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Abstract. The modeling flexibility provided by hypergraphs has drawn a lot of interest from
the combinatorial scientific community, leading to novel models and algorithms, their applications,
and development of associated tools. Hypergraphs are now a standard tool in combinatorial sci-
entific computing. The modeling flexibility of hypergraphs, however, comes at a cost: algorithms
on hypergraphs are inherently more complicated than those on graphs, which sometimes translates
to nontrivial increases in processing times. Neither the modeling flexibility of hypergraphs nor the
runtime efficiency of graph algorithms can be overlooked. Therefore, the new research thrust should
be how to cleverly trade off between the two. This work addresses one method for this trade-off by
solving the hypergraph partitioning problem by finding vertex separators on graphs. Specifically, we
investigate how to solve the hypergraph partitioning problem by seeking a vertex separator on its
net intersection graph (NIG), where each net of the hypergraph is represented by a vertex, and two
vertices share an edge if their nets have a common vertex. We propose a vertex-weighting scheme
to attain good node-balanced hypergraphs, since the NIG model cannot preserve node-balancing
information. Vertex-removal and vertex-splitting techniques are described to optimize cut-net and
connectivity metrics, respectively, under the recursive bipartitioning paradigm. We also developed
implementations of our proposed hypergraph partitioning formulations by adopting and modifying
a state-of-the-art graph partitioning by vertex separator tool onmetis. Experiments conducted on a
large collection of sparse matrices demonstrate the effectiveness of our proposed techniques.
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1. Introduction. A hypergraph is a generalization of a graph, since it replaces
edges that connect only two vertices, with hyperedges (nets) that can connect multiple
vertices. This generalization provides a critical modeling flexibility that allows accu-
rate formulation of many important problems in combinatorial scientific computing.
After their introduction in [7, 38], the modeling power of hypergraphs appealed to
many researchers and they were applied to a wide variety of many applications in scien-
tific computing [1, 4, 6, 8, 10, 11, 12, 14, 19, 29, 30, 33, 44, 45, 48, 49, 50, 51, 52, 53, 54].
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Hypergraphs and hypergraph partitioning are now standard tools of combinatorial sci-
entific computing. Increasing popularity of hypergraphs has been accompanied with
the development of effective hypergraph partitioning (HP) tools: wide applicability
of hypergraphs motivated development of fast HP tools, and availability of effective
HP tools motivated further applications. This virtuous cycle produced sequential HP
tools such as hMeTiS [28], PaToH [9], and Mondriaan [52] and parallel HP tools such
as Parkway [46] and Zoltan [18], all of which adopt the multilevel framework success-
fully. While these tools provide good performances both in terms of solution quality
and processing times, they are hindered by the inherent complexity of dealing with
hypergraphs. Algorithms on hypergraphs are more difficult both in terms of compu-
tational complexity and runtime performance, since operations on nets are performed
on sets of vertices as opposed to pairs of vertices as in graphs. The wide interest over
the last decade has proven the modeling flexibility of hypergraphs to be essential, but
the runtime efficiency of graph algorithms cannot be overlooked, either. Therefore,
we believe that the new research thrust should be how to cleverly trade off between
the modeling flexibility of hypergraphs and the practicality of graphs.

How can we solve problems that are most accurately modeled with hypergraphs
using graph algorithms without sacrificing too much from what is really important
for the application? This question has been asked before, and the motivation was
either theoretical [25] or practical [13, 24] when the absence of HP tools behest these
attempts. This earlier body of work investigated the relationship between HP and
graph partitioning by edge separator (GPES) and achieved little success. Today,
we are facing a more difficult task, as effectiveness of available HP tools sets high
standards for novel approaches. On the other hand, we can draw upon the progress
on related problems, in particular the advances in tools for graph partitioning by
vertex separator (GPVS), which is the main theme of this work.

We investigate solving the HP problem by finding vertex separators on the net
intersection graph (NIG) of the hypergraph. In the NIG of a hypergraph, each net
is represented by a vertex, and each vertex of the hypergraph is replaced with a
clique of the nets connecting that vertex. A vertex separator on this graph defines
a net separator for the hypergraph. This model has been initially studied for circuit
partitioning [2]. While faster algorithms can be designed to find vertex separators on
graphs, the NIG model has the drawback of attaining unbalanced partitions. Once
vertices of the hypergraphs are replaced with cliques, it will be impossible to preserve
the vertex weight information accurately. Therefore, we can view the NIG model as
a way to trade computational efficiency for exact modeling power.

What motivates us to investigate NIGs to solve HP problems arising in scientific
computing applications is that in many applications, definition of balance cannot be
very precise [3, 37, 38] or there are additional constraints that cannot be easily incor-
porated into partitioning algorithms and tools [40]; or partitioning is used as part of
a divide-and-conquer algorithm [39]. For instance, hypergraph models can be used to
permute a linear program (LP) constraint matrix to a block angular form for parallel
solution with decomposition methods. Load balance can be achieved by balancing
subproblems during partitioning. However, it is not possible to accurately predict
solution time of an LP, and equal-sized subproblems only increase the likelihood of
computational balance. Hypergraph models have recently been used to find null-space
bases that have a sparse inverse [39]. This application requires finding a column-space
basis B as a submatrix of a sparse matrix A, so that B~! is sparse. Choosing B to
have a block angular form limits the fill in B~!, but merely a block angular form
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for B will not be sufficient, since B has to be nonsingular to be a column-space ba-
sis for A. Enforcing numerical or even structural nonsingularity of subblocks during
partitioning is a nontrivial task, if at all possible, and thus partitioning is used as
part of a divide-and-conquer paradigm, where the partitioning phase is followed by a
correction phase, if subblocks are nonsingular. Both of these cases present examples
of applications where hypergraphs provide effective models but balance among parts
is only weakly defined. As we will show in the experiments, the NIG model can effec-
tively be employed for these applications to achieve high quality solutions in a shorter
time. We show that it is easy to enforce a balance criterion on the internal nets of
HP by enforcing vertex balancing during the partitioning of the NIG. However, the
NIG model cannot completely preserve the vertex-balancing information of the hy-
pergraph. We propose a weighting scheme in NIG, which is quite effective in attaining
fairly vertex-balanced partitions of the hypergraph. The proposed vertex-balancing
scheme for the NIG partitioning can be easily enhanced to improve the balancing
quality of the hypergraph partitions in a simple postprocessing phase.

The recursive bipartitioning (RB) paradigm is widely used for multiway graph
and hypergraph partitioning and known to produce good solution qualities [9, 28].
In the RB paradigm, a graph/hypergraph is first partitioned into two parts. Then,
each part of the bipartition is further bipartitioned recursively until the desired num-
ber of parts, K, is achieved. In GPES and GPVS, at each RB step, seperator-edge
and seperator-vertex—removal techniques are adopted to optimize the cutsize, respec-
tively. In HP, at each RB step, cut-net removal and cut-net splitting techniques [8]
are adopted to optimize the cutsize according to the cut-net and connectivity metrics,
respectively, which are the most commonly used cutsize metrics in scientific and par-
allel computing [3, 8] as well as VLSI layout design [2, 36]. In this paper, we propose
a separator-vertex splitting scheme for RB-based GPVS and show that seperator-
vertex-removal and separator-vertex—splitting techniques for RB-based partitioning
of the NIG, respectively, correspond to the cut-net removal and cut-net splitting
techniques of RB-based HP. We also propose an implementation for our GPVS-based
HP formulations by adopting and modifying a state-of-the-art GPVS tool used in
fill-reducing sparse matrix ordering.

2. Preliminaries. In this section, we will provide the basic definitions and tech-
niques that will be adopted in the remainder of this paper.

2.1. Graph partitioning. An undirected graph G=(V, ) is defined as a set V
of vertices and a set £ of edges. Every edge e;; €€ connects a pair of distinct vertices
v; and v;. We use the notation Adj(v;) to denote the set of vertices adjacent to vertex
v;. We extend this operator to include the adjacency set of a vertex subset V' CV,
ie., Adj(V')={v; € V-V’ : v; € Adj(v;) for some v; €V'}. Two disjoint vertex subsets
Vi and V; are said to be adjacent if Adj(Vi) N Ve # 0 (equivalently Adj(Ve) N Vi # 0)
and nonadjacent otherwise. The degree d(v;) of a vertex v; is equal to the number of
edges incident to v;, i.e., d(v;)=|Adj(v;)|. A weight w(v;) > 0 is associated with each
vertex v;.

An edge subset Eg is a K-way edge separator if its removal disconnects the graph
into at least K connected components. That is, lIgs(G) = {V1,Vs,...,Vk} is a
K-way vertex partition of G by edge separator £ C £ if each part Vj is nonempty,
parts are pairwise disjoint, and the union of parts gives V. Edges between the vertices
of different parts belong to £g and are called cut (external) edges, and all other edges
are called uncut (internal) edges.
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A vertex subset Vg is a K-way wvertex separator if the subgraph induced by
the vertices in ¥V — Vg has at least K connected components. That is, IIys(G) =
{V1,Va,...,Vi; Vs} is a K-way vertex partition of G by vertex separator Vg C V if
each part Vj is nonempty, all parts and the separator are pairwise disjoint, parts are
pairwise nonadjacent, and the union of parts and the separator gives V. The nonad-
jacency of the parts implies that Adj(Vy)C Vs for each V. In a partition Iy g (), the
connectivity A(v;) of a vertex v; denotes the number of parts connected by v;, where
a vertex that is adjacent to any vertex in a part is said to connect that part. A vertex
v; €V, is said to be a boundary vertex of part Vj, if it is adjacent to any vertex in Vg.
A vertex separator is said to be narrow if no subset of it forms a separator and wide
otherwise.

The objective of graph partitioning is finding a separator of smallest size subject
to a given balance criterion on the weights of the K parts. The weight W (Vi) of a
part Vi is defined as the sum of the weights of the vertices in Vg, i.e.,

(2.1) W) = > ww),

v; €EVg
and the balance criterion is defined as
. <
(2.2) | ax W (Vi) < (1+€)Waug, where
K
W~ 2= W)
avg K .

Here, Wy, is the weight each part must have in the case of perfect balance, and e
is the maximum imbalance ratio allowed. We proceed with formal definitions for the
GPES and GPVS problems, both of which are known to be NP-hard [5].

DEFINITION 1 (problem GPES). Given a graph G=(V, &), an integer K, and a
mazximum allowable imbalance ratio €, the GPES problem is finding a K-way vertex
partition gs(G)={V1,Va,..., Vi } of G by edge separator Es that satisfies the balance
criterion gien in (2.2) while minimizing the cutsize, which is defined as

(2.3) cutsize(Ilgs) = Z cleij),

€ij €€s

where c(e;j) > 0 is the cost of edge e;; = (vs,v;).

DEFINITION 2 (problem GPVS). Given a graph G=(V,&), an integer K, and a
maximum allowable imbalance ratio €, the GPVS problem is finding a K-way vertex
partition Wy g(G)={V1,Va,...,Vk;Vs} of G by vertex separator Vs that satisfies the
balance criterion given in (2.2) while minimizing the cutsize, which is defined as one
of
(2.4) cutsize(Ilyg) = Z c(v;),

v;€EVs
(2.5) cutsize(Ilys) = Y e(v;)(Mv;) — 1),

v;€EVs

where c(v;) > 0 is the cost of vertex v;.
In the cutsize definition given in (2.4), each separator vertex incurs its cost to the
cutsize, whereas in (2.5), the connectivity of a vertex is considered while incurring its
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cost to the cutsize. In the general GPVS definition given above, both a weight and
a cost are associated with each vertex. The weights are used in computing loads of
parts for balancing, whereas the costs are utilized in computing the cutsize. In the
standard GPVS definitions in the literature, the weights and costs of the vertices are
taken as identical. The reason for our general GPVS definition will become clear in
section 3.

The techniques for solving GPES and GPVS problems are closely related. An
indirect approach to solving the GPVS problem is to first find an edge separator
through GPES and then translate it to any vertex separator. After finding an edge
separator, this approach takes vertices adjacent to separator edges as a wide separator
to be refined to a narrow separator, with the assumption that a small edge separator
is likely to yield a small vertex separator. The wide-to-narrow refinement problem [42]
is described as a minimum vertex cover problem on the bipartite graph induced by
the cut edges. A minimum vertex cover can be taken as a narrow separator for the
whole graph, because each cut edge will be adjacent to a vertex in the vertex cover.

2.2. Hypergraph partitioning. A hypergraph H= (U, N) is defined as a set U
of nodes (vertices) and a set A of nets among those vertices. We refer to the vertices
of H as nodes to avoid the confusion between graphs and hypergraphs. Every net
n; € N connects a subset of nodes. The nodes connected by a net n; are called pins
of n; and denoted as Pins(n;). We extend this operator to include the pin list of a
net subset N' C N, ie., Pins(N') =, cn» Pins(n;). The size s(n;) of a net n; is
equal to the number of its pins, i.e., s(n;) =|Pins(n;)|. The set of nets that connect
a node u; is denoted as Nets(uj;). We also extend this operator to include the net
list of a node subset U’ CU, i.e., Nets(Z/{’):queu, Nets(u;). The degree d(u; ) of a
node u; is equal to the number of nets that connect u;, i.e., d(u;)=|Nets(u;)|. The
total number of pins, p, denotes the size of H where p=3_ - s(n:) :Zuj cu duyg).
A graph is a special hypergraph such that each net has exactly two pins. A weight
w(u;) is associated with each node uj, whereas a cost ¢(n;) is associated with each
net n;. A weight w(n;) can also be associated with each net n;, as we will discuss
later in this section.

A net subset N is a K-way net separator if its removal disconnects the hyper-
graph into at least K connected components. That is, Iy (H) = {U1,Us, ..., Uk} is
a K-way node partition of H by net separator Nis C N if each part U}, is nonempty,
parts are pairwise disjoint, and the union of parts gives U. In a partition II;(H), a
net that connects any node in a part is said to connect that part. The connectivity
A(n;) of a net n; denotes the number of parts connected by n;. Nets connecting mul-
tiple parts belong to Ng and are called cut (external) (i.e., A(n;) > 1), and uncut
(internal) otherwise (i.e., A(n;) = 1). The set of internal nets of a part Uy is de-
noted as Ny for k=1,..., K. So, although II;;(H) is defined as a K-way partition
on the node set of H, it can also be considered as inducing a (K +1)-way partition
Iy (H) = {M,...,Nk;Ng} on the net set.

As in the GPES and GPVS problems, the objective of the HP problem is finding
a net separator of smallest size subject to a given balance criterion on the weights
of the K parts. The weight W (Uy) of a part Uy, is defined either as the sum of the
weights of nodes in Uy, i.e.,

(2.6) W) = Y wluy),
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or as the sum of weights of internal nets of part Uy, i.e.,

(2.7) Wth) = > w(n).

n; GNk

The former and latter part-weight computation schemes together with the load bal-
ancing criterion given in (2.2) will be referred to here as node and net balancing,
respectively. We proceed with a formal definition for the HP problem, which is also
known to be NP-hard [36].

DEFINITION 3 (problem HP). Given a hypergraph H = (U,N), an integer K,
and a mazimum allowable imbalance ratio €, the HP problem is finding a K-way node
partition Iy (H) ={U1,Us, ..., Uk} of H that satisfies the balance criterion given in
(2.2) while minimizing the cutsize, which is defined as one of

(28) C’U/tSiZe(Hu): Z c(ni)’

n;,ENg

(2.9) cutsize(Ily) = Y e(ni)(A(ns) — 1).

n;,ENg

The cutsize metrics given in (2.8) and (2.9) are referred to as the cut-net and connec-
tivity metrics, respectively [8, 12, 36].

3. Formulating the HP problem as a GPVS problem. In this section,
we first review the previous work on alternative models for solving the HP problem.
Then, we describe our novel and accurate GPVS-based formulations and present the
relationship between HP and GPVS problems from a matrix theoretical view. Finally,
we present our implementation based on adapting a state-of-the-art GPVS tool.

3.1. Alternative models for solving the HP problem. As indicated in the
survey by Alpert and Kahng [2], hypergraphs are commonly used to represent circuit
netlist connections in solving the circuit partitioning and placement problems in VLSI
layout design. The circuit partitioning problem is to divide a system specification into
clusters to minimize intercluster connections. Other circuit representation models
were also proposed and used in the VLSI literature including dual hypergraph, clique-
net graph (CNG), and NIG [2]. Hypergraphs represent circuits in a natural way so
that the circuit partitioning problem is directly described as an HP problem. Thus,
these alternative models can be considered as alternative approaches for solving the
HP problem.

The dual of a hypergraph H = (U, N) is defined as a hypergraph H’, where
the nodes and nets of H become, respectively, the nets and nodes of H’. That is,
H'=(U',N') with Nets(uj) = Pins(n;) for each uj €U’ and n; €N, and Pins(n’;) =
Nets(uy) for each n; € N" and u; €U.

In the CNG model, the vertex set of the target graph is equal to the node set of
the given hypergraph. Each net of the given hypergraph is represented by a clique
of vertices corresponding to its pins. The multiple edges between two vertices are
contracted into a single edge, the cost of which is set equal to the sum of the cost
of the edges it represents. If an edge is in the cut set of a GPES, then all nets
represented by this edge are in the cut set of HP. Ideally, no matter how nodes of a
net are partitioned, the contribution of a cut-net to the cutsize should always be one
in a bipartition when unit net costs are assumed. However, the deficiency of the CNG
representation is that it is impossible to achieve such a perfect edge-cost assignment
of the edges as proved by Ihler, Wagner, and Wagner [25].
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Fic. 3.1. (a) A sample hypergraph H and (b) the corresponding NIG representation G.

In the NIG representation G = (V, &) of a given hypergraph H = (U4, N), each
vertex v; of G corresponds to net n; of H, and we will use notation v; = n; to
represent this correspondence. Two vertices v;,v; €V of G are adjacent if and only
if respective nets n;,n; € N of H share at least one pin; i.e., e;; € £ if and only if
Pins(n;) N Pins(n;) # 0. So,

(3.1) Adj(v;) ={v; = nj | nj € N and Pins(n;) N Pins(n;) # 0}.

Note that for a given hypergraph H, NIG G is well defined; however, there is no
unique reverse construction [2]. Figures 3.1(a) and 3.1(b), respectively, display a
sample hypergraph H and the corresponding NIG representation G. In the figure, the
sample hypergraph H contains 18 nodes and 15 nets, whereas the corresponding NIG
G contains 15 vertices and 30 edges.

Both dual hypergraph and NIG models view the HP problem in terms of parti-
tioning nets instead of nodes. Kahng [26] and Cong, Hagen, and Kahng [15] exploited
this perspective of the NIG model to formulate the hypergraph bipartitioning problem
as a two-stage process. In the first stage, nets of H are bipartitioned through 2-way
GPES of its NIG G. The resulting net bipartition induces a partial node bipartition
on H, because only the nodes (pins) that are connected by the nets on one part of
the bipartition can be unambiguously assigned to that part. However, the remaining
nodes are connected by the nets on both parts of the bipartition (except those nodes
connected only to the separator nets). Thus, the second stage involves finding the
best completion of the partial node bipartition; i.e., a part assignment for the shared
nodes such that the cutsize is minimized. This problem is known as the module (node)
contention problem in the VLSI community. Kahng [26] used a winner-loser heuris-
tic [23], whereas Cong, Hagen, and Kahng [15] used a matching-based (IG-match)
algorithm for solving the 2-way module contention problem optimally. Cong, Labio,
and Shivakumar [16] extended this approach to K-way HP through using the dual
hypergraph model. In the first stage, a K-way net partition is obtained through
partitioning the dual hypergraph. For the second stage, they formulated the K-way
module contention problem as a min-cost max-flow problem through defining binding
factors between nodes and nets, and a preference function between parts and nodes.
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Here, we reveal the fact that the module contention problem encountered in the
second stage of the NIG-based hypergraph bipartitioning approaches [15, 26] is similar
to the wide-to-narrow separator refinement problem encountered in the second stage
of the indirect GPVS approaches. The module contention and separator refinement
algorithms effectively work on the bipartite graph induced by the cut edges of a 2-way
GPES of the NIG representation of hypergraphs and the standard graph representa-
tion of sparse matrices, respectively. The winner-loser assignment heuristic [23, 26]
used by Kahng [26] is very similar to the minimum-recovery heuristic proposed by
Leiserson and Lewis [35] for separator refinement. Similarly, the IG-match algorithm
proposed by Cong, Hagen, and Kahng [15] is similar to the maximum-matching—
based minimum vertex-cover algorithm [34, 41] used by Pothen, Simon, and Liou [42]
for separator refinement. While not explicitly stated in the literature, these net-
bipartitioning-based HP algorithms using the NIG model can be viewed as trying to
solve the HP problem through an indirect GPVS of the NIG representation.

More recently, Trifunovic and Knottenbelt [47] proposed a coloring-based graph
model for partitioning the special type of hypergraph that arises in fine-grain (nonzero-
based) partitioning of sparse matrices [12, 10] for parallel matrix vector multiply.
In such hypergraphs, each vertex is connected by exactly two nets, and their dual
hypergraphs are bipartite graphs. A K-way edge coloring on this bipartite graph is
decoded as a K-way partition of the nodes (nonzeros) of the original hypergraph. The
coloring objective, which is defined in terms of the number of distinct colors incident to
the vertices, correctly models the total interprocessor communication volume. Since
the connectivity cutsize metric of (2.9) also correctly models the total interprocessor
communication volume, the coloring objective exactly models the connectivity cutsize
metric. Although this model is proposed for the special type of hypergraph in which
each node is connected by exactly two nets, the model easily extends to more general
hypergraphs where nodes are connected by arbitrary number of nets.

3.2. An accurate formulation of HP as GPVS on the NIG model. We
propose a net-partitioning—based K-way HP algorithm that avoids the module con-
tention problem (which we will also refer to as contention-free) by describing the HP
problem as a GPVS problem through the NIG model. The following theorem estab-
lishes the basis for our GPVS-based HP formulation. Let G = (V, ) denote the NIG
of a given hypergraph H = (U, ). The cost of each net n; of H is assigned as the
cost of the respective vertex v; of G, i.e., ¢(v;) = ¢(n;). For brevity of the presentation
we assume unit net costs here, but all proposed models and methods generalize to
hypergraphs with nonunit net costs.

THEOREM 1. A K-way vertex partition Illys(G) = {V1,...,Vk;Vs} of G by
narrow vertex separator Vs induces a K-way contention-free net partition I (H)
M=V, Na=Vs, ..., Nk =Vk;Ns = Vs} of H by a net separator N.

Proof. By definition of GPVS, we have Adj(Vy) NV, =0 for 1 <k<{< K. This
implies that Pins(N)NPins(Ny) =0 for 1 <k </< K, because if any two nets n; € Ny
and n; € Ny shared at least one pin, then there would be an edge e;; between vertices
v; €V, and v; €V, of G, which would correspond to an edge between parts Vj, and V,
of ITys(G) contradicting the definition of GPVS. Therefore, any two nets belonging
to two different net parts do not share any pin, thus ensuring the contention-free
property of the net partition Iy (H). |

COROLLARY 1. A K-way contention-free net partition of H by a net separator Ng

[

(3.2) HN('H)Z{NlEVh...,NKEVK;NsEVS}
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Fic. 3.2. (a) A 3-way GPVS of the NIG given in Figure 3.1(b) and (b) the induced 3-way node
partition of the hypergraph given in Figure 3.1(a).

induces a K-way partial node partition
(3.3) I;,(H) = {U;=Pins(N1) , ..., Uy =Pins(Nk)}.

Let Up denote the set of remaining nodes after the partial node partition induced
by the net partition as defined in Corollary 1. Note that Up also corresponds to the
set of nodes that are connected only by the nets of the separator Ns. That is,

K
(3.4) Ur=U — Uu,fc:{uiEZ/l:Nets(ui)gNsEVs}.
k=1

The nodes in Up will be referred to here as free nodes.

Figure 3.2(a) shows a 3-way GPVS Ily¢(G) of the NIG G given in Figure 3.1(b).
Figure 3.2(b) shows the 3-way partial and complete node partition II;,(#) of the
sample H, which is induced by Iy s(G). The partial node partition is displayed with
nodes drawn with solid lines, and the complete node partition is achieved by adding
two free nodes (drawn with dashed lines). The sample H given in Figure 3.1(a)
contains only two free nodes, which are u17 and us. Comparison of Figures 3.2(a)
and 3.2(b) illustrates that the separator vertices vy, vs, and vi5 of Iy g(G) induce the
cut nets ni,ng, and nqs of I, (H), respectively.

For any arbitrary assignment of free nodes, we can construct a complete node
partition in the following form:

(3.5) Iy (H) = {Uh DU U DU, ... . UK D UK.

Note that any K-way node partition of H inducing the (K + 1)-way net partition
IIxr(#H) has to be in the form above.

LEMMA 1. Given a K-way vertex partition Ilys(G) of G by vertex separator Vg,
Vs is a narrow separator if and only if every verter vs € Vg connects at least two parts,
e, AMvg) > 2.

Proof. Suppose that there is a vertex vs € Vg with A(vs) <2. If A(vs)=1, we can
place vs to the part V) that v, connects, otherwise we can place vs; to any part Vg.
Since Adj(vs) C VEUVs, Vs—u; is a valid separator. Thus, Vg is not narrow.

If Vs is not narrow, there exists a strict subset VS’ C Vs that forms a valid
separator. Consider a vertex v € VS—VS'. Assume that A(vs)>2. This implies that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/10/14 to 139.179.2.250. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

HYPERGRAPH PARTITIONING WITH VERTEX SEPARATORS A979

there are two vertex parts in which there is a vertex adjacent to vs. This contradicts
the pairwise nonadjacency implied by the definition of the vertex partition with vertex
separator and thus the validity of the separator. Thus, \(vs)<2. o

THEOREM 2. Given a K-way vertex partition llys(G) of G by a narrow vertex
separator Vg, any node partition Iy (H) of H as constructed according to (3.5) induces
the (K +1)-way net partition Iy (H) = {N1=V1,..., Nk =Vi; Ns=Vs} such that
the connectivity of each cut net in Ng is greater than or equal to the connectivity of
the corresponding separator vertex in Vg.

Proof. Let II;y(H) be a node partition constructed as in (3.5). We first argue
about the internal nets of Iy (H). Consider a vertex v; € Vi of Iy g(G). Since
Pins(n;) CUk, n; will be an internal net of node part Uy, for Iy (H), thus n; € Nj.

Now we focus on cut nets. Consider a separator vertex vs; € Vg, and let vs be
adjacent to a vertex v; € V;. Then there should be a node u; €/ that is connected
by both ng and n;. Since n; € N; and u; € Pins(n;), construction in (3.5) places
u; into U;, and thus ne connects ;. It is worth noting that the connectivity of n,
may be greater than the connectivity of v, due only to the assignment of the free
nodes. As Vg is a narrow separator, for any separator vertex vs € Vg, A(vs) >2 and
correspondingly A(ng)>2, and thus ny € Ng. O

COROLLARY 2. Gwen a K-way vertezx partition Iy s(G) of G by a narrow vertex
separator Vg, the separator size of llys(G) is equal to the cutsize of node partition
IIyy(H) induced by Iy s(G) according to the cut-net metric, whereas the separator
size of Iy s(G) approzimates the cutsize of node partition Iy (H) induced by Iy s(G)
according to the connectivity metric.

Comparison of Figures 3.2(a) and 3.2(b) illustrates that the connectivities of sep-
arator vertices in Il g are exactly equal to those of the cut nets of induced partial
node partition IIj,(#). Figure 3.2(b) shows a 3-way complete node partition ITy; ()
obtained by assigning the free nodes (shown with dashed lines) u;7 and ujg to parts
Us and Uy, respectively. This free node assignment does not increase the connectiv-
ities of the cut nets. However, a different free node assignment might increase the
connectivities of the cut nets. For example, assigning free node uy7 to part Us instead
of U3 will increase the connectivity of net ni5 by 1.

3.2.1. Recursive-bipartitioning—based partitioning. The following corol-
lary forms the basis for the use of RB-based GPVS for RB-based HP according to the
connectivity and the cut-net metrics.

COROLLARY 3. Let Iy s(G)={V1,V2; Vs} be a partition of G by a vertex separator
Vs, and let Ty (H) = {Ur,Us} be a node partition of H that induces the net partition
Iy (H) = {N = V1,Na = Va; Ns = Vg}. The connectivity of a net n; in Iy (H) is
equal to the connectivity of the corresponding vertez v; in Iy s(G).

Separator-vertex removal. In RB-based multiway HP, the cut-net metric is
formulated by cut-net removal after each RB step. In this method, after each hyper-
graph bipartitioning step, each cut-net is discarded from further RB steps. That is, a
node bipartition Iy (H) = {U1,Us} of the current hypergraph #H, which induces the
net bipartition Iy (H) = {N1,Na; Ns}, is decoded as generating two subhypergraphs
Hy1 = (Uy,N1) and Hg = (U2, N2) for further RB steps. Hence, the total cutsize of
the resulting multiway partition of H according to the cut-net metric will be equal to
the sum of the number of cut-nets of the bipartition obtained at each RB step.

The cut-net metric can be formulated in the RB-GPVS-based multiway HP by
separator-vertex removal so that each separator vertex is discarded from further RB
steps. That is, at each RB step, a 2-way vertex separator Iy s(G) = {V1, Va; Vs } of G
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is decoded as generating two subgraphs G, = (V1,&1) and Go = (Vs, &), where & and
&, denote the internal edges of vertex parts V; and Vs, respectively. In other words,
G1 and Go are the subgraphs of G induced by the vertex parts V; and Vs, respectively.
Gy and G constructed in this way become the NIG representations of hypergraphs H;
and Ha, respectively. Hence, the sum of the number of separator vertices of the 2-way
GPVS obtained at each RB step will be equal to the total cutsize of the resulting
multiway partition of 4 according to the cut-net metric.

Separator-vertex splitting. In RB-based multiway HP, the connectivity met-
ric is formulated by adapting the cut-net splitting method after each RB step. In
this method, each RB step, Il () = {U1,Us} is decoded as generating two sub-
hypergraphs H; = (U1, N1) and Ho = (U2, N2) as in the cut-net removal method.
Then, each cut net ng of II (M) is split into two pinwise disjoint nets nl and n?
with Pins(nl) = Pins(ns) NU; and Pins(n?) = Pins(ns) NUs, where n! and n? are
added to the net lists of H; and Ho, respectively. In this way, the total cutsize of the
resulting multiway partition according to the connectivity metric will be equal to the
sum of the number of cut-nets of the bipartition obtained at each RB step [8].

The connectivity metric can be formulated in the RB-GPVS-based multiway HP
by separator-vertex splitting, which is not as easy as the separator-vertex removal
method and needs special attention. In a straightforward implementation of this
method, a 2-way vertex separator Iy g(G) = {V1, Va; Vs } is decoded as generating two
subgraphs G; and Gs which are the subgraphs of G induced by the vertex sets V; U Vg
and Vs U Vg, respectively. That is, each separator vertex v, € Vg is split into two
vertices v} and v2 with Adj(v}) = Adj(vs)N(V1UVs) and Adj(v2) = Adj(vs)N(V2UVs).
Then, the split vertices v} and v? are added to the subgraphs (V1, &) and (Va, E2) to
form Gy and Gs, respectively.

This straightforward implementation of the separator-vertex splitting method can
be overcautious because of the unnecessary replication of separator edges in both
subgraphs G; and Gs. Here an edge is said to be a separator edge if two vertices
connected by the edge are both in the separator Vg. Consider a separator edge
(vs;,Vs,) € € in a given bipartition [Ty g(G) = {V1,Va;Vs} of G, where IIy(H) =
{U1,Us} is a bipartition of H induced by Iy (G) according to the construction given
in (3.5). If both U; and Uy contain at least one node that induces the separator
edge (vs,,Vs,) Of G, then the replication of (v, ,vs,) in both subgraphs G; and Gs is
necessary. If, however, all hypergraph nodes that induce the edge (vs, , vs, ) of G remain
in only one part of II;;(#), then the replication of (vs, , vs,) on the graph corresponding
to the other part is unnecessary. For example, if all nodes connected by both nets
ng, and ng, of H remain in U of I, (H), then the edge (vs,, vs,) should be replicated
in only G;. Gy and Gy constructed in this way become the NIG representations of
hypergraphs H; and Hs, respectively. Hence, the sum of the number of separator
vertices of the 2-way GPVS obtained at each RB step will be equal to the total
cutsize of the resulting multiway partition of H according to the connectivity metric.

Figure 3.3 illustrates three separator vertices vy, , vs,, and v, in a 2-way vertex

separator and their splits into vertices v} v} i, and vZ w2 w2 . The three separa-

EPRA S177827'Ys

tor vertices vs,, vs,, and v, are connected 2to gach othér b2y three separator edges
(VsysVsy )y (Vsy,Vss), and (vs,,vs,) in order to show three distinct cases of separator
edge replication in the accurate implementation. The figure also shows four hyper-
graph nodes ug, uy, u,, and u; which induce the three separator edges, where u,,u,
are assigned to part U; and wu,,u; are assigned to part Us. Since only u, induces
the separator edge (vs,,vs,) and u, is assigned to U, it is sufficient to replicate the

separator edge (vs,,vs,) in only Vi. Symmetrically, since only u, induces the separa-
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F1Gc. 3.3. Separator-vertex splitting.

tor edge (vs,,Vs,) and u, is assigned to Us, it is sufficient to replicate the separator
edge (vs,,Vs,) in only Vo. However, since u, and u; both induce the separator edge
(vsy,Vsy) and u, and u; are, respectively, assigned to U; and Us, it is necessary to
replicate the separator edge (vs,, vs,) in both V; and Vs.

This accurate implementation of the separator-vertex splitting method depends
on the availability of both H and its NIG representation G at the beginning of each
RB step. Hence, after each RB step, the subhypergraphs #; and Hs should be
constructed as well as the subgraphs G; and G,. Here, we briefly summarize the
details of the proposed implementation method performed at each RB step. A 2-
way GPVS is performed on G to obtain a vertex separator Iy g(G). Then, a node
bipartition Il (H) of H is constructed according to (3.5) by decoding the vertex
separator IIys(G) of G. Then, the 2-way vertex separator Iy g(G) is used together
with the node bipartition II;,(#) to generate subgraphs G; and G as described above.
The subhypergraphs H; and Hs are also constructed for use in subsequent RB steps.
An alternative implementation could be first generating subhypergraphs H; and Hs
from IT;;(H) and then constructing subgraphs G; and G from H; and Ha, respectively,
using NIG construction. However, this alternative implementation method is quite
inefficient compared to the proposed implementation, since construction of the NIG
representation from a given hypergraph is computationally expensive.

3.2.2. Balancing constraint. Consider a node partition Iy (H) = {U1,Ua, . . .,
Uk} of H constructed from the vertex partition Iy s(G) = {Vi,Va,...,Vk; Vs} of
NIG G according to (3.5). Since the vertices of G correspond to the nets of the given
hypergraph H, it is easy to enforce a balance criterion on the nets of H by setting
w(v;) = w(n;). For example, assuming unit net weights, the partitioning constraint of
balancing on the vertex counts of parts of Iy g(G) infers balance among the internal
net counts of node parts of Il (H).

However, balance on the nodes of ‘H cannot be directly enforced during the GPVS
of G, because the NIG model suffers from information loss on hypergraph nodes.
Here, we propose a vertex-weighting model for estimating the cumulative weight of
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hypergraph nodes in each vertex part Vi of the vertex separator Iy g(G). In this
model, the objective is to find appropriate weights for the vertices of G so that vertex-
part weight W (V) computed according to (2.1) approximates the node-part weight
W (Uy;) computed according to (2.6).

The NIG model can also be viewed as a clique-node model since each node wuj, of
the hypergraph induces an edge between each pair of vertices corresponding to the
nets that connect up. So, the edges of G implicitly represent the nodes of H. Each
hypergraph node w; of degree dj induces (dz") clique edges among which the weight
w(up) is distributed evenly. That is, every clique edge induced by node u;, can be
considered as having a uniform weight of w(up)/ (‘é"). Multiple edges between the
same pair of vertices are collapsed into a single edge whose weight is equal to the sum
of the weights of its constituent edges. Hence, the weight w(e;;) of each edge e;; of G
becomes

(3.6) wlej) = 3 w(;:h).

up € Pins(n;)NPins(n;) ( 2 )

Then, the weight of each edge is uniformly distributed between the pair of vertices
connected by that edge. That is, edge e;; contributes w(e;;)/2 to both v; and v;,.
Hence, in the proposed model, the weight w(v;) of vertex v; becomes
1
w(vi) = 5 > wley)

v; € Adj(v;)

(3.7) > “’Sih).

up €Pins(n;)

Consider an internal hypergraph node wuy of part Uy of IIy;(H). Since all graph
vertices corresponding to the nets that connect uy, are in part Vi of Iy s(G), up will
contribute w(up) to W(Vy). Consider a boundary hypergraph node u, of part Uy
with an external degree d;, < dp, i.e., uy is connected by &, cut nets. Thus, u; will
contribute by an amount of (1 — 5, /dp)w(up) to W (V) instead of w(up). So, vertex-
part weight W(Vg) of Vi in Iy s(G) will be less than the actual node-part weight
W (Uy) of Uy, in 11y (H). As the vertex-part weights of different parts of Ily g(G) will
involve similar errors, the proposed method can be expected to produce a sufficiently
good balance on the node-part weights of ITy,(H).

The free nodes can easily be exploited to improve the balance during the com-
pletion of partial node partition. For the cut-net metric in (2.8), we perform free-
node-to-part assignment after obtaining a K-way GPVS, since arbitrary assignments
of free nodes do not disturb the cutsize by Corollary 2. However, for the connectivity
metric in (2.9), free-node-to-part assignment needs special attention if it is performed
after obtaining a K-way GPVS. According to Theorem 2, arbitrary assignments of
free nodes may increase the connectivity of cut nets. So, for the connectivity cutsize
metric, we perform free-node-to-part assignment after each RB step to improve the
balance. Note that free-node-to-part assignment performed in this way does not in-
crease the connectivity of cut nets in the RB-GPVS-based HP by Corollary 3. For both
cutsize metrics, the best-fit-decreasing heuristic [43] used in solving the bin-packing
problem is adapted to obtain a complete node partition/bipartition. Free nodes are
assigned to parts in decreasing weight, where the best-fit criterion corresponds to
assigning a free node to a part that currently has the minimum weight. Initial part
weights are taken as the weights of the two parts in partial node bipartition.
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Fic. 3.4. (a) A sample matriz A, whose row-net hypergraph representation H 4 is equal to the
sample hypergraph H given in Figure 3.1(a), and (b) the matriz Z = AAT.

3.3. Matrix theoretical view of the relationship between HP and GPVS.
We will first briefly discuss the row-net and column-net models we proposed for rep-
resenting rectangular as well as symmetric and nonsymmetric square matrices in our
earlier work [7, 8, 38, 37]. These two models are duals: the row-net representation
of a matrix is equal to the column-net representation of its transpose. Here, we dis-
cuss only the row-net model for permuting a matrix A into a primal singly bordered
block-diagonal (SB) form, whereas the column-net model can be used for permuting
A into a dual SB form. In the row-net hypergraph model, an M x N matrix A= (a;;)
is represented as a hypergraph H 4 = (U, ') on N nodes and M nets with the number
of pins equal to the number of nonzeros in matrix A. Node and net sets U and N
correspond, respectively, to the columns and rows of A. There exist one net n; and
one node u; for each row 7 and column j, respectively. Net n; connects the nodes
corresponding to the columns that have a nonzero entry in row ¢, i.e., u; € Pins(n;)
if and only if a;; # 0. That is, Pins(n;) represents the set of columns that have a
nonzero in row ¢ of A, and in a dual manner Nets(u;) represents the set of rows that
have a nonzero in column j of A. Figure 3.4(a) shows a 15 x 18 matrix A whose
row-net hypergraph representation H 4 is equal to the sample hypergraph H given in
Figure 3.1(a).

Let Gnia(Ha)=(V,E) denote the NIG model for the row-net hypergraph repre-
sentation H4 = (U, N) of matrix A. By definition of the NIG model, the vertices of
Gn1c will represent the rows of A, and e;; €€ if and only if Pins(n;) N Pins(n;) # 0.
Since Pins(n;) represents the set of columns that have a nonzero in row i of A,
Pins(n;) N Pins(n;) # 0 corresponds to the condition that rows ¢ and j of A, rep-
resented as r; and rj, respectively, have a nonzero in at least one common column.
Let Z =(zi;) denote the M x M matrix Z=AA", and (.) denote the inner-product
operator. Since z;; = <7“i,7";fr ), zi; will be nonzero if and only if e;; € £. Hence, the
sparsity pattern of symmetric matrix Z will correspond to the adjacency matrix rep-
resentation of Gnyg. In other words, Gyre will be equivalent to the standard graph
representation of a symmetric matrix Z, i.e., Gnra(Ha)=Gaar. Note that although
vertex v; of Gnrg represents only row ¢ of A, it represents both row ¢ and column 4
of AAT n gAAT.
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FiG. 3.5. (a) A 3-way DB form of the AAT matriz; (b) a 3-way SB form Asp of A shown in
Figure 3.4(a).

Figure 3.4(b) shows the 15 x 15 matrix Z = AAT. Note that the standard graph
representation of Z is equivalent to the NIG representation Gnrg(Ha) of Ha. As has
long been used for nested dissection ordering for sparsity preserving factorizations, the
problem of transforming a symmetric matrix into a doubly bordered block-diagonal
(DB) form through symmetric row/column permutation can be modeled as a GPVS
problem on its standard graph representation. So, Figure 3.5(a) shows a 3-way DB
form of the AAT matrix induced by the 3-way GPVS Ilys(G) of Gyra(Ha) shown
in Figure 3.4(b). Recall that the 3-way partition IT;;(H4) shown in Figure 3.2(b) is
induced by Iy g(G). Hence, IIys(G) induces the same SB form Agp of A as shown
in Figure 3.5(b).

3.4. Multilevel implementation of GPVS-based HP formulation. The
state-of-the-art graph and hypergraph partitioning tools adopt the multilevel frame-
work and consist of three phases: coarsening, initial partitioning, and uncoarsen-
ing. In the first phase, a multilevel coarsening is applied starting from the original
graph/hypergraph by adopting various matching heuristics until the number of ver-
tices/nodes in the coarsened graph/hypergraph reduces below a predetermined thresh-
old value. Coarsening corresponds to coalescing highly interacting vertices/nodes
to supervertices/supernodes. In the second phase, a partition is obtained on the
coarsest graph/hypergraph using various heuristics including FM, which is an iter-
ative refinement heuristic proposed for graph/hypergraph partitioning by Fiduccia
and Mattheyses [20] as a faster implementation of the KL algorithm proposed by
Kernighan and Lin [32]. In the third phase, the partition found in the second phase
is successively projected back toward the original graph/hypergraph by refining the
projected partitions on the intermediate level uncoarsened graphs/hypergraphs using
various heuristics including FM.

One of the most important applications of GPVS is George’s nested—dissection
algorithm [21, 22], which has been widely used for reordering of the rows/columns of
a symmetric, sparse, and positive definite matrix to reduce fill in the factor matrices.
Here, GPVS is defined on the standard graph model of the given symmetric matrix.
The basic idea in the nested—dissection algorithm is to reorder a symmetric matrix
into a 2-way DB form so that no fill can occur in the off-diagonal blocks. The DB
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form of the given matrix is obtained through a symmetric row/column permutation
induced by a 2-way GPVS. Then, both diagonal blocks are reordered by applying the
dissection strategy recursively. The performance of the nested—dissection reordering
algorithm depends on finding small vertex separators at each dissection step.

In this work, we adapted and modified the onmetis ordering code of MeTiS [27]
for implementing our GPVS-based HP formulation. onmetis utilizes the RB paradigm
for obtaining multiway GPVS. Since K is not known in advance for ordering applica-
tions, recursive bipartitioning operations continue until the weight of a part becomes
sufficiently small. In our implementation, we terminate the recursive bipartitioning
process whenever the number of parts becomes K.

The separator refinement scheme used in the uncoarsening phase of onmetis con-
siders vertex moves from vertex separator IIys(G) to both Vi and Vs in Ilyg =
{V1,V2;Vs}. During these moves, onmetis uses the following feasibility constraint,
which incorporates the size of the separator in balancing, i.e.,

WW)+W(02)+ W (Vs)

(38)  max{W(),W(\V2)} < (1+¢) 5

= Wiaaz-

However, this may become a loose balancing constraint compared to (2.2) for relatively
large separator sizes, which is typical during refinements of coarser graphs. This loose
balancing constraint is not an important concern in onmetis, because it is targeted
for fill-reducing sparse matrix ordering which is not very sensitive to the imbalance
between part sizes. Nevertheless, this scheme degrades the load-balancing quality
of our GPVS-based HP implementation, where load balancing is more important in
the applications for which HP is utilized. We modified onmetis by computing the
maximum part weight constraint as

W(V1) + W(VQ)

(39) Winaz = (1 + 6) 2

at the beginning of each FM pass, whereas onmetis computes W, ... according to (3.8)
once for all FM passes, in a level. Furthermore, onmetis maintains only one value for
each vertex which denotes both the weight and the cost of the vertex. We added a
second field for each vertex to hold the weight and the cost of the vertex separately.
The weights and the costs of vertices are accumulated independently during vertex
coalescings performed by matchings at the coarsening phases. Recall that weight
values are used for maintaining the load-balancing criteria, whereas cost values are
used for computing the size of the separator. That is, FM gains of the separator
vertices are computed using the cost values of those vertices.

The GPVS-based HP implementation obtained by adapting onmetis as described
in this subsection will be referred to as onmetisHP.

4. Experimental results. We test the performance of our GPVS-based HP
formulation by partitioning matrices from the linear programming and the positive
definite (PD) matrix collections of the University of Florida matrix collection [17].
Matrices in the latter collection are square and symmetric, whereas the matrices in
the former collection are rectangular. The row-net hypergraph models [8, 12] of the
test matrices constitute our test set. In these hypergraphs, nets are associated with
unit cost. To show the validity of our GPVS-based HP formulation, test hypergraphs
are partitioned by both PaToH and onmetisHP, and default parameters are utilized
in both tools. In general, the maximum imbalance ratio € was set to be 10%.
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We excluded small matrices that have less than 1000 rows or 1000 columns. In
the LP matrix collection, there were 190 large matrices out of 342 matrices. Out
of these 190 large matrices, 5 duplicates, 1 extremely large matrix, and 5 matrices
for which NIG representations are extremely large were excluded. We also excluded
26 outlier matrices which yield large separators! to avoid skewing the results. Thus,
153 test hypergraphs are used from the LP matrix collection. In the PD matrix
collection, there were 170 such large matrices out of 223 matrices. Out of these 170
large matrices, 2 duplicates, 2 matrices for which NIG representations are extremely
large and 7 matrices with large separators were excluded. Thus, 159 test hypergraphs
are used from the PD matrix collection. We experimented with K-way partitioning
of test hypergraphs for K = 2,4,8,16,32,64, and 128. For a specific K value, K-
way partitioning of a test hypergraph constitutes a partitioning instance. For the LP
collection, instances in which min{|i/|,|N|} < 50K are discarded as the parts would
become too small. So, 153, 153, 153, 153, 135, 100, and 65 hypergraphs are partitioned
for K = 2,4,8,16, 32,64, and 128, respectively, for the linear programming collection.
Similarly for the PD collection, instances in which |[U| < 50K are discarded. So, 159,
159, 159, 159, 145, 131, and 109 hypergraphs are partitioned for K = 2,4, 8,16, 32, 64,
and 128, respectively, for the PD collection. In this section, we summarize our findings
in these experiments. Please refer to [31] for detailed experimental results for each
partitioning instance.

In our first set of experiments, the hypergraphs obtained from the linear pro-
gramming matrix collection are used for permuting the matrices into SB form for
coarse-grain parallelization of LP applications [3]. Here, minimizing the cutsize ac-
cording to the cut-net metric (2.4) corresponds to minimizing the size of the row
border in the induced SB form. In these applications, nets either have unit weights or
have weights that are equal to the number of nonzeros in the respective rows. In the
former case, net balancing corresponds to balancing the row counts of the diagonal
blocks, whereas in the latter case, net balancing corresponds to balancing the nonzero
counts of the diagonal blocks. Experimental comparisons are provided only for the
former case, because PaToH does not support different cost and weight associations
to nets.

In our second set of experiments, the hypergraphs obtained from the PD ma-
trix collection are used for minimizing communication overhead in a column-parallel
matrix-vector multiplication algorithm in iterative solvers. Here, minimizing the cut-
size according to the connectivity metric (2.5) corresponds to minimizing the total
communication volume when the point-to-point interprocessor communication scheme
is used [8]. Minimizing the cutsize according to the cut-net metric (2.4) corresponds
to minimizing the total communication volume when the collective communication
scheme is used [12]. In these applications, nodes have weights that are equal to the
number of nonzeros in the respective columns. So, balancing part weights corresponds
to computational load balancing.

In the following tables, the performance figures are computed and displayed as
follows. Since both PaToH and onmetisHP tools involve randomized heuristics, 10
different partitions are obtained for each partitioning instance, and the geometric av-
erages of the 10 resultant partitions are computed as the representative results for
both HP tools on the particular partitioning instance. For each partitioning instance,
the cutsize value is normalized with respect to the total number of nets in the re-
spective hypergraph. Recall that all test hypergraphs have unit-cost nets. So, for the

IHere, a separator is said to be large if it includes more than 33% of all nets.
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cut-net metric, a displayed normalized cutsize value shows the average fraction of the
cut-nets. For the connectivity metric, one plus a displayed normalized cutsize value
shows the average net connectivity. For each partitioning instance, the running time
of PaToH is normalized with respect to that of onmetisHP, thus showing the speedup
obtained by onmetisHP for that partitioning instance. These normalized cutsize val-
ues and speedup values as well as percent load imbalance values are summarized in
the tables by taking the geometric averages for each K value.

Table 4.1 displays overall performance averages of onmetisHP compared to those
of PaToH for the cut-net metric (see (2.8)) with net balancing on the LP matrix col-
lection. As seen in Table 4.1, onmetisHP obtains hypergraph partitions of comparable
cutsize quality with those of PaToH. However, load-balancing quality of partitions
produced by onmetisHP is worse than that of those produced by PaToH , especially
with increasing K. As seen in the table, onmetisHP runs significantly faster than
PaToH for each K. For example, onmetisHP runs 2.83 times faster than PaToH for
32-way partitionings on the average.

TABLE 4.1
Performance averages on the linear programming matriz collection for the cut-net metric with
net balancing.

PaToH onmetisHP

K | cutsize %LI | cutsize %LI | speedup
2 0.02 1.2 0.03 0.3 2.04
4 0.02 1.9 0.05 2.6 2.45
8 0.07 3.1 0.09 6.9 2.64
16 0.09 5.2 0.14 13.0 2.78
32 0.13 8.8 0.18 23.1 2.83
64 0.15 11.5 0.21 27.8 2.83
128 0.16 13.5 0.21 31.3 2.76

Table 4.2 displays overall performance averages of onmetisHP compared to those
of PaToH for the cut-net metric with node balancing on the PD matrix collection. In
the table, exp%LI, and act%LI,, respectively, denote the expected and actual per-
cent load-imbalance values for the partial node partitions of the hypergraphs induced
by K-way GPVS. act%LI. denotes the actual load-imbalance values for the complete
node partitions obtained after free-node-to-part assignment. The small discrepan-
cies between the exp%LI, and act%LI, values show the validity of the approximate
weighting scheme proposed in section 3.2 for the vertices of the NIG. As seen in the
table, for each K, the act%LI, value is considerably smaller than the act%LI, value.
This experimental finding confirms the effectiveness of the free-node-to-part assign-
ment scheme mentioned in section 3.2. As seen in Table 4.2, onmetisHP obtains
hypergraph partitions of comparable cutsize quality with those of PaToH. However,
the load-balancing quality of partitions produced by onmetisHP is considerably worse
than that of those produced by PaToH. As seen in the table, onmetisHP runs con-
siderably faster than PaToH for each K.

Table 4.3 is constructed based on the PD matrix collection to show the validity of
the accurate vertex-splitting formulation proposed in section 3.2.1 for the connectiv-
ity cutsize metric (see (2.9)). In the straightforward (overcautious) implementation,
free-node-to-part assignment is performed after obtaining a K-way GPVS, since hy-
pergraphs are not carried through the RB process. Free nodes are assigned to parts
in decreasing weight, where the best-fit criterion corresponds to assigning a free node
to a part that increases connectivity cutsize by the smallest amount with ties broken
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TABLE 4.2
Performance averages on the PD matriz collection for the cut-net metric with node balancing.

PaToH onmetisHP

K | cutsize %LI | cutsize exp%Ll, act%Ll, act%LIl. | speedup
2 0.01 0.1 0.01 0.2 0.2 0.1 1.40
4 0.03 0.3 0.03 0.9 1.5 1.1 1.75
8 0.05 0.4 0.05 2.8 3.7 2.7 1.96
16 0.08 0.6 0.08 6.7 7.4 5.4 1.98
32 0.12 0.9 0.12 13.4 12.8 9.2 2.17
64 0.17 1.2 0.16 22.1 19.8 13.5 2.27
128 0.25 1.6 0.24 32.5 28.8 179 2.25

TABLE 4.3

Comparison of accurate and overcautious separator-vertex splitting implementations in on-
metisHP with averages on the PD matriz collection for the connectivity metric with node balancing.

onmetisHP (overcautious) onmetisHP (accurate)

K | cutsize %LI  speedup | cutsize %LI  speedup
2 0.03 0.1 1.38 0.03 0.2 1.29

4 0.10 0.6 1.70 0.08 0.8 1.50

8 0.27 1.3 1.87 0.15 1.7 1.61
16 0.61 2.9 1.94 0.25 4.1 1.63
32 0.12 5.1 1.95 0.36 7.9 1.61
64 1.70 8.1 1.95 0.47 11.8 1.60
128 2.34 9.9 1.86 0.60 16.5 1.54

in favor of the part with minimum weight. As seen in the table, the overcautious
implementation leads to slightly better load balance than accurate implementation,
because overcautious implementation performs free-node-to-part assignment on the
K-way partial node partition induced by the K-way GPVS. As also seen in the ta-
ble, the overcautious implementation, as expected, leads to slightly better speedup
than the accurate implementation. However, the accurate implementation leads to
significantly smaller cutsize values.

Table 4.4 displays overall performance averages of onmetisHP compared to those
of PaToH for the connectivity cutsize metric with node balancing on the PD ma-
trix collection. In contrast to Table 4.2, load-imbalance values are not displayed for
partial node partitions in Table 4.4, because free-node-to-part assignments are per-
formed after each 2-way GPVS operation for the sake of accurate implementation of
the separator-vertex—splitting method as mentioned in section 3.2. So, %LI values
displayed in Table 4.4 show the actual percent imbalance values for the K-way node
partitions obtained. As seen in Table 4.4, similar to results of Table 4.2, onmetisHP
obtains hypergraph partitions of comparable cutsize quality with those of PaToH,
whereas load-balancing quality of partitions produced by onmetisHP is considerably
worse than that of those produced by PaToH. As seen in Table 4, onmetisHP still
runs considerably faster than PaToH for each K for the connectivity metric. How-
ever, the speedup values in Table 4.4, are considerably smaller than to those displayed
in Table 4.2, which is due to the fact that onmetisHP carries hypergraphs during the
RB process for the sake of accurate implementation of the separator-vertex—splitting
method, as mentioned in section 3.2.

A common property of Tables 4.1, 4.2, and 4.4 is the increasing speedup of
onmetisHP compared to PaToH with increasing K values. This experimental finding
stems from the fact that the initial NIG construction overhead amortizes with increas-
ing K. Another common property of Tables 4.1, 4.2, and 4.4 is that onmetisHP runs
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TABLE 4.4
Performance averages on the PD matriz collection for the connectivity metric with node bal-
ancing.

PaToH onmetisHP (accurate)

K | cutsize %LI | cutsize %LI speedup
2 0.03 0.1 0.03 0.2 1.29

4 0.08 0.3 0.08 0.8 1.50

8 0.15 0.5 0.15 1.7 1.61
16 0.26 0.7 0.25 4.1 1.63
32 0.37 1.0 0.36 7.9 1.61
64 0.49 1.5 0.47 11.8 1.60
128 0.63 1.9 0.60 16.5 1.54

significantly faster than PaToH, while producing partitions of comparable cutsize
quality with, however, worse load-balancing quality. These experimental findings jus-
tify our GPVS-based hypergraph partitioning formulation for effective parallelization
of applications in which computational balance definition is not very precise and pre-
processing overhead due to partitioning overhead is important.

5. Conclusions. We have presented how the hypergraph partitioning problem
can be efficiently and effectively solved through finding vertex separators on the net
intersection graph representation of a hypergraph. Our empirical study on a wide set
of test matrices showed that runtimes can be as much as 4.17 times faster, where the
cutsize quality is preserved on average (and improved in many cases), while balance
was achieved when the number of parts was small and remained acceptable when
the number of parts was large. Moreover, we proposed techniques that can trade
off cutsize and runtime against balance, showing that balance can be achieved even
when the number of parts is very large. Overall results prove that the proposed
hypergraph partitioning through vertex separators on graphs is ideal for applications
where balance is not well defined, which is the main motivation for our work, and
competitive for applications where balance is important.

We believe that the success of the proposed methods point to several future re-
search directions. First, better vertex weighting schemes to approximate the node
balance can make a significant impact. We believe that exploiting domain specific
information or devising techniques that can apply to certain classes of graphs, as
opposed to constructing generic approximations that can work for all graphs, is a
promising avenue to explore. Second, the algorithms we have used in this paper were
only slightly adjusted for the particular problem we were solving. There is a lot of
room for improvement in algorithms for finding vertex separators with balanced hy-
pergraph partitions, and we believe these algorithms can be designed and implemented
within the existing graph partitioning frameworks, which means strong algorithmic
ideas can be translated into effective software tools with relatively little effort. Fi-
nally, this paper is only an example of the growing importance of graph partitioning
and the need for more flexible models for graph partitioning. Graph partitioning now
is an internal step for divide-and-conquer—based methods, whose popularity will only
increase with the growing problem sizes. As such, requirements for graph partitioning
will keep growing and broadening. While, the state of the art for graph partitioning
has drastically improved from the days of merely minimizing the number of cut edges,
we believe that there is still a lot of room for growth for more general models for graph
partitioning.
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