10 50 10 10 50
k1 3 3.75% 3.25% 0.00% 3.75% 3.25% 0.00% 7.61% 5.07% 0.00%
k2 3 7.85% 2.77% 0.00% 7.26% 2.77% 0.00% 9.23% 10.47% 0.00%
m 1 10 10 50 10 10 50 10 10 50
k1 3 3.75% 3.25% 0.00% 3.75% 3.25% 0.00% 7.61% 5.07% 0.00%
k2 6 7.94% 2.77% 0.00% 7.18% 2.77% 0.00% 9.20% 10.51% 0.00%
m 1 10 10 50 10 10 50 10 10 50
k1 6 3.75% 3.25% 0.00% 3.75% 3.25% 0.00% 7.61% 5.07% 0.00%
k2 3 7.88% 2.77% 0.00% 7.38% 2.77% 0.00% 9.25% 10.40% 0.00%
m 1 10 10 50 10 10 50 10 10 49
k1 6 3.75% 3.25% 0.00% 3.75% 3.25% 0.00% 7.61% 5.07% 0.00%
k2 6 7.93% 2.77% 0.00% 7.71% 2.77% 0.00% 9.25% 10.44% 0.14%
m 3 12 13 50 10 12 50 10 10 50
k1 3 0.09% 0.00% 0.00% 0.57% 0.00% 0.00% 5.91% 2.68% 0.00%
k2 3 2.08% 0.51% 0.00% 2.17% 0.57% 0.00% 7.71% 2.37% 0.00%
m 3 12 13 50 12 14 50 10 10 50
k1 3 0.09% 0.00% 0.00% 0.47% 0.00% 0.00% 5.91% 2.68% 0.00%
k2 6 2.08% 0.52% 0.00% 2.16% 0.56% 0.00% 7.71% 2.37% 0.00%
m 3 13 16 50 10 11 50 10 10 50
k1 6 0.08% 0.00% 0.00% 0.57% 0.00% 0.00% 5.91% 2.68% 0.00%
k2 3 2.02% 0.47% 0.00% 2.18% 0.52% 0.00% 7.71% 2.37% 0.00%
m 3 11 12 50 12 12 50 10 10 49
k1 6 0.09% 0.00% 0.00% 0.47% 0.00% 0.00% 5.91% 2.68% 0.00%
k2 6 2.08% 0.57% 0.00% 2.17% 0.53% 0.00% 7.71% 2.37% 0.06%

final statistic, we report the average gap between the lower bound and the best

known solution over all the 50 instances.

Since the average gap between the lower bound and the best known solution

over 50 instances in any cell is at most 10.51%, we conclude that the proposed

lower bound is generally tight. When raw material inventory holding cost h1 is

zero, the lower bound is equal to the optimal objective function value for all the

instances (see columns 3, 6 and 9). This is due to the way that the lower bound

is constructed. Recall from Section 3.2.1 that, the lower bounds are computed

based on minimization of costs assuming momentarily that either h1 = 0 or
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h2 = 0. Therefore, the lower bounds are strictly tight in these cases. As another

observation from Table 3.3, we note that the average gaps in columns 1, 4 and

7 are greater than those in columns 2, 5 and 8, respectively, which in turn, are

greater than the ones in columns 3, 6 and 9. This implies the quality of the

proposed lower bound decreases as h1 approaches to h2. Finally, observe that the

average gaps in columns 1 and 2 are less than the ones in columns 4 and 5, in the

same order. This implies that the lower bound gets tighter as the waiting limit l

increases. When waiting is not allowed (i.e., l = 0), lower bounds are looser.

In the next section, we continue our numerical analysis with the objective of

evaluating the quality of the heuristic. Since our analysis in the current section

sets an evidence for the quality of the lower bound, the objective function value

of the heuristic solution will be compared to the lower bound.

3.5.3 Quality of the Heuristic

In this section, the quality of the proposed heuristic is assessed with the help of

lower bounds and over an extensive set of problems. Specifically, one more level

is added for the number of jobs (i.e., 50), tour cost c (i.e., 150) and tour time τ

(i.e., 100). Thus, a total of 1728 different experimental settings are considered.

10 random instances are generated for each experimental setting. As in Section

3.5.1 and Section 3.5.2, processing times of the jobs are sampled from a discrete

uniform distribution U [5, 25]. The complete experimental design consists of 17280

problem instances.

In order to decide the beam width parameter, pilot runs are taken on sample

instances of all sizes. The objective function values of the heuristic solutions and

CPU times spent for several beam width values, are recorded. The solution time

increases almost linearly as the beam width increases. However, the objective

function value does not change for beam width values greater than eight. Fur-

thermore, the marginal contribution of increasing the beam width beyond a value

of five, does not justify the increase in the computational time. Thus, it is decided

to fix the beam width at a value of five in the remaining part of the analysis.
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We first start with analyzing the effect of inventory holding costs on the

performance of the heuristic. Figure 3.8 shows the average percentage difference

between the heuristic solution and the lower bound. The instances with 50 jobs

are referred to as the large-size problems whereas the remaining instances, with 5,

10, 15, 20 or 25 jobs, are classified as small-size problems. The average solution

times for the beam search algorithm for small-size and large-size problems are

0.69 and 139 CPU seconds, respectively. The maximum solution times are 25.5

and 1506 CPU seconds for small-size and large-size problems, respectively. It

can be observed from Figure 3.8 that the heuristic performs slightly better for

large-size problems. Furthermore, as the difference between the values of h1 and

h2 increases, the quality of the heuristic improves. This is because the heuristic

procedure makes use of the lower bound, and the quality of the lower bound itself

is better at these values of h1 and h2.

Figure 3.8: Effect of inventory holding costs on the heuristic performance for
different problem sizes.

The effect of the number of vehicles depends on tour time τ . Figure 3.9 shows

how the quality of the heuristic changes with respect to inventory holding costs
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at different combinations of m and τ . The general behavior observed in Figure

3.8 does not change. However, if τ is large and there is a single vehicle, the effect

of close values of h1 and h2 on the gap between the heuristic and the lower bound

is amplified. This is due to the fact that the computation of lower bounds does

not take the tour time into account. If m is small and τ is large, the availability

of a vehicle for timely pickup and delivery decreases, which increases the waiting

times of the jobs at the facility. Since the lower bounds are not constructed to

address the waiting time due to the unavailability of vehicles, their quality is

not as good as it is in the other cases. This also results in a decrease in the

performance of the heuristic, which explains a higher gap at (h1, h2) = (1, 1) in

Figure 3.9.

Figure 3.9: Effect of inventory holding costs on the heuristic performance for
varying τ and m values.

The effect of the vehicle capacities on the performance of the heuristic is

demonstrated in Figure 3.10. When tour cost c is low, the capacities have no

effect because the vehicles are not fully utilized. With high tour costs, the vehicles

are fully utilized to decrease the total number of tours. In this case, vehicle

capacities become more constraining and they have an elevated effect on the
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heuristic performance. We observe that for the cases where k1 6= k2, the heuristic

performs better.

Figure 3.10: Effect of vehicle capacities on the heuristic performance for varying
c and m values.

The analysis in this section shows that the overall performance of the proposed

heuristic is quite promising. However, its performance changes depending on the

parameters of the problem. One of the factors that affect its performance is how

the inventory holding cost rate of unprocessed jobs (i.e., h1) compare to that

of the processed jobs (i.e., h2). Specifically, as the difference between the two

increases, the quality of the heuristic improves. The performance of the heuristic

also depends on the tour time and the number of vehicles. High values of tour

time combined with small number of vehicles leads to lower performance of the

heuristic. Similarly, high values of tour cost combined with low vehicle capacities

results in lower performance of the heuristic, especially when the vehicle capacities

in the inbound and outbound are close to one another.
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Production-Delivery Problem
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Multi Period Production

Planning and Outbound

Transportation: Utilization of

Inbound Vehicles

In this chapter, we study a manufacturers production planning and outbound

transportation problem. The manufacturer in this setting has to schedule a cer-

tain number orders over a single machine. Production and delivery of orders to

the customers has to be completed before deadlines. Deliveries can be made us-

ing a combination of two types of vehicles, differing in availability and cost. The

first type of vehicle (type I ) is available in unlimited number, but expensive. The

availability of type II vehicles, on the other hand, is limited and changes over

time. The manufacturer decides the composition of vehicles to be used for each

delivery after a production plan is made and given the availability of type II ve-

hicles. The manufacturer can utilize type II vehicles when they become available

or hold them at the facility for future deliveries. When the manufacturer resorts

to the latter option, an additional fee is paid in proportion to the holding time

of a vehicle. The problem studied in this chapter is to give production and out-

bound transportation decisions so that two types of vehicles used for outbound

transportation activities, while minimizing inventory and transportation costs.

In the detailed analysis of the problem, we identify three main operating poli-

cies that affect the structure of the problem: (i) Consolidation, (ii) splitting, and

56
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(iii) size of the deliveries. The descriptions of the policies are followed by examples

of practice of the appliance manufacturer which the problem is motivated.

Consolidation arises when multiple orders are delivered with the same vehicle

to save transportation costs. In practice, this corresponds to the setting where a

single facility receives multiple customer orders in relatively small amounts. For

example, the order size of a typical home appliance retailer may not be enough to

occupy a full vehicle capacity. In this case, total demand of customers in the same

region are combined (consolidated) and shipped using a single vehicle. In some

cases, however, customers may not desire their orders to be delivered together

with other orders. This is referred to as NoConsolidation case. International

customers of the appliance manufacturer which the problem is motivated, gen-

erally do not want their orders to be consolidated with others. For domestic

retailers on the other hand, the manufacturing company consolidates the orders

of the retailers in the same region. Thus, both settings exist in practice.

The relationship between the customers and manufacturers is getting stronger

and demands are often defined by long term contracts to be delivered within a

time range. In such cases, customers accept partial deliveries of their orders at

different time periods. This allows the decision makers to Split the orders and

deliver throughout the planning horizon. If splitting is not allowed, all products

that belong to the same order must be delivered in a single shipment. This is

denoted by NoSplit in this dissertation. For the same appliance manufacturer,

domestic customers accept partial deliveries, whereas some of the international

customers require their orders to be delivered in a single shipment.

A significant portion of the non-bulk cargo worldwide transferred by contain-

ers. In order to utilize the containers at full capacity, companies try to enforce

the orders to be integer multiples of container capacity due to economies of scale.

In some industry applications, it may even be infeasible to deliver less than a full

truck capacity. The aforementioned appliance manufacturer uses containers for

international deliveries and if the containers are not fully utilized (i.e., there are

empty spaces), the products do not support each other and they may break or
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corrupt due to concussion. If all deliveries are to be in full truck loads (i.e., all ve-

hicles are utilized at full capacity), then the size of all orders are integer multiples

of the vehicle capacity, we call this special case as FTL−Delivery (Full-Truck-

Load Delivery). The unit of delivery as well as demand can be considered as

“vehicle capacity” in this case.

All possible combinations of these three operating policies lead to six dif-

ferent problem settings. For general delivery structure, there are four possible

cases (Consolidate−Split, NoConsolidate−Split, Consolidate−NoSplit, and

NoConsolidate−NoSplit). If delivery sizes for all orders are integer multiples of

the vehicle capacity, there is no need to consolidate multiple orders into the same

vehicle. Therefore, consolidation factor is not relevant and two cases arise in the

presence of FTL−Delivery structure (Split and NoSplit). Each problem setting

(simply called problem) is studied in this chapter, considering both general and

linear cost structures (Table 4.1).

For each problem, we either provide a pseudo-polynomial algorithm for general

costs case or prove that no such algorithm exists even for linear cost structures.

All these theoretical developments are discussed in the following sections.

Table 4.1: Classification of Problems

General Delivery FTL−Delivery
Consolidate NoConsolidate

Split Problem 1 Problem 2 Problem 5
NoSplit Problem 3 Problem 4 Problem 6

The rest of the chapter is organized as follows: notation and a generic formu-

lation that represents a collection of models for all problem settings is presented

in Section 4.1. General optimality conditions that are valid for all problems are

developed in Section 4.2. The problems with general delivery structure are ex-

plored in Section 4.3. Section 4.4 lays down theoretical developments for the

problems with a special delivery structure in which all deliveries and order sizes

are integer multiples of the vehicle capacity. Computational experiments are dis-

cussed in Section 4.5. In Section 4.6, we provide a brief analysis of the problem
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variant where delivery of orders required to take place within a time window.

4.1 Notation and Generic Model Formulation

In this section, notation and a generic model which can be used to formulate

the six problems listed in Table 4.1, is presented. For this problem, we propose

a finite horizon lot-sizing model considering T periods and a set N of orders.

Without loss of generality, we assume that N = {1, . . . , n}. Production capacity

of the facility is Pt for period t (t = 1, . . . , T ). This capacity is defined in terms of

the number of products produced per period independent of the type of products.

The facility produces according to make to order policy. Each order i (i ∈
N), has a deadline Di and a size Si. Orders are delivered to the customers at

the expense of the manufacturer. The manufacturer uses capacitated vehicles

for outbound transportation. Each vehicle holds upto K units of the finished

products. There are two types of vehicles (type I and type II). Any number

of type I vehicles can be utilized at a cost of $C1,t(x) per x vehicles in period

t. However, in period t, a limited number (i.e., At) of type II vehicles is also

available at a lower cost (i.e., C2,t(x)). It is assumed that At number of type II

vehicles arrive at the facility at period t (t = 1, . . . , T ).

We assume two conditions on transportation cost functions: (i) 0 < C2,t(x) <

C1,t(x) and (ii) C1,t(n−x)+C2,t(x) > C1,t(n−x−1)+C2,t(x+1) for all t = 1, . . . , T ,

x < n, and x, n ∈ Z+ ∪ {0}. The first condition clearly states that utilizing x

type II vehicles costs less than utilizing x type I vehicles for every period. The

second condition states that for any combination of type I and type II vehicles,

keeping the total number of vehicles the same, utilizing more type II vehicles is

always less costly.

Utilization of a type II vehicle for an outbound delivery is possible only if the

delivery is ready (or about to be ready) upon availability. Since a type II vehicle

may need to be held at the facility for outbound transportation, a waiting cost

Wt(wt) is incurred for period t if wt number of vehicles are held from period t to
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t + 1. Note that, holding type I vehicles is not cost justified as the the cost is

realized in the delivery period. The inventory holding cost for finished goods is

Ht(It) for period t when the inventory level at the end of period t is It. Wt(wt)

and Ht(It) are assumed to be increasing functions. There is no inventory holding

cost for raw materials due to the fact that the raw materials are common for all

product types and they have considerably lower value than end products.

Below is a list of our main assumptions, the parameters and the decision

variables.

Assumptions

• Unit inventory holding cost is the same for all jobs

• Production capacity is independent of the type of orders

• Order acceptance/rejection decisions have been already made and there

exists a feasible solution

• Cost functions satisfy the following inequalities

– 0 < C2,t(x) < C1,t(x) for all t = 1, . . . , T , and x ∈ Z+

– C1,t(n−x) +C2,t(x) > C1,t(n−x− 1) +C2,t(x+ 1) for all t = 1, . . . , T ,

x < n, and x, n ∈ Z+ ∪ {0}

– C1,t(x), C2,t(x),Wt(x), and Hx(x) are increasing in x for all t =

1, . . . , T , and x ∈ Z+
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Parameters

N : Set of orders

T : Number of periods

K : Capacity of a vehicle

Ht(I) : Cost of holding I units of inventory at period t t = 1, . . . , T

C1,t(x) :
Cost of hiring x type I vehicles

for transportation at period t
t = 1, . . . , T

C2,t(x) :
Cost of using x type II vehicles

for transportation at period t
t = 1, . . . , T

Wt(x) :
Cost of holding x type II

vehicles from period t to t+ 1
t = 1, . . . , T

At :
Number of type II vehicles become

available in period t
t = 1, . . . , T

Pt : Production capacity of the facility for period t t = 1, . . . , T

Si : Size of order i (number of items to produce) ∀i ∈ N
Di : Deadline to deliver all items for order i ∀i ∈ N

Decision Variables

πt : Total production amount in period t t = 1, . . . , T

πt,i : Number of items of order i produced in period t ∀i ∈ N, t = 1, . . . , T

It,i :
Inventory level for items of order i at the end

of period t
∀i ∈ N, t = 1, . . . , T

It : Total inventory at the end of period t t = 1, . . . , T

xt : Number of type II vehicles utilized in period t t = 1, . . . , T

wt :
Number of type II carried from

period t to period t+ 1
t = 1, . . . , T

σt,i : Number of items of order i, delivered in period t ∀i ∈ N, t = 1, . . . , T

σ̃t,i :

{
1, if order i is delivered in period t

0, otherwise
∀i ∈ N, t = 1, . . . , T

θt :
Number of vehicles used for outbound

transportation in period t
t = 1, . . . , T

θt,i :
Number of vehicles used for outbound

transportation in period t for order i
∀i ∈ N, t = 1, . . . , T
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We use the variable θt for the problems where consolidation is allowed. If

consolidation is not allowed, we use variable θt,i to denote the number of vehicles

used for each order i in period t. In the NoSplit case, we use the variable σ̃t,i to

represent if the delivery of an order i takes place in period t or not.

Using this notation, a generic model formulation is given below. The model

consists of an objective function (Equation (4.1)) and nineteen constraint sets

grouped in four categories. The objective function and the first group of con-

straint sets (Equations (4.2) - (4.6)) are valid for all problem settings. For that

reason, these constraint sets are not labeled in the formulation. Notice that other

constraint sets in the proposed formulation are labeled by S, nS,C, and nC, cor-

responding to Split(S), NoSplit(nS), Consolidate(C) and NoConsolidate(nC)

cases, respectively. For example, nC − S in Equation (4.13) means that the in-

equality is valid for the models where Consolidation is not allowed but Splitting

is allowed. In the FTL−Delivery case, inequality (4.13) needs to be converted

to equality and some of the variables and constraints can be eliminated during

the solution procedure (e.g., σt,i can be replaced by Kθt,i).

For Split case with FTL − Delivery, constraint sets (4.13) and (4.14) are

used whereas for NoSplit case (4.15) and (4.16) are used.
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Model 1: Generic Formulation

Minimize

T∑
t=1

{C1,t(θt − xt) + C2,t(xt) +Wt(wt)}+
T∑
t=1

Ht(It) (4.1)

Subject to

xt + wt ≤ At + wt−1 t = 1, . . . , T (4.2)∑
i∈N

πt,i = πt t = 1, . . . , T (4.3)∑
i∈N

It,i = It t = 1, . . . , T (4.4)

xt ≤ θt t = 1, . . . , T (4.5)

πt ≤ Pt t = 1, . . . , T (4.6)

It,i = It−1,i + πt,i − σt,i t = 1, . . . , T,∀i ∈ N (S) (4.7)

Di∑
t=1

σt,i = Si ∀i ∈ N (S) (4.8)

or

It,i = It−1,i + πt,i − σ̃t,iSi t = 1, . . . , T,∀i ∈ N (nS) (4.9)

Di∑
t=1

σ̃t,i = 1 ∀i ∈ N (nS) (4.10)∑
i∈N

σt,i ≤ θtK t = 1, . . . , T (C − S) (4.11)

or∑
i∈N

σ̃t,iSi ≤ θtK t = 1, . . . , T (C − nS) (4.12)

or

σt,i ≤ θt,iK t = 1, . . . , T,∀i ∈ N (nC − S) (4.13)∑
i∈N

θt,i = θt t = 1, . . . , T (nC − S) (4.14)

or

σ̃t,idSi/Ke = θt,i t = 1, . . . , T,∀i ∈ N (nC − nS) (4.15)∑
i∈N

θt,i = θt t = 1, . . . , T (nC − nS) (4.16)

w0 = I0,i = 0 ∀i ∈ N (4.17)

σ̃t,i ∈ {0, 1} t = 1, . . . , T,∀i ∈ N (4.18)

It,i, σt,i, πt,i, θt,i ∈ Z+ ∪ {0} t = 1, . . . , T,∀i ∈ N (4.19)

It, wt, xt, θt ∈ Z+ ∪ {0} t = 1, . . . , T (4.20)
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The objective function is simply the sum of transportation, vehicle holding

and inventory holding costs. Constraint set (4.2), we call it vehicle balance con-

straints, ensures that the number of type II vehicles that can be utilized or held

for the next period is less than the number of type II vehicles available at that pe-

riod plus the number of vehicles carried from the previous period. Equations (4.3)

and (4.4) define total production and inventory quantities. Constraint set (4.5)

enforces the number of vehicles used for outbound transportation to be larger

than the number inbound vehicles utilized in that period. Production capacities

are modeled with the constraint set (4.6). Inventory balance is maintained by

either equation set (4.7) or (4.9) depending on whether splitting is allowed or not.

Similarly, deadlines are enforced by either constraint set (4.8) or (4.10). Again,

the vehicle capacities are modeled by using one of the following constraint sets:

(4.11), (4.12), (4.13) or (4.15). The constraint sets (4.14) and (4.16) are used to

establish the link between the number of vehicles for individual orders and the

total number of vehicles. Finally, equation sets (4.17) - (4.20) are included to set

initial conditions and provide nonnegativity and integrality constraints.

4.2 Optimality Properties

Although different problems are formulated using different constraint sets, a num-

ber of constraints are common for all problems. In this section, we provide a series

of theorems and lemmas building on one another that apply to all the problems

with a general cost structure. These theorems and lemmas also give important

and useful insights about the structure of optimal solutions. Moreover, the results

of this section can be used to identify polynomially solvable cases and improve

the quality of the heuristic solutions.

In all these models, we allow decision maker to hold only the type II vehicles

from one period to another. Each type II vehicle is either used or held again for

the next period. If the vehicle balance constraint is not binding for some period

t, then there is no need to carry that much of type II vehicles from the previous

period. The following theorem states that, if the number of vehicles held from
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the previous period is positive (wt−1 > 0), then the vehicle balance constraint is

binding for period t, in every optimal solution. In other words, at least one of the

following constraints is binding for all periods: xt + wt ≤ At + wt−1 or wt−1 ≥ 0.

Theorem 4.1 {At + wt−1 − (xt + wt)}wt−1 = 0 for t = 2, 3, . . . , T , in every

optimal solution.

Proof: Proof is by contradiction. We know by Equation (4.2) that At + wt−1 −
(xt + wt) ≥ 0 and by Equation (4.20) that wt−1 ≥ 0 for t = 2, 3, . . . , T . Thus,

{At +wt−1− (xt +wt)}wt−1 ≥ 0. Assume, to the contrary of the hypothesis, that

there is an optimal solution S and a period t with {At+wt−1−(xt+wt)}wt−1 > 0.

This is possible only if {At + wt−1 − (xt + wt)} > 0 and wt−1 > 0. Now consider

another solution S ′ with everything being same except w′t−1 = wt−1 − 1. Clearly,

w′t−1 ≥ 0 and {At+w′t−1−(xt+wt)} ≥ 0. S ′ is feasible and the objective function

value of S ′ is smaller then that of S by an amount of Wt−1(wt−1)−Wt−1(wt−1−1)

as wt−1 is reduced by one. Thus, S is not an optimal solution as Wt(x) is an

increasing function.

Note that if wt > 0 for some period t, by Theorem 4.1, the vehicle balance

constraint is binding for the next period. The vehicles that are held from the

previous period will eventually be utilized in the future periods. The following

lemma states that the number of type II vehicles utilized is positive at the period

in which no more vehicles are carried to the next period.

Lemma 4.1 If wt > 0, then ∃τ > t : wτ = 0, xτ > 0, wt′ > 0 for t ≤ t′ < τ , in

every optimal solution.

Proof: Proof is by construction. Let wt > 0, by Theorem 4.1, as wt > 0, we

know that At+1 + wt = xt+1 + wt+1. Let

τ = min
k
{k : wk = 0, k > t}

Note that, in an optimal solution wT = 0, thus, such τ exists. For t ≤ t′ < τ ,

wt′ > 0. Applying Theorem 4.1 to period τ − 1,

xτ + wτ = Aτ + wτ−1
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We know wτ = 0 and wτ−1 > 0 by definition of τ . Hence, xτ > 0.

If a number of vehicles held form one period to the next, the held vehicles are

eventually be utilized by Lemma 4.1. Note that, within those periods, Theorem

4.1 applies and vehicle balance constraints are binding. Hence, the next corollary

follows by applying Theorem 4.1 for all periods with wt > 0 in Lemma 4.1.

Corollary 4.1 If wt > 0, then ∃τ > t :
∑τ

k=t+1 xk =
∑τ

k=t+1Ak + wt.

If the vehicle balance constraint is not binding for some period t, some of the

type II vehicles are neither utilized nor held for the next period. In this case, no

type I vehicles must be hired. Thence, as the following theorem states, at least

one of the constraints is binding: xt + wt ≤ At + wt−1 or θt ≥ xt.

Theorem 4.2 {At + wt−1 − (xt + wt)}(θt − xt) = 0 for t = 1, . . . , T , in every

optimal solution.

Proof: Proof is by contradiction. Let S be an optimal solution and t be a period

such that, (θt−xt){At+wt−1− (xt+wt)} > 0. Consider another solution S ′ such

that x′t = xt + 1 and everything else being the same. Note that (θt− xt) > 0 and

At + wt−1 > xt + wt. Then, (θt − x′t) ≥ 0 and At + wt−1 ≥ x′t + wt. Note that,

in solution S ′, the number of type I vehicles is smaller and S ′ has an objective

function value smaller than that of S by an amount equal to C1,t(θt − xt) +

C2,t(xt)−C1,t(θt− xt− 1) +C2,t(xt + 1) > 0. Thus, S is not an optimal solution.

In the lot-sizing models, the well-known property for the uncapacitated ver-

sions is that at each period either there is a positive inventory or a positive

production, but not both (Wagner and Whitin [26]). In this study, however, the

production amount of the facility is bounded by a capacity. The next theorem

states a similar property for the capacitated version: for each period, either there

is inventory carried from the previous period or the facility does not produce at

full capacity, but not both.
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Theorem 4.3 (Pt − πt)It−1 = 0 for t = 2, 3, . . . , T , in every optimal solution.

Proof: Proof is by contradiction. Assume that there exists an optimal solution

S and a period t such that in S, (Pt − πt)It−1 6= 0. We know by Equations (4.6)

and (4.20) that, Pt ≥ πt and It−1 ≥ 0. Thus, Pt > πt and It−1 > 0. Then,

∃i ∈ N : It−1,i = {
∑t−1

k=1 πk,i −
∑t−1

k=1 σk,i} > 0. Let τ = max{k : πk,i > 0, k < t},
we know that such τ exists as

∑t−1
k=1 πk,i > 0. Note that,

∑t−1
k=τ+1 πk,i = 0, by

selection of τ .
∑t−1

k=1 πk,i =
∑t−1

k=τ+1 πk,i +
∑τ

k=1 πk,i >
∑t−1

k=1 σk,i and
∑τ

k=1 πk,i >∑t−1
k=1 σk,i which implies that It′,i > 0 and It′ > 0,∀t′ = τ, τ + 1, . . . , t − 1. Now,

consider another solution S ′ such that

π′t,i = πt,i + 1

π′τ,i = πτ,i − 1

I ′t′,i = It′,i − 1 ∀t′ = τ, τ + 1, . . . , t− 1

I ′t′ = It′ − 1 ∀t′ = τ, τ + 1, . . . , t− 1

Observe that, π′t ≤ Pt as πt < Pt. It′,i ≥ 0, It′ ≥ 0 and
∑τ

k=1 π
′
k,i ≥

∑t−1
k=1 σk,i as

It′,i > 0, It′ > 0,∀t′ = τ, τ + 1, . . . , t − 1 and
∑τ

k=1 πk,i >
∑t−1

k=1 σk,i. Note that,

in solution S ′, there is less inventory held and S ′ has an objective function value

smaller than that of S by an amount equal to
∑t−1

k=τ{Hk(Ik) −Hk(Ik − 1)} > 0.

Therefore S is not an optimal solution.

Even though the above theorem is stated for the total inventory and produc-

tion levels, it can be used for individual inventory levels of each order. If the

ending inventory level of an order is positive for some period t− 1, then the pro-

duction level of the next period is at the capacity Pt, according to Theorem 4.3.

The intuition of this theorem is if the production facility is not producing at its

full capacity for a period, then there is no need to carry any inventory from the

previous period.

Similar to Lemma 4.1, if the inventory level is positive for a period t, all this

inventory will eventually be depleted. The following lemma states that deliv-

ery amount is greater than the production amount at the period in which the

inventory is depleted.
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Lemma 4.2 If It > 0, then ∃τ > t : Iτ = 0, στ > πτ , It′ > 0 for t ≤ t′ < τ , in

every optimal solution.

Proof: Proof is by construction. Let It > 0, and

τ = min{k : Ik = 0, k > t}

Note that, in an optimal solution IT = 0, thus such τ exist and for t ≤ t′ < τ ,

It′ > 0. Note that, Iτ−1 > 0 and Iτ = 0 by definition of τ which implies that

στ > πτ .

For all the periods with positive inventory defined in Lemma 4.2, the use of

Theorem 4.3 implies the following corollary.

Corollary 4.2 If It > 0, then ∃τ > t :
∑τ

k=t+1 σk =
∑τ

k=t+1 πk + It =∑τ
k=t+1 Pk + It.

Although the above theorems are valid for any type of cost function, the

following one is valid for linear and stationary cost functions in which the cost

function is the same for all periods. The following theorem states that if the

number of type I vehicles utilized in period t is positive (θt > xt), then, no type

II vehicles are held for future periods .

Theorem 4.4 (θt − xt)wt = 0 for t = 1, . . . , T , in every optimal solution, if

C1,t(x) = C1x,C2,t(x) = C2x,Ht(x) = Hx, and Wt(x) = Wx.

Proof: Proof is by contradiction. Let S be an optimal solution and t be a period

such that in S, (θt − xt)wt 6= 0. We know by Equations (4.5) and (4.20) that

θt − xt ≥ 0 and wt ≥ 0, thus (θt − xt)wt ≥ 0. (θt − xt)wt 6= 0 is possible only if

θt−xt > 0 and wt > 0. By Lemma 4.1, as wt > 0, ∃τ > t : wτ = 0, xτ > 0, wt′ > 0

for t ≤ t′ < τ . Now construct another solution S ′ by:
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x′t = xt + 1 (4.21)

w′t′ = wt′ − 1, ∀t′ : t ≤ t′ < τ (4.22)

x′τ = xτ − 1 (4.23)

Note that, xt+wt = x′t+w
′
t, thus, the tth equation in Constraint set (4.2) does

not change. Moreover for t′ = t + 1, t + 2, . . . , τ − 1, both sides of the equations

decrease by one for the Equation set (4.2). As xt < θt, x
′
t ≤ θt and as xτ > 0,

x′τ ≥ 0. Then, S ′ is a feasible solution. The objective function value of S ′ is

smaller then that of S by an amount of (τ − t)W > 0 as all wt′ is reduced by 1

for all t′ = t, t+ 1, . . . , τ − 1. Therefore, S is not an optimal solution.

Note that this theorem can be valid for many other cases except for some

unusual cost structures.

The theorems and lemmas stated in this section can be used in the future for

the development of implicit enumeration and heuristic procedures. We now con-

tinue with the detailed analysis of the problems with general delivery structure.

4.3 Problems with General Delivery Structure

In this section, we study the four problems (given in Table 4.1) for a general

delivery structure. We start with the case where both consolidation and splitting

are allowed.

4.3.1 Problem 1: Consolidate-Split

This problem setting constitutes a base case for all the problems in this chapter.

In this setting, the decision maker has an option of consolidating multiple orders

to deliver them within the same vehicle. Moreover, the orders can be split and

delivered at different periods.



CHAPTER 4. PRODUCTION-DELIVERY PROBLEM 70

The following theorem states that this problem can be reduced to a much

simpler problem where the production and delivery sequences can be optimally

determined. Even though this significantly alleviates the difficulties of the original

problem, the problem of deciding the production and delivery quantities in each

period still needs to be solved.

Theorem 4.5 There is an optimal solution to Problem 1, in which the orders

are produced and delivered according to Earliest Due Date (Deadline) first (EDD)

order.

Proof: Proof is by construction. Given an optimal solution, the idea is to obtain

another solution where the production and delivery sequences are EDD without

changing total production and delivery quantities for each period. Consider an

optimal solution, define σt =
∑

i∈N σt,i and let the total production and delivery

by time t be TP (t) and TS(t), respectively. Without loss of generality assume

that D1 ≤ D2 ≤ . . . ≤ D|N |, and let total demand of the first i orders be TD(i).

(i.e., TP (t) =
∑t

k=1 πk, TS(t) =
∑t

k=1 σk, TD(i) =
∑i

j=1 Sj )

Consider another solution where the first S1 units produced and delivered are

assigned to order 1, the next S2 units are assigned to order 2, and so on. One

can obtain the new solution as follows:

π′t,i = min{Si, πt,max{TD(i)− TP (t− 1), 0},max{TP (t)− TD(i− 1), 0}}
σ′t,i = min{Si, σt,max{TD(i)− TS(t− 1), 0},max{TS(t)− TD(i− 1), 0}}

The first two terms of the first equality state that the production quantity of

order i at period t is limited by the size of the order (Si) and the total production

at that period (πt). There are two more conditions for the production quantity

of order i at period t to be positive: The order i must not be completed before t,

and previous orders must be completed by time t. These conditions are satisfied

with the last two terms of the above equality. If TD(i) is less than or equal to

TP (t − 1), order i must have been completed by period t − 1, thus π′t,i = 0. If

TD(i) is greater than TP (t−1), order i is not completed, and TD(i)−TP (t−1)

more units must be produced to complete order i. Thus, π′t,i must be less then
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max{TD(i) − TP (t − 1), 0}. If the cumulative production capacity by time t is

less than or equal to the total size of first i− 1 orders (i.e., TP (t) ≤ TD(i− 1)),

all production until time t must be dedicated to orders 1, . . . , i− 1, thus π′t,i = 0.

If TP (t) is greater than TD(i − 1), all orders before i are completed by time t

and TP (t)−TD(i− 1) units can be dedicated for production of order i at period

t. Thus, π′t,i must be less then TS(t)− TD(i− 1).

At each period, delivery size of an order is less than the size of order (Si)

and delivery amount (σt). Similar to production quantities, delivery of an or-

der is positive for period t, if it is not completed by time t − 1 (employed via

max{TD(i) − TS(t − 1), 0}) and all the previous orders are delivered by time t

(employed via max{TS(t)− TD(i− 1), 0}).

Note that for the original solution,

t∑
k=1

πt =
∑
i∈N

t∑
k=1

πt,i ≥
∑
i∈N

t∑
k=1

σt,i =
∑
i:Di≤t

Si +
∑
i:Di>t

t∑
k=1

σk,i ≥
∑
i:Di≤t

Si

In the above equality, the set N is divided into two disjoint sets depending on

Di. If Di ≤ t, then the number of items delivered by time t is the size Si of the

order i. This constitutes the first part of the equality. The second part of the

equality represents the remaining orders with Di > t. To summarize;

t∑
k=1

πt ≥
t∑

k=1

σt ≥
∑
i:Di≤t

Si for t = 1, . . . , T

This indicates that there is sufficient production and delivery quantities to

fulfill all demand with deadline less than or equal to t for t = 1, . . . , T . This

ensures the feasibility of the new solution. Since total production and delivery

sizes remain the same, the cost of the new solution is also the same as the original

solution. This proves that the new solution is also optimal.

The above theorem is valid only if splitting and consolidation are allowed. If

consolidation is not allowed, then the number of outbound vehicles depend on
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the number of the orders to be delivered at that period, as well. Rescheduling

the delivery of orders may result in necessity for different number of outbound

vehicles, even if the total delivery size of two solutions (original and updated) are

the same. Then, the above attempt to reschedule the deliveries may not result in

equal total costs, thus, the above theorem will not be valid if consolidation is not

allowed. Note also that, the above equality for calculation of σ′ti, allows orders to

be split and delivered in different periods. The third term in the above equality

for the calculation of σ′ti is positive only if order i is not completely delivered by

time t− 1. In other words, partial deliveries are allowed in the updated solution,

thus, the above theorem is not valid for the cases where splitting is not allowed.

An important implication of Theorem 4.5 is that the orders whose due dates

are equal, can be consolidated. Furthermore, without loss of generality, we assume

that D1 ≤ D2 ≤ D3 ≤ ... ≤ D|N | and define a new parameter δt as follows:

δt =
∑
i:Di=t

Si ∀t = 1, . . . , T.

With this parameter and results of Theorem 4.5, the generic multi item model

discussed in Section 4.1 can be converted to a much simpler model (single item

model) given below. Note that, an optimum solution of the new model (Model 2)

requires a post-processing to convert single item solution which consists of total

production and delivery amounts to multi item solution by assigning the first S1

items to order 1, the next S2 items to order 2, and so on.
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Model 2: Single Item Formulation

Minimize

T∑
t=1

{C1,t(θt − xt) + C2,t(xt) +Wt(wt)}+
T∑
t=1

Ht(It)

Subject to

xt + wt ≤ At + wt−1 t = 1, . . . , T (4.24)

It = It−1 + πt − σt t = 1, . . . , T (4.25)
t∑

k=1

σk ≥
t∑

k=1

δk t = 1, . . . , T (4.26)

πt ≤ P t = 1, . . . , T (4.27)

θtK ≥ σt t = 1, . . . , T (4.28)

xt ≤ θt t = 1, . . . , T (4.29)

w0 = I0 = 0 (4.30)

It, σt, πt, wt, xt, θt ∈ Z+ ∪ {0} t = 1, . . . , T (4.31)

Here, we propose a dynamic programming formulation to solve this problem

which runs in Pseudo polynomial time. Existence of a pseudo-polynomial al-

gorithm proves that the problem may be NP-Hard but not NP-Hard in the

strong sense. The following dynamic programming formulation solves this prob-

lem in O(TD6W 2/K2) time, where D is the cumulative demand and W :=

min(D/K,
∑T

i=1Ai).

Algorithm 4.1 Define total demand size until time t by TD(t).

TD(t) =
t∑

k=1

δt =
∑
i:Di≤t

Si ∀t = 1, . . . , T

Define C(t, π, σ, w) as the minimum total cost accumulated at the end of period

t, when the total production and delivery quantities in the first t periods are π

and σ respectively and the number of vehicles hold for period t+ 1 is w.
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X (t, π, σ, w) = {(πt, σt, xt, θt, wt)|πt ≤ Pt, wt ≤ w, σt ≤ Kθt, xt ≤ θt}

C(t, π, σ, w) =



∞ , π < σ

∞ , σ < TD(t)

min
X (t,π,σ,w)

xt+wt≤At+wt−1


C(t− 1, π − πt, σ − σt, wt−1)
+C1,t(θt − xt) + C2,t(xt)

+Ht(π − σ) +Wt(wt)

 , ow

initial conditions:

C(0, 0, 0, 0) = 0

C(t, π, σ, w) =∞ ∀t, π, σ, w : min(t, π, σ, w) < 0

In the above algorithm, the set X together with the constraint xt + wt ≤
At+wt−1 constitute the feasible region for the amount of production (πt), delivery

(σt), number of vehicles used (xt and θt) and number of type II vehicles held for

the next period (wt) in period t. The first two rows of the recursion correspond

to infeasible solutions. The total size deliveries can neither be greater than total

production amount, nor less than total delivery size by time t. Thus, the cost of

such infeasible solutions is set to infinity.

Consider a feasible solution for period t (i.e., πt, σt, xt, θt, wt), the calculation

of C(t, π, σ, w) is as follows: The total production and delivery quantities for

until period t − 1 must be π − πt and σ − σt, respectively. Similarly, in order

for xt and wt to be feasible, at least wt−1 type II vehicles must be held from the

previous period. Hence, the minimum total cost accumulated until period t − 1

is C(t − 1, π − πt, σ − σt, wt−1). The transportation cost incurred at period t is

C1,t(θt − xt) + C2,t(xt) as the number of type I and type II vehicles utilized at

period t is θt − xt and xt, respectively. Note that, the difference between the

total production and delivery quantities (i.e., π − σ) is equal to the amount of

inventory at the end of period t, incurring a cost of Ht(π − σ). An additional
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Wt(wt) is incurred since wt vehicles are held at the facility for the later periods.

Recall that this calculation must be repeated for every feasible solution for period

t.

For any feasible solution, σ ≤ π ≤ D, where D is the cumulative demand

(i.e., D := TD(T )) and w ≤ W := min(D/K,
∑T

i=1Ai), and πt ≤ π, σt ≤ σ, xt ≤
θt ≤ D/K, wt ≤ w for all t = 1, . . . , T . For each possible value of C(t, π, σ, w)

the minimization is done over O(D) ·O(D) ·O(D/K) ·O(D/K) ·O(W ) different

values πt, σt, xt, θt, wt,, respectively. Thus, the number of elementary operation

needed to calculate each C(t, π, σ, w) is O(D4W/K2).

The cost of an optimal production and transportation plan over the entire

interval is equal to C(T,D,D, 0). This is calculated according to the above

forward recursion and the corresponding production, delivery and vehicle holding

decisions of the optimal plan can be made by standard backtracing techniques. A

backward recursion could be formulated just as easily. For each period, at most

O(D) ·O(D) ·O(W ) different π, σ, w triples must be calculated. Thus, a total of

O(TD2W ) different C(t, π, σ, w) values are needed to find an optimal solution to

Problem 1. Hence, the total complexity of Algorithm 4.1 is O(TD6W 2/K2).

For this problem, existence of a pseudo-polynomial algorithm proves that the

problem is not NP-Hard in the strong sense. However, the status of the problem

is still open. Either there exists a polynomial time algorithm or the problem is

NP-Hard in the ordinary sense, which can be proven in further studies.

4.3.2 Problem 2: NoConsolidate-Split

This problem is a version of Problem 1 where consolidation is not allowed due to

customer preferences, i.e., customers would not like their products to be shipped

together with other orders. In this case, the vehicles cannot deliver more than

one order at a time. The following theorem states that this version of the problem

is NP-Hard in the strong sense even for the linear cost structure.
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Theorem 4.6 Problem 2 is NP-hard in the strong sense.

Proof: Proof is done by a reduction from 3-Partition(3P) problem and note that,

Problem 2 is clearly in NP . 3P is defined as follows:

INSTANCE: Set G of 3t elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for

each a ∈ G such that B/4 < s(a) < B/2 and such that
∑

a∈G s(a) = tB.

QUESTION: Can G be partitioned into t disjoint sets G1,G2, ...,Gt such that∑
a∈Gτ s(a) = B for τ = 1, 2, .., t(note that each Gτ must therefore contain exactly

three elements from G)?

REDUCTION: Take an arbitrary instance of 3P. The corresponding instance

of Problem 2 is constructed as follows: N = G, i.e., for each element a in set

G define an order a ∈ N with size Sa = s(a). Define T = t,K = P = B,

and for each a in N define Da = T and for τ = 1, 2, ..., T : define Aτ = 3 and

C1,τ (x) = 2x,C2,τ (x) = Hτ (x) = Wτ (x) = x. There is a solution to 3P if and

only if there is a solution to Problem 2 with cost less than or equal to z∗ = 3t.

Assume that there is a solution to Problem 2 with cost z which is less than or

equal to z∗ = 3t. Since there are 3t orders to be satisfied with a total size of tK,

total cost of transportation is at least 3t. Thus, all type II vehicles are utilized

and no inventory or vehicle holding cost is incurred. As a result, exactly three

orders are completed and delivered at each period. Moreover, total production

capacity of the facility is equal to total demand (tP = tB). Thus, the total

number of items produced at each period is equal to P . This means that, three

orders with total size equal to P are completed and delivered at each period.

Now construct a solution to 3P as follows: for all orders produced and delivered

in period τ , put the corresponding element in set G into Gτ . As the size of orders

Sa = s(a), for each disjoint set Gτ ,
∑

a∈Gτ s(a) = B (τ = 1, 2, ..., t).

If there is a solution to 3P, construct a solution to Problem 2 as follows: for

each disjoint set Gτ , τ = 1, 2, ..., t, produce and deliver all the items of order a ∈ Gτ
in period τ . Similar reduction with the previous case imply that the solution has

a cost of z = 3t ≤ z∗.
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4.3.3 Problem 3: Consolidate-NoSplit

This case is applicable for customers who would like to receive the entire order in

one shipment rather than receiving partial orders at different time periods. This

is because receiving partial shipments might create additional burden in material

handling and information system of the company. In some cases, it may also

cause confusion as well. This problem is NP-Hard in the strong sense even for

the linear cost structure as the following theorem states.

Theorem 4.7 Problem 3 is NP-Hard in the strong sense.

Proof: Similar to the proof of Theorem 4.6 with Aτ = 1 for each τ = 1, 2, .., T

and z∗ = t.

4.3.4 Problem 4: NoConsolidate-NoSplit

In this problem, neither consolidation nor splitting is allowed. As stated in the

following theorem, the problem is NP-Hard in the strong sense even for the linear

cost structure.

Theorem 4.8 Problem 4 is NP-Hard in the strong sense.

Proof: Similar to the proof of Theorem 4.6 with Aτ = 3 for each τ = 1, 2, .., T

and z∗ = 3t.

For the last three problems that are proven to be NP-Hard in the strong

sense, researchers can only develop some heuristics for realistic sizes. In Chapter

5, we provide a very efficient tabu search heuristic for Problem 4. Some efficient

algorithms can be provided for special cases of these problems, as well.
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4.4 Problems with FTL-Delivery Structure

For the problems discussed in this section, vehicles are required to be fully utilized

in outbound transportation and therefore size of orders must be integer multiples

of vehicle capacity. In other words, the number of items in each vehicle is either

0 or K.

Recall that consolidation is a reasonable way of reducing transportation costs

when there are multiple orders of small sizes. In the FTL − Delivery case,

since order sizes are already integer multiples of vehicle capacity, consolidation

(whether allowed or not) does not affect the structure of the problem. Thus,

there are only two problem settings for the FTL−Delivery case with respect to

whether splitting is allowed or not.

We first state two theorems that are valid for both Split and NoSplit cases.

The result of these theorems can be utilized as a part of optimization algorithms to

solve the problems. The following theorem states that if the production capacity

is an integer multiple of vehicle capacity, then the total production in each period

is an integer multiple of vehicle capacity.

Theorem 4.9 If ∃nt ∈ Z+ ∪ {0} : Pt = ntK, for t = 1, 2, .., T, then in every

optimal solution ∃mt ∈ Z+ ∪ {0} : πt = mtK for t = 1, 2, .., T .

Proof: Proof is by contradiction. Suppose there exists an optimal solution S

such that total production quantity is not an integer multiple of vehicle capacity

for some periods. Let t be the latest such period (i.e., ∀m ∈ Z+, πt 6= mK).

Note that
∑T
k=1 πk
K

is integer as total production is equal to total demand, and∑T
k=t+1 πk
K

is integer by selection of t. As πt
K

is not an integer,
∑t−1
k=1 πk
K

is neither.

On the other hand,
∑t−1
k=1 σk
K

is integer as vehicles are utilized at full capacity.

Note that,
∑t−1

k=1 πk ≥
∑t−1

k=1 σk, and
∑t−1
k=1 πk
K

is not integer but
∑t−1
k=1 σk
K

is integer,

thus,
∑t−1

k=1 πk >
∑t−1

k=1 σk. In other words, there is at least dπt
K
eK − πt units of

inventory carried from period t − 1 to period t. Let i = argmaxj{It−1,j}, and

τ = argmaxk<t{πk,i > 0}.
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Now, consider another solution S ′ with the following modification on solution

S:
π′τ,i = πτ,i − 1

π′t,i = πt,i + 1

I ′t′,i = It′,i − 1, for t′ = τ, τ + 1, . . . , t− 1.

I ′t′ = It′ − 1, for t′ = τ, τ + 1, . . . , t− 1.

Note that, S ′ is feasible as

τ∑
k=1

πk,i =
t−1∑
k=1

πk,i >
t−1∑
k=1

σk,i

the new solution S ′ has a lower objective function value than S by an amount∑t−1
k=τ Hk(Ik) −

∑t−1
k=τ Hk(Ik − 1) > 0, as Ht(x) is an increasing function for t =

1, . . . , T . Therefore, S is not an optimal solution.

If the production capacity of the facility is an integer multiple of vehicle

capacity for all periods, the following theorem states that there is an optimal

solution in which the production quantity for each order is also an integer multiple

of the vehicle capacity for every period.

Theorem 4.10 If ∃nt ∈ Z+ ∪ {0} : Pt = ntK, for t = 1, 2, .., T, then there is an

optimal solution in which ∃mt,i ∈ Z+∪{0} : πt,i = mt,iK ∀i ∈ N for t = 1, 2, .., T .

Proof: Proof is by construction. Consider an optimal solution S in which

some orders have production quantity which is not an integer multiple of vehicle

capacity. Note that the total production at each period is an integer multiple of

the vehicle capacity due to Theorem 4.9. Let i be the smallest indexed order with

this property and let t and τ (t < τ) be the last two periods where production

of order i is not an integer multiple of vehicle capacity ( i.e.,
πτ,i
K

and
πt,i
K

are

not integer). Note that,
∑t
k=1 πk,i
K

> b
∑t
k=1 πk,i
K

c ≥
∑t
k=1 σk,i
K

. This means that a

portion of production quantity for order i at period t can be moved to period

τ . As total production quantity for all periods is an integer multiple of vehicle

capacity, ∃j ∈ N : πτ,j − bπτ,jK cK > 0. Also note that, j > i (as i is the smallest

indexed order with production not being an integer multiple of vehicle capacity).
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Let

∆ = min{(πτ,j − b
πτ,j
K
cK), (dπτ,i

K
eK − πτ,i)}

and set
πτ,i ← πτ,i + ∆

πτ,j ← πτ,j −∆

πt,i ← πt,i −∆

πt,j ← πt,j + ∆

Repeat the same argument until
πτ,i
K

is integer. Note that it takes at most |N |− j
steps. Then select different t and τ and repeat the same arguments until

πt,i
K

is

integer for all t = 1, 2, . . . , T . Note that during this process, no orders with index

less than i is altered. Repeating the same procedure for all i ∈ N , results in

a solution that the production quantity for each order is an integer multiple of

vehicle capacity, for each period.

We now continue with analyzing the Split and Nosplit cases separately.

4.4.1 Problem 5: Split with FTL-Delivery

This problem is similar to Problem 1 (Consolidate-Split) in the sense that FTL−
Delivery can be considered as a special case ofGeneral delivery structure. Hence,

the EDD property stated in Theorem 4.5 in Section 4.3.1 is also valid for this

problem. Moreover, the model developed for Consolidate − Split case (Model

2) can also be used for FTL − Delivery case with appropriate modifications

(by replacing inequality in constraint set (4.28) by equality). For the modified

version of Model 2, the decision variables and parameters with a superscript K

are defined as follows: πKt = πt
K
, PK

t = Pt
K
, IKt = It

K
, δKt = δt

K
for t = 1, . . . , T .

Model 3: Single Item Formulation with FTL Delivery

Minimize

T∑
t=1

{
C1,t(θt − xt) + C2,t(xt) +Wt(wt) +Ht(KI

K
t )
}

(4.32)
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Subject to

xt + wt ≤ At + wt−1 t = 1, . . . , T (4.33)

IKt = IKt−1 + πKt − θt t = 1, . . . , T (4.34)
t∑

k=1

θk ≥
t∑

k=1

δKk t = 1, . . . , T (4.35)

πKt ≤ PK
t t = 1, . . . , T (4.36)

xt ≤ θt t = 1, . . . , T (4.37)

w0 = IK0 = 0 (4.38)

IKt , π
K
t , wt, xt, θt ∈ Z+ ∪ {0} t = 1, . . . , T (4.39)

A modified version of Algorithm 4.1 developed for Consolidate − Split case

can also be used to solve this problem in O(TD5W 2/K2) time, where D is the

cumulative demand and W := min(D/K,
∑T

i=1Ai). Note that the only differ-

ence is the new feasible region XK is smaller than X because σt ≤ Kθt is re-

placed by σt = Kθt. With this new feasible region, the problem can be solved in

O(TD5W 2/K2) time. This indicates that Problem 5 is a little bit simpler than

Problem 1. However, the status of this problem is still open. It needs to be

proven that either it is NP-Hard in the ordinary sense or there is a polynomial

time algorithm.

4.4.2 Problem 6: NoSplit with FTL

This version of problem is similar to Consolidate−NoSplit and NoConsolidate−
NoSplit. This problem is not simpler than Problems 2 or 4 as stated in the

following theorem.

Theorem 4.11 Problem 6 is NP-Hard in the strong sense even for the linear

cost structure.

Proof: Similar to the proof of Theorem 4.6 with Aτ = P = B for each τ =

1, 2, .., T , K = 1 and z∗ = Bt.
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After providing complexity results, we continue with computational experi-

ments to evaluate the performance of the proposed generic model and identify

the effects of consolidation and splitting policies on the system performance.

4.5 Computational Experiments

Since both the Consolidation and the Splitting policies are relaxations of

NoConsolidation and NoSplitting cases, any NoConsolidation solution is also

a feasible solution for Consolidation case. Since the feasible region is enlarged,

reduced total costs are probably obtained in the NoConsolidation policy. The

same is true for Splitting. The percentage improvement in the total cost de-

pends on various input parameters (factors) such as production capacities, size of

orders, availability of type II vehicles and transportation and inventory holding

costs. We discuss the results of computational experiments to investigate the ef-

fects of operating policies (Consolidation vs. NoConsolidation and Splitting vs.

NoSplitting) under the experimental conditions defined by the input parameters,

outlined above.

In the experiments, the cost functions are selected to represent the real behav-

ior of the aforementioned appliance manufacturer. We use a monthly production

planning horizon of T =30 days. We assume six working days in a week and

the production capacity is the same throughout the month. In other words, the

production capacity is Pt for six consecutive days and zero for the seventh day.

In order to investigate the effect of production capacity on the system perfor-

mance, we consider two levels of production capacities: 1000 units/day and 1500

units/day. In the low capacity case, average load (total size of orders / total pro-

duction capacity) is around 90%, which represents high utilization environment.

In the high capacity case, which corresponds to low utilization, average load is

about 60%. The deadlines of the orders are uniformly distributed so that weekly

average loads are about the same as the monthly average loads. The vehicle

capacity is 100 units/vehicle.
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In setting experimental conditions, three different levels (low, medium and

high) of order sizes are used even though the total size of the orders is kept fixed

at 24000 units. The low order size case corresponds to the less than truck load

case and related input data is randomly generated from Uniform(10,99). For the

medium size orders, the required data is generated from Uniform(110,999), in

which case, order size is between one truck load and one day production capacity.

For the high order size case, data is generated from Uniform(1100,4000) and order

sizes vary between one and four days of production capacity.

Recall that, for the FTL−Delivery case, order sizes must be integer multiples

of vehicle capacity. In this case, medium and high order sizes are generated from

100 × Uniform(2,10) and 100 × Uniform(12,40), respectively. Since all order

sizes must be integer multiples of vehicle capacity, the low order sizes can not be

considered for the FTL−Delivery case.

Two levels (high and low) are designed for the availability of type II vehicles.

At the low level, the number of type II vehicles is selected from Uniform(0,6)

which leads to situation where the capacity of the inbound vehicles is approxi-

mately 30% and 20% of the daily production capacities corresponding to low and

high production rates, respectively. At the high level of for the number of type

II vehicles, data is generated from Uniform(4,10) that results in approximately

70% and 45% of the daily production capacities for the low and high production

capacity cases, respectively.

In summary, experimental conditions are defined such that there are two levels

for consolidation, splitting policies, three levels of order sizes, two levels of pro-

duction capacities and two levels for the availability of type II vehicles. Hence,

there are totally 48 experimental points for the general delivery case (See Table

4.2). In the FTL-Delivery case, since the consolidation factor dropped out and

the low order sizes can not be considered, there are 16 experimental points. In

each experimental point, 10 randomly generated problem instances are used.

The generic model discussed in Section 4.1 is solved using GAMS version 22.6

running on a 2.6 GHz dual core AMD Opteron 252 server running Linux version

2.6.9 with 2 GBs of physical memory. For all the problems, the maximum solution
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Table 4.2: Experimental Design
Consolidation* Allowed (C), not allowed (nC)

Splitting Allowed (S), not allowed (nS)
Production capacity High (1 500), Low (1 000)

Availability of type II vehicles High ∼U(4,10), Low ∼U(0,6)
Order sizes High ∼U(1100, 4000), Medium ∼U(110, 1000),

Low* ∼U(10,99)
Cost Parameters C1,t(x) = 700x,C2,t(x) = 100x,

Ht(x) = x,Wt(x) = 150x ∀t
Vehicle capacity K = 100

* : Not considered for FTL Delivery

Table 4.3: Average Solution Times (in CPU seconds)

Consolidate NoConsolidate
Split 69.80 527.08

NoSplit 414.66 119.63

time for GAMS is limited to 600 seconds. The average solution times for different

problems are given in Table 4.3.

Optimality gap is calculated by subtracting the final lower bound from the

best integer solution, divided by the lower bound. The average optimality gaps

for the general delivery case are given in Table 4.4. In general, low optimality gaps

are obtained in shorter solution times for NoConsolidation-NoSplit case or when

both Consolidation and Splitting are allowed. This counter-intuitive result is

explained as follows. The first case (Consolidate-Split) is the base case which has

been shown to be easier than others as a pseudo polynomial algorithm is proposed

in Section 4.1. In the second and third cases (either Consolidation or Splitting

is allowed) the problem is relatively more difficult due to additional constraints.

In the last case (NoConsolidation-NoSplit), however, the gap values are low and

the average solution times are smaller because the vehicle capacity constraints

are all in form of equalities (Equations sets (4.15) and (4.16)). Since optimality

gaps are generally very low, we safely assume that effects of operating policies on

the system performance can be analyzed with the proposed optimization models.
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Table 4.4: Average Gap Values
Order size

High Medium Low
Consolidate− Split 0.03% 0.00% 0.14%
Consolidate−NoSplit 0.00% 7.28% 3.41%
NoConsolidate− Split 3.58% 13.56% 0.20%
NoConsolidate−NoSplit 0.00% 0.27% 0.00%

In order to understand the effects of consolidation and splitting policies, we

use a differential approach, in which for each instance, we define ∆Splitting as

the percentage cost difference between the Split and NoSplit cases, keeping the

remaining factors as the same. In other words, ∆Splitting = (Total cost with

NoSplit - Total cost with Split)/(Total cost with NoSplit). ∆Consolidation

is defined in a similar way. Since the effects of these operating policies depend

highly on the availability of type II vehicles (At) and production capacities (Pt),

the results are presented with respect to these parameters, in Tables 4.5 and 4.6,

respectively.

The rows of Table 4.5 correspond to effects of operating policies, whereas the

columns correspond to order sizes. Each column is further divided into two levels

(high and low) for the availability of type II vehicles. Note that, the first value at

the upper left of each cell is the percentage cost reduction when the availability

of type II vehicles is high and the other value at the lower right of each cell is the

percentage cost reduction when the availability of type II vehicles is low. The

effect of both consolidation and splitting policies are relatively high when the

availability of type II vehicles is high.

Observe that, the effect of splitting increases as the order sizes increase. This

is due to the fact that, when the order size is higher than the production capacity

(Pt), the required production takes more than one period. This means that a

portion of an order must be produced earlier and kept in inventory, this leads an

increase in the inventory holding cost. When splitting is allowed, however, there

is no need to keep inventory unless it is cost effective. Hence, it is intuitive that

the effect of splitting increases as the order sizes increase.
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Table 4.5: Percentage Cost Reduction by Allowing Consolidation and Splitting
Order size

High Medium Low
availability of

type II vehicles High Low High Low High Low
∆Splitting 54.33% 7.47% 1.76%

22.45% 2.23% 0.95%
∆Consolidation 2.82% 16.91% 75.54%

1.27% 9.00% 55.49%

As can be seen in Table 4.5, the effect of consolidation is relatively high when

the order sizes are low. For the low order size case, there are 450 orders with sizes

being less than one vehicle capacity. When consolidation is not allowed, the total

number of vehicles that is needed to deliver all orders is 450. On the other hand,

the total size of all orders is equal to the total capacity of 240 vehicles. Thus, the

total number of vehicles to deliver all orders can be reduced down to 240 when

consolidation is allowed. For the high order cases, the effect of consolidation is

insignificant. This is because the number of orders is very low. As there are 10

orders, even if consolidation is allowed, the number of outbound vehicles needed

to deliver all orders can be reduced by at most 10. Thus, as expected, the effect

of consolidation increases when the size of the orders are low, especially less than

one vehicle capacity.

Note that, the effect of consolidation depends on the transportation costs

whereas the effect of splitting is related to inventory holding costs. Thus, the con-

solidation policy is more effective when the transportation costs are high whereas

splitting policy is more critical when inventory holding costs are higher.

The effects of operating policies with respect to production capacities are

summarized in Table 4.6. The first number at the upper left of each cell is the

average percentage cost reduction when the production capacity is high, whereas

the second number is the average percentage cost reduction for low production

capacity. As expected, effect of Consolidation is more significant when order sizes

are low. Observe that for each order size level, ∆Consolidation is approximately

the same irrespective of the production capacities. Hence, we conclude that the
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Table 4.6: Percentage Cost Reduction with Respect to Production Capacity
Order size

High Medium Low
Production Capacity High Low High Low High Low

∆Splitting 34.68% 4.13% 1.11%
42.11% 5.57% 1.65%

∆Consolidation 2.15% 13.84% 65.82%
1.93% 12.06% 65.73%

Table 4.7: Percentage Cost Reduction for FTL-Delivery
Order Size

Availability of type II vehicles High Medium
High 52.43% 1.57%
Low 19.70% 0.15%

effect of consolidation does not depend on production capacities. For splitting,

however, the effect depends on production capacity. The first numbers in each

cell is lower than the second numbers for the first row of Table 4.6. When the

production capacities are high, it takes less number of periods to produce high

size orders. Thus, the effect of splitting is relatively more at the low production

capacities.

For the FTL-Delivery case, the effect of splitting and availability of type II

vehicles is presented in Table 4.7. Results indicate that the effect of splitting

increases with the order sizes similar to the general delivery case, as discussed

before.

For the FTL-Delivery case, the average optimality gaps and solution times

are given in Tables 4.8 and 4.9, respectively. Observe that, average optimality

gaps are relatively smaller than the general delivery case. Furthermore, all the

FTL-Delivery problems with Split are solved to optimality in less then 0.1 CPU

seconds. This result is interesting and needs further investigation.

In conclusion, both the consolidation and the splitting policies have signifi-

cant effects on the system performance. The effect of the consolidation policy is

magnified when the order sizes are low and transportation costs are high. The
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Table 4.8: Average Optimality Gap Values for FTL-Delivery
Order Size

High Medium
Split 0.00% 0.00%
NoSplit 0.00% 0.27%

Table 4.9: Average Solution Times for FTL-Delivery (in CPU seconds)
Order Size

High Medium
Split 0.02 0.07
NoSplit 28.78 297.48

effect of the splitting policy is more when the order sizes and inventory hold-

ing costs are high and the production capacities are low. The computation time

for FTL-Delivery is less than 0.1 CPU seconds when splitting is allowed which

motivates further research.

4.6 Demand Time Windows

In this section, we analyse the problem variant with demand time windows, in

which delivery of an order has to take place within a time window. For each order

i, we define Ei ≤ Di as the earliest time that an order can be delivered. Hence,

delivery of an order has to take place within [Ei, Di]. This version of the problem

is at an extension since setting Ei = 0,∀i ∈ N is a special case for the problem

with demand time windows. Thus, this version of the problem is at least as hard

as the original versions. In order the employ demand time windows, the following

changes on Constraint sets (4.8) and (4.10) must be made on the Generic Model

Formulation defined in Section 4.1, respectively;
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Di∑
t=Ei

σt,i = Si ∀i ∈ N (4.40)

Di∑
t=Ei

σ̃t,i = 1 ∀i ∈ N (4.41)

We would like to also note that, Theorems 4.1,4.2, 4.3, and 4.4; Lemmas

4.1 and 4.2; and Corollaries 4.1 and 4.2 are remain valid with the inclusion of

demand time windows. The EDD property defined in Theorem 4.5 remains valid

only if earliest delivery times for all orders are agreeable with their deadlines, i.e.,

Ei ≤ Ej → Di ≤ Dj;∀i, j ∈ N .

For two of the problems studied in this chapter, although we provide pseudo-

polynomial algorithms for a general cost structure, the status of these problems

is still open. Four of the six problems considered in this study are proven to be

intractable, which motivates the need to design heuristic solution procedures for

these problems. Further research may also needed to develop either heuristic or

enumerative solution procedures which employ the optimality conditions in this

chapter. In Chapter 5, we propose a tabu-search algorithm for Problem 4 defined

in Section 4.3.4.
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Hierarchical vs. Central
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Hierarchically versus

Centrally-Coordinated Decisions

for A Joint Production and

Transportation Planning Problem

We consider a manufacturer’s planning problem to schedule the production of

orders and arrange for their transportation to respective destinations. Motivated

by some industry practices, we present formulations for three different solution

approaches, which we refer to as the uncoordinated solution, the hierarchically-

coordinated solution and the centrally-coordinated solution. In both the unco-

ordinated solution and the hierarchically-coordinated solution, production plan-

ning decisions are made first, followed by outbound transportation decisions. In

the uncoordinated solution, planning efforts for transportation are limited, often

made using a heuristic and without giving explicit consideration to transportation

costs and constraints. In the hierarchically-coordinated solution, transportation

planning is done in more detail in an effort to optimize the related costs. Finally,

in the centrally-coordinated solution, production and transportation decisions are

made jointly, aiming to minimize overall costs.

In this chapter, we first present mathematical formulations for solving the

problem of interest using the three approaches. The mathematical formulations

for the uncoordinated and hierarchically-coordinated solutions are based on an

identification of two subproblems, those are the production subproblem and the

91
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transportation subproblem. In the production subproblem, the objective is to

find a schedule of jobs on a single machine to minimize inventory holding costs

without any job being tardy. In the transportation subproblem, a plan is made to

deliver the completed orders with the least cost considering the different vehicle

availabilities. We show that solving the production subproblem is NP-hard in

the strong sense, however, we come up with polynomial algorithms for solving

the two subproblems given the delivery times of orders. This structure of the

problem enables us to propose a novel application of the tabu-search method as

a heuristic to minimize the sum of inventory holding and transportation costs.

It is obvious that integration of production scheduling and transportation de-

cisions reduces the total costs as opposed to making the related decisions in a se-

quential fashion. Similar to the studies (Chen and Vairaktarakis [6], Pundoor and

Chen [19]) investigating this issue, we conclude that the savings due to integration

can in fact be significant. By comparing the hierarchically-coordinated solution

to the centrally-coordinated solution, we quantify the savings due to integra-

tion. Furthermore, by comparing the uncoordinated solution to the hierarchically-

coordinated solution, we quantify the savings that can be achieved by optimal

usage of the transportation choices.

Although this problem is a special case of Problem 4 in Chapter 4, for the

sake of completeness we begin with a detailed description of the problem and the

notation in the next section. We continue in Section 5.2 with the explanation

and the modeling of the three solution approaches. In Section 5.3, we provide a

further analysis of the underlying subproblems. In Section 5.4, a heuristic based

on tabu search is proposed for the joint problem of minimizing inventory holding

and transportation costs. This is followed by the results of an extensive numerical

analysis on the comparison of the three solution approaches and the performance

of the heuristic.
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5.1 Problem Definition and Notation

We consider a manufacturer’s production-planning and delivery-scheduling prob-

lem, which concerns N orders to be satisfied in T periods. Production capacity

of the manufacturer is limited by Pt units in period t, indepedent of the type of

items to be produced. The production for each order i, which has size Si, must be

completed and the order must be delivered before its deadline Di. Late deliveries

are not allowed. In this setting, order acceptance and rejection decisions have

been already made, and there exists a feasible production plan that makes every

order ready for delivery before its deadline. Cost of carrying one unit of inventory

from one period to the next amounts to $H for all orders.

Orders are delivered to the customers at the expense of the manufacturer.

The manufacturer uses capacitated vehicles for outbound transportation. Each

vehicle holds upto K units of the finished product. Any number of these vehicles

can be utilized at a cost of $C1 per vehicle in each period. However, in period

t, a limited number (i.e., At) of them is also available at a lower cost (i.e., C2)

and we refer to the vehicles with cost C1 as type I and to those with cost C2 as

type II. The latter type of vehicles can be held at the facility at an additional

cost of $W per vehicle per period. Note that, this problem is a special case of

Problem 4 in Chapter 4, with linear and stationary cost functions. Following

restrictions exist on outbound shipments: i) customers do not accept partial

deliveries (NoSplit), ii) different orders cannot be shipped in the same vehicle

(NoConsolidation). Therefore, the number of vehicles needed for delivery of order

i is given by dSi/Ke. The problem is to find a production plan that minimizes

the sum of transportation and inventory holding costs. The plan must imply the

delivery schedule of orders, the number of both types of vehicles used in outbound

transportation and the production quantity in each period. Different approaches

may be used to solve the production planning problem in this setting. Before

proceeding with a detailed discussion of these approaches in the next section, we

summarize below some of the notation used in this chapter. Additional notation

will be defined when it is necessary.
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N : Number of orders.

T : Number of periods.

Pt: Production capacity in period t.

Si: Size of order i.

Di: Deadline of order i.

H: Cost of carrying one unit of inventory from one period to the next.

K: Capacity of a truck in number of units.

C1: Cost of utilizing a type I vehicle.

C2: Cost of utilizing a type II vehicle.

W : Cost of holding a type II vehicle for a period.

At: Number of type II vehicles available in period t.

Costu: Total cost of the uncoordinated solution.

Costh: Total cost of the hierarchical solution.

Costc: Total cost of the centralized solution.

5.2 Solution Approaches

In this section, we discuss the three approaches briefly introduced in the beginning

of this chapter (those are the centrally-coordinated solution, the uncoordinated

solution and the hierarchically-coordinated solution) for solving the problem of

interest. In the centrally-coordinated solution, production-planning and trans-

portation decisions are made jointly in a single step. The other two approaches

follow a two-step process which relies on solving the underlying subproblems,

those are the production subproblem and the transportation subproblem, sequen-

tially. The production subproblem is mainly finding the production quantity in

each period and the delivery schedule of orders to minimize inventory holding

costs. Since this problem is solved independently, without giving any consider-

ation to the outbound shipment costs, its optimal solution does not foresee the

savings from transportation costs if the completed orders are held in inventory.

Therefore, a plan that minimizes inventory holding costs delivers the orders as

soon as they are completed. The transportation subproblem is, given the delivery

schedule of orders, determining the number of type I and type II vehicles to be
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used over time to minimize transportation costs.

The first steps of the uncoordinated and the hierarchically-coordinated solu-

tions are the same and are mainly solving the production subproblem optimally.

The two solutions differ in their second steps where the transportation subprob-

lem is solved. In the hierarchically-coordinated solution, this subproblem is also

solved optimally whereas in the uncoordinated solution it is not. More specif-

ically, in the uncoordinated solution, transportation arrangements are made to

deliver the completed orders in each period using only the vehicles which are

available in that period. Since type II vehicles are less costly, they are preferred

over the type I vehicles. If there is no type II vehicle, outbound shipments are

made using type I vehicles. As an implication of this difference, hierarchically-

coordinated solution allows for holding type II vehicles over periods to satisfy

future delivery requirements while the uncoordinated-solution does not.

In the remaining parts of this section, we present these approaches in more

detail. For the sake of simplicity, we use a notation similar to the previous

chapter with some modifications. The following is a list of decision variables that

are common to all three approaches:

πt : Total production amount in period t t = 1, . . . , T

It : Inventory carried from period t to t+ 1 t = 1, . . . , T

yt : Number of type I vehicles used in period t t = 1, . . . , T

xt : Number of type II vehicles used in period t t = 1, . . . , T

wt :
Number of type II vehicles carried from

period t to t+ 1
t = 1, . . . , T

σ̃ti :

{
1 If order i is delivered in period t

0 otherwise
t = 1, . . . , T ; i = 1, . . . , N

Recall that θt defined in the previous chapter was the number of vehicles used

in period t. In this chapter, however, yt and xt are defined to be the number of

type I and type II vehicles used in period t, respectively. The modification on

the decision variables is simply replacing θt − xt by yt.
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5.2.1 Centrally-Coordinated Solution:

In presenting the details of the different solution approaches, we start with the

centrally-coordinated solution. The following integer programming formulation,

modified from the generic model in Chapter 4, models all aspects of outbound

transportation in obtaining a production plan. In this chapter, we refer to this

model as the Integrated Model and its optimal objective function value for a prob-

lem instance using the notation Costc.

Integrated Model:

Min
T∑
t=1

(C1yt + C2xt +Wwt +HIt)

It = It−1 + πt −
N∑
i=1

σ̃tiSi t = 1, . . . , T (5.1)

xt + wt ≤ At + wt−1 t = 1, . . . , T (5.2)

πt ≤ Pt t = 1, . . . , T (5.3)
N∑
i=1

dSi/Keσ̃ti = xt + yt t = 1, . . . , T (5.4)

Di∑
t=1

σ̃ti = 1 i = 1, . . . , N (5.5)

xt, yt, wt, πt, It ∈ {0} ∪ Z+ t = 1, . . . , T (5.6)

σ̃ti ∈ {0, 1} t = 1, . . . , T ; i = 1, . . . , N (5.7)

w0 = 0, I0 = 0 (5.8)

The objective function in the above formulation is the sum of transportation

and inventory holding costs. The first constraint set represents the inventory

balance equations. Inequality (5.2) corresponds to the balance constraints for

type II vehicles. Note that, xt may include type II vehicles that have been carried

from earlier periods as well as those that become recently available in period t.

Constraint set (5.2) is in the form of an inequality because some of the type II

vehicles may not be utilized. Inequality (5.3) ensures that production capacity
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is not exceeded in any period. Equation (5.4) implies that the total demand

for vehicles to be used in outbound shipment in a period is satisfied through

either type I or type II vehicles. Equation (5.5) guarantees that every order is

delivered before its deadline. Constraint sets (5.6) - (5.8) refer to nonnegativity,

integrality and initial conditions of some variables, respectively. Here, Z+ is the

set of positive integers.

The mathematical formulation introduced above considers the transportation

costs and capacities explicitly in making the production planning decisions. Re-

call that, we show that the problem of interest as modeled herein is NP-Hard

in the strong sense in Chapter 4. In the next section, we present the other two

approaches in detail.

5.2.2 Other Solution Approaches: Uncoordinated and

Hierarchically-coordinated

Recall that, both the uncoordinated and the hierarchically-coordinated solutions

rely on the production subproblem and the transportation subproblem. The

formulations of these subproblems are decomposed from the Integrated Model

and presented below.
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Production Subproblem:

Min
∑T

t=1HIt

It = It−1 + πt −
∑N

i=1 σ̃tiSi t = 1, . . . , T

πt ≤ Pt t = 1, . . . , T∑Di
t=1 σ̃ti = 1 i = 1, . . . , N

πt, It ∈ {0} ∪ Z+ t = 1, . . . , T

I0 = 0

σ̃ti ∈ {0, 1} t = 1, . . . , T ; i = 1, . . . , N

Transportation Subproblem:

Min
∑T

t=1 (C1yt + C2xt +Wwt)

xt + wt ≤ At + wt−1 t = 1, . . . , T

xt + yt =
∑N

i=1dSi/Keˆ̃σti t = 1, . . . , T

xt, yt, wt ∈ {0} ∪ Z+ t = 1, . . . , T

w0 = 0

In the production subproblem, issues related to transportation are not con-

sidered. Similarly, the transportation subproblem does not have the production

and inventory related costs and constraints. Note also that, the indicator variable

showing whether a delivery is to be made for order i in period t, i.e., σ̃ti, is a

decision variable in the production subproblem whereas its value is an input to

the transportation subproblem. In the transportation subproblem, ˆ̃σti denotes a

given value of σ̃ti.

Now, we are ready to provide the detailed descriptions of the uncoordinated

and the hierarchically-coordinated solutions. Before doing so, we define further

piece of notation. Let Costb and σ̃∗ti be the optimal values of the objective func-

tion and σ̃ti, respectively, as an output of the production subproblem. This

solution implies that the total vehicle requirement for deliveries in period t is
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∑N
i=1dSi/Keσ̃∗ti. Therefore, the following description applies to the uncoordi-

nated solution.

Description of The Uncoordinated Solution:

1. Solve the production subproblem.

2. Set xt = min
(∑N

i=1dSi/Keσ̃∗ti, At
)

, yt =
∑N

i=1dSi/Keσ̃∗ti − xt and wt = 0.

Compute the resulting costs as follows:

Costu = Costb +
T∑
t=1

(C1yt + C2xt) .

In comparison to the uncoordinated solution, the second step of the

hierarchically-coordinated solution exploits the possibility of carrying type II ve-

hicles from one period to the next to get better advantage of the cheaper trans-

portation alternative. More specifically, holding a type II vehicle for a delivery

that has to take place within the next β periods is less costly than using a type

I vehicle for the same delivery, where

β = max
{
b : C2 + bW < C1, b ∈ {0} ∪ Z+

}
. (5.9)

As it will be discussed in Section 5.3, the value of β is critical as an input to

our proposed algorithm for the optimal solution of the transportation subprob-

lem. Therefore, it is also utilized by the following algorithm for obtaining the

hierarchically-coordinated solution and the resulting cost.

Description of The Hierarchically-Coordinated Solution:

1. Solve the production subproblem and do the following initialization of vari-

ables.

(a) For t = 1 to t = T and for i = 1 to i = N , set ˆ̃σti = σ̃∗ti.
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(b) Compute the value of β using Expression (5.9).

2. Solve the transportation subproblem given ˆ̃σti and β. Compute Costh as

the summation of the optimal costs of the two subproblems (i.e., Costh =

Costb + Costt(ˆ̃σti)).

Here, Costt(ˆ̃σti) refers to the optimal objective function value of the trans-

portation subproblem given the delivery dates of orders as implied by the optimal

solution of the production subproblem.

5.3 Analysis of the Subproblems

The solutions of the production subproblem and/or the transportation subprob-

lem are utilized in the uncoordinated and the hierarchically-coordinated solu-

tions. Furthermore, the tabu search heuristic that will be described in Section

5.4 is based on solving these two problems optimally for given delivery dates.

Therefore, we analyze these subproblems further in this section. We start with

establishing the status of the production subproblem in the next theorem. Then,

we present polynomial time algorithms for obtaining optimal solutions of the two

subproblems given the delivery dates of orders.

Theorem 5.1 The production subproblem (production planning problem without

transportation considerations), is NP-Hard in the strong sense.

Proof: Proof is done by a reduction from 3-Partition (3P) problem, and note

that, the production planning problem without transportation considerations is

clearly in NP . 3P is defined as follows:

INSTANCE: Set G of 3t elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for

each a ∈ G such that B/4 < s(a) < B/2 and such that
∑

a∈G s(a) = tB.
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QUESTION: Can G be partitioned into t disjoint sets G1,G2, ...,Gt such that∑
a∈Gτ s(a) = B for τ = 1, 2, .., t (note that each Gτ must therefore contain exactly

three elements from G)?

REDUCTION: Take an arbitrary instance of 3P. The corresponding instance

of our problem is constructed as follows: for each element a in set G define an

order with size Sa = s(a) (i.e., N = |G|) . Set T = t,H = 1, Pt = B, and, for

each a = 1, 2, . . . , N set Da = T . We will show that there is a solution to 3P

if and only if there is a solution to our problem with cost less than or equal to

z∗ = 0.

Assume that there is a solution to our problem with cost z that is less than or

equal to 0. Thus, no inventory holding cost is incurred. Since there are 3t orders

to be satisfied with a total size of tB, and total production capacity of the facility

is equal to total demand (
∑T

t=1 Pt = tB), the total number of items produced at

each period is equal to B. This means that, three orders with total size equal to

P are completed and delivered at each period, without any inventory held at the

facility. Now construct a solution to 3P as follows: for all orders produced and

delivered in period τ , put the corresponding element in set G into Gτ . As the size

of orders Sa = s(a), for each disjoint set Gτ ,
∑

a∈Gτ s(a) = B (τ = 1, 2, ..., t).

If there is a solution to 3P, construct a solution to our problem instance as

follows: for each disjoint set Gτ , τ = 1, 2, ..., t, produce and deliver all the items

of order a ∈ Gτ in period τ . Similar reduction with the previous case implies that

the solution has a cost of z = 0. �

Now, let us consider the two subproblems given the delivery dates of all orders.

Note that, it is always possible to obtain a feasible solution to the transportation

subproblem simply by using the type I vehicles, which are plentiful. The pro-

duction subproblem, on the other hand, may not be feasible depending on the

delivery dates given. More specifically, if the total size of orders that must be

completed and sent by time t is greater than the cumulative production capacity
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until that period, the production subproblem is infeasible. We propose the fol-

lowing algorithm for finding the optimal solution to the production subproblem

given that σ̃ti = ˆ̃σti. With a slight change of notation, Costb(ˆ̃σti) is used to refer

to the optimal costs of the production subproblem under given delivery dates of

orders.

Algorithm 5.1 Optimal Solution of the Production Subproblem

Given the Delivery Dates:

1. Do the following initialization of variables.

(a) Set Costb(ˆ̃σti) = 0.

(b) For t = 1 to t = T , set Ft =
∑N

i=1
ˆ̃σtiSi.

2. For t = T down to t = 1

(a) Determine the production amount in period t using πt = min{Ft, Pt}.

(b) If Ft > πt,

i. If t = 1, then there is no feasible solution. Stop and exit.

ii. If t 6= 1, do the following:

A. Ft−1 = Ft−1 + Ft − πt.

B. Update the optimal costs using Costb(ˆ̃σti) = Costb(ˆ̃σti) +

(Ft − πt)×H.

In the above algorithm, Ft is the amount that has to be produced within

[1, t] for the deliveries that will take place within [t, T ]. The algorithm follows a

backwards recursive path to find the production quantity in each period and the

resulting cost. If Ft ≤ Pt, then there is enough capacity in the current period

to produce for the deliveries in [t, T ]. Therefore, Ft amount of this capacity is

utilized right away to make timely deliveries without increasing inventory holding
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costs. If Ft > Pt and t = 1, then the production capacity in the first period is

not enough to make timely deliveries within [1, T ], and therefore, the production

subproblem is infeasible for the given delivery dates. Otherwise, if Ft > Pt and

t 6= 1, the production capacity in the current period t is not enough to satisfy the

delivery amount within [t, T ], however, there is possibility to satisfy Ft−Pt of this

quantity with the production in earlier periods. In this case, Ft−1 is increased by

as much as Ft − Pt. Since, at this point, we know that Ft − Pt number of items

will be held in the inventory for at least a period, the total costs are updated

to incorporate the holding cost of this much inventory for one period. It can be

observed that the above algorithm runs in O(T ).

The following algorithm solves the transportation subproblem optimally for

given delivery dates ˆ̃σti.

Algorithm 5.2 Optimal Solution of the Transportation Subproblem:

1. Do the following initialization of variables.

(a) Set Costt(ˆ̃σti) = 0.

(b) For t = 1 to t = T , set xt = 0, wt = 0, Gt =
∑N

i=1dSi/Keˆ̃σti and

zt = At.

2. For b = 0 to β

For t = 1 to T − b

(a) Determine the number of type II vehicles among those that become

available in period t, to be used in period t + b. That is, compute

∆t = min{Gt+b, zt}.

(b) Update the number of vehicles needed for deliveries in period t+ b

using Gt+b = Gt+b −∆t.
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(c) Decrease the number of type II vehicles that are available in period

t by ∆t (that is, set zt = zt −∆t).

(d) Increase the number of type II vehicles utilized in period t + b by

∆t (that is, set xt+b = xt+b + ∆t).

(e) If b > 0, for τ = 0 to (b− 1) set wt+τ = wt+τ + ∆t.

3. For t = 1 to t = T ,

(a) Set yt = Gt.

(b) Update the optimal costs using Costt(ˆ̃σti) = Costt(ˆ̃σti)+wt×W +yt×
C1 + xt × C2.

In the above algorithm, b represents the number of periods that a type II

vehicle is held. Expression (5.9) implies that it is not optimal to hold a type

II vehicle for more than β number of periods. Therefore, b ranges from 0 to β.

Within steps 2.(a)–2.(e) of the algorithm, first, among the type II vehicles that

have been on hold for the last b periods, the number that will be used in period

t + b is found. Later, the overall need for vehicles in period t + b (i.e., Gt+b),

the number of type II vehicles that are available in period t (i.e., zt), the number

of type II vehicles used in period t + b (i.e., xt+b), and the inventory of vehicles

throughout periods t to t+ b−1 (i.e., wt+τ for τ = 0, . . . , b−1) are updated. The

algorithm runs steps 2.(a)–2.(e) in such a sequence of t and b values that type

II vehicles are used in the most immediate period that a need for vehicles arises.

This way, holding cost of vehicles is minimized along with the total transportation

costs. In the last step of the algorithm, a plan is made to satisfy the remaining

need for vehicles in any period using type I vehicles, and the cost is updated.

We conducted an extensive numerical analysis to compare the three solution

approaches introduced in Section 5.2. The results, which are discussed in more

detail in Section 5.5, show that the total costs of the centrally-coordinated solu-

tion can be less than that of the uncoordinated solution by as much as its 75%

and less than that of the hierarchically-coordinated solution by as much as its
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58%. Due to such results derived from the computational analysis, we conclude

that significant savings can be achieved if the centrally-coordinated solution is

used instead of the other two approaches. Furthermore, all the three approaches

rely on solving problems that are NP-Hard in the strong sense. Therefore, the

uncoordinated solution and the hierarchically-coordinated solution do not provide

a computational advantage over the centrally-coordinated solution. These results

establish a need for a heuristic that can be used in practice to make the produc-

tion planning and transportation decisions jointly as in the centrally-coordinated

solution. In the next section, we propose a meta-heuristic that utilizes the tabu-

search technique for this purpose.

5.4 Tabu Search

The uncoordinated and the hierarchically-coordinated solutions are based on our

observation that production planning decisions are made prior to transportation

decisions in many real-life practices. In these two approaches, first the produc-

tion subproblem is solved optimally. Then, transportation arrangements are put

together to comply with the production plan that minimizes inventory holding

costs. In the hierarchically-coordinated solution, the transportation subproblem

is also solved optimally. As both the approaches focus on sequentially minimizing

the two cost components, total costs are not necessarily optimized. The tabu-

search heuristic that we propose is also based on the two subproblems. However,

as opposed to the uncoordinated and the hierarchically-coordinated solutions,

it makes use of the solutions of these subproblems simultaneously rather than

sequentially, and aims to minimize the total costs rather than individual cost

components.

Recall that, the joint production and transportation planning problem defined

in Section 5.2 requires the determination of the following: production amount in

each period, delivery times of orders and the number of both types of vehicles to
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be used for deliveries. If the delivery dates of orders are known, the production

amounts and the vehicles used in each period can be determined optimally using

Algorithm I and Algorithm II, respectively. This structure of the joint problem

enables us to define a solution by an array of size N , where the ith element stores

the information regarding the delivery period of order i. The tabu search begins

with an initial seed solution in which the delivery time of each order is set to its

deadline. At each iteration, a neighborhood of the current seed is generated and

all the solutions in the neighborhood are evaluated for their costs. The cost of a

solution is simply the summation of the optimal objective function values of the

two subproblems. The solution with the least cost in the neighborhood and is

not tabu, is selected as the new seed, and a new iteration begins. The search for

the best solution continues until the stopping criterion is met.

The neighborhood of a seed is generated by changing the delivery dates of all

orders one-order-at-a-time, keeping the delivery dates of the remaining orders as

they currently are. In changing the delivery date of order i, we consider a feasible

range of values, that is [Ei, Di]. Ei here represents the earliest feasible delivery

date of order i. Its value is computed by taking into account the production

capacity over time and the sizes of all orders that have to be completed before

Di. Defining δt,i as the total size of all orders apart from order i, that have to

be completed in or before period t, we propose the following procedure to obtain

values for Ei for all i.

Algorithm 5.3 Computing Values for Earliest Delivery Dates (Ei):

For i = 1 to i = N , do the following:

(a) For t = 1 to t = T , initialize δt,i as δt,i =
∑

j:j 6=i,Dj≤t Sj.

(b) For t = T − 1 down to T = 1, update the value of δt,i using the

following:

δt,i = max{δt+1,i − Pt+1, δt,i}. (5.10)
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(c) Set Ei = min
{
t :
∑t

k=1 Pk − δt,i ≥ Si
}

.

In order to describe why Ei, as found in the above algorithm, is the earliest

delivery date for order i, let us start elaborating from the last step of the algo-

rithm.
∑t

k=1 Pk− δt,i is the remaining of the total production capacity in periods

1, . . . , t that can be reserved for order i. If
∑t

k=1 Pk − δt,i < Si for some period

t, then it is not possible to finish the production of order i before or in period

t. If order i can be delivered before or in period t, then it must be true that∑t
k=1 Pk − δt,i ≥ Si, and therefore, in order to find the earliest delivery date, we

choose the smallest among all such t. The δt,i values for all t are found in the

first and the second steps of the algorithm. Initially, δt,i is set to
∑

j:j 6=i,Dj≤t Sj,

that is the total size of all orders other than i that have deadlines smaller than

or equal to t. Then, δt,i values are updated by tracing backwards from t = T − 1

to all periods T − 2, . . . , 1. The update is done using Equation (5.10). In this

equation, if the maximum is given by δt+1,i−Pt+1, then–given that only δt,i units

are produced within the first t periods for orders other than i–the production

capacity in period t+1 is not enough to make timely future deliveries. Therefore,

the excess requirement (i.e., δt+1,i−Pt+1− δt,i) also needs to be satisfied through

the production in the first t periods.

The job of which delivery date has been changed to form the newly selected

seed at each iteration, is added to the tabu list. Therefore, a solution in a

neighborhood is considered as tabu if this solution is constructed by changing

the delivery date of a job that is in the tabu list. However, we use the following

rule as an aspiration criterion: If the best solution in the neighborhood has less

cost than that of the best solution so far, then it is taken as the new seed even if

it is tabu. In the next section, we present our numerical experimentation with the

three solution approaches and the tabu search heuristic. As it will be discussed in

this section, we use varying tabu lengths for instances with different order sizes.
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5.5 Computational Analysis

In this section, we first report the results of a computational analysis to quantify

the savings due to the centrally-coordinated solution and to examine how the

resulting costs of the three approaches differ under varying problem parameters.

Then, we present some results by a comparison of the tabu search heuristic with

the centrally-coordinated solution, that is the optimal solution of the Integrated

Model. More specifically, we seek answers to the following questions:

• How do the inventory holding cost (i.e., H) and the vehicle holding cost

(i.e., W ) affect the outcomes of the three solution approaches? How do the

results change with varying order sizes?

• How does the availability pattern of the type II vehicles affect the differences

in costs? Here, we consider both the average number of type II vehicles

that are available in each period during the planning horizon (that is the

average number of type II vehicles per period) and the degree of changes in

their availability from one period to another (that is the period-to-period

variability of the number of type II vehicles).

• What is the impact of the production capacity on the outcomes of the

different solutions?

• What is the worst case and the average performance of the tabu search

heuristic as compared to the centrally-coordinated solution? How do these

results change under varying problem parameters?

As discussed in Section 5.2, centrally-coordinated solution leads to the op-

timal costs and the hierarchically-coordinated solution is an improvement over

the uncoordinated solution. Therefore, it is true for any instance that Costu ≥
Costh ≥ Costc. However, in light of the first three questions above, our objective

is to examine the magnitudes of the differences between the cost values under
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relevant combinations of parameter settings. With this objective, we define the

following measures for a problem instance:

∆u,h =
Costu − Costh

Costu
× 100%

∆h,c =
Costh − Costc

Costh
× 100%

∆u,c =
Costu − Costc

Costu
× 100%

Note that, each of the ∆u,h, ∆h,c and ∆u,c values refers to the percentage cost

improvement of one solution approach over another. Given that the mathematical

models for the production subproblem and the centrally-coordinated solution are

solved optimally, we have ∆u,h ≥ 0, ∆h,c ≥ 0 and ∆u,c ≥ 0. In order to test the

performance of the heuristic, we consider how the resulting cost for an instance

compares to the lower bound provided by GAMS. Before we proceed with a

detailed discussion of these results, we first present the experimental design.

5.5.1 Experimental Design

Considering the questions highlighted at the beginning of this section, we use the

following six parameters as factors: vehicle holding cost (W ), inventory holding

cost (H), production capacity, order sizes, average number of type II vehicles per

period, and period-to-period variability of the number of type II vehicles. We do

not take the length of the planning horizon, vehicle costs and capacities as factors

of analysis, and therefore, we keep their values fixed as T = 1 month, C1 = 1000,

C2 = 100 and K = 100. In what follows, we describe the factor levels used in

experimentation and how they are generated.

Vehicle holding cost: We consider five levels for this factor and generate them

around the value of β, which is the maximum number of periods that holding a
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vehicle is justified. It can be observed from Expression (5.9) that, there exists

a unique value of β that corresponds to every value of W . Furthermore, the

hierarchically-coordinated solution explicitly utilizes this value. A commonly

used value of β by the industry practice that has motivated this study, is equal to

4. Therefore, we take low, medium and high values of β as 2, 4 and 8, respectively.

As β is an important parameter for the purposes of this study, our analysis also

considers its extreme values, those are β = 0 and β = 32. Note that, the values

of W that correspond to the different levels of β are reported in Table 5.2.

Inventory holding cost: Five levels of H are generated around a factor that

we refer to as α and define as follows:

α = max
{
a : C1 > C2 + a ∗H ∗K, a ∈ {0} ∪ Z+

}
. (5.11)

In our setting, when an order is ready to be delivered, there clearly exists a

tradeoff between delivering it right away or holding it in the inventory so that a

less costly delivery option that will be available in a future period can be used.

α shows the maximum number of periods that a full truck load of items can

be stocked at the expense of inventory holding costs, and yet, the savings from

transportation costs exceed these extra costs. Expression (5.11) implies that there

exists a unique value of α for each H. We consider 10, 4, 2, 1 and 0.25 as different

levels of H, which correspond to α values of 0, 2, 4, 8 and 32, respectively.

Production capacity: The length of the production planning horizon is taken

as one month, equivalent to T =30 days. A day is considered as a period and

it is assumed that there are six working days followed by a no-production day.

Therefore, there are 26 production periods within the planning horizon. Although

there is no production in the remaining 4 days, costs are incurred for carrying

inventories of items and inventories of vehicles over these periods. The production

capacity over the production periods, is constant. We consider two levels for the

production capacity, those are 1000 units/day and 1500 units/day. As it will

be discussed later, we generate the order sizes in such a way that the sizes of

all orders to be produced sum up to 24000 units. This being said, the average
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load of the system–defined as total size of all orders/total production capacity–is

approximately 90% in the low production-capacity case (i.e., 24000/(26× 1000)),

and is approximately 60% in the high production-capacity case (i.e., 24000/(26×
1500)).

Order sizes: Three different sets of orders are used in combination with other

factors. All orders in a set have small, medium or large sizes. An order’s size is

identified as one of these depending on how it compares to the vehicle capacity

(i.e., K = 100) and to the low level of the daily production capacity (i.e., Pt =

1000). Mainly, small-size orders have less than 100 items, medium-size orders

have more than 100 items but less than 1000 items, and large-size orders have

more than 1000 items. The number of items in a low-size order is taken as a

uniformly distributed random variable between 10 and 100. The number of items

in a medium-size order is generated from a uniform distribution ranging from

100 to 1000. The sizes of orders in the third set are generated using a uniformly

distributed random variable between 1000 and 4000. The total number of items

over all orders in a set is kept at 24000 units. This sum is maintained by reducing

the number of items in the first order that makes the total size greater than 24000.

As a result, the number of orders in the sets of low-size, medium-size and large-

size orders turns out to be 450, 45 and 10, respectively.

Availability pattern of the type II vehicles: Average number of type II vehicles

per period and its period-to-period variability describe the pattern of arrivals.

These two attributes are taken as factors of analysis and two levels are considered

for each. The number of type II vehicles in each period is generated using a

discrete uniform distribution, and the availability pattern of the type II vehicles

is controlled using the mean and coefficient of variation (CV) of this random

variable. The average number of type II vehicles per day assumes either a value

of 2.5 vehicles/day or 7.5 vehicles/day. The bounds of the uniformly distributed

random variable corresponding to the number of type II vehicles per day, are

chosen in such a way that the coefficient of variation is either 0.2 or 0.6. The

parameters of the uniformly distributed random variable used to create different
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availability patterns are reported in Table 5.1. For example, an average number of

2.5 vehicles/day combined with 0.2 as the coefficient of variation represents a case

where type II vehicles are less available but arrive in a steady stream. Similarly,

an average number of 7.5 vehicles/day combined with 0.6 as the coefficient of

variation represents a case where type II vehicles are more available in number,

but their availability shows more variability among different days.

Table 5.1: Parameter settings for arrival patterns of type II vehicles

Period-to-period variability
Average number
of vehicles per day CV = 0.2 CV = 0.6
Low (2.5 vehicles/day) [2,3] [0,5]
High (7.5 vehicles/day) [5,10] [0,15]

The factor levels used in the analysis and described above in detail, are sum-

marized in Table 5.2. In total, there are 600 different experimental settings. For

each combination of factor levels, 10 random instances are solved.

Table 5.2: Experimental design

Design Parameter Levels

Vehicle holding cost
β = (0, 2, 4, 8, 32) or
W = (1000, 400, 200, 100, 25)

Inventory holding cost
α = (0, 2, 4, 8, 32) or
H = (10, 4, 2, 1, 0.25)

Production capacity High (1500), Low (1000)
Average # of type II vehicles per day Low (2.5), High (7.5)

Variability of the # of type II vehicles per day CV = 0.2, CV = 0.6

Order sizes
Low ∼U(10,100),
Medium ∼U(100, 1000),
High ∼U(1000, 4000)
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5.5.2 Comparison of the Three Solution Approaches

In order to make a comparison of the three solution approaches, all the math-

ematical models discussed in Section 5.2 were coded using GAMS version 22.6

(using CPLEX 11.0 as solver) and run on a Linux box with 8 GBs of physical

memory, running Debian Lenny (5.0.7) on 8 x Intel Xeon E5430 processors at

2.66 GHz. The solution time of each model for an instance was limited to 36000

CPU seconds (10 hours of CPU time). The model for the production subproblem

was solved with less than 0.02% optimality gap in 5960 out of 6000 instances.

The Integrated Model was solved with less than 0.11% optimality gap for 5986

out of 6000 instances. In the remaining instances, GAMS failed to provide a

solution due to memory interrupt. For four instances, neither Integrated Model

nor production subproblem can be solved. Thus a total of 50 instances are not

solved. These instances are modified and re-run so that 0.2% optimality gap is

accepted as termination criterion. As a result, all instances are solved with at

most 0.2% optimality gap.

The average solution time for the centrally coordinated solution procedure

is 496 CPU seconds. The average solution times for the uncoordinated and

hierarchically-coordinated procedures are 355 CPU seconds and the difference

between the solution times of these procedures is insignificant. This is mainly

because both solution procedures start with solving the production subproblem

optimally, which is NP-Hard in the strong sense. Note that the difference between

the uncoordinated and hierarchically-coordinated solution procedures is how the

underlying transportation subproblem is solved, i.e., it is solved heuristically in

the former whereas optimally in the latter. Note also that, the transportation

subproblem can be solved in polynomial time using Algorithm 5.2. Thus, the solu-

tion times for solving the transportation problem either heuristically or optimally

requires approximately the same time. Although the solution times for both unco-

ordinated and hierarchically-coordinated procedures are approximately the same,
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and the optimal objective function value of the hierarchically-coordinated solu-

tion procedure is always less than or equal to that of the uncoordinated solution

procedure, we still include the uncoordinated solution procedure in our analysis

for two reasons: i) to compare its solution with hierarchically-coordinated solu-

tion and assess the value of optimal usage of transportation opportunities and

ii) the manufacturing company which the problems are inspired, use the uncoor-

dinated solution procedure in practice. We start our analysis with the effects of

inventory and vehicle holding cost.

5.5.2.1 The Effects of Inventory Holding Cost and the Vehicle Holding

Cost

In this section, we report our observations about how the inventory holding cost

and the vehicle holding affect the outcomes of the three solution approaches and

how the results change with varying order sizes. In order to perform this analysis,

we look into the averages of ∆u,h, ∆h,c and ∆u,c over all instances of the same

size orders. The results for small-size, medium-size and large-size orders are

summarized in Table 5.3, Table 5.4 and 5.5, respectively. The values of α and β

change along the rows and the columns of these tables. In each cell, the averages

of ∆u,h, ∆h,c and ∆u,c over all instances with the corresponding α and β values,

are noted. For example, the entries in the second row, second column of Table 5.3

show that, over all instances with small-size orders, α = 0 and β = 0, the averages

of ∆u,h, ∆h,c and ∆u,c amount to 0.00%, 10.58% and 10.58%, respectively.

It can be observed from Table 5.3, Table 5.4 and Table 5.5 that, ∆u,h =

0 when β = 0. This is because the first steps of the uncoordinated solution

and the hierarchically-coordinated solution are the same, but the hierarchically-

coordinated solution entails the type II vehicles to be carried to future periods as

long as the savings justify the increase in vehicle holding costs. In case of β = 0,

it is less costly to use a type I vehicle in any period instead of carrying a type II

vehicle from an earlier period. Therefore, the hierarchically-coordinated solution
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Table 5.3: Average of ∆u,h, ∆h,c and ∆u,c values in case of small-size orders

β = 0 β = 2 β = 4 β = 8 β = 32
0.00% 2.21% 3.19% 3.69% 4.06%

α = 0 10.58% 8.60% 7.73% 7.49% 7.68%
10.58% 10.58% 10.64% 10.86% 11.38%
0.00% 2.23% 3.18% 3.66% 4.02%

α = 2 11.28% 9.30% 8.42% 7.97% 7.84%
11.28% 11.28% 11.28% 11.29% 11.49%
0.00% 2.20% 3.15% 3.63% 3.99%

α = 4 11.45% 9.50% 8.63% 8.18% 7.87%
11.45% 11.45% 11.45% 11.45% 11.48%
0.00% 2.20% 3.16% 3.65% 4.01%

α = 8 11.43% 9.48% 8.60% 8.14% 7.79%
11.43% 11.43% 11.43% 11.43% 11.43%
0.00% 2.26% 3.25% 3.75% 4.12%

α = 32 11.52% 9.52% 8.60% 8.13% 7.77%
11.52% 11.52% 11.52% 11.52% 11.52%

reduces to the uncoordinated solution, and hence ∆u,h = 0.

Examining Table 5.3, Table 5.4 and Table 5.5, we observe that the maximum

of the average ∆u,h values is 4.12%, 16.77% and 40.30% in case of small-size,

medium-size and large-size orders, respectively. These values are realized when

β attains its highest value. Excluding the values when β = 0, the minimums are

2.20%, 5.91%, 6.90%, and these values are realized when β = 2. Furthermore,

the average ∆u,h values increase as β increases in each row of Table 5.3, Table

5.4 and Table 5.5. This implies that, as it becomes less costly to carry type II

vehicles over periods, the hierarchical solution uses this opportunity to reduce

the costs of the uncoordinated solution, and the potential of improvement is the

highest when the order sizes are the largest.

The maximum of the average ∆h,c values is 11.52%, 25.50% and 9.23% in case

of small-size, medium-size and large-size orders, respectively. These values are re-

alized when α attains its highest value. The minimums are 7.49%, 10.74%, 2.42%,

and they coincide with the cases having α = 0. Furthermore, the average ∆h,c
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Table 5.4: Average of ∆u,h, ∆h,c and ∆u,c values in case of medium-size orders

β = 0 β = 2 β = 4 β = 8 β = 32
0.00% 5.91% 10.42% 13.75% 16.39%

α = 0 11.20% 10.97% 11.22% 10.93% 10.74%
11.20% 15.97% 20.04% 22.66% 24.94%
0.00% 6.12% 10.74% 14.13% 16.77%

α = 2 18.62% 14.96% 13.12% 11.97% 11.51%
18.62% 19.78% 21.88% 23.79% 25.68%
0.00% 6.20% 10.75% 14.03% 16.54%

α = 4 22.10% 17.97% 14.83% 12.89% 12.22%
22.10% 22.60% 23.32% 24.41% 26.00%
0.00% 6.12% 10.74% 14.13% 16.77%

α = 8 23.78% 19.84% 16.57% 13.57% 12.20%
23.78% 24.25% 24.85% 24.96% 26.25%
0.00% 6.11% 10.75% 14.02% 16.53%

α = 32 25.50% 21.53% 18.08% 15.30% 13.07%
25.50% 25.74% 25.91% 26.23% 26.70%

values increase as α increases in each row of Table 5.4 and Table 5.5, and in most

of the rows of Table 5.3. This implies that, the performance of the hierarchically-

coordinated solution approaches to that of the centrally-coordinated solution as

the inventory holding cost decreases. It is worthwhile to note that Table 5.3

exhibits some exceptions. For example, average ∆h,c is 9.50% when α = 4 and

β = 2 whereas it is equal to 9.48% when α = 8 and β = 2. We believe this is

because inventory holding costs constitute a lesser portion of the total costs in

comparison to transportation costs in case of small-size orders. Therefore, aver-

age ∆h,c is not much sensitive to changes in α, and hence these exceptions are

not representative of the general behavior.

Table 5.3, Table 5.4 and Table 5.5 suggest that the maximum of the average

∆u,c values is 11.52%, 26.70% and 44.59% in case of small-size, medium-size and

large-size orders, respectively. These values are realized when both α and β

are at their highest values. The minimums are 10.58%, 11.20%, 2.70%, and these

values are realized when both α and β assume their smallest values. Furthermore,
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Table 5.5: Average of ∆u,h, ∆h,c and ∆u,c values in case of large-size orders

β = 0 β = 2 β = 4 β = 8 β = 32
0.00% 6.90% 13.51% 18.23% 22.11%

α = 0 2.70% 2.42% 2.62% 2.85% 3.11%
2.70% 9.07% 15.64% 20.34% 24.22%
0.00% 9.47% 18.55% 24.88% 30.06%

α = 2 4.02% 3.66% 4.04% 4.66% 5.58%
4.02% 12.65% 21.60% 27.98% 33.32%
0.00% 10.92% 21.41% 28.70% 34.62%

α = 4 5.36% 5.06% 5.35% 5.83% 6.98%
5.36% 15.22% 25.25% 32.32% 38.37%
0.00% 11.79% 23.12% 31.02% 37.43%

α = 8 6.74% 6.55% 6.76% 7.08% 8.20%
6.74% 17.28% 27.83% 35.24% 41.61%
0.00% 12.60% 24.81% 33.37% 40.30%

α = 32 8.59% 8.54% 8.52% 8.48% 9.23%
8.59% 19.70% 30.57% 38.11% 44.59%

average ∆u,c values are nondecreasing in β at all order sizes, and increasing in

α when orders are medium or large size. As it can be seen in Table 5.3, they

are predominantly increasing in α when orders are small size, but there are some

exceptions. We again attribute this to the fact that not many inventories are

held in case of small-size orders, and therefore, the behavior of average ∆u,c with

respect to α is not well observed. As a result of these observations, we conclude

that the savings due to the centrally-coordinated solution are in fact significant,

and the percentage savings over the uncoordinated solution increases as inventory

holding cost and vehicle holding cost become smaller.

5.5.2.2 The Effects of the Availability Pattern of the Type II Vehicles

In this section, we discuss the results of our computational study within the

context of the second objective, that is to determine how the availability pattern

of the type II vehicles affect the differences in costs. For this purpose, we look

into the averages of ∆u,h, ∆h,c and ∆u,c over all instances with the same arrival
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pattern. Recall that, the arrival pattern of the type II vehicles is identified by

two attributes, the mean and the variability of the number of type II vehicles per

day. The results for four different availability patterns are summarized in Table

5.6. The values of the two attributes change along the rows and the columns of

these tables. In each cell, the averages of ∆u,h, ∆h,c and ∆u,c over all instances

with the same availability pattern of type II vehicles, are noted.

Table 5.6: Average of ∆u,h, ∆h,c and ∆u,c values under different arrival patterns
of type II vehicles

Average # Day-to-day variability
of Vehicles/Day CV = 0.2 CV = 0.6

Low 4.26% 4.81%
(2.5 vehicles/day) 2.02% 2.97%

6.23% 7.68%
High 14.90% 16.38%

(7.5 vehicles/day) 15.38% 19.46%
28.40% 33.12%

It can be observed from Table 5.6 that percentage improvements of both the

hierarchically-coordinated solution and the centrally-coordinated solution over

the uncoordinated solution, as represented by ∆u,h and ∆u,c, respectively, increase

in the average number of type II vehicles available. This implies that the value of

coordination is higher when the opportunity of savings due to effective utilization

of the different transportation options is higher. Observe also that ∆h,c = 2.02%

when CV = 0.2, and ∆h,c = 2.97% when CV = 0.6. This suggests; although

the opportunity of savings is limited at low levels of the average number of type

II vehicles per day, the hierarchically-coordinated solution performs almost as

well as the centrally-coordinated solution in capturing this opportunity. When

the results in Table 5.6 are examined for the variability in number of type II

vehicle arrivals, we observe that the value of coordination becomes higher as

the dispersion increases. Also, the discrepancy between the performances of the

centrally-coordinated solution and the hierarchically-coordinated solution grows



CHAPTER 5. HIERARCHICAL VS. CENTRAL COORDINATION 119

with increased variability.

5.5.2.3 The Effects of the Production Capacity

In order to see the effects of the production capacity on the performance of the

three solution approaches, we investigate how the averages of ∆u,h, ∆h,c and ∆u,c

change at different production levels. The results are summarized in Table 5.7.

Table 5.7: Average of ∆u,h, ∆h,c and ∆u,c values at varying production capacities

Production capacity
Low High

10.51% 9.66%
4.59% 15.33%

14.64 % 23.07%

The percentage improvement of the hierarchically-coordinated solution over

the uncoordinated solution, as represented by ∆u,h, decreases as the production

capacity increases. Note that, increase in the production capacity enlarges the

feasible region of the production subproblem, reducing inventory holding costs in

the first phase. This, however, results in a possible increase in the transportation

costs in the second phase. Consider an extreme case where there is no limit on

the production capacity, hence, all orders can be produced at the first period

and the transportation subproblem becomes trivial. Thus, it is intuitive that

the percentage improvement of the hierarchically-coordinated solution over the

uncoordinated solution decreases as the production capacity increases.

The percentage improvements of the centrally-coordinated solution over both

the hierarchically-coordinated and uncoordinated solutions, as represented by

∆h,c and ∆u,c, respectively, significantly increase in the production capacity.

Recall that, increase in production capacity enlarges the feasible region of the

centrally-coordinated solution procedure and production subproblem. Thus, cost

of the centrally-coordinated solution and optimal objective function value of the
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production subproblem tends to decrease as the feasible region enlarges. This

implies that the cost reduction in the first phase of the uncoordinated and hierar-

chically coordinated solutions are much less then cost reduction of the centrally-

coordinated solution procedure.

5.5.2.4 Performance of the Tabu Search Heuristic

In light of the fourth question of interest, we tested the performance of the heuris-

tic with respect to the centrally-coordinated solution using the 6000 instances

described in Section 5.5.1. Since the Integrated Model for obtaining the centrally-

coordinated solution cannot be solved optimally for all instances, we compared

the cost of the heuristic solution to the lower bound provided by GAMS. In ob-

taining heuristic solutions for instances with low, medium and high order sizes,

we set the tabu length as 200, 25 and 7, respectively. We also used the following

scheme for terminating the search: if the algorithm fails to improve the best so-

lution for 2000 consecutive iterations, the seed is replaced with the best solution

so far, however, the tabu list is not changed. The algorithm is terminated if this

happens 100 times or total search time exceeds 60 CPU seconds. As the initial

seed, we set the delivery times of all orders to their deadlines, in order to guar-

antee to start from a feasible solution. In the analysis, the solutions provided by

tabu search heuristic are compared to lower bounds provided by the IP models.

The percentage deviation of the heuristic solution is calculated by subtracting

the lower bound from the heuristic solution and dividing the difference by the

lower bound.

As a result of our experimentation, we observed that the tabu search performs

quite well in general. In more than 37% of the instances (2 256 out of 6 000),

tabu search terminated with an optimal solution. In approximately 90% of the

instances (5 421 out of 6 000), the deviation between the cost of the heuristic

solution and the lower bound was as much as 1% of the lower bound, and in

approximately 99.7% of the instances (5 983 out of 6 000), the deviation was
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at most 5% of the lower bound. The average and the maximum percentage

deviations were 0.31% and 10.13%. The maximum deviation was realized at an

instance where vehicle holding cost is high (i.e., β = 0), inventory holding cost

is high (i.e., α = 0), production capacity is low, orders are of medium size, the

number of type II vehicles per day is high on the average but shows variability

among different days. In fact, after a detailed analysis of the results, we have

observed that only two of the parameters have an impact on the performance of

the heuristic, that is worth noting. Those are the order size and the variability

in the number of type II vehicles. As Table 5.8 shows, the average and maximum

deviation of the heuristic from the lower bounds is the most when orders are of

medium-size, the mean and the variability of the number of type II vehicles are

high.

Table 5.8: Average and maximum percentage deviation of the heuristic from the
lower bounds, under different arrival patterns of type II vehicles and order sizes

Average # of
Order Size Day-to-day Vehicles/Day

variability Low High
Small-size CV = 0.2 0.03% (0.25%) 0.22% (2.22%)

CV = 0.6 0.07% (0.55%) 0.32% (3.70%)
Medium-size CV = 0.2 0.08% (1.62%) 0.94% (5.46%)

CV = 0.6 0.11% (1.36%) 1.62% (10.13%)
Large-size CV = 0.2 0.04% (1.30%) 0.15% (3.29%)

CV = 0.6 0.05% (1.19%) 0.15% (4.85%)

Note that, the performance of tabu search may be because of two reasons: the

nature of the feasible region and initial solution, or the inherent properties of tabu

search. If the performance of the proposed tabu search algorithm is due to the

shape of the feasible region or the initial solution, a steepest descent algorithm

with the same neighborhood would perform just as good as tabu search. In

order to test it, we compared the results of the steepest descent and tabu search

algorithms for the same initial solutions. The results are summarized in Table 5.9

where the numbers are the percentage cost improvement of tabu search algorithm
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with respect to steepest descent. Our analysis show that there is up to 77% cost

decrease due to utilization of tabu search over the steepest descent algorithm. The

rows of the table represent different order sizes, whereas the columns correspond

to either the average number of type II vehicles (columns 2 and 3) or different

levels of α (columns 4-8).

Table 5.9: Average percentage cost improvement of tabu search over steepest
descent

Average # of α
type II vehicles

Order Size Low High 0 2 4 8 32
Low 4.73% 6.74% 15.36% 6.97% 3.70% 1.99% 0.66%

Medium 14.53% 40.86% 52.20% 36.71% 28.62% 23.57% 19.30%
High 9.54% 19.72% 33.82% 26.02% 20.64% 16.71% 13.04%

The percentage cost improvement of tabu search over steepest descent in-

creases as the average number of type II vehicles increases. The values in the

third column of the table are greater than the values in the second column. It

can also be observed from Table 5.9 that the steepest descent algorithm performs

almost as good as tabu search when α is high and order sizes are low. Note that,

the percentage cost improvement of the tabu search algorithm over the steepest

descent increases as α decreases and the orders are of medium size. The incremen-

tal performance of tabu search is the smallest for low order sizes and the largest

for medium order sizes. This result may be due to the fact that, for medium order

sizes, the inventory holding and transportation costs are balanced and steepest

descent algorithms is quickly trapped at a local optimum.

As a result, we conclude that, the good performance of the heuristic algorithm

is due to the inherent quality of the tabu search algorithm, especially for medium

order sizes and when average number of type II vehicles and inventory holding

costs are high.



Chapter 6

Conclusion

In this dissertation, we study integration of scheduling decisions in supply chains

involving production as well as inbound and outbound transportation. Supply,

production and delivery are among the key functions for manufacturing compa-

nies. In many traditional systems, these functions are managed independently.

However, recent studies in supply chain management show that there is a signif-

icant opportunity for savings if the related decisions are made in an integrated

manner (Thomas and Griffin [23], Dawande et al. [8]). Integration of decisions

among the different stages and functions of the supply chain exists at different

phases of planning. Examples include coordination of decisions in the following

areas: innovation, pricing at the strategic level; inventory control, lot sizing at

the tactical level; scheduling at the operational level. In this dissertation, we

consider the tactical and operational levels, separately.

Within this context, we have defined several problem domains, proposed lower

bounds, optimality conditions and a variety of solution procedures (sequential ver-

sus integrated, exact versus heuristic) for these problems. The main contribution

of this thesis to the literature is explicitly modeling utilization of the same vehi-

cles in the inbound and outbound transportation. Specifically, we allow effective

123
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utilization of the same vehicles both in the inbound and outbound transporta-

tion. We generalize this concept to a setting in which there are two transportation

alternatives differing from one another by availability and cost. Efficient utiliza-

tion of transportation alternatives is a great opportunity in reducing costs, energy

consumption and pollution. Although existence of multiple transportation types

has been studied in the literature (Chen and Lee [4], Stecke and Zhao [22], Wang

and Lee [27]), there is no study considering transportation types with different

costs and availabilities. Our studies associated with the research questions raised

in the introduction are as follows:

• In Chapter 3 of this dissertation, we develop a model that coordinates

production and transportation activities while utilizing a finite number of

capacitated vehicles for inbound and outbound transportation activities.

• In Chapter 4, we provide an integrated model for production and outbound

transportation problem while utilizing the vehicles used in the inbound

transportation in the outbound. We generalize this concept to a setting in

which there are two transportation alternatives differing from one another

by availability and cost.

• In Chapter 4, we identify three operating policies that affect the structure

of the problem: consolidation, splitting and the size of the deliveries. The

effects of these policies are also investigated in Chapter 4.

• In Chapter 5, we propose three solution procedures for the integrated pro-

duction and outbound transportation problem which differ in how the un-

derlying production and transportation subproblems are solved. The bene-

fits of jointly solving production and transportation problems under various

problem parameters are analyzed in the same chapter.

Our findings for the corresponding parts are as follows:
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6.1 Scheduling-Transportation Problem

The first part of this dissertation studies the joint problem of finding the produc-

tion and vehicle schedules for inbound and outbound transportation of a single

stage in the supply chain. In the specific setting of interest, a certain number of

jobs are carried from an origin to a production facility at a distant location and

returned back to the origin after their processing. There are multiple vehicles

with limited capacities and they can be utilized for both inbound and outbound

transportation. Inventory holding costs and transportation costs in this setting

are high, therefore, coordination of the schedules for production and transporta-

tion is important.

Our study falls into the area of supply chain scheduling with transportation

considerations. While many of the studies in this area focus on just the delivery

schedule and consider the joint scheduling problem for a scheduling related ob-

jective, our study models the shipment related constraints both in the inbound

and the outbound, and aims to minimize the sum of inventory holding and trans-

portation costs. In the study, we first show that the problem under consideration

is NP-Hard in the strong sense and provide an IP model. We then prove some

properties of the solution space and develop lower bounds on the optimal objective

function value. Using these properties and lower bounds, we propose a heuristic

based on beam-search approach. Over an extensive computational analysis, we

demonstrate the performances of the lower bounds and the heuristic. Incorpora-

tion of lower bounds and optimality properties into the proposed IP model leads

up to 99% reduction in solution times. The proposed lower bounds and heuristic

are quite tight, increasing in the difference between the raw material and finished

goods inventory holding costs.
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6.2 Production-Delivery Problem

In the second part of this thesis, we study the capacitated production planning

and outbound transportation problem while utilizing inbound vehicles for out-

bound transportation. The benefits of utilizing the same vehicle for both inbound

and outbound transportation are exploited in the proposed models. We propose

a generalization in which inbound vehicles are treated as a different type.

In this part, we study a joint production and transportation planning problem

of a manufacturer. The specific problem faced by the manufacturer is to schedule

orders with deadlines on a single machine to minimize the sum of inventory

holding and outbound transportation costs without allowing any tardiness. An

important characteristic of the problem setting is that there are two vehicle types;

one in unlimited availability but expensive, and the other in limited and changing

availability but cheaper.

We have identified three operating policies that affect the structure of the

problem (consolidation, splitting and size of deliveries) and provide a generic

mathematical formulation by which every possible combination of operating poli-

cies can be solved by using a subset of the constraint sets in the formulation.

We develop general optimality conditions valid for all problems and study each

problem by either providing a pseudo-polynomial algorithm for a general cost

structure or proving that no such algorithm exists even for a linear cost structure.

The complexity results are summarized in Table 6.1. Computational experiments

indicate that operating policies have considerable effects on the system perfor-

mance depending on order sizes, availability of vehicles, production capacities,

and inventory and transportation cost components.

In general, the computational results indicate that the effect of consolidation is

magnified when transportation costs are high and order sizes are low (especially

less than the vehicle capacity). When the order sizes are low, there is a cost

reduction due to consolidation, which amounts up to 76% (66% on the average)
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Table 6.1: Summary of the complexity results
General Delivery FTL−Demand

Consolidate NoConsolidate
Split Problem 1∗ Problem 2+ Problem 5∗

NoSplit Problem 3+ Problem 4+ Problem 6+

∗: Pseudo-polynomial algorithm for general cost structure
+: Strongly NP-Complete even for a linear cost structure

of the cost if consolidation is not allowed. Similarly, when the availability of

type II vehicles is high, there is a cost reduction due to consolidation which

amounts up to 76% (31% on the average) of the cost if consolidation is not allowed.

Thus, companies with low order sizes, experiencing high availability of type II

vehicles or with high transportation costs should consider negotiating with their

customers for allowing consolidation. Companies may make contracts to share

savings due to consolidation for the customers who accept consolidation, or share

the transportation costs for the customers who does not accept consolidation.

Our results indicate that when inventory holding costs and order sizes are

high, especially more than the production capacity, and production capacities

are low, the effect of splitting seems to be more crucial. When the order sizes

are high, there is a cost reduction due to splitting which amounts up to 59%

(38% on the average) of the cost if splitting is not allowed. Similarly, when the

availability of type II vehicles is high, the cost reduction due to allowance of

splitting amounts up to 54% (13% on the average) of the case if splitting is not

allowed. When the production capacities are low (i.e., production takes place in a

high utilization environment), there is a cost reduction due to allowing splitting

which amounts up to 30% (12% on the average) of the case if splitting is not

allowed. Hence, companies with high order sizes, experiencing high availability

of type II vehicles or producing in a high utilization environment should consider

strengthening their relations with customers by making long term contracts to

deliver the orders within a time range (i.e., allow for splitting). The effects are

so high that, the savings due to slitting can be shared in these contracts.
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6.3 Hierarchical versus Central Coordination

The third part of the dissertation is dedicated to a detailed analysis of one of

the problems defined in the second part. In this part, we assume that an or-

der destined to a specific customer cannot be delivered in multiple batches and

orders of different customers cannot be delivered in the same vehicle. We have

identified two underlying subproblems–production subproblem and transporta-

tion subproblem, and provided their mathematical formulations. Motivated by

our observations from several industry practices, we have presented three ap-

proaches to solve the manufacturer’s production and transportation planning

problem. Those are the uncoordinated solution, the hierarchically-coordinated

solution and the centrally-coordinated solution. The first two approaches are

based on solving the production subproblem first, followed by the transportation

subproblem. The centrally-coordinated solution aims to minimize the total costs

by making all the related decisions in an integrated manner. The difference be-

tween the uncoordinated and the hierarchically-coordinated solutions lies in the

fact that, given the production decisions, transportation subproblem is solved

optimally in the latter.

The problem of making the production and transportation decisions in an

integrated manner is NP-hard in the strong sense. We show in this chapter that

the production subproblem has similar complexity. However, given the delivery

dates of orders, we provide polynomial algorithms for solving the two subprob-

lems. Based on these algorithms, we propose a tabu-search heuristic for mini-

mizing the total costs. The results of an extensive numerical analysis reveal that

the heuristic takes less than a minute to find a solution, which deviates from the

lower bound by at most 10.13% and by 0.31% on the average. We also make a nu-

merical comparison of the three solution approaches and provide several insights

about how the solutions differ under varying problem parameters. Our results

mainly demonstrate that the value of integration is particularly high when or-

ders have large sizes, inventory holding and vehicle holding costs are low, and
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the availability of the lower-cost vehicle shows high variability. Computational

results indicate that optimal usage of transportation alternatives saves up to 71%

and integration of transportation and production decisions results in up to 58%

cost reduction.

6.4 Future Research Directions

In Chapter 3, we focus on integrating scheduling decisions involving production

as well as inbound and outbound transportation. The issue of coordinating the

schedules for the production and a finite number of capacitated vehicles which can

be utilized both in the inbound and outbound, can be extended to other settings

as well. Immediate extensions include modeling the production scheduling prob-

lem at a more detailed level and/or solving the problem for different objective

functions. Conflict and cooperation issues can be investigated in this setting by

modeling the existence of a decision maker, i.e., a trucking company, who owns

the trucks and makes their scheduling decisions (see Dawande et al. [8] as an

example).

In Chapter 4, we consider a tactical level model and study a manufacturer’s

production planning and outbound transportation problem with production ca-

pacities while utilizing alternative transportation opportunities to minimize trans-

portation and inventory holding costs. We provide formulations and complexity

results for each combination of operating policies affecting the structure of the

problem. Even though, we provide pseudo-polynomial algorithms for the Prob-

lems 1 (Consolidate−Split) and 5 (Split with FTL−Delivery), the complexity

status of these problems are still open, and it still needs to be proven that these

problems are either NP-Hard (in the ordinary sense) or there is an efficient al-

gorithm. There may also be practical cases for which polynomial algorithms can

be developed.

In Chapter 5, we identified three solution approaches regarding the decision
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making process for planning the production and outbound transportation of or-

ders, which vary in how the underlying production and transportation subprob-

lems are solved. We quantify the savings due to integration and explicit consid-

eration of transportation availabilities for one of the problems defined in Chapter

4. The value of integration can be investigated for the other problems defined in

Chapter 4 in the future studies.

In our study, we assume that all vehicles have same capacity. Allowing dif-

ferent types of vehicles with different capacities and cost structures can make

the problem more applicable, yet more complicated. We also assume that total

production capacity is enough to satisfy all orders on time, i.e., there is a feasible

solution. However, if the total size of orders is more than total production capac-

ity, some orders need to be rejected. Incorporating order acceptance and rejection

decisions together with the production and transportation decisions would be a

realistic extension.
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