
CTu1B.4.pdf Imaging and Applied Optics 2017 (3D, AIO, COSI, IS,
MATH, pcAOP) © OSA 2016

Phase Retrieval from Electric Field Intensity for
Wide Angle Optical Fields

Onur Kulce, Levent Onural
Department of Electrical and Electronics Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey

kulce@ee.bilkent.edu.tr
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1. Introduction

The aim of the phase retrieval algorithms which have been developed for both scalar and vector valued problems is to
find a suitable phase pattern such that the resulting complex valued field meets some intensity criterion. In the literature,
this criterion generally turns out to be the optical intensity specified over multiple parallel planes for monochromatic
scalar optical fields [1, 2]. As a result of these algorithms, the computed scalar field may end up with a wide angle
field so the propagation directions of the plane wave components may lie in a large cone. If this scalar field is to be
generated through some electromagnetic field source, large amount of error may arise due to the conventional scalar
to vector mapping where the longitudinal component of the electric field is neglected [3, 4]. There are also reported
research results on phase retrieval under the scope of the antenna based problems where the longitudinal component
of the electric field is taken into account [5–7]. In these algorithms, the intensity criterion is given in terms of the
magnitude squares of the scalar components of the vector field. In this paper, the intensity is the magnitude square of
the electric field vector which is given over multiple parallel planes. In the proposed algorithm, we first find a scalar
field which meets the given intensity criterion using one of the phase retrieval algorithms developed for scalar fields.
Then that scalar field is mapped to the vector electric field through some filtering operations such that the resulting
intensity matches with the given criterion.

2. Preliminaries and Problem Formulation

We denote the electric field vector in three dimensional (3D) space as E(r) = [Ex (r) Ey (r) Ez (r)]T ∈ C3 where
r = [x y z]T ∈ R3 is the position vector and the two dimensional (2D) Fourier transform (FT) of E(r̂,0) as EEE

(
k̂
)
=[

Ex
(
k̂
)

Ey
(
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)

Ez
(
k̂
)]T ∈ C3, where r̂ = [x y]T and k̂ = [kx ky]

T ∈ R2. Since we assume that the field is propagating,
EEE
(
k̂
)

is always zero when
∣∣k̂∣∣ ≥ k, where k is the wavenumber of the monochromatic field. Also, E(r̂,z) can be

found from E(r̂,0) by using Rayleigh-Sommerfeld diffraction formulation. As a result of Gauss’ Law, Ez
(
k̂
)

should
be equal to Hx
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, where Hx

(
k̂
)
= kx/[k2−|k̂|2]1/2 and Hy

(
k̂
)
= ky/[k2−|k̂|2]1/2. The electric

field intensity is defined as P(r) = |E(r)|2.
If there is a relation between the x and y components of the electric field such that Ey (r)

/
Ex (r) =C ∈ C for all r

and if the scalar field, S (r), is mapped to the vector field conventionally [3] as

Ex (r) =


1√

1+|C|2
S (r) if C 6= ∞

0 if C = ∞

, Ey (r) =


C√

1+|C|2
S (r) if C 6= ∞

S (r) if C = ∞

, (1)

then, |S (r)|2 becomes approximately equal to P(r) if S (r) is paraxial; Ez (r) becomes negligibly small in this case [4].
However, if S (r) is a wide angle field, then, the magnitude of Ez (r) becomes large due to the high pass filters H{x,y}

(
k̂
)

and the equality |S (r)|2 = P(r) cannot be satisfied.
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3. Scalar to Vector Field Mapping Using a Linear Shift Invariant Filter

Here we define a filter TC
(
k̂
)

for the cases Ey (r)
/

Ex (r) =C as

TC
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)
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|C|2+1+|Hx(k̂)+CHy(k̂)|2
if C 6= ∞ and

∣∣k̂∣∣< k

1√
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if C = ∞ and
∣∣k̂∣∣< k

0 otherwise .

(2)

Therefore, TC
(
k̂
)

is a filter with a low-pass nature. Then, we assume that the vector electric field is generated from the
scalar field in the Fourier domain as
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, (3)

where S
(
k̂
)

is the 2D FT of S (r̂,0). Finally, the resulting z component can be computed as Hx
(
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)
Ex
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)
+
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)
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using Ex
(
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)

and Ey
(
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)

given by Equation 3. It can be verified that if the scalar to vector mapping
is carried out as given in Equation 3, the equalities

∣∣S (
k̂
)∣∣2 = ∣∣EEE (k̂)∣∣2 and

∞∫∫
−∞

P(r̂,z)dr̂ =
∞∫∫
−∞

|S (r̂,z)|2 dr̂ (4)

are satisfied, as well, for all k̂ and z values, respectively. Therefore, it can be said that the total intensity is preserved
if the proposed mapping is used. Here TC

(
k̂
)

can be viewed as an inverse low-pass filter which compensate the high
pass effect of the filters H{x,y}

(
k̂
)
.

4. Simulation Results

In this section, we will compare the performances of the conventional and proposed scalar to vector mappings, that are
given by Equations 1 and 3, respectively, in a phase retrieval problem for a Gaussian signal with a random phase. In
order to guarantee that a solution exists to this phase retrieval algorithm, we generate the intensities at z = 0 and z = d
planes from a known scalar field. We take this field, given at z = 0 plane, as

Ŝ0 [n,m] = e−
(n−N/2)2+(m−N/2)2

2σ2 e jφ(n,m) , (5)

for the simulation. Here, n ∈ [0, N−1] and m ∈ [0, N−1] with N = 512, σ = 64 and φ (n,m) is a random number
generated from the uniform distribution [0,π/2] indepently and identically. We compute the field at z = d plane
Ŝd [n,m], for d = 20 cm by using the transfer function of the Rayleigh-Sommerfeld propagation formula in 2D discrete
Fourier transform (DFT) domain. We also choose the wavelength of the field as 500 nm. The corresponding scalar
optical intensities,

∣∣Ŝ0 [n,m]
∣∣2 = P̂0 [n,m] and

∣∣Ŝd [n,m]
∣∣2 = P̂d [n,m] which are desired to be generated as the electric

field intensities, can be seen in Figures 1a and 1d, respectively.
Next, by using Gerchberg-Saxton algorithm [1] and without making an approximation for the free space propaga-

tion, we compute some other scalar field such that its magnitude squares match with P̂0 [n,m] and P̂d [n,m] at z = 0
and z = d planes, respectively. As the initial guess for Ŝ0 [n,m], we again assume that its phase is generated from the
uniform distribution [0,π/2] indepently and identically. After finding appropriate scalar fields, we map them to the x
and y components of the electric field for C = j, which corresponds to right hand circularly polarized field, using both
the conventional and proposed methods based on the discrete versions of Equations 1 and 3, respectively. Then, the
corresponding z components are computed from the x and y components in the discrete domain, as described in [4].

Finally, for z = 0 and z = d, we compute the resulting intensities P̂z,con [n,m] and P̂z,pro [n,m] that correspond to the
conventional and proposed scalar to vector mappings, respectively. In Figures 1b and 1e, the intensities as a result of
the conventional mapping and in Figures 1c and 1f, the intensities as a result of the proposed mappings are presented
for z = 0 and z = d planes. Please note that since we make the computations in DFT domain, the figures represents
one period of their corresponding periodic patterns with period n = m = 512. From the figures, it can be seen that
the proposed scalar to vector mapping outperforms the conventional scalar to vector mapping in this phase retrieval
problem in terms of the generation of two optical intensity patterns. For the patterns at z = 0 plane, the excesssive
amplification due to H{x,y}

(
k̂
)

is compensated in the proposed mapping. Also, at both planes, the initial intensity
patterns are preserved in the proposed mapping, whereas, in the conventional mapping, some noisy patterns appear.
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(a) P̂0 [n,m] (b) P̂0,con [n,m] (c) P̂0,pro [n,m]

(d) P̂d [n,m] (e) P̂d,con [n,m] (f) P̂d,pro [n,m]

Fig. 1: The simulation results are shown as gray scale images at z = 0 and z = d = 20 cm for N = 512. The top-left
corners correspond to (n,m) = (0,0), n and m increase from left to right and from top to bottom, respectively. Different
gray scales are used in Figures 1b and 1e, as indicated by the color bars, for the sake of visibility of the underlying
Gaussian pattern which is dominated by the amplified random noise due to the uncompensated high-pass effect in the
conventional procedure. The results indicate that the scalar intensity patterns are preserved if the proposed mapping is
applied instead of the conventional mapping.

5. Conclusions

In this paper, a scalar to vector mapping using a linear shift invariant filter is proposed. As a result of this, the total scalar
intensity at all z planes is preserved as the electric field intensity. The proposed mapping is tested on a phase retrieval
problem for a discrete Gaussian signal with a random phase and observed that the proposed mapping outperforms the
conventional mapping in terms of the pointwise matching of the scalar intensity to the electric field intensity.
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