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Abstract Often it is desirable to stabilize a system around an optimal state. This can be
effectively accomplished using feedback control, where the systemdeviation from the desired
state is measured in order to determine the magnitude of the restoring force to be applied.
Contrary to conventionalwisdom, i.e. that amore precisemeasurement is expected to improve
the system stability, here we demonstrate that a certain degree of measurement error can
improve the system stability. We exemplify the implications of this finding with numerical
examples drawn from various fields, such as the operation of a temperature controller, the
confinement of a microscopic particle, the localization of a target by a microswimmer, and
the control of a population.
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The presence of noise has a deleterious effect on many phenomena as it can drive a system
away from its optimal or desired working conditions [1]. For example, Brownian fluctuations
have to be fought by microscopic organisms, e.g. cells and bacteria, in their search for food
and mates [2]; and environmental fluctuations can alter the equilibrium of an ecosystem and
must be taken into account, e.g. in the management of endangered species and of fisheries
[3,4]. In these situations, feedback control is a powerful technique to stabilize a system,where
the system deviation from the desired state is measured in order to determine the magnitude
of the restoring force to be applied [5]. The quality of the feedback control depends on the
quality of the system state measurement: in principle, one could expect that a more accurate
measurement should lead to a better system stability. However, we will show that, when the
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Fig. 1 (Color online) a Schematic view of a noisy systemwhose state x(t) evolves in time under the influence
of a noise n(t). A feedback force F(t) acts on the system to keep it as close as possible to the optimal state x∗.
F(t) is dependent on the deviation d(t) = x̃(t) − x∗ between the measured system state x̃(t) = x(t) + e(t)
and x∗, where e(t) is the measurement error. b Dichotomic (triangles, α = 0), linear (squares, α = 1), and
cubic (diamonds, α = 3) feedback forces calculated according to Eq. (4). c Numerical results for the system
variance σ 2

x as a function of the measurement error variance σ 2
e for α = 0 (triangles), 1 (squares), and 3

(diamonds).

restoring force grows more than linearly with the deviation, the system stability improves in
the presence of measurement errors. This result permits one to engineer the right conditions
to relax the requirements, and therefore the cost, of the measurement procedures.

As a model system (Fig. 1a), we consider a one-dimensional dynamic system whose state
x(t) evolves in time under the influence of some random fluctuations. These fluctuations can
be modeled by a noisy driving term n(t), which we will assume to be a Gaussian white noise
with zero mean and variance σ 2

n . In order to keep x(t) as close as possible to its optimal state
x∗, we introduce a feedback loop consisting of the following steps:

1. measurement of the current system state x̃(t);
2. calculation of the system deviation from x∗, i.e. d(t) = x̃(t) − x∗;
3. application of a restoring force depending on d(t), i.e. F(d(t)).

In general, the measured system state x̃(t) is different from the real instantaneous system
state x(t), i.e. there is a measurement error

e(t) = x̃(t) − x(t), (1)

which we will assume to have zero average and variance σ 2
e , to be stationary, and to fluctuate

on a timescale τe significantly shorter than the system oscillations around its equilibrium
position. The resulting systemdynamics are described by the first-order stochastic differential
equation (SDE) [6]

d

dt
x(t) = F(x̃(t) − x∗) + n(t). (2)
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In order to evaluate the system stability, we will consider the variance of x around x∗:

σ 2
x = (x(t) − x∗)2, (3)

where the overline represents a time average. The more stable the system is, the smaller its
variance will be [7,8].

The resulting system stability depends on the feedback force. In general, we will consider
forces of the form

Fα(d) = −sign(d) C

∣
∣
∣
∣

d

δ

∣
∣
∣
∣

α

, (4)

where α ≥ 0 is a real parameter, C is a positive constant representing the confinement effort,
and δ is a parameter related to the characteristic amplitude of the system state oscillations
around its equilibrium. Some examples of feedback forces are illustrated in Fig. 1b and the
respective dependence of σ 2

x on σ 2
e in Fig. 1c.When α = 0, the feedback force is dichotomic,

i.e. it depends only on the sign of d (triangles in Fig. 1b), and σ 2
x monotonically increases

with σ 2
e (triangles in Fig. 1c). Similar results are obtained for α ≤ 1; in particular, for α = 1

the feedback force is linear in d (squares in Fig. 1b) and σ 2
x increases with σ 2

e (squares in
Fig. 1c), even though in this case the slope is weaker and, as will be shown below, as τe → 0,
σ 2
x becomes independent from σ 2

e . Finally, the most interesting case is when α > 1, i.e.
when the feedback force grows more than linearly with d: when σ 2

e increases, σ 2
x decreases,

as illustrated for α = 3 by the diamonds in Fig. 1b, c. Therefore, for α > 1, we obtain the
counterintuitive result that the system stability increases as the quality of the system state
measurement decreases.

In order to understand the nature of this result, we will first consider the case when a
perfect measurement of the system state is possible, i.e. σ 2

e = 0. In this case, e(t) ≡ 0 and
the SDE describing the system is

d

dt
x(t) = F(x(t) − x∗) + n(t). (5)

We can now use the fact that F(x) is associated to the potentialU (0)(x) = − ∫ x
x∗ F(y−x∗)dy

and therefore the probability distribution of the system states is

p(0)(x) = exp
{−βU (0)(x)

}

Z
= exp

{

β
∫ x
x∗ F(y − x∗)dy

}

Z
, (6)

where β = 2σ−2
n is proportional to the inverse temperature and Z = ∫ +∞

−∞ exp
{

β
∫ x
x∗

F(y − x∗)dy
}

dx is the partition function, to calculate the variance σ
2,(0)
x for the process

described by Eq. (5) as

σ 2,(0)
x =

∫ +∞

−∞
(

x − x∗)2 p(0)(x)dx, (7)

where the superscripts “(0)” have been added as a reminder that these quantities correspond
to a system without measurement noise.

We now consider the case when a measurement error is present, i.e. σ 2
e �= 0. Since we

have assumed the correlation time of the measurement error τe to be much smaller than
the characteristic time scales of the system, for each system state x we can introduce an
effective force that averages the various measurement noises and, thus, depends only on x .
This permits us to rewrite Eq. (2) in terms of the system state x , i.e.,

d

dt
x(t) = Feff (x(t) − x∗) + n(t), (8)
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where

Feff (x − x∗) =
∫ ∞

−∞
F(x − x∗ + e)pe(e)de. (9)

Following the same procedure used to derive Eqs. (6) and (7), we can then obtain the proba-
bility distribution of the system state

p(e)(x) = exp
{

β
∫ x
x∗ Feff (y − x∗)dy

}

Z
(10)

and its variance

σ 2,(e)
x =

∫ +∞

−∞
(

x − x∗)2 p(e)(x)dx, (11)

where the superscripts “(e)” have been added as a reminder that these quantities depend on
the measurement noise characteristics. We note at this point that, if Feff (x) > F(x) for all
x , p(e) is more compact than p(0), and therefore σ

2,(e)
x < σ

2,(0)
x . In order to understand what

are the conditions for this to apply, we analyze Feff (x − x∗ + e). We start by considering the
Taylor expansion of Feff (x − x∗ + e) around x − x∗, which gives

Feff (x − x∗) =
∫ ∞

−∞

[

F(x − x∗) + e
dF(x − x∗)

dx
+ e2

2

d2F(x − x∗)
dx2

+ O(e3)

]

pe(e)de.

From the previous equation, assuming a small noise level and neglecting terms in the third
power of e, we obtain

Feff (x − x∗) = F(x − x∗)
∫ ∞

−∞
pe(e)de

︸ ︷︷ ︸

=1

+dF(x − x∗)
dx

×
∫ ∞

−∞
epe(e)de

︸ ︷︷ ︸

=0

+1

2

d2F(x − x∗)
dx2

∫ ∞

−∞
e2 pe(e)de

︸ ︷︷ ︸

=σ 2
e

,

and, thus,

Feff (x − x∗) = F(x − x∗) + σ 2
e

2

d2F(x − x∗)
dx2

. (12)

From Eq. (12), we can conclude that Feff (x − x∗) > F(x − x∗) only if
d2F(x − x∗)

dx2
> 0.

In the case of the forces expressed by Eq. (4), Eq. (12) becomes

Feff,α(x − x∗) = −sign(x − x∗) C
∣
∣
∣
x−x∗

δ

∣
∣
∣

α [

1 + σ 2
e
2

α(α−1)
(x−x∗)2

]

, (13)

from which follows that a reduction of the system variance in the presence of measurement
errors is possible only for α > 1. This is in agreement with the numerical results presented
in Fig. 1c.

In order to understand the implications of our result, we now consider some concrete
numerical examples where it can find application [9,10]. The first example is a temperature
controller that must keep a device with heat capacity K at the optimal working temperature
T ∗. The system temperature of the system is T (t). The temperature controller can be realized
by using a temperature sensing device, which measures the temperature T̃ (t) = T (t)+eT (t)
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Fig. 2 (Color online) Decrease of the variance σ 2
T of the temperature of a device controlled by a cubic

feedback (α = 3) as a function of the temperature measurement error variance σ 2
e .As the correlation time of

the measurement noise τe increases, the decrease of σ 2
T lessens. Each data point is obtained by simulating

Eq. (14) for 20, 000 s and with T ∗ = 300K, K = 1 J/K, CT = 2.3× 107 W, �T = 1K, and σ 2
n = 10−4 K2

with an error eT (t), and a heating/cooling element with heating/cooling power CT . The
resulting equation that describes such a system is

K
dT

dt
= −CT sign

(

T̃ (t) − T ∗)
∣
∣
∣
∣
∣

T̃ (t) − T ∗

�T

∣
∣
∣
∣
∣

α

+ n(t), (14)

where �T is the characteristic temperature range of the system. Qualitatively, the results for
α = 0, 1, 3 are the same as the ones presented in Fig. 1c; in particular, a decrease of the
variance σ 2

T of the system is observed for α = 3. It is interesting, however, to analyze in
more detail the role of the noise correlation time τe for α = 3: as illustrated in Fig. 2, the
decrease of σ 2

T as a function of the measurement error becomes smaller as τe increases.
Our central result, i.e. that the presence of measurement errors can improve stability, can

also find application in the case of optoelectronic tweezers (OET) [11]. OET are employed to
control the motion of microscopic and nanoscopic charged particles by applying an external
electric field with the help of electrodes. The intrinsic noise in the particle position emerges as
a consequence of Brownian motion, due to the random collisions with the surrounding fluid
molecules. OETwork bymeasuring the particle’s position, typically using either digital video
microcopy [12] or a photodetector [13], and by applying a potential difference between the
electrodes in order to obtain a restoring electric force. In this case, the motion of the particle
in two dimensions can be described by a set of two Langevin equations:

⎧

⎪⎪⎨

⎪⎪⎩

γ
dx

dt
= −k sign(x̃(t) − x∗)

∣
∣
∣
∣

x̃(t) − x∗

�x

∣
∣
∣
∣

α

+ Wx (t)

γ
dy

dt
= −k sign(ỹ(t) − y∗)

∣
∣
∣
∣

ỹ(t) − y∗

�y

∣
∣
∣
∣

α

+ Wy(t)
(15)

where [x̃(t), ỹ(t)] = [x(t)+ex (t), y(t)+ey(t)] is themeasured particle position, [x(t), y(t)]
is the particle position, [ex (t), ey(t)] is the error in the position measurement, [x∗, y∗] is the
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(a) (b) (c)

(d) (e) (f)

Fig. 3 (Color online) Histograms of the position of a charged colloidal particle in a optoelectronic tweezers
using a–c dichotomic and d–f cubic feedback. The intensity of the measurement noise increases from left
to right. Each histogram is obtained by simulating the motion of a Brownian particle (radius 1µm, γ =
1.9 × 10−8 N sm−1 ) in a OET using Eq. (15) for 1000 s and k = 5.9 × 10−14 N for both dichotomic and
cubic feedback. The positional variance is σ 2

n,x = σ 2
n,y = 10, 000 nm2 in both (a) and (d); 15, 000 nm2 in

(b) versus 5000 nm2 in (e); and 18, 000 nm2 in (c) versus 3000 nm2 in (f)

desired position, k is the strength of the restoring force, [�x,�y] is the characteristic length
scale of the trap, γ is the friction coefficient of the particle, [Wx (t),W )y(t)] are uncorrelated
white noises with zero mean and variance 2D, D = kBT

γ
, T is the absolute temperature of

the system, and kB is the Boltzmann constant. The results of the corresponding simulations
are presented in Fig. 3. For a dichotomic response (α = 0, Fig. 3a–c), an increase of the
measurement error translates into an increase of the particle variance, as can be seen from
the fact that the particle histograms spread over a larger area as σ 2

e increases. However, for
a cubic response (α = 3, Fig. 3d–f), the particle confinement improves as the measurement
error increases.

In yet another field, biological and artificial microswimmers are attracting a lot of attention
from the biological and physical communities alike as possible candidates for the localiza-
tion, pick-up, and delivery of microscopic cargoes in microscopic environments [14,15]. In
order to perform such tasks, a crucial step is for the microswimmers to be able to reach a
certain target using their self-propulsion. A critical problem arises because rotational diffu-
sion prevents a microswimmer from keeping a straight trajectory and forces it to reassess its
orientation periodically [2]; several strategies have been developed to overcome this problem,
including swim-and-tumble chemotaxis [16] and, recently, the use of delayed sensorial feed-
back [17]. Here, we consider a microswimmer aiming to reach a target at position [xT, yT].
The microswimmer is at position [x(t), y(t)] at time t and propels itself with a constant
speed v in the direction of its orientation indicated by the angle ϕ(t) [18]. In order to adjust
its orientation towards the target, the microswimmer measures its instantaneous orientation
ϕ̃(t) = ϕ + eϕ with an error eϕ(t) and applies on itself a torque that results in an angular
rotation given by

τ(t) = −k
(

ϕ̃(t) − ϕ∗)3 , (16)

which is a cubic feedback. The resulting motion of the microswimmer can then be described
by the set of SDEs [18]:
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(a) (e)

(b)

(c)

(d)

Fig. 4 (Color online) a–d Sample trajectories of microswimmers moving towards a target point (indicated by
the cross) as a function of the angular error in the measurement of the propagation direction σ 2

e . e Histograms
of the endpoints of the microswimmer trajectory obtained from 350, 000 simulations. Thanks to the cubic
response of the feedback (Eq. (16)), the target is approached more efficiently when more measurement noise
is present. The trajectories of the (spherical) microswimmers are simulated for 150 s using Eq. (17) with
parameters: D = kBT/γ , Dr = 3D/(2R)2, γ = 6πηR, R = 0.5µm, η = 0.001 Pa s, T = 300K,
k = 0.1 s−1, and v = 20µ s−1. See also the supplementary video

⎧

⎪⎨

⎪⎩

dx
dt = v cos(ϕ(t)) + √

2DWx (t)
dy
dt = v sin(ϕ(t)) + √

2DWy(t)
dϕ(t)
dt = τ(ϕ̃(t), x(t), y(t)) + √

2DrWϕ(t)

(17)

where Wx , Wy and Wϕ are white noises with zero mean and unitary variance, D is the
diffusion coefficient of the microswimmer, and Dr is its rotational diffusion coefficient. We
examined how fast this swimmer can reach its target depending on measurement errors. As
can be seen in Fig. 4, thanks to the cubic response of the feedback, the microswimmers
reaches its target faster when the measurement noise level is higher.

Finally, we will consider the stabilization of a fishery in order to optimize production. In
first approximation, it is crucial to stabilize the population around a level that provides the
fastest reproduction. If the resulting population dynamics obey the logistic equation, i.e.

dx

dt
= Rx

(

1 − x

C

)

, (18)

where x is the population size,C is the carrying capacity and R is the growth rate, production
can be optimized by adjusting the fishing rate so that the actual population is equal to C/2,
which corresponds to the highest population growth rate.We can nowconsider amore realistic
situation where the growth rate is noisy, i.e.

R(t) = R0 + σRW (t), (19)

where R0 = 〈R(t)〉, σ 2
R = 〈

(R(t) − R0)
2
〉

, andW (t) is a white noise. Since now the popula-
tion tends to deviate from the ideal size, a feedback control should be applied to the fishing
rate in order to restore the population back to C/2 and, even more importantly, to prevent
extinction. The simplest strategy is to apply a dichotomic feedback such that the resulting
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Fig. 5 (Color online) The extinction rates of fish populations which are controlled with cubic feedback
(diamonds) and dichotomic feedback (triangles). The results are obtained from numerical simulations of the
equations (21) and (22) and extinction probability calculated using 3500 sample runnings over 10 years.
Simulations parameters: C (1000) , R = 99, 9(year−1), WR = 11.1, dichotomic response stiffness (k =
3.3342 × 104) and cubic feedback stiffness (k = 2 × 10−3). These values are set in order to meet 50
probability for both cases in the absense of measurement noise

population dynamic is described by

dx

dt
= R(t)x

(

1 − x

C

)

−R(t)
C

4
︸ ︷︷ ︸

fishing

−k sign (x̃(t) − C/2) , (20)

where x̃(t) = x(t)+e(t) is themeasured population size and e(t) is the error in the assessment
of the fish population. If we apply such strategy to an ensemble of fisheries, we obtain that
the extinction probability grows to certainty as the measurement error in the assessment of
the population grows, as shown by the triangles in Fig. 5. We can now try and apply a cubic
feedback control, so that the resulting population dynamics is described by

dx

dt
= R(t)x

(

1 − x

C

)

−R(t)
C

4
︸ ︷︷ ︸

fishing

−k (x̃(t) − C/2)3 . (21)

In this case, as the measurement error increases the extinction probability goes down to zero,
as shown by the squares in Fig. 5.

In conclusion, we have shown that the presence of noise in the measurement of a system
status is not necessarily deleterious and can, in fact, improve system stability depending on
the functional form of the feedback response. As a consequence, an addition of noise can
effectively reduce the system variance and, therefore, enhance stability.
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