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ABSTRACT

COMPUTATION OF THE OPTIMAL H∞

CONTROLLER FOR A FRACTIONAL ORDER
SYSTEM

Abidin Erdem Karagül

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hitay Özbay

September, 2014

This work investigates the H∞ optimal controller design for a fractional order

system with time delay. For illustrative purposes, a magnetic suspension system

model, derived by Knospe and Zhu is considered. The transfer function is infinite

dimensional including e−hs and a rational function of
√
s, where h > 0 represents

the delay. Recently in a paper by Özbay, a formulation is given to design the H∞

optimal controller for the mixed sensitivity minimization problem for unstable

infinite dimensional plants with low order weights. This formulation is used to

design the H∞ optimal controller for the fractional order system considered, and

it is compared to alternative computation methods for H∞ control of infinite di-

mensional systems. To implement the controller, approximation methods are also

investigated. Furthermore, finite dimensional rational approximation techniques

of the fractional order integrator are evaluated for simulation purposes.

Keywords: Fractional Order Systems, H∞ Optimal Control, Approximation of

Fractional Order Systems, Time Domain Simulation of Fractional Order Systems.
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ÖZET

KESİRLİ DERECEDEN BİR SİSTEM İÇİN H∞

DENETLEÇ TASARIMI

Abidin Erdem Karagül

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Hitay Özbay

Eylül, 2014

Bu çalışma zaman gecikmeli kesirli dereceden bir sistem için H∞ optimal denetleç

tasarımını incelemektedir. Knospe ve Zhu tarafından modellemesi yapılmış olan

lamine edilmemiş manyetik süspansiyon sistemi örnek olarak alınmıştır. Mod-

elin transfer fonksiyonu sonsuz boyutludur, e−hs ve
√
s gibi rasyonel olmayan

terimler içermektedir. Burada h > 0 zaman gecikmesini göstermektedir. Yakın

zamanda Özbay tarafından kararsız sistemler için düşük dereceli ağırlık fonksiyon-

larıyla kurulmuş olan karışık ağırlıklı minimizasyon problemini çözen bir yöntem

geliştirilmiştir. Bu tezde H∞ optimal denetleci tasarlamak için bu yöntem kul-

lanılmış ve daha önce raporlanmış olan sonsuz boyutlu H∞ optimal denetleyici

yöntemleriyle karşılaştırılmıştır. Kontrolcü tasarımına ek olarak, gerçekleme

amacıyla, bu kontrolcünün daha düşük dereceli veya gerçeklemeye daha uy-

gun yaklaşımları araştırılmıştır. Elde edilen denetleyicinin kapalı döngüdeki

simülasyon sonuçlarının görülebilinmesi için 1/
√
s’in rasyonel yaklaşımları de-

nenmiştir.

Anahtar sözcükler : Kesirli Dereceden Sistemler, H∞ Optimal Kontrol, Kesirli

Dereceden Sistemlerin Yakınsaması, Kesirli Dereceden Sistemlerin Simülasyonu.

iv



Acknowledgement

First of all, I am grateful to my family for creating an excellent opportunity

which allowed me to study in this perfect environment. Without the resources

they provided, it would be almost impossible to achieve anything that is already

achieved with ease. Their endless love and support have always been a key source

to relief. I would also like to thank them for their patience.

I want to express my gratitude to my supervisor Prof. Hitay Özbay. The
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Chapter 1

Introduction

This work investigates the H∞ optimal controller design for a fractional order

system with time delay. For illustrative purposes, a magnetic suspension system

model derived in [2] is considered. The H∞ control has been studied since 1980s,

and resulted in a well developed theory. The version of the H∞ optimal con-

trol, studied here is the mixed sensitivity minimization problem. This problem

seeks the controller satisfying closed loop stability in addition to achieving cer-

tain performance with plant uncertainty while minimizing the infinity norm of the

two block. Plant uncertainty is modeled by the weight function W2(s), whereas

the class of reference signals to be tracked is denoted by W1(s). Multiplication of

W1(s) with the sensitivity function, S(s) , constitutes one of the blocks, the other

one is the multiplication of W2(s) with the complementary sensitivity function,

T (s). For finite dimensional systems, solutions can be obtained through the state

space methods. In the infinite dimensional case a frequency domain approach can

be used and the optimal controller can be found directly without going through

any approximation, see [3] and references therein for detailed discussions. The

main contribution of this work is the application of this theory to the new class

of systems, called fractional order systems.

In simplest terms, an equation relating a variable to its derivatives is called

as a differential equation. The nice thing about differential equations is that they

can be used as the mathematical models of physical systems, as in the case of

1



Newton’s second law. When the system itself is deterministic, the solution of the

differential equation reveals the course of events for all time.

”Given for one instant an intelligence which could comprehend all the forces

by which nature is animated and the respective situation of the beings who com-

pose it an intelligence sufficiently vast to submit these data to analysis it would

embrace in the same formula the movements of the greatest bodies of the universe

and those of the lightest atom; for it, nothing would be uncertain and the future,

as the past, would be present to its eyes.”[4]

In general, when the law of a physical system is described as a differential

equation the order of the derivatives are integer. In other words, a describing

equation will involve first, second or higher order derivatives of variables. How-

ever, although not easy to visualize, it is possible to have orders of differentiation

that are not integers. Surprisingly, its history goes back to the integer order cal-

culus. In a letter to L’Hôpital, Leibniz asked: ”Can the meaning of derivatives

with integer order be generalized to derivatives with non-integer orders?” [5].

When the derivative order is integer, it is easy to understand what it rep-

resents geometrically. For example, first derivative is the slope of the curve at

the differentiation point. However, when the order is non-integer, differentiation

seem to loose its interpretation as the rate of change in a variable. To create an

insight for the non-integer case, an n−fold integral can be considered:
∫
. . .

∫ t

0︸ ︷︷ ︸
n

f(y) dy . . . dy︸ ︷︷ ︸
n

=

∫ t

0

f(y)(t− y)n−1

(n− 1)!
dy.

In other words, an n−fold integral can be expressed as a one dimensional integral.

When the order is generalized to n ∈ R
+, replacing the factorial function with

the gamma function can be used as a way to interpret the Riemann-Liouville

definition for the fractional order integral [6]:
∫ t

0

f(y)(t− y)n−1

(n− 1)!
dy =

1

Γ(n)

∫ t

0

f(y)(t− y)n−1dy.

Another definition of fractional order differentiation is given by Grünwald-

Letnikov [7]. This definition can be interpreted in a similar way, instead of starting

2



with an n−fold integral, derivation should be started with differentiation.

When Riemann-Liouville definition is used for a fractional order differential

equation, it is necessary to have initial conditions expressed in terms of initial

values of fractional derivatives of the unknown function. Caputo’s definition [8]:

Dαf(t) =
1

Γ(1− δ)

∫ t

0

f∆+1(y)

(t− y)δ
dy

with

α = ∆+ δ, ∆ ∈ Z, and 0 < δ ≤ 1,

on the other hand, requires initial values of integer order derivatives. When the

initial conditions are taken to be zero, all three definitions coincide [9].

Applications of fractional order calculus theory in system modeling increased

widely in the last decades, since, they offer better fit to some physical systems.

For example, heat conduction, mass transportation, viscoelasticity are described

better with fractional order differential equations [7]. As in the case of this

work, the mathematical model of the non-laminated magnetic suspension system,

derived in [2], is represented with a fractional order differential equation.

Not only in system modeling, fractional order calculus is also studied in

feedback control theory. Stability results for finite dimensional linear frac-

tional differential systems are given in [10]. Internal and external stabilities are

guaranteed if and only if roots of a polynomial lie outside the angular sector

|arg(σ)| ≤ απ/2 , with α denoting the fractional order and σ denoting the roots

of the polynomial.H2-norm of a system is defined as the energy of the impulse

response. Analytical computation of the H2-norm of fractional commensurate

order transfer functions can be done with the method given in [11]. It is stated

that unlike integer order systems H2-norm can be infinite although the fractional

order system is BIBO stable. The H∞-norm is defined as the largest energy

among output signals resulting from all inputs of unit energy, and this defini-

tion also holds for the fractional order systems. Hamiltonian matrix definition

for fractional order systems and two separate methods to calculate the H∞-norm

based on this matrix can be found in [12].

3



Assuming zero initial conditions the input/output behavior of a system can

be represented by the following equation in time domain:

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t)

= bmD
βmu(t) + bm−1D

βm−1u(t) + · · ·+ b0D
β0u(t),

here Dγf(t) denotes the Caputo derivative of order γ, and αi, βj for i ∈
{0, 1, . . . , n}; j ∈ {0, 1, . . . ,m} are rational numbers; and {a0, a1, . . . , an},
{b0, b1, . . . , bm} are real constants.

Then, the same system can be represented, in the frequency domain, by the

transfer function:

G(s) =
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0

, where

βk and αj are rational numbers, for k = 0, 1, . . . ,m; and j = 0, 1, . . . , n.

The Laplace transform of the fractional order integral, with Caputo’s defini-

tion, is [8]:

∫
∞

0

(
1

Γ(α)

∫ t

0

f(y)(t− y)α−1dy

)
e−stdt = s−αF (s), where α > 0.

In control theory, Bode is one of the first researchers realizing the importance

of the application of the fractional order calculus. He has called the following as

the ideal open loop transfer function [7], [13]:

F (s) =
A

sα
. (1.1)

The gain of the open loop transfer function, A, is greater than zero. And

for phase margin to be greater than π/2, α should be in between 0 and 1. In

fact, with smaller values of α, it is possible to have large values of the phase

margin. This is one of the main principles of Bode’s loop shaping which says

that at the gain crossover frequency the magnitude drop should be small to have

a large phase margin [14]. Phase shift of the ideal transfer function,(1.1), is

4



constant for all frequency values, so the phase margin of the feedback loop is

invariant to the changes in the amplifier gain. Note that sα, is an irrational

function of the Laplace variable s, so (1.1) is an infinite dimensional transfer

function with unlimited memory. Having infinite memory enables the fractional

order integral action to consider the whole history of the input signal [15]. With

this property fractional order is different from integer order integral or derivative,

creating possible benefits for some applications. Advantages of application of the

fractional order calculus to the feedback control theory increased the number of

papers in this field.

In 1990s a non-integer order robust control method, CRONE is proposed, [16].

Superior performance of the fractional order controller PIλDµ over the classical

PID controller is shown, [17]. In [18], an algorithm for the co-design of gain and

phase margins using fractional order PIλ controllers is presented. Besides PIλDµ

and CRONE algorithms, H2 and H∞ control strategies are also proposed for frac-

tional order systems [19], [20]. A PID controller design algorithm for fractional

order systems with time delays is presented in [21]. Variable order fractional con-

trollers are proposed in [22], aiming a constant phase margin. For fractional order

systems with time delay a stabilization algorithm by using PIλDµ controllers is

given in [23]. A set point weight rules for PIλDµ controllers is addressed in

[24]. For fractional order nonlinear discrete time systems, switched state model

predictive control is provided in [25]. A second order Dα type iterative learning

control scheme for fractional order systems is presented in [26]. Other than the

methodologies to design controllers, analysis methods of fractional order systems

are also researched. Stability windows, for fractional systems with time delays,

can be determined by using the numerical procedure outlined in [27]. A MATLAB

toolbox, YALTA, which is based on [28], [29], [30], [31] can be used for the sta-

bility analysis of classical and fractional systems with commensurate delays [32].

The bounded input bounded output stability condition for distributed-order sys-

tems over integral interval (0,1) has been established in [33]. Some examples of

the fractional order controllers can also be found in the literature. In [34], a frac-

tional order controller is designed for a DC-DC buck converter by using frequency

domain techniques. Other applications involve controller designs for a hydraulic

5



Figure 1.1: Standard feedback system

actuator [35], flexible transmission [36], a robot manipulator [37], a lightweight

flexible manipulator [38]. It is widely known that there are physical devices that

can perform fractional order integration or differentiation [39]. However, due to

the infinite memory property of the fractional order systems, their simulation

is complex. Approximate rational transfer functions can be found by frequency

domain fitting techniques in continuous or discrete time. Carlson’s method [40],

Matsuda’s method [41], and Oustaloup’s method [42] are based on continuos time.

For discrete equivalences, FIR implementation can be performed. For alternative

discretization methods see [43], [44]. Furthermore, MATLAB’s invfreqs com-

mand can be used for approximations of fractional order transfer functions from

the frequency response data. Various methods for analog circuit realizations of

fractional order systems can also be found in [45], [39].

This thesis considers the standard feedback system, depicted in Figure 1.1.

A feedback loop involving fractional order systems can be classified in two

groups:

(i) a fractional order controller used for a finite dimensional plant,

(ii) an integer or fractional order controller used for a fractional order plant.

To our knowledge, most of the existing literature on this subject addresses feed-

back loops of type (i), in other words, fractional order controllers are designed

for rational plants.

6



As an example, consider a minimum phase plant P (s). By virtue of Bode’s

loop shaping choose a fractional order controller so that open loop system has

the following transfer function:

C(s) =
k

sαP (s)
,⇒ P (s)C(s) =

k

sα
, with k > 0, and α > 0.

Phase margin of the closed loop system is (π − (π/2)α). Crossover frequency

is given by k1/α. As seen, phase margin only depends on α, so through the choice

of α phase margin can be specified. System stability can be achieved with a

positive gain value, k > 0, for 0 < α < 2. With given requirements, a pre-design

can be conducted. For example, for PM = 80◦, α is equal to 1.1 and for cut-off

frequency (ωc) of 5 rad/sec, k should be equal to 6, since k = ωc
α. Figure 1.2

illustrates the magnitude and phase plots of the Bode’s ideal open loop system

with k = 6 and α = 1.1. The unit step response is shown in Figure 1.3 This

discussion is valid for minimum phase plants. In case of a non-minimum phase

plant, the methods presented in [34] can be followed, to compensate the effects

of right half plane zeros.

This work concentrates on a feedback system of type (ii). In other words, a

specific fractional order plant is considered and an H∞ controller design method

for this plant is illustrated. A mathematical model of the non-laminated magnetic

suspension system is derived in a series of papers [2], [46]. The transfer function

of the system is in the form of a rational function of
√
s followed by a time delay

term e−hs, where h > 0 represents the time delay. The method proposed in [47],

can be used to compute the H∞ optimal controller for such infinite dimensional

systems. Later in [1], the method in [47] has been simplified for the case where the

sensitivity weight is low-order. In this thesis, the mixed sensitivity minimization

problem will be solved for the unstable fractional model developed in [2], [46];

first by using the method in [1], and then the result will be verified by the old

design procedure of [47]. This thesis also concentrates on the implementation and

simulation of the closed loop system. For implementation purposes approximation

of the controller is investigated. To see the dynamic behavior of the closed loop

system in a simulation environment, methods to obtain integer order transfer

functions approximating fractional order terms in the closed loop system, are

7
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evaluated.

This thesis is based on our papers published recently, [48], [49], [50], [51]. The

thesis is organized as follows. In Chapter 2, the mathematical model of the plant

is described. In Chapter 3 a detailed discussion on the computation of the H∞

optimal controller is given. Chapter 4 outlines some recent techniques for approx-

imation of fractional order terms in the optimal H∞ controller expression. Time

domain simulation results are given in Chapter 5. Finally, concluding remarks

are made in Chapter 6.
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Chapter 2

Mathematical Model of the Plant

In this section, the fractional order plant model of a non-laminated magnetic

suspension system given by [2] is investigated. Due to real time data acquisition

and transmission actuator, sensor time delays may be present in the system. This

results in the following transfer function:

P (s) =
Koe

−hs

(sα)5 + b(sα)4 − c
. (2.1)

In (2.1), s is the Laplace variable, h > 0 denotes the time delay and α is a rational

number and α ∈ (0, 1). For the plant under consideration α = 0.5, b = 1 and

Ko = 1 is fixed, [2]. For finding the locations of the poles in the ζ-plane

ζ = sα .

transformation can be used. With this transformation, the stability region in the

ζ-plane is as follows [27]:

|∠ζ| > α
π

2
, where ∠ζ denotes the phase of ζ and it is taken in [−π, π].

It is shown that for all c > 0 and b = 1 the plant has only one unstable real

pole and 4 complex stable poles, [2]. Locations of the poles with respect to c, are

given in Figure 2.1 and Figure 2.2 for b = 1 and b = 0.5.

A specific value of c = 5, results in the poles in the ζ plane, given in Tables

2.1, 2.2 for b = 1 and b = 0.5.

10



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Locations of the Poles of the Plant in ζ−domain

ℜ

ℑ

Figure 2.1: Locations of the poles of the plant in [2] for b = 1, 10−5 < c < 105,
solid line shows the stability region in ζ-domain.
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Figure 2.2: Locations of the poles of the plant in [2] for b = 0.5, 10−5 < c < 105,
solid line shows the stability region in ζ-domain.
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Table 2.1: Locations and the Phases of the Roots of ζ5 + ζ4 − 5 = 0

Locations of the Roots the Phases
p1 = −1.3665 + j0.7563 150◦ = 2.61 rad
p2 = −1.3665− j0.7563 −150◦ = -2.61 rad
p3 = 0.2542 + j1.2687 78◦ = 1.36 rad
p4 = 0.2542− j1.2687 −78◦ = -1.36 rad
p = 1.2244 0◦ = 0 rad

Table 2.2: Locations and the Phases of the Roots of ζ5 + 0.5ζ4 − 5 = 0

Locations of the Roots the Phases
p1 = −1.2285 + j0.8001 147◦ = 2.56 rad
p2 = −1.2285− j0.8001 −147◦ = -2.56 rad
p3 = 0.3323 + j1.2997 76◦ = 1.33 rad
p4 = 0.3323− j1.2997 −76◦ = -1.33 rad
p = 1.2923 0◦ = 0 rad

Then, the transfer function of the plant can be re-written so that G(sα) shows

the stable and minimum phase part of the system:

P (s) = e−hsG(sα)
1

(sα − p)
, G(sα) =

1

(sα − p1)(sα − p2)(sα − p3)(sα − p4)
,

Bode plots of the G(sα) are given in the Figure 2.3.

12



10
−4

10
−2

10
0

10
2

10
4

−200

−100

0

Frequency (rad/sec)

M
ag

ni
tu

de
(d

B
)

10
−4

10
−2

10
0

10
2

10
4

−200

−100

0

Frequency (rad/sec)

P
ha

se
(d

eg
)

Figure 2.3: Bode plots of G(sα) for c = 5.
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Chapter 3

Optimal H∞ Controller Design

The optimal H∞ controller for the fractional order plant model, analyzed in the

previous section, is designed in this section. The plant involves infinite dimen-

sional terms like e−hs and a rational function of
√
s. The technique proposed in

[47] solves the mixed sensitivity minimization problem for unstable, infinite di-

mensional plants. In [1], it is shown that when the sensitivity weight is low-order,

the method proposed in [47], can be simplified. To compute the optimal H∞

controller, these two methods are applied separately. This section is divided into

four parts. In the first section, factorization of the plant is given, then in Sub-

section 3.2 and 3.3 two methods are applied separately to compute the optimal

controller. In Subsection 3.4, the optimal H∞ controller is given.

3.1 Factorization of the Plant

Mixed sensitivity minimization problem tries to find the optimal controller re-

sulting in the optimum performance level:

γopt := min
C∈C(P )

∥∥∥∥∥

[
W1(1 + PC)−1

W2PC(1 + PC)−1

]∥∥∥∥∥
∞

=

∥∥∥∥∥

[
W1(1 + PCopt)

−1

W2PCopt(1 + PCopt)
−1

]∥∥∥∥∥
∞

,

Here set of all controllers, stabilizing the standard feedback loop formed by the

plant P and the controller C is denoted by C(P ). Feedback system stability is

14



satisfied if and only if all transfer functions from all external signals to inter-

nal signals are stable. That is, the closed loop system is stable if and only if

(1 + PC)−1, P (1 + PC)−1, and C(1 + PC)−1 are all stable. In the mixed sensi-

tivity minimization problem, W1 and W2 are rational weighting functions. W1(s)

denotes the reference signal generator and W2(s) represents an upper bound on

the multiplicative plant uncertainty. Typically, W1(s) is a low-order, low pass

filter and W2(s) is a high pass filter. More detailed discussion on the motiva-

tion of the H∞ controller design for infinite dimensional systems can be found in

references of [52].

The plant under consideration given by (2.1) can be factorized as follows [53]:

P (s) =
Mn(s)No(s)

Md(s)
. (3.1)

In (3.1), No(s) is an outer function, Mn(s) is an inner function, and Md(s) is

an inner function whose zeroes α1, ..., αl ǫ C+ are the unstable poles of the system.

Md(s) should be a rational function of s to be able to use the method given in

[47]. Therefore, to findMd(s) the fact that α = 0.5 and (sα−p)(sα+p) = (s−p2)
is used. Resulting in the following factorization of the plant (2.1):

Mn(s) = e−hs, Md(s) =
(s− p2)

(s+ p2)
, and

No(s) =
(sα + p)

(s+ p2)(sα − p1)(sα − p2)(sα − p3)(sα − p4)
.

In the specific case considered here, we have l = 1 and α1 = p2. In this work, for

simplicity of exposition low-order weights are chosen:

W1(s) =
1

s
, W2(s) = ks, where k = 0.3

and the notation W1 = nW1/dW1 is used with nW1(s) = 1 and dW1(s) = s. The

choice of W1(s) guarantees zero steady state error for step like reference signals.

Note that representation of No(s) is not minimal in sα.
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3.2 Toker-Özbay Formula

The optimal H∞ controller, for the factorized plant, (3.1) has the form given in

(3.2), see [47].

C = EγMd

N−1FγL

1 +MnFγL
(3.2)

with

Eγ(s) =
W1(−s)W1(s)

γ

2

− 1, Fγ(s) =
dW1(−s)
nW1(s)

γGγ(s),

where the stable Gγ(s) is to be found from the spectral factorization:

Gγ(s)Gγ(−s) =
(
1 + W2(−s)W2(s)

W1(−s)W1(s)
− W2(−s)W2(s)

γ2

)−1

.

The optimum performance level, denoted by γopt, is found by using the

parametrized matrix (3.5). And L(s) is obtained from the set of linear equa-

tions:

Define L(s):

L(s) =

[
1 s ... sn−1

]
Ψ2

[
1 s ... sn−1

]
Ψ1

(3.3)

where n := n1 + l, with n1 = deg(dW1). The unknown coefficients Ψ1 and Ψ2 are

defined as: Ψ1 =
[
ψ10 ... ψ1(n−1)

]T
, Ψ2 =

[
ψ20 ... ψ2(n−1)

]T
. Ψ1 and Ψ2 satisfies:

Ψ1 = ±JnΨ2, JnΨ2 =: Φ,

where Jn is n× n diagonal matrix, whose ith diagonal entry is equal to (−1)i+1.

To determine L(s), Φ is used and it is the singular vector of the parametrized

matrix, Rγ, corresponding to zero singular value obtained by the largest feasible

γ > 0. This γ value denotes the optimum performance level, γopt.

RγΦ = 0 (3.4)
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with the parametrized matrix Rγ given as:

Rγ =

[
Vα

l DαVα
n1

Vβ
l DβVβ

n1

]
±
[
Dl 0

0 Dn1

][
Vα

l DαVα
n1

Vβ
l DβVβ

n1

]
Jn. (3.5)

Where:

Dl = diag(Mn(α1)Fγ(α1), ...,Mn(αl)Fγ(αl))

Dn1
= diag(Mn(β1)Fγ(β1), ...,Mn(βn1

)Fγ(βn1
))

Dn = blockdiag(Dl, Dn1
)

Vx
m denotes k ×m dimensional Vandermonde matrix, constructed from a given

vector x =
[
x1 ... xk

]T
∈ C

k and β1, ..., βn1 ∈ C+ are the zeros of Eγ(s). With

those set of equations, the parametrized matrix, Rγ, is obtained.

With the above equations, it is possible to obtain the parametrized matrix,

Rγ. The optimal performance level γopt is the largest value of γ which makes

Rγ singular with ’+’ or ’-’ sign used in (3.5). Then corresponding, nonzero Φ,

satisfying (3.4) is found, yielding Ψ2 and Ψ1. With Ψ2 and Ψ1, L(s) is obtained.

3.3 Simplified Method Given in [1]

A step like reference inputs yields a first order W1(s), giving β1 = j/γ. And

for the plant considered here, analyzed in the previous section, there is only one

unstable pole, α1 = p2. As shown in [1], the matrix equation involving Rγ, given

in (3.4), reduces to a scalar equation, Pγ = 0.

Pγ = jγp2(1±Mn(
j

γ
)Fγ(

j

γ
))
(1∓Mn(p

2)Fγ(p
2))

(1±Mn(p2)Fγ(p2))
+ (1∓Mn(

j

γ
)Fγ(

j

γ
)), (3.6)

The largest γ value making Rγ singular is γopt, where ’-’ sign used in (3.5) and

this is also the largest γ satisfying Pγ = 0 with ’-’ sign used in (3.6). Therefore,

both (3.5) and (3.6) can be used to find γopt. Figure 3.1 illustrates this point for

some particular choices of h and c.
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Figure 3.1: γ vs. min(svd(Rγ)) (solid line) and Pγ (dashed line); consistency is
verified, γopt = 1.463 for h = 0.15 and c = 5

Figure 3.1 shows that both of the algorithms given in [1] and [47] reach the

same optimum performance level: γopt = 1.463. Now, L(s) is computed from the

set of linear equations given above, resulting in the optimal controller:

Copt = EγoptMd

N−1
o FγoptL

1 +MnFγoptL
. (3.7)

3.4 The Optimal H∞ Controller

Once γopt is computed as above, corresponding Rγ is determined as

Rγ =

[
1.6268 0.5596

1.5960 + j0.80 0.5490 + j0.3

]

with singular vector:

Ψ2 =
[
−0.3253 − 0.9456

]

yielding:

L(s) =
0.9456s+ 0.3253

0.9456s− 0.3253
=
as+ 1

as− 1
, with a = 2.9.
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Figure 3.2: Magnitude and phase diagrams of Copt

Now with the γopt value computed, numerical values of the functions Eγopt(s) and

Fγopt(s) can be obtained:

Eγopt(s) =
1 + γopt

2s2

−γopt2s2
=

1 + 2.14s2

−2.14s2

Fγopt(s) =
−γopts

ks2 + kas+ 1
; with ka =

√
2k − k2/γ2opt,

Fγopt(s) =
−1.463s

0.3s2 + 0.75s+ 1
.

Finding above functions enables the computation of the optimal controller, Copt,

given by 3.7. Note that, in this work for illustration purposes optimal controller

is computed for different time delay values, namely h = 0.15, and h = 0.25.

Figure 3.2 illustrates the frequency response of the optimal controller for these

two cases.

From Figure 3.2, the effect of time delay on the frequency response of the

optimum controller can be seen. To investigate the effect of time delay and the

value of c on the achievable performance level, γopt is computed for different

values of time delay, for the cases: c = 0.1, 1, 5, 10 and the result is depicted in
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Figure 3.3: Performance level γopt versus time delay (c = 5).

Figure 3.3. As seen from this plot, γopt increases exponentially with the time

delay h.

From Figure 3.2, it is also possible to observe that the optimum controller is

improper, the magnitude of the frequency response increases with the increasing

frequency. In other words, the degree of the nominator of the transfer function

of the optimal controller is greater than its denominator. A suboptimal proper

controller is required for practical reasons. Connecting a low pass filter in series

with the optimal controller solves this problem. However, introduction of a new

system may result in the instability of the feedback loop. Therefore, this low

pass filter should be chosen in a way that the resultant closed loop system is still

stable. Choice of a filter in the form: 1/(1+ǫs)υ with values, υ = 2 and ǫ = 0.005

guarantees the feedback stability, and the choice of this spesific υ value results in

a strictly proper suboptimal controller. That is, the degree of the denominator

is strictly greater than the degree of the numerator. The parameter ǫ is chosen

in a way that a roll off occurs in the magnitude of the frequency response of

Csubopt for ω ≥ 200 rad/sec. Again, to investigate the effect of time delay on

the frequency response of the suboptimal controller Csubopt, frequency response

is plotted for different time delay values, h = 0.15 and h = 0.25. The plot is
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Figure 3.4: Suboptimal controller with low pass filter (c = 5).

depicted in Figure 3.4.

Use of the proper suboptimal controller instead of the optimal controller re-

sults in deviation of the achievable performance level from the optimal level. To

see the effect of introduction of the low pass filter on the weighted sensitivity and

complementary sensitivity W1S, W2T , the plots of these functions for h = 0.15

and h = 0.25 are shown in Figure 3.5.

Figure 3.6 depicts the performance level corresponding to Csubopt. As stated,

addition of the low pass filter caused deviation from the optimal performance

level.

Effects of time delay and and addition of the low pass filter on performance

level are discussed above. However, the achievable performance level is also af-

fected by the multiplicative plant uncertainty, W2(s). In the above discussion,

results are obtained for W2(s) = ks with k = 0.3. To see the effect of multi-

plicative plant uncertainty, two other different k values are investigated, namely

k = 0.03 and k = 3, and H∞ optimum controllers corresponding to those values
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Table 3.1: Calculated γopt and a values for k = 0.03 and k = 3

γopt a

c = 5
k = 3

h = 0.15 8.466 11.584
h = 0.25 9.981 13.137

k = 0.03
h = 0.15 0.401 1.352
h = 0.25 0.560 1.574

Table 3.2: Lower, Upper Gain Margins, Phase Margins, and Vector Margins for
k = 0.03, k = 0.3, and k = 3

Lower GM Upper GM PM VM

c = 5

k = 0.03
h = 0.15 0.32 2.00 33 ◦ 0.48
h = 0.25 0.40 1.56 25 ◦ 0.34

k = 0.3
h = 0.15 0.53 3.13 33 ◦ 0.57
h = 0.25 0.58 2.13 25 ◦ 0.43

k = 3
h = 0.15 0.74 4.45 28.5 ◦ 0.33
h = 0.25 0.78 2.94 22 ◦ 0.27

are computed. In Table 3.1, new γopt values, and L(s) = (as+ 1)/(as− 1) func-

tions for k = 3 and k = 0.03 are given. Figure 3.7 show the Nyquist plots for the

open loop system formed by the optimum controller and the plant for k = 0.03,

k = 0.3 and k = 3. Effect of multiplicative uncertainty on the resulting upper

gain margin, lower gain margin, phase margin and vector margin values are also

investigated and Table 3.2 gives these values. It is observed that high and low

values of k lead to smaller stability margins. Effect of k on step response, and

allowable uncertainty will be discussed later in Chapter 5.
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k = 3, where h = 0.15, and c = 5.
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Chapter 4

Implementation of the Fractional

Order Terms

The previous section dealt with the design of the optimal controller for the non-

laminated magnetic suspension system model, derived in [2]. The resulting con-

troller and the plant include fractional order terms. Fractional order terms have

infinite memory so integer order approximations to those terms are required for

implementations purposes. In this section, continuous, discrete, and frequency re-

sponse based approximation techniques are investigated. For an extensive review

of these methods see [54]. It is observed that both the controller and the plant can

be written in a form such that the fractional device (1/sα) where 0 < α < 1 can

be separated from the integer order part. Therefore, to implement the suboptimal

controller and the plant it is enough to approximate the fractional device.

Figure 4.1 depicts a possible block diagram for the realization of the plant

(with c = 5).

The suboptimal controller can be written in the form:

Copt,ǫ = Co(s)C1(s)C2(s), (4.1)

with

Co(s) =
c(1 + as)

γopts
, a = 2.9, c = 5, γopt = 1.463 for h = 0.15
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Figure 4.1: A possible block diagram representation of the plant P (s).

Figure 4.2: Block diagram representations for K1(s) and K2(s)

C1(s) =
(1 + γ2opts

2)(1− s/p2)

(ks2 + kas+ 1)(1− as) + γopts(as− 1)e−hs
, (4.2)

and

C2(s) =
(1− sα/p1)(1− sα/p2)(1− sα/p3)(1− sα/p4)

(1 + sα/p)(1 + ǫs)2
. (4.3)

In this form, only C2(s) includes fractional order terms; and it can be rewritten

as:

C2(s) =
1

p1p2p3p4

(
K1(s)

s2 + a2s+ a4
(1 + ǫs)2

+K2(s)
a1s+ a3
(1 + ǫs)2

)

where ai for i = 1, 2, 3, 4 follow from the polynomial multiplication and K1, K2

are as defined in Figure 4.2.

Before applying approximation techniques to the fractional term in C2(s),

C1(s) will be investigated for implementation purposes. Internal unstable pole
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Figure 4.3: Bode plots of C1 and C11, h = 0.15

zero cancellations at s = p2 and s = ±j/γ occur in C1(s), and the approximate

transfer function can be written in the form:

C1(s) ≈ C11(s) =
1 + (h/2)s

1 + (h/2)τcs
, where τc = lim

s→∞
C1(s) =

k a p2

γ2opt
;

resulting in the following frequency responses given in Figure 4.3 and 4.4.

For illustrative purposes these frequency responses are obtained for two dif-

ferent time delay values h = 0.15, and h = 0.25. Bode plots of a second degree

approximation is depicted in Figure 4.5 and Figure 4.6.

C1(s) ≈ C12(s) =
1 + (h/2)s+ (h2/12)s2

1 + (h/2)τcs+ (h2/12)τcs2
.

Third order approximation to C1 can also be found:

C1(s) ≈ C13(s) =
1 + (h/2)s+ (h2/10)s2 + (h3/120)s3

1 + (h/2)τcs+ (h2/10)τcs2 + (h3/120)τcs3
.

Frequency response of this approximation is given in Figure 4.7 and Figure 4.8.
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Figure 4.4: Bode plots of C1 and C11, h = 0.25
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Figure 4.5: Bode plots of C1 and C12, h = 0.15
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Figure 4.6: Bode plots of C1 and C12, h = 0.25
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Figure 4.7: Bode plots of C1 and C13, h = 0.15
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Figure 4.8: Bode plots of C1 and C13, h = 0.25

MATLAB toolbox YALTA can also be used to approximate C1(s), [32]. For

h = 0.15, a 16th order rational transfer function is obtained. With this approxi-

mation ‖C1(s)− C1appr(s)‖∞ < 0.083. Bode plots of this approximation is given

in Figure 4.9

When the time delay increases the error between frequency responses of the

rational approximation and C1(s) also increases. Therefore, for the larger time

delay case a higher order approximation is necessary. For h = 0.25 a 36th order

transfer function is used to approximate C1. Figure 4.10 illustrates its frequency

response; the resulting error is ‖C1 − C1appr‖∞ < 0.13 for h = 0.25.

In the literature, continuous, discrete, and frequency response based approxi-

mation techniques for fractional order terms are available. In the remaining parts

of this section some of these techniques are reviewed. Next part investigates the

FIR representation of a fractance device (1/sα). Then, continuous approximation

techniques, namely Matsuda’s method and Carlson’s method will be performed.

As a frequency response data approximation technique MATLAB’s invfreqs

command will be used.
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Figure 4.9: Bode plots of C1 and its approximation by YALTA, for h = 0.15.
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Figure 4.10: Bode plots of C1 and its approximation by YALTA, for h = 0.25.
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Figure 4.11: Error between frequency responses of C1 and its approximation by
YALTA, for h = 0.15.
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Figure 4.12: Error between frequency responses of C1 and its approximation by
YALTA, for h = 0.25.
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4.1 FIR Implementation of Fractance Device

In this part FIR implementation of the fractance device (1/sα) where 0 < α < 1

is obtained through the impulse invariance method. Inverse Laplace transform of

the fractance device:

L
{

1

sα

}−1

=
1√
πt
.

Then the corresponding FIR filter, through z−1 = e−sT transformation is:

H1(s) = Z
{
K

√
T

π

[
ho,

1

n1

,
1

n2

, . . . ,
1

nN

]}
where ni =

√
i

K and ho are constant, i = 1, 2, . . . , N ;

we take N = 2000 for good precision in the approximation, and sampling period

T = 0.01 sec.

In this filter, K and ho are used to minimize the error between the feedback

loops formed by the fractance and its impulse invariant equivalent, [55]. For this

purpose we minimize:

‖(R(s)−R1(s)) s
α‖

∞
, where R1(s) =

H1(s)

1 +H1(s)
, and R(s) =

1

sα + 1

Then the computed values are: K = 1 and ho = 1.4. With those values the

frequency response of the error between the feedback loops, E1(jω) := R(jω) −
R1(jω), formed by the fractance and its discrete equivalent is shown in Figure 4.13

It is also possible to obtain continuous time representation of the FIR filter.

Define state space representation of the FIR filter:

x[n+ 1] = Ax[n] + Bu[n]

y[n] = Cx[n] +Du[n]
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Figure 4.13: Frequency response of the error E1(s), N = 2000.

Where A, B, C, D are:

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...

0 0 0 · · · 0




N×N

B =




0

0
...

1




N×1

C =

√
T

π
K

[
hN , hN−1, · · · h1

]
1×N

D =

√
T

π
h0.

Define H2(s) to be:

H2(s) = Cc(I − e−h(sI−Ac))(sI − Ac)
−1Bc +Dc,

then, H2(s) is a transfer function with FIR filter behavior. To get Ac, Bc, Cc, Dc

from A, B, C, D, bilinear transformation is used:

34



zX = AX + BU

Y = CX +DU

instead of z; put 1+sT/2
1−sT/2

, then

Ac =
2

T
(A− I)(A+ I)−1

Bc =
1√
T

(
B − (A− I)(A+ I)−1B

)

Cc =
1√
T
C(A+ I)−1

Dc = D − C(A+ I)−1B.

Model reduction is required for implementation purposes. For this purpose

the technique given in [56] is used. Here, order of the transfer function is reduced

from 2000 to 80.

Let E2(s) = R(s)−R2(s) where R2(s) = H2(s)/(1+H2(s)). The error E2(jω)

is depicted in Figure 4.14.

4.2 Continuous Time Approximation Methods

Fractional order term in the controller, C2(s), recall (4.3) contains irrational

functions of the Laplace variable s. In the previous part a discrete time based

approximation method is applied. In this part, continuous time based methods:

Matsuda’s Method, and Carlson’s Method are performed to find rational approxi-

mations. Both of the methods are evaluated in such a way that they both produce

a transfer function where the degree of the approximate is 15.

Matsuda’s method, [41] uses continued fraction expansion, and logarithmically

spaced ω values to obtain a rational function approximating an irrational one.
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Figure 4.14: Frequency response of the error E2(s), N = 80.

1√
s

≈ H3(s) = ao +
s− ω0

a1 +
s− ω1

a2 +
s− ω2

a3 + . . .

with

vo(s) := H(s), ai = vi(ωi), vi+1 =
s− ωi

vi(s)− ai
.

Here ωk for k = 0, 1, 2 . . . are logarithmically spaced frequency values.

We performed this method over the internal ω ∈ (10−5, 105) with a transfer

function degree constraint of 15. This gives the third alternative approximation

H3(s). Then we define E3(s) = R(s) − R3(s) with R3(s) = H3(s)/(1 + H3(s)),

Figure 4.15 illustrates the frequency response of E3(s).

To approximate the fractional order terms (sα), Carlson’s method can also

be used [40]. Defining the function H4(s) = (G(s))α, in this case G(s) = 1/s,
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Figure 4.15: Frequency response of the error E3(s), N = 15. (Matsuda)

starting with Fo(s) = 1, iteration follows:

Fi(s) = Fi−1(s)
(q −m)(Fi−1(s))

2 + (q +m)G(s)

(q +m)(Fi−1(s))2 + (q −m)G(s)
, where , α = 1/q, m = q/2.

With this method an approximate transfer function H4(s) with degree 15 is

obtained, Figure 4.16 shows the error |E4(jω)| between the feedback loops, where

E4(s) = R(s)−R4(s), and R4(s) = H4(s)/(1 +H4(s)).

4.3 Frequency Response Based Approximation

Method

Other than discrete and continuous time based methods frequency response based

methods can also be used to approximate the fractional terms. This part applies

MATLAB’s built in function invfreqs to the to the frequency response data of

the actual feedback loop with the weighting function:

W̃ (s) = (1 + s/τ1)/(1 + s/τ2)
2, where τ1 = 3× 10−5 and τ2 = 1.
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Figure 4.16: Frequency response of the error E4(s), N = 15. (Carlson)

Now consider:

R̃(s) = R(s)
1 + s/τ1

(1 + s/τ2)2
=

1/sα

1 + 1/sα
1 + s/τ1

(1 + s/τ2)2

and obtain R̃(jω) for ω values in (10−5, 105). Now apply invfreqs, this gives an

approximation H5(s) of degree 18. Define E5(s) = R(s) − H5(s). Magnitude of

E5(s) is given in Figure 4.17
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Figure 4.17: Frequency response of the error E5(s), N = 18 (invfreqs)
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Chapter 5

Time Domain Simulation Results

In the previous chapters the optimal H∞ controller is designed for the non-

laminated magnetic suspension system plant model, derived in [2]. Then a sub-

optimal proper controller (4.1) is obtained. The controller C1(s) is a retarded

time-delay system, with internal pole zero cancellations at s = p2, s = ±j/γ. Less
complex forms of C1(s) are investigated through the approximation techniques

with different orders. Suboptimal controller, like the plant, includes fractional or-

der terms, expressed in C2(s). These terms have infinite memory so to simulate

the dynamic behavior of the system rational approximations to those terms are

necessary. As stated in the previous section, it is enough to find an approxima-

tion for the fractional order integrator, since both of the plant and C2(s) can be

realized through integer order transfer functions and the transfer function of the

feedback loop formed by the fractional order integrator. In the previous section,

discrete, continuous, and frequency response based approximation methods to

those terms are presented.

This section illustrates the time domain simulation results for the feedback

loop formed by the suboptimal controller and the non-laminated magnetic sus-

pension system plant model by using the presented approximation and implemen-

tation techniques. To approximate C1(s), YALTA toolbox is used, for h = 0.15,

a 16th degree transfer function, and for h = 0.25 a 34th degree approximate

is obtained. For the fractional order terms in the plant and in C2(s), a 17th
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Figure 5.1: Step responses of the closed loop system for h = 0.15, without any
disturbance.

degree approximation, obtained from the Matsuda’s method is used. Simula-

tions are done using MATLAB. To see the effect of multiplicative uncertainty

bound on the designed controller and the resulting closed loop, different k values

is used. Recall that multiplicative uncertainty bound is given by the function:

W2(s) = ks.

The step responses of the closed loop systems are depicted in Figure 5.1 and

Figure 5.2 for h = 0.15 and for h = 0.25. These figures are obtained for the cases:

k = 0.03, k = 3, k = 0.3.

The effect of disturbance on the output can be seen through the frequency

response of the transfer function from disturbance (d) to output (y), Tyd, see

Figure 5.3, Figure 5.4. Let (ωd) denote the frequency value where the magnitude

of the frequency response of Tyd gets its highest value. So, when a signal in the

form sin(ωdt) is applied to the system, the maximum disturbance at the output

is observed.

Figure 5.5 and Figure 5.6 show the maximum disturbance that can be observed
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Figure 5.2: Step response of the closed loop system for h = 0.25, without any
disturbance.

at the output, for the cases h = 0.15 and h = 0.25. Furthermore, step disturbance

is also applied to the system and the resulting output is depicted in Figure 5.7,

Figure 5.8.

To see the effect of the multiplicative plant uncertainty bound on the ro-

bustness, [57] the graph of |1/Tyr(jω)|−1 versus ω are given in Figure 5.9 and

Figure 5.10. It can be observed that for fast step responses and good disturbance

attenuation k should be small. However, as k gets small robustness levels to

unmodeled high frequency dynamics shrink ( especially in the frequency range

2 rad/sec ≤ ω ≤ 100 rad/sec ). So, k = 0.3 provides a good balance between

performance and robustness to dynamic uncertainty.
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Figure 5.3: |Tyd|, for h = 0.15.
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Figure 5.4: |Tyd|, for h = 0.25.
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Figure 5.5: Maximum disturbance observed at the output for h = 0.15,
d(t) = sin(ωdt).
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Figure 5.6: Maximum disturbance observed at the output for h = 0.25,
d(t) = sin(ωdt).
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Figure 5.7: Output to step disturbance for h = 0.15.
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Figure 5.8: Output to step disturbance for h = 0.25.
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Figure 5.9: |Tyr(s)|−1, for h = 0.15.

10
−4

10
−2

10
0

10
2

10
4

10
−5

10
0

10
5

10
10

 Frequency Response of T
yr

 

Frequency (rad/sec) 

|T
yr

|−1
 

 

 
k = 3
k = 0.3
k = 0.03

Figure 5.10: |Tyr(s)|−1, for h = 0.25.
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Chapter 6

Conclusion

This thesis reviews the recent techniques in the field of fractional order systems.

To create insight, definitions of fractional order integral and derivative are pre-

sented. Bode’s ideal open loop transfer function with an example is given to

illustrate the possible benefits of fractional order systems. The mixed sensitivity

minimization problem with rational weights for a fractional order system is solved

and the H∞ optimal controller is obtained. Effect of time delay on the achievable

performance level is illustrated. For implementation purposes approximation to

the controller is investigated. To simulate the system, integer order approxima-

tion techniques are evaluated, and an approximate transfer function for fractional

terms is found. Simulation results of the closed loop system, with approximated

plant and the controller are presented.

In the last decades it is shown that some natural phenomena can be described

better with fractional order differential equations, like viscoelasticity, diffusion.

This increased the popularity of fractional order systems. In this thesis, the H∞

optimal controller is designed for a fractional order plant, the mathematical model

of the non-laminated magnetic suspension system, derived in [2], [46]. Fractional

order systems posses infinite memory and are infinite dimensional. For infinite

dimensional systems the technique presented in [47] can be used to design the

optimal H∞ controller. Later in [1], it is shown that when the weights are low

order this formula can be simplified. These two methods are applied separately
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and it is shown that simplified formula of [1] produces the same results with the

[47]. The effect of multiplicative uncertainty bound W2(s) on the performance

level is also investigated. Simulation results of closed loop systems for various

time delays and different uncertainty bounds are presented.
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[21] H. Özbay, C. Bonnet, and A. R. Fioravanti, “PID controller design for

fractional-order systems with time delays,” Systems & Control Letters,

vol. 61, pp. 18–23, 2012.
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[31] A. R. Fioravanti, C. Bonnet, H. Özbay, and S. I. Niculescu, “A numerical

method for stability windows and unstable root-locus calculation for linear

fractional time-delay systems,” Automatica, vol. 48, pp. 2824 – 2830, 2012.

[32] D. Avanessoff, C. Bonnet, A. Fioravanti, and L. Nguyen, “User document

yalta.” https://gforge.inria.fr/projects/yalta-toolbox, 2013.

[33] Z. Jiao, Y. Chen, and Y. Zhong, “Stability analysis of linear time-invariant

distributed-order systems,” Asian Journal of Control, vol. 15, no. 3, pp. 640–

647, 2013.

[34] A. Calderón, B. Vinagre, and V. Feliu, “Linear fractional order control of a

dc-dc buck converter,” in European Control Conference, 2003.

[35] V. Pommier Budinger, R. Musset, P. Lanusse, and A. Oustaloup, “Study of

two robust controls for an hydraulic actuator,” European Control Conference,

2003.

[36] A. Oustaloup, B. Mathieu, and P. Lanusse, “The crone control of resonant

plants: application to a flexible transmission,” European Journal of Control,

vol. 1, pp. 113–121, 1995.

[37] N. F. Ferreira and J. T. Machado, “Fractional-order hybrid control of robotic

manipulators,” in Proceedings of the 11th International Conference on Ad-

vanced Robotics, 2003.

[38] C. Monje, F. Ramos, V. Feliu, and B. Vinagre, “Tip position control of

a lightweight flexible manipulator using a fractional order controller,” IET

Control Theory Applications, vol. 1, pp. 1451–1460, 2007.

52



[39] G. Bohannan, “Analog realization of a fractional control element - revisited,”

IEEE CDC 2002 Tutorial Workshop, 2002.

[40] G. Carlson and C. Halijak, “Approximation of fractional capacitors (1/s)1/n

by a regular newton process,” IEEE Transactions on Circuit Theory,

pp. 210–213, 1964.

[41] K. Matsuda and H. Fujii, “H∞ optimized wave-absorbing control analytical

and experimental results,” AIAA Journal of Guidance, Control and Dynam-

ics, pp. 1146–1153, 1993.

[42] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-band

complex noninteger differentiator: characterization and synthesis,” IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applica-

tions, vol. 47, no. 1, pp. 25–39, 2000.

[43] D. Valerio, “Fractional robust system control,” Instituto Superior Técnico,

Universidade Técnica de Lisboa, Ph.D. Thesis, 2005.

[44] Y. Q. Chen and K. Moore, “Discretization schemes for fractional-order dif-

ferentiators and integrators,” IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, vol. 49, pp. 363–367, Mar 2002.
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Appendix A

Code

MATLAB R© code: plantrootlocuswrtc.m

% This m f i l e shows the l o c a t i o n s o f the po l e s accord ing

to c .

% Plant i s ob ta ined in Knospe Zhu , Perf . L imi ta t i ons

% Non Laminated Magnetic Suspension . . .

% They model the p l an t as P( s ) = eˆ(−hs ) /( s ˆ2.5+ sˆ2−c ) .

And sug g e s t t h a t

% t h i s p l an t has on ly one uns t a b l e po l e and i t i r e a l

%

% In t h i s m f i l e I g e t l o c a t i o n s o f the po l e s accord ing to

c , in \ z e t a
% domain .

% I a l s o p l o t s t a b i l i t y r eg i ons wi th b l u e l i n e s , t h i s i s

s t a b i l i t y reg ion

% in \ z e t a domain

clc

clear

c = logspace (−5 ,5 ,1 e2 ) ;

r = zeros ( ) ;
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for i = 1 : length ( c )

r ( 1 : 5 , i ) = roots ( [ 1 1 0 0 0 −c ( i ) ] ) ;

end

a = linspace (0 , 10 , 2) ;

s t a b i l i t y l i n e = a + a∗1 i ;% for a lpha = 0 . 5 ;

s t a b i l i t y l i n e c n j = a − a∗1 i ;

plot ( real ( r ( 1 , : ) ) , imag( r ( 1 , : ) ) , ’ ro ’ )

hold on

plot ( real ( r ( 2 , : ) ) , imag( r ( 2 , : ) ) , ’ ro ’ )

hold on

plot ( real ( r ( 3 , : ) ) , imag( r ( 3 , : ) ) , ’ go ’ )

hold on

plot ( real ( r ( 4 , : ) ) , imag( r ( 4 , : ) ) , ’ go ’ )

hold on

plot ( real ( r ( 5 , : ) ) , imag( r ( 5 , : ) ) , ’ k+’ )

hold on

plot ( real ( s t a b i l i t y l i n e ) , imag( s t a b i l i t y l i n e ) )

hold on

plot ( real ( s t a b i l i t y l i n e c n j ) , imag( s t a b i l i t y l i n e c n j ) )

t i t l e ( ’ Locat ions o f the po l e s o f the p lant in \ zeta−domain

f o r 10ˆ{−5}<c<10ˆ{5} ’ )

xlabel ( ’\Re ’ )
ylabel ( ’\Im ’ )

MATLAB R© code: Eqn18 computuation Hinf ozbay.m

%A.Erdem Ka r a g l

%This code computes the minimum s i n g u l a r i t y po in t s o f the

parametr i zed

%matrix in equat ion 18 , in the paper z b a y , H. (2011) ,

%Computation o f H??? c o n t r o l l e r s f o r i n f i n i t e d imensiona l

p l an t s us ing numerical l i n e a r a l g e b ra . Numer . Linear

Algebra Appl . . do i : 10.1002/ n la .1809
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%After computing the minimum s i n g u l a r i t y po in t s gamma opt

i s chosen and

%r e l a t e d i n t e r p o l a t i o n c ond i t i t o n s are found . This code

uses the formulas

%(7) to (18) in the g iven paper .

%h=0.1 , c=5,k=0.3

clc

clear

gamma = linspace ( 0 . 4 , 0 . 4 1 , 1 00000 ) ; % crea t i n g the gamma

vec to r

%vec t o r s in the eqn 18

beta = 1 i . /gamma;

k = 0 . 0 3 ; % W2( s )=ks

p = 1 . 2244 ;%for the p l an t in [ 4 ] f o r c=5;

psqr = pˆ2 ;

h = 0 . 1 5 ;%de lay

Mnbeta = zeros (1 , length (gamma) ) ;

Fgammabeta = zeros (1 , length (gamma) ) ;

MnAd = zeros (1 , length (gamma) ) ;

FgammaAd = zeros (1 , length (gamma) ) ;

minsvdplus = zeros (1 , length (gamma) ) ;

minsvdminus = zeros (1 , length (gamma) ) ;

e = 3e−7;%numerical e r ror t h i s shou ld be zero t h e o r i t a c l l y

% fo r loop c a l c u l a t i n g the Mn( be ta ) and Fgamma( be ta ) to

use in eqn 18

for i i =1: length (gamma)

Mnbeta ( i i )=exp(−h ∗ beta ( i i ) ) ;

Fgammabeta( i i )= (−gamma( i i ) ∗ beta ( i i ) ) / ( k∗beta ( i i )
ˆ2 + sqrt (2∗k−(kˆ2) /gamma( i i ) ˆ2) ∗ beta ( i i ) + 1) ;
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end

% for loop c a l c u l a t i n g the Mn( psqr ) and Fgamma( psqr ) to

use in eqn 18

for i i i =1: length (gamma)

MnAd( i i i ) = exp(−h ∗ psqr ) ;

FgammaAd( i i i ) = (−gamma( i i i )∗ psqr ) / ( k∗psqr ˆ2 +

sqrt (2∗k−(kˆ2) /gamma( i i i ) ˆ2) ∗ psqr +1) ;

end

%for loop c a l c u l a t i n g the matrix eqn in 18 and f i n d i n g

gamma opt by us ing

%i f statement , i f the min s i n g u l a r i t y va lue g e t s sma l l e r

than numerical

%error va lue , computer s t o r e s the gamma optimum va lue as

gammaopt and g e t s

%the matrix at t h a t gamma va lue and s t o r e s i t as d e s i r e d

Ry .

for i = 1 : length (gamma)

Ryplus = [ 1 psqr ; 1 beta ( i ) ]+[MnAd( i )∗FgammaAd( i ) 0 ; 0

Mnbeta ( i )∗Fgammabeta( i ) ] ∗ [ 1 psqr ; 1 beta ( i ) ] ∗ [ 1 0 ; 0

−1];

Ryminus = [1 psqr ; 1 beta ( i ) ]− [MnAd( i )∗FgammaAd( i ) 0 ; 0

Mnbeta ( i )∗Fgammabeta( i ) ] ∗ [ 1 psqr ; 1 beta ( i ) ] ∗ [ 1 0 ; 0

−1];

minsvdplus ( i ) = min(svd ( ( Ryplus ) ) ) ;%%%%% abs o l ama l

m ?

minsvdminus ( i ) = min(svd ( ( Ryminus ) ) ) ;
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i f e > minsvdminus ( i )

gammaopt = gamma( i )

i n d i c e = i ;

des iredRy = Ryminus

end

end

%p l o t t i n g minimum s i n g u l a r i t y va l u e s ver sus gamma fo r the

both + and − s i gn

%in eeqn 18

%p l o t (gamma, minsvdplus ) ;

hold on

plot (gamma, minsvdminus ) ;

% by us ing 17 , reach ing the va l u e s o f i n t e r p o l a t i o n

cond i t i on s

[A,B,C] = svd ( des iredRy ) ;

s o ln = C( : , end) ;

disp ( ’ s o l u t i o n o f the system : ’ ) ;

disp ( s o ln )

disp ( ’ DesiredRy ∗ x vec to r : ’ ) ;

disp (norm( des iredRy∗ so ln , 2 ) ) ;

p s i 20 = so ln (1 , 1 ) ;

p s i 21 = −s o ln (2 , 1 ) ;

p s i 2 = [ ps i 20 ; p s i 21 ]

%to compute eqn 15

betaatopt = 1 i /gammaopt ;

kgammaopt = sqrt (2∗k − ( kˆ2 / gammaoptˆ2 ) ) ;

Fgammaoptpsqr = (−gammaopt∗psqr ) /(k∗psqr ˆ2 + kgammaopt∗
psqr + 1) ;
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Fgammaoptbeta = (−gammaopt∗betaatopt ) /(k∗betaatopt ˆ2 +

kgammaopt∗betaatopt + 1) ;

Mnbetaatopt = exp(−h∗betaatopt ) ;
%eqn 15

sign = −(([1 0 ]∗ ps i 2 ) / ( [ 1 0 ] ∗ ( [ 1 psqr ; 1 betaatopt ]ˆ−1) ∗ ( [
MnAd(1) ∗Fgammaoptpsqr 0 ; 0 Mnbetaatopt∗Fgammaoptbeta ] )

∗ [ 1 psqr ; 1 betaatopt ] ∗ ps i 2 ) ) ;
disp ( ’ r e s u l t o f equat ion 15 : ’ ) ;

disp ( sign ) ; %determining s i gn o f L( s ) by eqn 15

%L= − ( ps i20 + ps i21 ∗ s ) /( ps i20 − ps i21 ∗ s ) ;

MATLAB R© code: Eqn 30 computation Hinf ozbay.m

% Equation 30 from Ozbay 2011 to compute gammaopt and L

%p l o t s (30)

clc

clear

gamma=linspace (0 . 001 ,20 ,100000) ;

beta=1i . /gamma;

b=−1./beta ;

k=0.3 ;%%%

p=1.2244;

psqr=pˆ2 ;

h=1;

Mnbeta=zeros (1 , length (gamma) ) ;

Fgammabeta=zeros (1 , length (gamma) ) ;

MnAd=zeros (1 , length (gamma) ) ;

FgammaAd=zeros (1 , length (gamma) ) ;

Xgammaplus=zeros (1 , length (gamma) ) ;

Xgammaminus=zeros (1 , length (gamma) ) ;

for i i =1: length (gamma)

Mnbeta ( i i )=exp(−h∗beta ( i i ) ) ;
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Fgammabeta( i i )= (−gamma( i i )∗beta ( i i ) ) / ( k∗beta ( i i ) ˆ2
+ sqrt (2∗k−(kˆ2) /gamma( i i ) ˆ2)∗beta ( i i ) + 1) ;

end

for i i i =1: length (gamma)

MnAd( i i i )=exp(−h∗psqr ) ;
FgammaAd( i i i )= (−gamma( i i i )∗psqr ) / ( k∗psqr ˆ2 + sqrt

(2∗k−(kˆ2) /gamma( i i i ) ˆ2)∗psqr +1) ;

end

for i = 1 : length (gamma)

Xgammaplus ( i ) = b( i )∗(1+Mnbeta ( i )∗Fgammabeta( i ) ) ∗((1+
MnAd( i )∗FgammaAd( i ) ) ˆ−1)∗(1+MnAd( i )∗FgammaAd( i )

∗(−1) )∗(+psqr )+(1+Mnbeta ( i )∗Fgammabeta( i ) ∗(−1) ) ;

Xgammaminus( i ) = b( i )∗(1−Mnbeta ( i )∗Fgammabeta( i ) ) ∗((1−
MnAd( i )∗FgammaAd( i ) ) ˆ−1)∗(1−MnAd( i )∗FgammaAd( i )

∗(−1) ) ∗( psqr )+(1−Mnbeta ( i )∗Fgammabeta( i ) ∗(−1) ) ;

end

%p l o t (gamma, ( abs (Xgammaplus ) ) ) ;

f igure

plot (gamma, ( abs (Xgammaminus) ) , ’ g−− ’ ) ;

grid on

% gammaopt=1.3634;

% kgammaopt=s q r t (2∗ k − ( kˆ2 / gammaoptˆ2 ) ) ;

% be t aa t op t=1i /gammaopt ;

% Fgammaoptpsqr=(−gammaopt∗ psqr ) /( k∗ psqr ˆ2 + kgammaopt∗
psqr + 1) ;

% Fgammaoptbeta=(−gammaopt∗ b e t aa t op t ) /( k∗ b e t aa t op t ˆ2 +

kgammaopt∗ b e t aa t op t + 1) ;

% Mnbetaatopt=exp(−h∗ b e t aa t op t ) ;
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% Ryplus=[1 psqr ;1 b e t aa t op t ]+[MnAd(1) ∗Fgammaoptpsqr 0 ;0

Mnbetaatopt∗Fgammaoptbeta ] ∗ [ 1 psqr ; 1 b e t a a t op t ] ∗ [ 1 0 ;0

−1];

% Ryminus=[1 psqr ;1 b e t aa t op t ]−[MnAd(1) ∗Fgammaoptpsqr 0 ;0

Mnbetaatopt∗Fgammaoptbeta ] ∗ [ 1 psqr ; 1 b e t a a t op t ] ∗ [ 1 0 ;0

−1]

MATLAB R© code: Controllerdelay015c5.m

% A. Erdem Ka r a g l

% Compute opt imal and subopt ima l c o n t r o l l e r s and p l o t

robus tne s s performance graphs

% h=0.25 , k=0.3 , c=10

% c l c

% c l e a r

%eps = l i n s pa c e (1 e−4,1e−2 ,20) ;

eps = linspace (1 e−4,1e−2 ,20) ;

w=logspace (−4 ,4 ,1 e4 ) ;

s=1 i ∗w;

gamma=1.462653626536265;%1.6047;%2.088375883758838;%1.6047

h=0.1;

k=0.3 ;

roo=[1 1 0 0 0 −5];

p l s=roots ( roo ) ;

h=0.15;%0.2;%0.1

p1 = p l s (1 ) ;

p1cnj =p l s (2 ) ;

p2 = p l s (3 ) ;

p2cnj =p l s (4 ) ;

p = p l s (5 ) ;

a=0.945622101602222;%0.9442;%0.959340025428322;%0.9442;%h

=0.1 i i n , ( changing h , changes those va l u e s do not

f o r g e t ! ! ! )
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b=0.325267337679942;%0.282252928436864;%0.3295;%h=0.1 i i n

ka=sqrt (2∗k−(kˆ2) /(gammaˆ2) ) ;

Egamma=zeros (1 , length (w) ) ;

Ggamma=zeros (1 , length (w) ) ;

Fgamma=zeros (1 , length (w) ) ;

Mn=zeros (1 , length (w) ) ;

OneoverNo=zeros (1 , length (w) ) ;

Md=zeros (1 , length (w) ) ;

Copt=zeros (1 , length (w) ) ;

L=zeros (1 , length (w) ) ;

P=zeros (1 , length (w) ) ;

%SS=zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

W1=zeros (1 , length (w) ) ;

%TT=zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

W2 = zeros (1 , length (w) ) ;

%W2T = zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

%W1S = zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

SS=zeros (1 , length (w) ) ;

TT=zeros (1 , length (w) ) ;

W2T=zeros (1 , length (w) ) ;

W1S = zeros (1 , length (w) ) ;

p s i = zeros ( length (eps ) , length (w) ) ;

p s i sup = zeros (1 , length (eps ) ) ;

l p f = zeros (1 , length (w) ) ;

CoptwithLpf = zeros (1 , length (w) ) ;

%f a c t o r i z e d p l an t but P=(s ˆ (0 . 5 )−p )/G( s ˆ0 .5)

for l = 1 : length (w)

Md( l )=(s ( l )−(pˆ2) ) /( s ( l )+(pˆ2) ) ;

OneoverNo ( l ) =1/(( sqrt ( s ( l ) )+p) /( ( s ( l )+pˆ2) ∗( sqrt ( s ( l ) )
−p1 ) ∗( sqrt ( s ( l ) )−p1cnj ) ∗( sqrt ( s ( l ) )−p2 ) ∗( sqrt ( s ( l ) )
−p2cnj ) ) ) ;
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Mn( l )=exp(−h∗ s ( l ) ) ;
L( l )=(a∗ s ( l )+b) /( a∗ s ( l )−b) ;

end

for l 2 =1: length (w)

Fgamma( l 2 )=( (−s ( l 2 )∗gamma) / ( ( ( s ( l 2 ) ˆ2)∗k ) + ( s ( l 2

)∗ka ) + 1 ) ) ;

end

for l 1 =1: length (w)

Egamma( l 1 )=( 1+ ( (gammaˆ2) ∗( s ( l 1 ) ˆ2) ) ) / (−(gammaˆ2) ∗(
s ( l 1 ) ˆ2) ) ;

end

for r=1: length (w)

Copt ( r )=(Egamma( r )∗Md( r )∗Fgamma( r )∗OneoverNo ( r )∗L( r ) )
/( 1+Mn( r )∗Fgamma( r )∗L( r ) ) ;

end

%p lan t as t o t a l

for l 3 =1: length (w)

P( l 3 )=Mn( l 3 ) /(OneoverNo ( l 3 )∗Md( l 3 ) ) ;

end

%weigh t f unc t i on s 1/ s and ks

for l 5 = 1 : length (w)

W2( l 5 ) = k∗ s ( l 5 ) ;
W1( l 5 ) = 1/ s ( l 5 ) ;

end

% for e p s i = 1 : l e n g t h ( eps )

% fo r l 4 = 1 : l e n g t h (w)
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% SS( eps i , l 4 ) = 1/(1+P( l 4 )∗Copt ( l 4 ) ∗(1/( eps ( e p s i )∗ s (
l 4 ) + 1) ˆ3) ) ;% l=3

% TT( eps i , l 4 ) = 1−SS( ep s i , l 4 ) ;

% W1S( eps i , l 4 ) = SS( ep s i , l 4 )∗W1( l 4 ) ;

% W2T( eps i , l 4 ) = TT( eps i , l 4 ) ∗ W2( l 4 ) ;

% ps i ( ep s i , l 4 ) = s q r t ( abs (W1S( eps i , l 4 ) ) ˆ2 + abs (W2T(

eps i , l 4 ) ) ˆ2) ;

% end

% ps i s up ( e p s i ) = max(( p s i ( ep s i , : ) ) ) ;

% end

%add 1/(( es+1)ˆ3) to c o n t r o l l e r as l p f e = 0 .001 ;

epso =0.005;%

for l 9 = 1 : length (w)

l p f ( l 9 ) = 1 /( ( epso∗ s ( l 9 )+1)ˆ2) ;%l=2

end

for l 9 = 1 : length (w)

CoptwithLpf ( l 9 ) = Copt ( l 9 )∗ l p f ( l 9 ) ;
end

for l 4 = 1 : length (w)

SS( l 4 ) = 1/(1+P( l 4 )∗CoptwithLpf ( l 4 ) ) ;%l=2

TT( l 4 ) = 1−SS( l 4 ) ;

W1S( l 4 ) = SS( l 4 )∗W1( l 4 ) ;

W2T( l 4 ) = TT( l 4 ) ∗ W2( l 4 ) ;

%ps i ( l 4 ) = s q r t ( abs (W1S( eps i , l 4 ) ) ˆ2 + abs (W2T( eps i ,

l 4 ) ) ˆ2) ;

end

% %p l o t o f eps vs p s i sup

% f i g u r e (2)

% semi logy ( eps , p s i s up )

%%
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% bodes o f Copt

Coptabs=abs (Copt ) ;

Coptangle=angle (Copt ) ;

f igure (1 ) ;

hold on

subplot ( 2 , 1 , 1 ) ;

hold on

semilogx ( (w) ,20∗ log10 ( Coptabs ) ) ;

grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude (dB) ’ ) ;

hold on

subplot ( 2 , 1 , 2 ) ;

semilogx ( (w) , ( Coptangle ) ∗180/pi ) ;
grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

% bodes o f CoptwithLpf

CoptwithLpfabs=abs ( CoptwithLpf ) ;

CoptwithLpfangle=angle ( CoptwithLpf ) ;

f igure (2 ) ;

hold on

subplot ( 2 , 1 , 1 ) ;

hold on

semilogx ( (w) ,20∗ log10 ( CoptwithLpfabs ) ) ;

grid on

xlabel ( ’ Frequency ’ ) ;

ylabel ( ’Magnitude (dB) ’ ) ;

hold on

subplot ( 2 , 1 , 2 ) ;

semilogx ( (w) , ( CoptwithLpfangle ) ∗180/pi ) ;
grid on
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xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

% eps o=707;

f igure (3 ) ;

hold on

loglog (w, ( 1 /gamma) ∗(abs (W1S) ) ) ;

grid on ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

axis ( [ 1 e−4 1e4 1e−5 1e1 ] )

f igure (4 ) ;

hold on

loglog (w, ( 1 /gamma) ∗(abs (W2T) ) ) ;

grid on ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

axis ( [ 1 e−4 1e4 1e−5 1e1 ] )

f igure (5 )

hold on

semilogx (w, sqrt (abs (W1S) .ˆ2+abs (W2T) . ˆ 2 ) )

grid on ;

t i t l e ( ’ s q r t ( |W 1S |ˆ2 + |W 2T |ˆ2 ) ’ )
xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

MATLAB R© code: controllerapproximation015delaysecondthird.m

clc

clear
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w=logspace (−4 ,4 ,800) ;

s=1 i ∗w;

Capprgren02 = zeros (1 , length (w) ) ;

epso =0.005;%

l p f=zeros (1 , length (w) ) ;

gamma=1.462653626536265;%1.6047;%2.088375883758838;%1.6047

h=0.1;

k=0.3 ;

roo=[1 1 0 0 0 −5];

p l s=roots ( roo ) ;

h=0.15;%0.2;%0.1

p1 = p l s (1 ) ;

p1cnj =p l s (2 ) ;

p2 = p l s (3 ) ;

p2cnj =p l s (4 ) ;

p = p l s (5 ) ;

a=−0.945622101602222;%0.9442;%0.959340025428322;%0.9442;%h

=0.1 i i n , ( changing h , changes those va l u e s do not

f o r g e t ! ! ! )

b=−0.325267337679942;0.282252928436864;%0.3295;%h=0.1 i i n

ab=a/b ;

ax=0;

%ka=s q r t (2∗ k−(k ˆ2) /(gammaˆ2) ) ;

c4=abs ( p1 ) ˆ2∗abs ( p2 ) ˆ2 ;
c1=−(p1+p1cnj+p2+p2cnj ) ;

c2=abs ( p1 )ˆ2+abs ( p2 ) ˆ2+(p1cnj+p1 ) ∗( p2cnj+p2 ) ;
c3=−((p1cnj+p1 )∗abs ( p2 ) ˆ2+(p2cnj+p2 )∗abs ( p1 ) ˆ2) ;
x3=c1/c4 ;

x2=c2/c4 ;

x1=c3/c4 ;

cns tnt=(k∗ab∗pˆ2) /(gammaˆ2) ;
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ka=sqrt (2∗k−(kˆ2) /(gammaˆ2) ) ;

for l 9 = 1 : length (w)

l p f ( l 9 ) = 1 /( ( epso∗ s ( l 9 )+1)ˆ2) ;%l=2

end

for kk = 1 : length (w)

%Capprgren02 ( kk ) = (5/gamma) ∗(1/ s ( kk ) )∗(1+s ( kk )∗ab )
∗((1+h/2∗ s ( kk ) )/(1+h/2∗ cns tn t ∗ s ( kk ) ) ) ∗( ( s ( kk ) ˆ2/ c4

) + ( x3∗ s ( kk ) ˆ1 .5) + ( x2∗ s ( kk ) ) + ( x1∗ s q r t ( s ( kk ) ) )
+1)/(1+ s q r t ( s ( kk ) ) /p )∗ l p f ( kk ) ;

%Happr3 ( kk )=(1+(h/2)∗ s ( kk )+((hˆ2) /12)∗ s ( kk ) ˆ2) /(1+(h

/2)∗ s q r t ( cn s tn t )∗ s ( kk )+((hˆ2) /12)∗ cns tn t ∗ s ( kk ) ˆ2) ;
Happr2 ( kk )=(1+(h/2)∗ s ( kk )+((hˆ2) /12)∗ s ( kk ) ˆ2) /(1+(ax+(

h/2) ∗( cns tnt ) )∗ s ( kk )+((hˆ2) /12)∗ cnstnt ∗ s ( kk ) ˆ2) ;
Happr3 ( kk )=(1 + (h/2)∗ s ( kk ) + ( ( hˆ2) /10)∗ s ( kk ) ˆ2 + ( ( h

ˆ3) /120)∗ s ( kk ) ˆ3 ) /( 1 + (h/2)∗ cnstnt ∗ s ( kk ) + ( ( h

ˆ2) /10)∗ cnstnt ∗ s ( kk ) ˆ2 + ( ( hˆ3) /120)∗ cnstnt ∗ s ( kk ) ˆ3
) ;

%Happr2 ( l )=(1+(h/2)∗ s ( l )+((hˆ2) /12)∗ s ( l ) ˆ2) /(1+(h/2)∗
cns tn t ∗ s ( l )+((hˆ2) /12)∗ cns tn t ∗ s ( l ) ˆ2) ;

Happr ( kk )=(1+(h/2)∗ s ( kk ) ) /(1+(h/2)∗ cnstnt ∗ s ( kk ) ) ;
Capprgren02 ( kk )=(5/gamma) ∗(1/ s ( kk ) )∗(1+s ( kk )∗ab )∗

Happr3 ( kk ) ∗( ( s ( kk ) ˆ2/ c4 ) + ( x3∗ s ( kk ) ˆ1 . 5 ) + ( x2∗ s (
kk ) ) + ( x1∗sqrt ( s ( kk ) ) )+1)/(1+sqrt ( s ( kk ) ) /p)∗ l p f ( kk
) ;

%Capprgren02 ( k ) = 4.7863∗(1/ s ( k ) )∗(1+s ( k ) ∗1.222) ∗(1+s (

k ) ∗1.722) ∗(1+s ( k ) ∗0 .3) ˆ0.5∗ l p f ( k ) ;%4.7863

%Capprgren02 ( k ) =

%4.7863∗(1/ s ( k ) )∗(1+s ( k ) ∗1 .5) ˆ2∗(1+s ( k ) ∗0 .3) ˆ0.5∗ l p f ( k

) ;%4.7863% h i t a y

%hoca en son g r d

%1.2 , 1 .8 seems to be f i n e
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end

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%h=0.1 , k=0.3 , c=10

% c l c

% c l e a r

%eps = l i n s pa c e (1 e−4,1e−2 ,20) ;

Egamma=zeros (1 , length (w) ) ;

Ggamma=zeros (1 , length (w) ) ;

Fgamma=zeros (1 , length (w) ) ;

Mn=zeros (1 , length (w) ) ;

OneoverNo=zeros (1 , length (w) ) ;

Md=zeros (1 , length (w) ) ;

Copt=zeros (1 , length (w) ) ;

L=zeros (1 , length (w) ) ;

P=zeros (1 , length (w) ) ;

%SS=zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

W1=zeros (1 , length (w) ) ;

%TT=zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

W2 = zeros (1 , length (w) ) ;

%W2T = zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

%W1S = zeros ( l e n g t h ( eps ) , l e n g t h (w) ) ;

SS=zeros (1 , length (w) ) ;

TT=zeros (1 , length (w) ) ;

W2T=zeros (1 , length (w) ) ;

W1S = zeros (1 , length (w) ) ;

p s i = zeros ( length (eps ) , length (w) ) ;

p s i sup = zeros (1 , length (eps ) ) ;
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l p f = zeros (1 , length (w) ) ;

CoptwithLpf = zeros (1 , length (w) ) ;

H=zeros (1 , length (w) ) ;

Happr1=zeros (1 , length (w) ) ;

Happr2=zeros (1 , length (w) ) ;

Herr1=zeros (1 , length (w) ) ;

Herr2=zeros (1 , length (w) ) ;

%f a c t o r i z e d p l an t but P=(s ˆ (0 . 5 )−p )/G( s ˆ0 .5)

for l = 1 : length (w)

Md( l )=(s ( l )−(pˆ2) ) /( s ( l )+(pˆ2) ) ;

OneoverNo ( l ) =1/(( sqrt ( s ( l ) )+p) /( ( s ( l )+pˆ2) ∗( sqrt ( s ( l ) )
−p1 ) ∗( sqrt ( s ( l ) )−p1cnj ) ∗( sqrt ( s ( l ) )−p2 ) ∗( sqrt ( s ( l ) )
−p2cnj ) ) ) ;

Mn( l )=exp(−h∗ s ( l ) ) ;
L( l )=(a∗ s ( l )+b) /( a∗ s ( l )−b) ;

end

%p lan t as t o t a l

for l 3 =1: length (w)

P( l 3 )=Mn( l 3 ) /(OneoverNo ( l 3 )∗Md( l 3 ) ) ;

end

%weigh t f unc t i on s 1/ s and ks

for l 5 = 1 : length (w)

W2( l 5 ) = k∗ s ( l 5 ) ;
W1( l 5 ) = 1/ s ( l 5 ) ;

end
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for l = 1 : length (w)

H( l )=1/(((1−ab∗ s ( l ) ) ∗( ( ( s ( l ) ˆ2)∗k ) + ( s ( l )∗ka ) + 1

)+(gamma∗ s ( l )∗(1+ab∗ s ( l ) )∗exp(−h∗ s ( l ) ) ) ) / ( ( 1+ ( (

gammaˆ2) ∗( s ( l ) ˆ2) ) )∗(1− s ( l ) /(pˆ2) ) ) ) ;

Happr1 ( l )=(1+(h/2)∗ s ( l ) ) /(1+(h/2)∗ cnstnt ∗ s ( l ) ) ;
Happr2 ( l )=(1+(h/2)∗ s ( l )+((hˆ2) /12)∗ s ( l ) ˆ2) /(1+(ax+(h

/2)∗ cnstnt )∗ s ( l )+((hˆ2) /12)∗ cnstnt ∗ s ( l ) ˆ2) ;
%Happr3 ( l )=(1+(h/2)∗ s ( l )+((hˆ2) /12)∗ s ( l ) ˆ2) /(1+(h/2)∗

s q r t ( cn s tn t )∗ s ( l )+((hˆ2) /12)∗ cns tn t ∗ s ( l ) ˆ2) ;
Happr3 ( l )=(1 + (h/2)∗ s ( l ) + ( ( hˆ2) /10)∗ s ( l ) ˆ2 + ( ( hˆ3)

/120)∗ s ( l ) ˆ3 ) /( 1 + (h/2)∗ s ( l )∗ cnstnt + ( ( hˆ2) /10)

∗ cnstnt ∗ s ( l ) ˆ2 + ( ( hˆ3) /120)∗ cnstnt ∗ s ( l ) ˆ3 ) ;

Herr2 ( l )=abs (H( l )−Happr2 ( l ) ) ;

Herr1 ( l )=abs (H( l )−Happr1 ( l ) ) ;

Herr3 ( l )=abs (H( l )−Happr3 ( l ) ) ;

end

for l 2 =1: length (w)

Fgamma( l 2 )=( (−s ( l 2 )∗gamma) / ( ( ( s ( l 2 ) ˆ2)∗k ) + ( s ( l 2

)∗ka ) + 1 ) ) ;

end

for l 1 =1: length (w)

Egamma( l 1 )=( 1+ ( (gammaˆ2) ∗( s ( l 1 ) ˆ2) ) ) / (−(gammaˆ2) ∗(
s ( l 1 ) ˆ2) ) ;

end

for r=1: length (w)

Copt ( r )=(Egamma( r )∗Md( r )∗Fgamma( r )∗OneoverNo ( r )∗L( r ) )
/( 1+Mn( r )∗Fgamma( r )∗L( r ) ) ;

end

%epso=0.005;%

for l 9 = 1 : length (w)

l p f ( l 9 ) = 1 /( ( epso∗ s ( l 9 )+1)ˆ2) ;%l=2
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end

for l 9 = 1 : length (w)

CoptwithLpf ( l 9 ) = Copt ( l 9 )∗ l p f ( l 9 ) ;
end

Coptabs=abs ( CoptwithLpf ) ;

Coptangle=angle ( CoptwithLpf ) ;

f igure (1 ) ;

subplot ( 2 , 1 , 1 ) ;

semilogx ( (w) ,20∗ log10 ( Coptabs ) , ’ k ’ , (w) ,20∗ log10 (abs (
Capprgren02 ) ) , ’b−− ’ ) ;

grid on

t i t l e ( ’Bode Plot s o f C { subopt} and C {appr3 } , h=0.15 ’ )

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude (dB) ’ ) ;

subplot ( 2 , 1 , 2 ) ;

semilogx ( (w) , ( Coptangle ) ∗180/pi , ’ k ’ , (w) , angle ( Capprgren02 )

∗180/pi , ’b−− ’ ) ;

grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

% eps o=707;

% f i g u r e (2) ;

% l o g l o g (w, (1/gamma) ∗( abs (W1S) ) , ’ r ’ ) ;

% gr i d on ;

% x l a b e l ( ’ Frequency ( rad/ sec ) ’ ) ;

% y l a b e l ( ’ Magnitude ’ ) ;

% ax i s ( [ 1 e−4 1e4 1e−5 1e1 ] )
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% f i g u r e (3) ;

% l o g l o g (w, (1/gamma) ∗( abs (W2T) ) , ’ r ’ ) ;

% gr i d on ;

% x l a b e l ( ’ Frequency ( rad/ sec ) ’ ) ;

% y l a b e l ( ’ Magnitude ’ ) ;

% ax i s ( [ 1 e−4 1e4 1e−5 1e1 ] )

% c l c

% c l o s e a l l

% gammaappr=(1+epso )∗gamma;%2.098

% gammagraph=ps i1 (1) ;%2.088

% di sp (gammaappr)

% d i sp ( gammagraph)

Hoptabs=abs (H) ;

Hoptangle=angle (H) ;

Happrabs=abs (Happr3 ) ;%by ad j u s t i n g Happr you can see H vs

Happr

Happrangle=angle (Happr3 ) ;

f igure (5 ) ;

%hold on

%subp l o t (2 ,1 ,1) ;

%ho ld on

%semi logx ( (w) , ( Hoptabs ) , (w) , ( Happrabs ) , ’ k ’ ) ;

semilogx ( (w) , ( Herr2 ) , ’ r ’ , (w) , ( Herr1 ) , ’ k ’ , (w) , ( Herr3 ) , ’ b ’ ) ;

grid on

t i t l e ( ’ Approximation e r r o r s ( b lack : f i r s t , red : second ,

b lue : t h i rd order ) , h=0.2 ’ )

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

axis ( [ 1 1 e4 0 1 . 6 ] )
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% %hold on

% subp l o t (2 ,1 ,2) ;

% semi logx ( (w) , ( Hoptangle ) ∗180/ pi , (w) , ( Happrangle ) ∗180/ pi
, ’ k ’ ) ;

% gr i d on

% x l a b e l ( ’ Frequency ( rad/ sec ) ’ ) ;

% y l a b e l ( ’ Phase ( deg ) ’ ) ;

for l 4 = 1 : length (w)

SS( l 4 ) = 1/(1+P( l 4 )∗Capprgren02 ( l 4 ) ) ;%l=2

TT( l 4 ) = 1−SS( l 4 ) ;

W1S( l 4 ) = SS( l 4 )∗W1( l 4 ) ;

W2T( l 4 ) = TT( l 4 ) ∗ W2( l 4 ) ;

%ps i ( l 4 ) = s q r t ( abs (W1S( eps i , l 4 ) ) ˆ2 + abs (W2T( eps i ,

l 4 ) ) ˆ2) ;

end

figure (4 )

p s i 1=sqrt (abs (W1S) .ˆ2+abs (W2T) . ˆ 2 ) ;

semilogx (w, ps i1 , ’ r ’ )

grid on ;

t i t l e ( ’ s q r t ( |W 1S |ˆ2 + |W 2T |ˆ2 ) with C {appr3} h=0.2 ’ )

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

MATLAB R© code: bode openloop and nyquist nominal c5 h015and025 k03.m

% p l o t bode and nyqu i s t f o r s t a b i l i t y nominal p l an t and

the c o n t r o l l e r

clc

clear

close a l l

om = logspace (−2 ,2 ,1 e5 ) ;

PC = zeros (1 , length (om) ) ;

eps = 0 . 0 0 5 ;%0.002 f o r lower order appr
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c=5;

gamma=1.462653626536265;%1.6047;%2.088375883758838;%1.6047

h=0.1;

k=0.3 ;

roo=[1 1 0 0 0 −c ] ;

p l s=roots ( roo ) ;

h=0.15;%0.2;%0.1

p1 = p l s (1 ) ;

p1cnj =p l s (2 ) ;

p2 = p l s (3 ) ;

p2cnj =p l s (4 ) ;

p = p l s (5 ) ;

a=0.945622101602222;%0.9442;%0.959340025428322;%0.9442;%h

=0.1 i i n , ( changing h , changes those va l u e s do not

f o r g e t ! ! ! )

b=0.325267337679942;%0.282252928436864;%0.3295;%h=0.1 i i n

ka=sqrt (2∗k−(kˆ2) /(gammaˆ2) ) ;

a=a/b ;

% c = 10;

% h = 0 . 2 ;

% k = 0 . 3 ;

% gamma = 2.088375883758838;

% a = 0.959340025428322;

% b = 0.282252928436864;

% a = a/b ;

% ka = s q r t (2∗ k−(k ˆ2) /(gammaˆ2) ) ;

for i = 1 : length (om)

s = 1 i ∗om( i ) ;
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P = exp(−h∗ s )∗(1+a∗ s )∗(1+gammaˆ2∗ s ˆ2) / ( ( s−pˆ2) ∗(gamma∗
s )∗(1+eps∗ s ) ˆ2) ;

C = (pˆ2−s ) / ( ( k∗ sˆ2+ka∗ s+1)∗(1−a∗ s )+gamma∗ s∗(1+a∗ s )∗
exp(−h∗ s ) ) ;

PC( i ) = P∗C;

end

figure ( ) ;

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs (PC) ) ) ;
grid on

t i t l e ( ’Bode Plot s o f Open loop ’ )

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude (dB) ’ ) ;

hold on

subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle (PC) ) ∗180/pi , om,180∗ ones (1 ,
length (om) ) , ’ g−− ’ ,om,−180∗ ones (1 , length (om) ) , ’ g−− ’ ) ;

grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

s i g = linspace (0 , pi /2 ,150) ;

for i = 1 : length (om) + length ( s i g )

i f ( i < length ( s i g )+1)

s = 1e−3∗exp(1 i ∗ s i g ( i ) ) ;
P = exp(−h∗ s )∗(1+a∗ s )∗(1+gammaˆ2∗ s ˆ2) / ( ( s−pˆ2) ∗(

gamma∗ s )∗(1+eps∗ s ) ˆ2) ;
C = (pˆ2−s ) / ( ( k∗ sˆ2+ka∗ s+1)∗(1−a∗ s )+gamma∗ s∗(1+a∗ s

)∗exp(−h∗ s ) ) ;
PC( i ) = P∗C;

else
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s = 1 i ∗om( i−length ( s i g ) ) ;

P = exp(−h∗ s )∗(1+a∗ s )∗(1+gammaˆ2∗ s ˆ2) / ( ( s−pˆ2) ∗(gamma∗
s )∗(1+eps∗ s ) ˆ2) ;

C = (pˆ2−s ) / ( ( k∗ sˆ2+ka∗ s+1)∗(1−a∗ s )+gamma∗ s∗(1+a∗ s )∗
exp(−h∗ s ) ) ;

PC( i ) = P∗C;

end

end

figure ( )

plot ( real (PC) , imag(PC) , real (PC) ,−imag(PC) , ’ r ’ ,−1 ,0 , ’ k+’ ) ;

t i t l e ( ’ Nyquist Plot ’ )

xlabel ( ’\Re ’ ) ;

ylabel ( ’\Im ’ ) ;

grid on

VMh015k03 = min(abs(1+PC) ) ;

%% h =0.25

om = logspace (−2 ,2 ,1 e5 ) ;

PC = zeros (1 , length (om) ) ;

eps = 0 . 0 0 5 ;%0.002 f o r lower order appr

c=5;

gamma=1.810669106691067;%1.6047;%2.088375883758838;%1.6047

h=0.1;

k=0.3 ;

roo=[1 1 0 0 0 −c ] ;

p l s=roots ( roo ) ;

h=0.25;%0.2;%0.1

p1 = p l s (1 ) ;

p1cnj =p l s (2 ) ;

p2 = p l s (3 ) ;

p2cnj =p l s (4 ) ;

p = p l s (5 ) ;
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a=0.957221783541320;%0.9442;%0.959340025428322;%0.9442;%h

=0.1 i i n , ( changing h , changes those va l u e s do not

f o r g e t ! ! ! )

b=0.289355243798994;%0.282252928436864;%0.3295;%h=0.1 i i n

ka=sqrt (2∗k−(kˆ2) /(gammaˆ2) ) ;

a=a/b ;

% c = 10;

% h = 0 . 2 ;

% k = 0 . 3 ;

% gamma = 2.088375883758838;

% a = 0.959340025428322;

% b = 0.282252928436864;

% a = a/b ;

% ka = s q r t (2∗ k−(k ˆ2) /(gammaˆ2) ) ;

for i = 1 : length (om)

s = 1 i ∗om( i ) ;

P = exp(−h∗ s )∗(1+a∗ s )∗(1+gammaˆ2∗ s ˆ2) / ( ( s−pˆ2) ∗(gamma∗
s )∗(1+eps∗ s ) ˆ2) ;

C = (pˆ2−s ) / ( ( k∗ sˆ2+ka∗ s+1)∗(1−a∗ s )+gamma∗ s∗(1+a∗ s )∗
exp(−h∗ s ) ) ;

PC( i ) = P∗C;

end

figure ( ) ;

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs (PC) ) ) ;
grid on

t i t l e ( ’Bode Plot s o f Open loop ’ )

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude (dB) ’ ) ;
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hold on

subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle (PC) ) ∗180/pi , om,180∗ ones (1 ,
length (om) ) , ’ g−− ’ ,om,−180∗ ones (1 , length (om) ) , ’ g−− ’ ) ;

grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

s i g = linspace (0 , pi /2 ,150) ;

for i = 1 : length (om) + length ( s i g )

i f ( i < length ( s i g )+1)

s = 1e−3∗exp(1 i ∗ s i g ( i ) ) ;
P = exp(−h∗ s )∗(1+a∗ s )∗(1+gammaˆ2∗ s ˆ2) / ( ( s−pˆ2) ∗(

gamma∗ s )∗(1+eps∗ s ) ˆ2) ;
C = (pˆ2−s ) / ( ( k∗ sˆ2+ka∗ s+1)∗(1−a∗ s )+gamma∗ s∗(1+a∗ s

)∗exp(−h∗ s ) ) ;
PC( i ) = P∗C;

else

s = 1 i ∗om( i−length ( s i g ) ) ;

P = exp(−h∗ s )∗(1+a∗ s )∗(1+gammaˆ2∗ s ˆ2) / ( ( s−pˆ2) ∗(gamma∗
s )∗(1+eps∗ s ) ˆ2) ;

C = (pˆ2−s ) / ( ( k∗ sˆ2+ka∗ s+1)∗(1−a∗ s )+gamma∗ s∗(1+a∗ s )∗
exp(−h∗ s ) ) ;

PC( i ) = P∗C;

end

end

figure ( )

plot ( real (PC) , imag(PC) , real (PC) ,−imag(PC) , ’ r ’ ,−1 ,0 , ’ k+’ ) ;

t i t l e ( ’ Nyquist Plot ’ )

xlabel ( ’\Re ’ ) ;
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ylabel ( ’\Im ’ ) ;

grid on

VMh025k03 = min(abs(1+PC) ) ;

MATLAB R© code: C1fromYALTAc5h015.m

clc

clear

a=0.945622101602222;%0.9442;%0.959340025428322;%0.9442;%h

=0.1 i i n , ( changing h , changes those va l u e s do not

f o r g e t ! ! ! )

b=0.325267337679942;%0.282252928436864;%0.3295;%h=0.1 i i n

a=a/b ;% to wr i t e L as abs+1/abs−1;

gamma=1.462653626536265;%1.6047;%2.088375883758838;%1.6047

h=0.1;

k=0.3 ;% W2=ks ;

ka=sqrt (2∗k−(kˆ2) /(gammaˆ2) ) ;

roo=[1 1 0 0 0 −5];%denominator o f the p l an t in knospe and

zhu wi th c=10;

p l s=roots ( roo ) ;

h=0.15;%0.2;%0.1% time de lay

p1 = p l s (1 ) ;

p1cnj =p l s (2 ) ;

p2 = p l s (3 ) ;

p2cnj =p l s (4 ) ;

p = p l s (5 ) ;

q = [−a∗k k−a∗ka ka−a 1 ; 0 a∗gamma gamma 0 ] ;

%q = [1 ka−a k−a∗ka −a∗k ; 0 gamma a∗gamma 0 ] ;

iPolyMatr ix=q ;

iDegree = 4 ;

iDelay = h ;

iDelayVector = 1 ;

iModArg = 1e−4;
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iMode = ’NORM’ ;

iRootsOption = 1 ;

%T = delayFrequencyAnalysisMin ( iPolyMatrix , iDelayVector , 1 ,

iDelay , 1 ) ;

%s q r t (T. Uns tab l ePo le s )

PadeStruct = computePade ( iPolyMatrix , iDegree , iDelay ,

iDelayVector , iModArg , iMode , iRootsOption ) ;

C t i l da appr = computeTF( PadeStruct . Numerator , PadeStruct .

Denominator ) ;

s = t f ( ’ s ’ ) ;

C1den appr yalta = minrea l ( C t i l da appr ∗( s+1)ˆ4 ,1 e−3) ;

C1 appr ya l ta = minrea l ( (1 + gammaˆ2∗ s ˆ2)∗(1− s /pˆ2) /

C1den appr yalta , 1 e−3) ;%% C1 approximant

po le ( C1 appr ya l ta ) ;

%%

om = logspace (−4 ,4 ,5 e2 ) ;

C1 appr ya l t a f = f r e q r e s p ( C1 appr yalta ,om) ;

C1 = zeros (1 , length (om) ) ;

%C1den = zeros (1 , l e n g t h (om) ) ;

for i = 1 : length (om)

s=1 i ∗om( i ) ;

C1( i ) = (1 + gammaˆ2∗ s ˆ2)∗(1− s /pˆ2) / ( ( k∗ s ˆ2 + ka∗ s +1)

∗(1−a∗ s )+gamma∗ s∗(1+a∗ s )∗exp(− iDe lay ∗ s ) ) ;

%C1den( i ) = (( k∗ s ˆ2 + ka∗ s +1)∗(1−a∗ s )+gamma∗ s∗(1+a∗ s )
∗exp(− iDe lay ∗ s ) ) ;

end
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f igure ( )

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) , ( abs ( C1 appr ya l t a f ( 1 , : ) ) ) , ’ k ’ , (om) , ( abs (C1

) ) , ’b ’ ) ;

grid on

t i t l e ( ’ Frequency Responses o f C 1 and I t s Appr . by YALTA’ )

;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle ( C1 appr ya l t a f ( 1 , : ) ) ) ∗180/pi , ’
k ’ , (om) ,unwrap( angle (C1) ) ∗180/pi , ’ b ’ ) ;

grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

f igure ( )

semilogx (om, abs (C1−C1 appr ya l t a f ( 1 , : ) ) )

grid on

t i t l e ( ’ Error Between Frequency Responses o f C1 and I t s

Approximation {YALTA} ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

% f i g u r e ( )

% semi logx (om, abs (C1den) )

MATLAB R© code: carlson method cont appr of fractance.m

clc

clear

Ho=1;
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s=t f ( ’ s ’ ) ;

G = 1/ s ;

H = minrea l ( (Hoˆ2 + 3∗G) /(3∗Hoˆ2 + G) ) ;

for i =1:2

H = minrea l (H∗(Hˆ2 + 3∗G) /(3∗Hˆ2 + G) ) ;

end

om = logspace (−10 ,10 ,1 e3 ) ;

P = 1 ./ sqrt (1 i ∗om) ;

Hf = f r e q r e s p (H,om) ;

Hf= Hf ( 1 , : ) ;

f igure (3 )

semilogx (om, abs ( ( Hf ./(1+Hf ) )−(P./(1+P) ) ) ) ;

t i t l e ( ’ E 4 ( j \omega ) ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

grid on
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%%

%% Carlson ’ s Method

%T = 1e−3;

Pappr = t f ( [ 1 36 126 84 9 ] , [ 9 84 126 36 1 ] ) ;

%Pappr = t f ( [ 0 . 0859 4.877 20.84 12.995 1 ] , [ 1 13 20.84

4.876 0 .8551 ] ) ;

om = logspace (−5 ,5 ,1 e3 ) ;

P = 1 ./ sqrt (1 i ∗om) ;

Papprf = f r e q r e s p (Pappr ,om) ;

f igure (1 )

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs ( Papprf ( 1 , : ) ) ) , ’ r ’ , (om) ,20∗ log10
(abs (P) ) ) ;

grid on

t i t l e ( ’ Frequency Responses o f Fractance and I t s

Approximation from Car l sons Method ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude dB ’ ) ;
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subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle ( Papprf ( 1 , : ) ) ) ∗180/pi , ’ r ’ , (om) ,

unwrap( angle (P) ) ∗180/pi ) ;
grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

Ros = feedback (Pappr , 1 ) ;

Pfdbck = P./(1+P) ;

Rosf = f r e q r e s p (Ros ,om) ;

f igure (2 )

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs ( Rosf ( 1 , : ) ) ) , ’ r ’ , (om) ,20∗ log10 (
abs ( Pfdbck ) ) ) ;

grid on

t i t l e ( ’ Frequency Responses o f Or i g i na l Feedback loop and

I t s Approximation from Car l sons Method ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude dB ’ ) ;

subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle ( Rosf ( 1 , : ) ) ) ∗180/pi , ’ r ’ , (om) ,

unwrap( angle ( Pfdbck ) ) ∗180/pi ) ;
grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

f igure (3 )

semilogx (om, abs ( Rosf ( 1 , : )−Pfdbck ) ) ;

t i t l e ( ’ Error Btw . Frequency Responses o f Or i g i na l Feedback

loop and I t s Approximation from Car l sons Method ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;
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ylabel ( ’Magnitude ’ ) ;

MATLAB R© code: fdbckanalytc.m

%% This f unc t i on g i v e s a n a l y t i c a l e xp r e s s i on f o r the s t ep

response o f the f eedback loop

% formed by 1/ s q r t ( s )

% c l c

% c l e a r

T = 1e−3;

N = 5e4 ;

n = 1 :N;

h = zeros (1 ,N) ;

t = linspace (0 ,10 ,1 e3 ) ;

% for i = 1 : N

% h( i ) = T∗(1/ s q r t ( p i ∗n( i )∗T) − exp (n( i )∗T)∗ e r f c ( s q r t (
n( i )∗T) ) ) ;

% end

% h = [1 h ] ;

%s y s f z = t f (h , [ 1 z e ro s (1 , l e n g t h (h )−1) ] ,T) ;

stepResp=zeros (1 , length ( t ) ) ;

for i = 1 : length ( t ) ;

stepResp ( i ) = 1 − exp( t ( i ) )∗erfc ( sqrt ( t ( i ) ) ) ;
end

figure ( )

plot ( t , stepResp , ’ k ’ ) ;

xlabel ( ’Time in sec ’ ) ;

ylabel ( ’ Step Response ’ ) ;

t i t l e ( ’ Step Response o f the Feedback Loop o f 1/ s ˆ\ alpha
and R o ( z ) ’ ) ;

MATLAB R© code: firstatespace tustin with exp star lyap.m

clc
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clear

%% crea t e d i s c r e t e s t a t e space rep . o f FIR f i l t e r

% N : number o f c o e f f i c i e n t s

% A,B,C,D are the matr ices

% T, sampling per iod

N = 2e3 ;

A = [ zeros (N−1 ,1) ,eye (N−1) ] ;

A = [A ; zeros (1 ,N) ] ;

T = 1e−2;

B = [ zeros (N−1 ,1) ; 1 ] ;

% gain and h0 va l u e s are found by bru t e force ,

sy s zc fo rga inandho .m

% gain = 1 . 5 ;

% h0 = 0 . 5 ;

gain = 1 ;

h0 = 1 . 4 ;

c o e f = N : −1 : 1 ;

C = sqrt (T/pi )∗ gain ∗1 ./ sqrt ( c o e f ) ;
D = sqrt (T/pi )∗h0 ;
% H i s a d i s c r e t e system , r ep r e s en t i n g FIR f i l t e r .

H = ss (A,B,C,D,T) ;

%H fdbck = feedback (H, 1 ) ;% s t a b l e : sum( abs ( po l e ( H fdbck ) )

>1) = 0;

%% Model Reduction by us ing the method g iven by

Approximation Of I n f i n i t e

% Dimensional Systems Gu, Khargonekar mainly equat ion 4.6

and 4.7

Q = dlyap (A,B∗B’ ) ;
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P = dlyap (A,C’∗C) ;

[U,E,V] = svd (P) ;

Tm = U’ ;

Ab = Tm∗A∗Tm’ ;

Bb = Tm∗B;

Cb = C∗Tm’ ;

Db = D;

% Equation 4.7 f o r g e t t i n g ’ r s i z e ’ e lements o f l a r g e r

matr ices .

r s i z e = 150 ;

Ab t = [ eye ( r s i z e ) zeros ( r s i z e ,N−r s i z e ) ]∗Ab∗ [ eye ( r s i z e ) ;
zeros (N−r s i z e , r s i z e ) ] ;

Bb t = [ eye ( r s i z e ) zeros ( r s i z e ,N−r s i z e ) ]∗Bb ;
Cb t = Cb∗ [ eye ( r s i z e ) ; zeros (N−r s i z e , r s i z e ) ] ;

%[ n3 , d3 ] = s s 2 t f ( Ab t , Bb t , Cb t ,Db) ;

%Hrdcd = ss ( Ab t , Bb t , Cb t ,Db,1 e−3) ;

%% From d i s c r e t e s t a t e space to Continuous S ta t e Space

Conversion

[m, n ] = s ize ( Ab t ) ;

Ac = 2/T∗(Ab t−eye (m) )∗pinv ( Ab t+eye (m) ) ;

Bc = 1/ sqrt (T) ∗( Bb t−(Ab t−eye (m) )∗pinv ( Ab t+eye (m) )∗Bb t )

;

Cc = 2/ sqrt (T)∗Cb t∗pinv ( Ab t+eye (m) ) ;

Dc = Db − Cb t∗pinv ( Ab t+eye (m) )∗Bb t ;

%% FIR implementat ion

P1 = ss (Ac , Bc , Cc ,Dc) ;

h = (N−1)∗T;
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Ac2 = Ac ;

Bc2 = Bc ;

Dc2 = 0 ;

Cc2 = Cc∗expm(h∗Ac) ;
P2 = ss (Ac2 , Bc2 , Cc2 , Dc2 , ’ InputDelay ’ ,h ) ;

% Happ i s the cont inuous t r fnc o f FIR .

Happ = ( ( (P1)−(P2) ) ) ;

%% Get t ing Frequency Response

om = logspace (−8 , log10 (1/(2∗T) ) ,5 e2 ) ;

Hf = f r e q r e s p (H,om) ; % d i s c r e t e system ’ s f r e q resp

Happf = f r e q r e s p (Happ ,om) ; % cont inuous app ’ s f r e q resp

Happf = (Hf (1 ) /Happf (1 ) )∗Happf ; % to ge t same DC gain

Rof = Happf ( 1 , : ) ./(1+Happf ( 1 , : ) ) ; % f r e q resp o f f eedack

loop by cont . t r fnc .

%Rosys = feedback (Happ , 1 ) ; % s t a b l e : sum( r e a l ( po l e ( Rosys ) )

>0) = 0; % ss form

Po = 1 ./ sqrt (1 i ∗om) ;

Po fdbck = Po./(1+Po) ;

f igure (1 )

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs (Hf ( 1 , : ) ) ) , (om) ,20∗ log10 (abs (
Happf ( 1 , : ) ) ) , ’ r−− ’ ) ;

grid on

t i t l e ( ’ Frequency Response o f h [ n ] ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude dB ’ ) ;

subplot ( 2 , 1 , 2 ) ;
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semilogx ( (om) ,unwrap( angle (Hf ( 1 , : ) ) ) ∗180/pi , ( om) ,unwrap(

angle (Happf ( 1 , : ) ) ) ∗180/pi , ’ r−− ’ ) ;

grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

%Rosysf = f r e q r e s p (Rosys ,om) ;

f igure (2 )

semilogx ( (om) ,abs (Rof−Po fdbck ) ) ;

t i t l e ( ’ Error Between Feedback Loops ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

% disp ( ’ S t a b i l i t y o f d i s c r e t e f e edback loop : ’ )

% sum( abs ( po l e ( H fdbck ) )>1)

% d i sp ( ’ S t a b i l i t y o f cont inuous f eedback loop : ’ )

% sum( r e a l ( po l e ( Rosys ) )>0)

% f i g u r e (3)

% s t ep (Rosys ,N∗T) ;

MATLAB R© code: firstatespace tustin with exp star no rdctn.m

clc

clear

%% crea t e d i s c r e t e s t a t e space rep . o f FIR f i l t e r

% N : number o f c o e f f i c i e n t s

% A,B,C,D are the matr ices

% T, sampling per iod

N = 2e3 ;

A = [ zeros (N−1 ,1) ,eye (N−1) ] ;

A = [A ; zeros (1 ,N) ] ;

91



T = 1e−2;

B = [ zeros (N−1 ,1) ; 1 ] ;

% gain and h0 va l u e s are found by bru t e force ,

sy s zc fo rga inandho .m

% gain = 1 . 5 ;

% h0 = 0 . 5 ;

gain = 1 ;

h0 = 1 . 4 ;

c o e f = N : −1 : 1 ;

C = sqrt (T/pi )∗ gain ∗1 ./ sqrt ( c o e f ) ;
D = sqrt (T/pi )∗h0 ;
% H i s a d i s c r e t e system , r ep r e s en t i n g FIR f i l t e r .

H = ss (A,B,C,D,T) ;

%H fdbck = feedback (H, 1 ) ;% s t a b l e : sum( abs ( po l e ( H fdbck ) )

>1) = 0;

%% Model Reduction by us ing the method g iven by

Approximation Of I n f i n i t e

% Dimensional Systems Gu, Khargonekar mainly equat ion 4.6

and 4.7

% Q = dlyap (A,B∗B’ ) ;

% P = dlyap (A,C’∗C) ;
% [U,E,V] = svd (P) ;

% Tm = U’ ;

% Ab = Tm∗A∗Tm’ ;

% Bb = Tm∗B;

% Cb = C∗Tm’ ;

% Db = D;

%
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% % Equation 4.7 f o r g e t t i n g ’ r s i z e ’ e lements o f l a r g e r

matr ices .

% r s i z e = 150;

%

% Ab t = [ eye ( r s i z e ) z e ro s ( r s i z e ,N−r s i z e ) ]∗Ab∗ [ eye ( r s i z e ) ;
z e ro s (N−r s i z e , r s i z e ) ] ;

% Bb t = [ eye ( r s i z e ) z e ro s ( r s i z e ,N−r s i z e ) ]∗Bb ;
% Cb t = Cb∗ [ eye ( r s i z e ) ; z e ro s (N−r s i z e , r s i z e ) ] ;

%

% %[n3 , d3 ] = s s 2 t f ( Ab t , Bb t , Cb t ,Db) ;

%

% %Hrdcd = ss ( Ab t , Bb t , Cb t ,Db,1 e−3) ;

%% From d i s c r e t e s t a t e space to Continuous S ta t e Space

Conversion

[m, n ] = s ize (A) ;

Ac = 2/T∗(A−eye (m) )∗pinv (A+eye (m) ) ;

Bc = 1/ sqrt (T) ∗(B−(A−eye (m) )∗pinv (A+eye (m) )∗B) ;
Cc = 2/ sqrt (T)∗C∗pinv (A+eye (m) ) ;

Dc = D − C∗pinv (A+eye (m) )∗B;

%% FIR implementat ion

P1 = ss (Ac , Bc , Cc ,Dc) ;

h = (N−1)∗T;

Ac2 = Ac ;

Bc2 = Bc ;

Dc2 = 0 ;

Cc2 = Cc∗expm(h∗Ac) ;
P2 = ss (Ac2 , Bc2 , Cc2 , Dc2 , ’ InputDelay ’ ,h ) ;

% Happ i s the cont inuous t r fnc o f FIR .

Happ = (P1−P2) ;
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%% Get t ing Frequency Response

om = logspace (−8 , log10 (1/(2∗T) ) ,5 e2 ) ;

Hf = f r e q r e s p (H,om) ; % d i s c r e t e system ’ s f r e q resp

Happf = f r e q r e s p (Happ ,om) ; % cont inuous app ’ s f r e q resp

Happf = (Hf (1 ) /Happf (1 ) )∗Happf ; % to ge t same DC gain

Rof = Happf ( 1 , : ) ./(1+Happf ( 1 , : ) ) ; % f r e q resp o f f eedack

loop by cont . t r fnc .

%Rosys = feedback (Happ , 1 ) ; % s t a b l e : sum( r e a l ( po l e ( Rosys ) )

>0) = 0; % ss form

Po = 1 ./ sqrt (1 i ∗om) ;

Po fdbck = Po./(1+Po) ;

f igure (1 )

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs (Hf ( 1 , : ) ) ) , (om) ,20∗ log10 (abs (
Happf ( 1 , : ) ) ) , ’ r−− ’ ) ;

grid on

t i t l e ( ’ Frequency Response o f h [ n ] ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude dB ’ ) ;

subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle (Hf ( 1 , : ) ) ) ∗180/pi , ( om) ,unwrap(

angle (Happf ( 1 , : ) ) ) ∗180/pi , ’ r−− ’ ) ;

grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

f igure (2 )
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semilogx ( (om) ,abs (Rof−Po fdbck ) ) ;

t i t l e ( ’ Error Between Feedback Loops ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

% disp ( ’ S t a b i l i t y o f d i s c r e t e f e edback loop : ’ )

% sum( abs ( po l e ( H fdbck ) )>1)

% d i sp ( ’ S t a b i l i t y o f cont inuous f eedback loop : ’ )

% sum( r e a l ( po l e ( Rosys ) )>0)

% f i g u r e (3)

% s t ep (Rosys ,N∗T) ;

MATLAB R© code: inverse laplace of freq data of feedback loop.m

clc

clear

om = logspace (−8 ,3 ,5 e3 ) ;

s = 1 i ∗om;

Pfdbck = 1 . / ( sqrt ( s )+1) ;

i t e r=1e2 ;

tau1 = 3e−5;

tau2 = 1 ;

weight = (1 + s . / tau1 ) . / ( 1 + s . / tau2 ) . ˆ 2 ;

[ num, den ] = i n v f r e q s ( Pfdbck ,om,9 , 1 8 , weight , i t e r , 1 e−2) ;%% 9

18 24 12 10 30

Ros m = t f (num, den ) ;

Rosmf = f r e q r e s p (Ros m ,om) ;

% N = 18;

% [A,B,C,D] = t f 2 s s (num, den ) ;

% Q = lyap (A,B∗B’ ) ;

% P = lyap (A,C’∗C) ;
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% [U,E,V] = svd (P) ;

% Tm = U’ ;

% Ab = Tm∗A∗Tm’ ;

% Bb = Tm∗B;

% Cb = C∗Tm’ ;

% Db = D;

% r s i z e = 10;

%

% Ab t = [ eye ( r s i z e ) z e ro s ( r s i z e ,N−r s i z e ) ]∗Ab∗ [ eye ( r s i z e ) ;
z e ro s (N−r s i z e , r s i z e ) ] ;

% Bb t = [ eye ( r s i z e ) z e ro s ( r s i z e ,N−r s i z e ) ]∗Bb ;
% Cb t = Cb∗ [ eye ( r s i z e ) ; z e ro s (N−r s i z e , r s i z e ) ] ;

%

% [ na , da ] = s s 2 t f ( Ab t , Bb t , Cb t ,Db) ;

Ros m rdcd=ba l red (Ros m , 4 ) ;

Ros m rdcd=minrea l ( Ros m rdcd , 0 . 0 3 ) ;

Rf = f r e q r e s p ( Ros m rdcd ,om) ;

f igure (1 )

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs (Rf ( 1 , : ) ) ) , ’ g . ’ , (om) ,20∗ log10 (
abs (Rosmf ( 1 , : ) ) ) , ’ r ’ , (om) ,20∗ log10 (abs ( Pfdbck ) ) ) ;

grid on

t i t l e ( ’ Frequency Responses o f Or i g i na l Loop and I t s

Approximation from Frequncy Data and Reduced Model ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude dB ’ ) ;

subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle (Rf ( 1 , : ) ) ) ∗180/pi , ’ g . ’ , (om) ,

unwrap( angle (Rosmf ( 1 , : ) ) ) ∗180/pi , ’ r ’ , (om) ,unwrap( angle (

Pfdbck ) ) ∗180/pi ) ;
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grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

f igure (2 )

semilogx (om, abs (Rosmf ( 1 , : )−Pfdbck ) , ’ r ’ )

t i t l e ( ’ Error Between Actual feedback loop and I t s Appr .

i n v f r e q s ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

f igure (3 )

semilogx (om, abs (Rf ( 1 , : )−Pfdbck ) , ’ g ’ )

t i t l e ( ’ Error Between Actual feedback loop and reduced

model o f i t s Appr . i n v f r e q s ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

zpk ( Ros m rdcd )

s=t f ( ’ s ’ )

Papp invfreq=feedback ( s e r i e s (1/ s ˆ2 , Ros m rdcd ) ,10 ,+1) ;

po l e ( Papp invfreq )

%% bru te to order

% tau1 = 3e−5;

% tau2 = 1;

% weigh t = (1 + s ./ tau1 ) ./ (1 + s ./ tau2 ) . ˆ 2 ;

%

% N = 30;

% M = 30;

% e = zeros (N,M) ;

% fo r m = 1 : N

% fo r n = 1 : M

% [num, den ] = i n v f r e q s ( Pfdbck ,om, n ,m, we igh t ) ;
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% Ros m = t f (num, den ) ;

% Rosmf = f r e q r e s p (Ros m ,om) ;

% e (n ,m) = max( abs ( Pfdbck−Rosmf ( 1 , : ) ) ) ;

% end

% end

% e ( isnan ( e ) ) = 1;

%

% [X,Y] = meshgrid ( 1 :N, 1 :M) ;

% f i g u r e

% su r f (X,Y, e ) ;

% [ r , c ] = f i nd ( e==min( e ( : ) ) ) ;

MATLAB R© code: matsuda method feedback appr.m

% %%

%%%%%%%%%%%%%%%%%%%%555

%% This works , p a l n t i n pole ’ u 1.4250ˆ2 de k y o r

% matsuda appr to f r a c t ance dev ice , then f eedback i t .

% eger m a n t k l t r a n s f e r fonks i yon i s t i y o s a n om = log space

(−1 ,1) , N = 9

% yok hata o k az o l sun t r an s f e r fonks i yon s a m a l a s n

diyosan l og space (−5 ,5)

% ve N= 35 s e e c e k s i n

clc

clear

syms x ;

%T = 5e−2; log10 (1/(2∗T) ) ;
%log10 (1/(2∗T) )
N = 31 ;

om = logspace (−5 ,5 ,N) ;%burdak i f r e kans a r a l fnc ’ nin

approximation h a t a s n

% ama c o e f f i c i e n t l a r n e t k i l i y o r

v = 1 / ( sqrt ( x ) ) ;
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a = zeros (1 ,N) ;

a (1 ) = ( subs (v , 1 i ∗om(1) ) ) ;

s = t f ( ’ s ’ ) ;

for i = 1 : N−1
v = (x − 1 i ∗om( i ) ) /(v−a ( i ) ) ;
a ( i +1) =( subs (v , 1 i ∗om( i +1) ) ) ;

end

fnc = t f ( [ a (end) ] , 1 ) ;

for i = N : −1 : 2

fnc = a ( i −1) + ( s−1 i ∗om( i −1) ) / fnc ;

end

ome =logspace (−20 ,20 ,5 e2 ) ;

fnc=t f (abs ( fnc .num{1}) ,abs ( fnc . den {1}) ) ;
Ros matsuda block = feedback ( fnc , 1 ) ;

Ros m bf = f r e q r e s p ( Ros matsuda block , ome) ;

Pfdbck = 1 . / ( sqrt (1 i ∗ome)+1) ;

e=abs ( Ros m bf ( 1 , : )−Pfdbck ) ;

f igure

semilogx (ome , e )

t i t l e ( ’ E 3 ( j \omega ) ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

%fnc = t f ( abs ( fnc .num{1}) , abs ( fnc . den {1}) ) ;
f igure

some = t f ( [ 0 . 0 8 549 4 .877 20 .84 12 .995 1 ] , [ 1 13 20 .84

4 .876 0 . 0 8 551 ] ) ;

bode ( some , fnc , ome) ;

[ d , t ]= step ( Ros matsuda block , 300 ) ;

f igure

plot ( t , d , ’ r ’ , t , 1 − exp( t ) .∗ erfc ( sqrt ( t ) ) ) ;
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t i t l e ( ’ Step Responses o f Or i g i na l Loop and I t s

Approximation Matsuda ’ ) ;

xlabel ( ’Time ( sec ) ’ ) ;

ylabel ( ’ Step Response ’ ) ;

Papp matsuda block=feedback ( s e r i e s (1/ s ˆ2 , Ros matsuda block

) ,10 ,+1) ;

po l e ( Papp matsuda block )

f igure ( )

subplot ( 2 , 1 , 1 ) ;

semilogx ( ( ome) ,20∗ log10 (abs ( Ros m bf ( 1 , : ) ) ) , ’ r ’ , ( ome) ,20∗
log10 (abs ( Pfdbck ) ) ) ;

grid on

t i t l e ( ’ Frequency Responses o f Or i g i na l Loop and I t s

Approximation Matsuda ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude dB ’ ) ;

subplot ( 2 , 1 , 2 ) ;

semilogx ( ( ome) ,unwrap( angle ( Ros m bf ( 1 , : ) ) ) ∗180/pi , ’ r ’ , (

ome) ,unwrap( angle ( Pfdbck ) ) ∗180/pi ) ;
grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

%%

clc

clear

syms x ;

%T = 5e−2; log10 (1/(2∗T) ) ;
%log10 (1/(2∗T) )
N = 31 ;

om = logspace (−5 ,5 ,N) ;
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v = 1 / ( sqrt ( x )+1) ;

a = zeros (1 ,N) ;

a (1 ) = ( subs (v , 1 i ∗om(1) ) ) ;

s = t f ( ’ s ’ ) ;

for i = 1 : N−1
v = (x − 1 i ∗om( i ) ) /(v−a ( i ) ) ;
a ( i +1) =( subs (v , 1 i ∗om( i +1) ) ) ;

end

fnc = t f ( ( a (end) ) , 1 ) ;

for i = N : −1 : 2

fnc =minrea l ( ( a ( i −1) ) + ( s−(1 i ∗om( i −1) ) ) / fnc ) ;

end

fnc = t f (abs ( fnc .num{1}) ,abs ( fnc . den {1}) ) ;%
%%%%%%%%%%%%%%%%%% hocaya sor

Ros matsuda=fnc ;

om = logspace (−5 ,5 ,1 e3 ) ;

Ros matsuda f = f r e q r e s p ( fnc ,om) ;

%Ros matsuda r f = f r e q r e s p ( Ros matsuda r ,om) ;

Pfdbck=1./( sqrt (1 i ∗om)+1) ;

f igure (1 )

subplot ( 2 , 1 , 1 ) ;

semilogx ( (om) ,20∗ log10 (abs ( Ros matsuda f ( 1 , : ) ) ) , ’ r ’ , (om)

,20∗ log10 (abs ( Pfdbck ) ) ) ;
grid on

t i t l e ( ’ Frequency Responses o f Or i g i na l Loop and I t s

Approximation Matsuda ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude dB ’ ) ;

subplot ( 2 , 1 , 2 ) ;

semilogx ( (om) ,unwrap( angle ( Ros matsuda f ( 1 , : ) ) ) ∗180/pi , ’ r ’
, (om) ,unwrap( angle ( Pfdbck ) ) ∗180/pi ) ;
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grid on

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’ Phase ( deg ) ’ ) ;

f igure (2 )

semilogx (om, abs ( Ros matsuda f ( 1 , : )−Pfdbck ) , ’ r ’ )

t i t l e ( ’ Error Between Actual feedback loop and reduced

model o f i t s Appr . i n v f r e q s ’ ) ;

xlabel ( ’ Frequency ( rad/ sec ) ’ ) ;

ylabel ( ’Magnitude ’ ) ;

[ naa , daa]= t fda ta ( fnc ) ;

i f ( length ( daa {1 ,1})−length ( naa {1 ,1}) >= 0)

disp ( ’ proper ’ ) ;

disp ( length ( daa {1 ,1}) )
disp(−length ( naa {1 ,1}) )

end

i f (sum( real ( po l e ( ( Ros matsuda ) ) )>0) )

disp ( ’Model i s unstab l e ’ ) ;

end
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