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Abstract
Throughout the current COVID-19 pandemic, governments have implemented a variety
of containment measures, ranging from hoping for herd immunity (which is essentially
no containment) to mandating complete lockdown. On the one hand, containment mea-
sures reduce lives lost by limiting the disease spread and controlling the load on the
healthcare system. On the other hand, such measures slow down economic activity,
leading to lost jobs, economic stall, and societal disturbances, such as protests, civil dis-
obedience, and increases in domestic violence. Hence, determining the right set of con-
tainment measures is a key social, economic, and political decision for policymakers.
In this paper, we provide a model for dynamically managing the level of disease con-
tainment measures over the course of a pandemic. We determine the timing and level
of containment measures to minimize the impact of a pandemic on economic activity
and lives lost, subject to healthcare capacity and stochastic disease evolution dynamics.
On the basis of practical evidence, we examine two common classes of containment
policies—dynamic and static—and we find that dynamic policies are particularly valu-
able when the rate of disease spread is low, recovery takes longer, and the healthcare
capacity is limited. Our work reveals a fundamental relationship between the structure
of Pareto-efficient containment measures (in terms of lives lost and economic activity)
and key disease and economic parameters such as disease infection rate, recovery rate,
and healthcare capacity. We also analyze the impact of virus mutation and vaccination
on containment decisions.
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1 INTRODUCTION

The outbreak of the novel coronavirus disease (COVID-19)
in China in late December 2019 reminded us of the pan-
demics of recent history such as severe acute respiratory
syndrome (SARS) and Middle East Respiratory Syndrome.
Even though each pandemic has its own severity, mortal-
ity rate, and other specific disease characteristics, they share
some similar economic consequences. At the time of writing
this article, the number of people who have lost their lives
worldwide due to the COVID-19 pandemic has exceeded
4,200,000,1 the number of jobs lost in the United States has
reached 22,200,000,2 and expected GDP growth has been
reduced by 10% in the United States and 12% in Europe
(Gormsen & Koijen, 2020). Pandemics are far more than a
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health crisis; they also have significant economic and societal
impacts.

Containing the spread of pandemics such as SARS and
COVID-19 is a major challenge for governments due to eco-
nomic, social, and political factors. During the COVID-19
pandemic, we have witnessed a wide range of containment
measures. Some countries, such as Sweden, opted for a strat-
egy of attempting to acquire herd immunity and adopted min-
imal containment measures. Other countries enacted strict
containment measures, from imposing social distancing rules,
closing schools and shopping malls, canceling arts and cul-
ture events, and closing borders to enforcing national lock-
downs, curfews, and quarantines. The overarching goal of
these measures is to slow the spread of the disease and flat-
ten the pandemic’s curve to bring it below the threshold of
healthcare capacity. As illustrated in Figure 1, if the number
of actively infected individuals exceeds the capacity of hos-
pitals and clinical organizations at any given time, the quality
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F I G U R E 1 Two scenarios for the spread of pandemics with (a) and
without (b) containment measures [Color figure can be viewed at
wileyonlinelibrary.com]

of healthcare services will quickly degrade, leading to a sig-
nificant increase in the number of deaths.

While imposing severe containment measures (e.g., cur-
fews, large-scale social distancing, quarantine, and lock-
downs) may limit the spread of the pandemic (as in the case
of Australia) and decrease stress on the healthcare system,
yet such severe measures may derail the economy by dis-
rupting supply networks, manufacturing lines, and household
demand for goods and services, leading to lost jobs, eco-
nomic stall, and social disturbances. On the other hand, under
mild or no containment measures, such as depending on herd
immunity, the economic implications of the pandemic may
be limited but the capacity of the healthcare system would be
quickly exhausted, possibly leading to a significant amount of
lives lost. Hence, when determining the severity of contain-
ment measures, governments face a stark trade-off between
maintaining economic activity and reducing lives lost. In this
study, we examine this trade-off by providing a multiobjec-
tive decision model that incorporates both the economic and
health implications of containment measures into the decision
maker’s objective function.

Finding an appropriate containment policy is further com-
plicated due to the unpredictable nature of disease spread and
the impact of a government’s other mediating actions dur-
ing a pandemic. For example, the effectiveness of contain-
ment measures on the rate of disease spread can be uncertain
due to unpredictable social reactions to the measures, possi-
ble virus mutation, and potential vaccination and treatment
development. Economic stimulus packages and short-term
investments into healthcare may also condition the impact
of government containment measures on economic activ-
ity and lives lost. Finally, the impact of measures may also
be moderated by the level of economic and containment
measures taken by the rest of the world, because a global
economic slowdown will eventually affect local economies.
Our model aims to incorporate these relevant problem
dynamics into a unified decision-making framework for
governments.

Given the duration of a typical pandemic (2–3 years), we
track the economic impact of the disease through the change
in the industrial production (IP) index,3 which is a good proxy

for change in gross domestic product (GDP). Estimating the
sensitivities of the economic activity level and disease spread
to the strictness (level) of containment measures is a key
driver of our decision model. Hence, in Section 5, we pro-
vide two empirical models to estimate those sensitivities. We
use University of Oxford’s (2020) country-level containment
reports for tracking the level of containment measures and
calculate the disease spread again at the country level using
publicly reported case numbers. University of Oxford reports
an aggregate containment level for countries, which can be
scaled between 0 and 1, where 0 means no containment effort
and 1 means complete lockdown. The details of the empirical
models used for estimating the input parameters are provided
in Section 5.

In this paper, we develop a stochastic multiobjective
dynamic program to determine the level and timing of gov-
ernment interventions during a pandemic. The dual objectives
of the hypothetical government are to (i) minimize the impact
of containment measures on economic activity (measured as
change in IP) and (ii) minimize the expected number of lives
lost during the pandemic, subject to the stochastic evolution
dynamics of the disease over time and the capacity of the
healthcare system. Motivated by real-life containment activi-
ties, we focus on deriving and analyzing two common classes
of control policies: (i) static containment policies, where the
level of containment measures remains mostly fixed through-
out the planning horizon, and (ii) dynamic/flexible contain-
ment policies, where the level of containment measures is
revised based on the evolution of disease spread over time.
For example, the herd immunity approach in Sweden and the
full lockdown in China during the early phases of the pan-
demic can be classified as examples of static containment
policies. It is also possible to consider static containment poli-
cies, where the containment level is raised to a specific thresh-
old between no containment and full lockdown, and is kept
fixed throughout the planning horizon. Dynamic containment
policies are also commonly used in practice. For example, the
United Kingdom started with a low level of containment by
imposing loose social distancing rules in early April 2020,
then, as infections increased, it raised the containment level
by imposing additional measures, and finally, in September
2020, the country moved to a full lockdown for 2 weeks.
When cases decreased by early winter, they eased the lock-
down restrictions.

Although it is intuitive that dynamic containment policies
would perform better than static policies due to their flexibil-
ity in responding to a pandemic’s evolution, it is not a pri-
ori evident whether these benefits are significant enough to
justify the switching costs associated with frequently updat-
ing containment measures. Frequently updating containment
measures are not desirable as they are subject to significant
tangible and intangible economic, social, and political costs.
In addition to the deadweight economic losses due to opening
and closing businesses, frequently changing the level of con-
tainment during the pandemic creates economic and social
uncertainty, which may lead to prolonged labor disturbances
and social instability. In this paper, we focus on the quantifi-
able benefits of dynamic policies (over static policies), which
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can be compared to the costs of implementing such complex
rules in practice.

We contribute to the literature with the following main
points:

∙ We provide a decision-support framework for policymak-
ers by integrating disease-spread models with stochas-
tic dynamic optimization techniques. Unlike the existing
research on pandemic disease control, we examine the
broader problem of managing a government’s level of con-
tainment measures to prevent the spread of a pandemic
while minimizing the effect of such measures on economic
activity and lives lost. Our model reflects the decision
maker’s ability to revise containment measures as the dis-
ease evolves over time.

∙ Our framework enables us to characterize a Pareto-efficient
set of containment policies that are undominated in terms
of lives lost and level of economic activity. Through a
comprehensive set of sensitivity analyses, we examine the
impact of healthcare capacity and disease characteristics
on containment decisions. We find that under the Pareto-
optimal set of containment policies, multiple peaks in
the pandemic are likely to occur unless when the disease
spread rate is high and the recovery period is long. In addi-
tion, targeting a high level of economic activity typically
generates fewer but steeper peaks in the pandemic.

∙ We compare static and dynamic containment policies and
observe that the dynamic policies are most beneficial when
the disease spread is low and recovery takes longer. Fur-
ther, governments targeting a moderate level of economic
activity benefit more from dynamic policies.

∙ In addition, a close examination of the Pareto-optimal set
of containment policies reveals a key insight: Under low or
high levels of containment measures, lives lost are highly
sensitive to target economic activity level. Under interme-
diate levels of containment measures, however, changes in
target economic activity level do not significantly affect
lives lost.

∙ Finally, we also analyze the impacts of possible vaccina-
tion and virus mutation on the Pareto-optimal set of con-
tainment measures and disease spread. We find that under
a relatively low level of target economic activity, starting
vaccinations after 9 months effectively flatten the peaks
in a pandemic. If vaccinations are delayed, the benefits
in terms of reduced lives lost quickly decrease. We also
observe that the effectiveness of vaccination programs (in
terms of reduced lives lost) is significantly compromised
under high levels of target economic activity. Virus muta-
tion has a qualitatively similar, but opposite, effect on the
results.

The rest of the paper is structured as follows: We provide
a review of the related literature in Section 2, followed by
a description of our time-dependent disease spread model in
Section 3, and the decision model in Section 4. In Section 5,
we discuss the estimation of the model parameters, and we
devote Section 6 to the analysis of the model. We conclude

with discussions and future research directions in Section 7.
In addition, in Supporting Information Appendices A and B,
we discuss extending our results under vaccination and virus
mutation scenarios. Finally, we provide the details of our
empirical analysis in Supporting Information Appendix C.

2 LITERATURE REVIEW

In the literature, there is an extensive amount of research on
modeling pandemic-spread dynamics using approaches that
range from deterministic models (e.g., Albi et al., 2021; Chen
et al., 2016; Sene, 2020) to stochastic models, such as dis-
crete event simulation and system dynamics (Ghaffarzadegan
& Rahmandad, 2020; Xie, 2020), to hybrid models (Ardabili
et al., 2020; Funk et al., 2018). However, there is limited
work linking outbreak dynamics to decision-support models.
With a few notable exceptions (Boloori & Saghafian, 2020;
Eryarsoy et al., 2022), the relevant literature mostly focuses
on analyzing pandemic spread.

Recently, a number of studies have been published explor-
ing different types of containment measures to control the
spread of a pandemic. Many of these studies examine the
impact of a particular containment action—such as air traf-
fic restrictions (Zlojutro et al., 2019), complete lockdown
(Singh & Adhikari, 2020), and social distancing (Qiu et al.,
2020; Thunström et al., 2020)—on the disease spread. Hav-
ing focused on the COVID-19 case, a comprehensive study
by Ferguson et al. (2020) evaluates the impact of nonpharma-
ceutical interventions, including case isolation at home, vol-
untary home quarantine, social distancing of elderly people,
closures of schools and universities, and general-population
social distancing. The authors conclude that to significantly
reduce contact rates, multiple interventions need to be inte-
grated. Giordano et al. (2020) suggest a forecasting model
based on a modified version of Kermack–McKendrick’s sus-
ceptible, infected, recovered (SIR) model to plan effective
pandemic control. Using a compartmental model, the authors
discriminate between diagnosed and undiagnosed patients
and run scenario analyses for implementing countermeasures.
Similar to Ferguson et al. (2020), their findings reveal that
multiple intervention policies, such as widespread testing,
contact tracing, and social distancing, should be integrated
to end the outbreak. The literature also considers the impact
of mobility patterns (Delen et al., 2020), age-specific contact
settings (Kyrychko et al., 2020), as well as popular discontent
and social fatigue on pandemic control policies (Ouardighi
et al., 2021).

A few recent works examine the economic impact of
intervention policies for COVID-19. For instance, Boloori
and Saghafian (2020) provide an analytical decision-making
framework based on a compartmental disease-spread model
to study the economic burdens of pandemic containment
policies in the United States. They suggest that while severe
societal intervention policies may not be cost effective, the
policies imposed by the US government over a 4-month
period increased quality-adjusted life years per capita. In
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another attempt, Eryarsoy et al. (2022) develop deterministic
mathematical formulations to study the economic impact of
government interventions. The authors develop a multistart
variable neighborhood search algorithm to suggest inter-
vention strategies for policymakers. Their findings reveal
that when disease severity is low and the estimated eco-
nomic burden of pandemic containment policies is high, the
policymaker should not engage in any intervention policy.

The societal value placed on lowering the statistical likeli-
hood of one death is referred to as the value of statistical life
(VSL) (Viscusi & Aldy, 2003). While various methods of fix-
ing a monetary value for a human life have already been sug-
gested by different protagonists, pandemics forced the globe
to confront yet another unsettling trade-off between human
life/misery and economic gain. Within labor-market studies,
a sizable body of research has emerged that estimates VSL
(Mrozek & Taylor, 2002). In healthcare operations, this issue
is usually addressed from the “efficiency” point of view (Har-
ris, 1987). As a result, to enable comparisons across differ-
ent areas of healthcare, standard measures of health outcome,
such as the quality-adjusted life years (QALY) (Zeckhauser
& Shepard, 1976) and disability-adjusted life years (DALY)
(Murray, 1994), were suggested. While the debate on the
theoretical underpinnings and practical implications of those
measures are still ongoing, the common overarching goal is
to identify a healthcare strategy that results in a minimal cost
per QALY or DALY (Whitehead & Ali, 2010). When con-
sidering a particular treatment for a particular illness, such
as a cardiovascular disease or diabetes mellitus, QALY and
DALY provide good measures of the cost-effectiveness of
a treatment in terms of allocating financial resources. In a
pandemic context, however, the number of lives lost pro-
vides an easier and direct way of measuring the effective-
ness of containment policies. Hence, we focus on the num-
ber of lives lost as one of the governmental objectives in our
context.

In this study, we aim to provide a decision support frame-
work for policymakers by integrating disease-spread models
with dynamic optimization models. Unlike the existing
research, we examine the broader problem of optimizing a
government’s level of containment measures to prevent the
spread of a pandemic while considering the dual objectives
of minimizing lives lost and maximizing level of economic
activity. Our analysis uncovers the connection between
these two critical objectives by providing a Pareto-optimal
set (efficient frontier) of containment policies. Hence, our
multiobjective approach is a generalization of the constrained
optimization models, which minimize lives lost (or maximize
QALY) under a given level of economic activity or budget
constraint. Moreover, we estimate the model parameters
through a comprehensive empirical analysis, which provides
strong practical implications. We numerically illustrate the
impact of healthcare capacity and other mediating factors
on the trade-off between lives lost and economic activity
during a pandemic. We also identify the factors that drive
multiple peaks in a pandemic under the Pareto-optimal set of
policies.

F I G U R E 2 The time-varying SIRD framework and its parameters
[Color figure can be viewed at wileyonlinelibrary.com]

3 PANDEMIC MODEL

In the literature, there are several approaches for modeling
disease spread. Perhaps the simplest and most well known is
Kermack–McKendrick model, also known as the SIR model.
SIR is a Markov model that has been used to explain the
fast increase and decrease in the number of infected indi-
viduals in many pandemics. The SIR and its variants (such
as susceptible-infected-susceptible (SIS), and susceptible-
exposed-infectious-recovered (SEIR)) generally fall under
deterministic compartment models, and have been widely
used to analyze the spread of pandemic diseases (Keeling
& Rohani, 2011; Wearing et al., 2005; Wu et al., 2020).
These models are represented by a set of differential equa-
tions, where various disease-specific parameters describe the
growth rates of disease among population compartments
(Hethcote, 2000).

As illustrated in Figure 2, in this study we use a mod-
ified version of the SIR model. Our susceptible-infected-
recovered-deceased (SIRD) model consists of four compart-
ments (or states) and three parameters, where the transition
between states is indicated by arrows. The state variables st,
it, rt, and dt, respectively, denote the susceptible, infected,
recovered, and deceased number of individuals at time t.
Parameter 𝛽t is the infection rate (i.e., the expected number
of individuals an infected person will pass the infection on
to at each time period) and parameter 𝛾 describes the recov-
ery rate. The recovery rate can be numerically estimated by
studying the virus or through data analysis. For example, for
COVID-19, if the average duration of a reported case until
recovery is 14 days, 𝛾 may be estimated roughly as 1/14 per
day. The infection rate 𝛽t (infections/time), on the other hand,
depends on two factors: (i) transmissibility of the disease
(infections/contact) or transmissibility per contact and (ii)
contacts per time unit. While the former factor depends on the
type of disease, the latter can be managed by a government’s
containment measures. We model 𝛽t as a derived decision
variable (which can be partially influenced by containment
measures) and 𝛾 as a disease-specific constant.4 The parame-
ter 𝜇t is the state-dependent death rate, which is explained in
Section 4. The modified version of the SIR model used in our
study is provided in Equation (1):

st+1 − st = −𝛽tstit
it+1 − it = 𝛽tstit − 𝛾it − 𝜇tit
rt+1 − rt = 𝛾it
dt+1 − dt = 𝜇tit

(1)
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We note that in the medium and long term, a govern-
ment’s healthcare-related measures (such as investing in drug
and treatment development as well as increasing ICU capac-
ity) may affect the recovery rate 𝛾 and spread of the dis-
ease. It is possible to extend our model by partially endo-
genizing 𝛾, but we believe this will only have a second-
order effect given the time frame of a pandemic and invest-
ment lead times. Hence, we focus on controlling 𝛽t in this
study.

It is worth noting that the SEIR model (with state vari-
ables Susceptible, Exposed but not infectious (E), Infec-
tious, and Recovered) may also be used to model the
spread of COVID-19 because there is a period where the
infected individual does not show any symptoms but is
capable of infecting others. Having a very similar structure
to SIRD, the SEIR model consists of only one additional
parameter, 𝜆, which manages the transition from the state
“exposed” to “infectious.” We also conducted our main anal-
ysis with a SEIR model and obtained materially the same
insights.

4 OPTIMIZATION MODEL

In this section, we provide a multi-period discrete-time
optimal control problem to determine the level and timing
of a government’s containment measures during a pandemic.
We use discrete weekly intervals both for modeling disease
spread and making containment decisions. In each decision
period t, the government decides the level of containment
measures mt ∈ [0, 1]. Our definition of mt is based on the
Oxford Government Stringency Index C (University of
Oxford, 2020), which categorizes government containment
and closure actions during a pandemic into eight subgroups:
school closures, workplace closures, cancelation of public
events, restrictions on gathering size, public transport clo-
sures, stay-at-home requirements, restrictions on internal
movement, and restrictions on international travel. The
severity of the actions in each group is measured on a
simple scale of severity/intensity, and then these values
are scaled and combined to obtain a single containment
index between 0 and 1. In our work, we use this aggre-
gate containment measure definition to model our decision
variables.

Higher values of mt imply stricter containment measures.
For practical purposes, the level of mt can be interpreted as
follows: (i) mt = 0 means implementing no measures (such as
adopting a herd immunity approach); (ii) mt ∈ (0, 0.3] means
imposing low-level measures (such as calling for voluntary
social distancing rules, requiring the use of masks, etc.); (iii)
mt ∈ (0.3, 0.7] corresponds to medium-level measures (such
as imposing partial curfews, canceling social events and gath-
erings, etc.); and (iv) mt ∈ (0.7, 1] can be interpreted as high-
level measures (such as imposing national lockdown and
large-scale quarantines as well as shutting down nonessen-
tial supply chains). In our model, the containment level mt
conditions both the level of economic activity and the spread

of disease and hence the number of lives lost. We provide our
mathematical model and notation in Table 1.

4.1 Mathematical formulation

We assume that the government has two objectives without
any a priori preference for one of them. The first objective
is to minimize the impact of containment measures on eco-
nomic activity, as defined in the following:

Objective 1. Minimize the impact of containment measures
on expected level of economic activity (i.e., maximize the
expected level of economic activity)

max:
1
T

T∑
t=1

E�̃�IP
IPt

(
⃖⃑mt; cIP, �̃�IP

)
, (2)

where the function IPt(⃖⃑mt; cIP, �̃�IP) is the IP index (a com-
mon proxy for level of economic activity) in period t, as
a function of the vector of containment measures ⃖⃑mt, con-
trol variables cIP, and a random shock �̃�IP.5 In Section 5, we
empirically estimate the parameters of this function and dis-
cuss the control variables cIP in detail. We normalize the ini-
tial level of economic activity at t = 0 to IP0 = 100% and
formulate our objective to maximize the average expected
level of IP index over the planning horizon as given by
1

T

∑T
t=1 E�̃�IP

IPt(⃖⃑mt; cIP, �̃�IP). The expectation is taken over the
independent and identically distributed random shock �̃�IP in
each period. The second objective of the government is to
minimize the expected number of lives lost during the pan-
demic, as defined in the following:

Objective 2. Minimize the total number of expected lives lost

min :
∑T

t=1
E�̃�𝛽 lt

(
v⃑t, ⃖⃑mt; �̃�𝛽

)
, (3)

where

lt(v⃑t, ⃖⃑mt; �̃�𝛽) = 𝜇t+1it+1 (4)

and

𝜇t+1 =

{
𝜌L if 𝜌Hit+1∕H ≤ UC

�̂�L if 𝜌Hit+1∕H > UC
(5)

The function lt(v⃑t, ⃖⃑mt; �̃�𝛽)gives the number of lives lost
given the current state of the disease v⃑t = [st, it, 𝜇t, 𝛽t−1],
the vector of past and current containment measures ⃖⃑mt =
[m1, … ,mt], and a random shock �̃�𝛽, which represents the
uncertain evolution of disease spread.6 In Section 5, we
empirically estimate the change in disease infection rate
Δ𝛽t(⃖⃑mt; �̃�𝛽) as a function of the vector of containment mea-
sures ⃖⃑mt. In period t, the change in infection rate Δ𝛽t(⃖⃑mt; �̃�𝛽)
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TA B L E 1 Notation for the mathematical model

Sets and indices t, T Time period and set of time periods for the model, T = {1, … ,T − 1}

Parameters S0, I0, R0, and D0 Number of susceptible, infected, recovered, and deceased individuals, respectively, at t = 0

N Population size (normalized to 1)

H Normalized healthcare capacity in terms of ICUs

UC Critical utilization level of healthcare capacity

𝛾 and 𝛽0 Recovery rate and base infection rate of the disease, respectively

𝜌H Hospitalized fraction of infected individuals

𝜌L and �̂�L Deceased fraction of infected individuals when the utilization of healthcare capacity is below UC
and above UC, respectively

Decision variable mt mt ∈ [0, 1], level of containment measures in period t ∈ T. We denote the vector of containment
measures up to period t by ⃖⃑mt = [m1, … ,mt]. We define m0 = 0 and ⃖⃑m0 = [m0].

Derived variables st Number of susceptible individuals in period t ∈ T

it Number of infected individuals (active cases) in period t ∈ T

rt Number of recovered individuals in period t ∈ T

dt Number of deceased individuals in period t ∈ T

𝜇t Death rate in period t ∈ T

𝛽t Infection rate in period t ∈ T

Δ𝛽t(⃖⃑mt; �̃�𝛽) Change in infection rate in period t ∈ T, as a function of containment decisions ⃖⃑mt and a random
shock �̃�𝛽 , such that 𝛽t = 𝛽t−1 + Δ𝛽t(⃖⃑mt; �̃�𝛽)

IPt(⃖⃑mt; cIP, �̃�IP) Level of economic activity in period t ∈ T, as a function of containment decisions ⃖⃑mt, control
variables cIP,1 and a random shock �̃�IP

v⃑t v⃑t = [st , it , 𝜇t, 𝛽t−1], vector of state variables defining the state of the disease in period t ∈ T

aThe variable cIP denotes the significant control variables of the empirical estimation model used to estimate the relationship between the IP index and containment measures in
Section 5.1.

together with the current state of the disease v⃑t determine
the number of infected individuals it+1. Accordingly, the
utilization of the healthcare system is given by 𝜌Hit+1∕H,
where H is the normalized healthcare capacity (in number
of ICUs) and 𝜌H is the hospitalized fraction of infected
individuals.

In addition to the inherent disease characteristics, utiliza-
tion of the healthcare system affects the quality of treatment
and the death rate, 𝜇t+1, due to infection. In particular, we
assume that if utilization of the healthcare system is lower
than a critical level UC, then 𝜌L percentage of infected indi-
viduals lose their lives. If utilization exceeds UC, then the
death rate increases to �̂�L > 𝜌L.

We use the scalarization method to represent our multiob-
jective, multiperiod stochastic dynamic program. Scalarizing
a multiobjective problem means formulating a single-
objective version of the problem using a scalar 𝛼 ∈ [0, 1],
such that the Pareto-optimal solutions of the original problem
can be obtained by solving the scalarized problem under
different values of the scalar 𝛼. It is important to note that
with scalarization, we do not define weights or priorities
for objectives, but rather, scalarization provides a param-
eterized problem to identify Pareto-optimal solutions. For
more details and other approaches for modeling and solving
multi-objective problems (such as the hybrid method, elastic

constraint method, and 𝜀-constraint method), see Chapter 3
in Ehrgott (2005):

Vt,𝛼
(
v⃑t; ⃖⃑mt−1

)
= max

mt∈[0,1]

{
𝛼

E�̃�IP
IPt

(
⃖⃑mt; cIP, �̃�IP

)
T

+ (1 − 𝛼) E�̃�𝛽 lt(v⃑t, ⃖⃑mt; �̃�𝛽) + E�̃�IP,�̃�𝛽Vt+1,𝛼(v⃑t+1; ⃖⃑mt)

}
, s.t.,

(6)

s1 = S0, i1 = I0, r1 = R0, d1 = D0, (7)

st+1 − st = −𝛽tstit, ∀t ∈ T, (8)

it+1 − it = 𝛽tstit − 𝛾it − 𝜇tit, ∀t ∈ T, (9)

rt+1 − rt = 𝛾it, ∀t ∈ T, (10)

dt+1 − dt = 𝜇tit, ∀t ∈ T, (11)

𝜇t+1 =

{
𝜌L if 𝜌Hit+1∕H ≤ UC

�̂�L if 𝜌Hit+1∕H >UC
, ∀t ∈ T, (12)
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DISEASE CONTAINMENT MEASURES DURING A PANDEMIC 7
Production and Operations Management

𝛽t = 𝛽t−1 + Δ𝛽t
(
⃖⃑mt; �̃�𝛽

)
, ∀t ∈ T, (13)

VT ,𝛼
(
v⃑T; ⃖⃑mT−1

)
=

{
𝛼

E�̃�IP
IPT

(
⃖⃑mT; cIP, �̃�IP

)
T

+ (1 − 𝛼) E�̃�𝛽 lT
(
v⃑T , ⃖⃑mT; �̃�𝛽

) |mT = 0

}
,

(14)

At time t, given the state of the disease v⃑t and
the vector of previous containment decisions ⃖⃑mt−1,
the government decides the current level of contain-
ment mt. The first two terms of the objective function

{𝛼
E�̃�IP IPt(m⃑t;cIP,�̃�IP)

T
+ (1 − 𝛼)E�̃�𝛽 lt(v⃑t, ⃖⃑mt; �̃�𝛽)} denote the

expected immediate effect of containment measures on
economic activity and lives lost in the current period, under
a given scalarization parameter 𝛼. The second term of the
objective is the cost-to-go function.

Together with the initial conditions in Equation (7), Equa-
tions (8)–(12) describe the modified time-varying SIRD
model for the spread of the disease over time (i.e., st, it, rt,
and dt indicate the number of susceptible, infected, recov-
ered, and deceased individuals in period t). Equation (13)
describes the relationship between the infection rate 𝛽t and
the vector of containment measures ⃖⃑mt. Finally, Equation (14)
specifies the termination condition. Given the long pan-
demic planning horizon in practice, our particular choice
of termination condition has no significant effect on the
results.

The model in (6)–(14) is a high-dimensional dynamic
program with a nonconvex feasible region.7 As a result,
even when we discretize the problem with monthly decision
epochs, the model is still computationally intractable given
that a pandemic may last for more than 1 year. Therefore,
we continue with a weekly model to update disease evolution
and containment measures and resort to heuristic containment
policies. Next, we explain our parameter estimations for our
model.

5 PARAMETER ESTIMATION

In this section, we provide a brief empirical analysis to deter-
mine the sensitivities of the economic activity level IPt and
disease spread rate 𝛽t to the level of containment measures
⃖⃑mt. In particular, we aim to estimate the coefficients of the
percentage change in economic activity level and the change
in disease spread rate. The results of the empirical estimations
are fed to the optimization model (given by Equations 6–14)
when determining the level and timing of government con-
tainment measures.

5.1 Estimating the impact of containment
measures on economic activity

During the COVID-19 outbreak, evaluating the impact of
a government’s containment measures on economic activity
has been challenging due to the short time span of the evalu-
ation period combined with the low dissemination frequency
of the main macroeconomic variables. In order to examine
the impact of governments’ containment measures on eco-
nomic activity, we first set our sample country selection to
G20 members. According to the International Monetary Fund
(IMF), G20 countries account for 80% of global economic
productivity, and therefore are considered a good represen-
tative of the world’s total production output. However, since
the European Union (EU) is counted in the G20, together with
its largest economies of Germany, France, the United King-
dom, and Italy, we remove the EU from our sample set. Fur-
ther, another member, Saudi Arabia, prefers not to disclose its
various statistics on macroeconomy and international trade.
Therefore, we also exclude it from our analysis.

Change in level of economic activity is commonly mea-
sured by change in GDP. However, in our case, GDP can-
not be taken as the dependent variable, because due to its
quarterly announcement frequency it gives us an exceedingly
small sample to make a robust inference about statistical
analysis. Moreover, initial GDP announcements are usually
revised multiple times throughout the year, making them even
more questionable to use in our analysis.

As a higher frequency proxy for GDP, we take the sea-
sonally adjusted IP index, which is announced on a monthly
basis. One of the main reasons why IP is a good proxy for
GDP is that value added by IP represents a substantial share
of GDP, especially for big economies such as G20 mem-
bers (see NBER’s Business Cycle Dating Committee8; Rün-
stler & Sédillot, 2003). However, some G20 members do
not disclose their IP values or stopped disclosing them some
time ago. These countries are Australia, Argentina, India,
Indonesia, Mexico, and South Africa, and so we exclude
them from our sample country set. Eventually, we end up
with 12 countries: the United States (1), China (2), Japan
(3), Germany (4), the United Kingdom (6), France (7), Italy
(8), Brazil (9), Canada (10), Russia (11), Korea (12), and
Turkey (19), where the numbers in the parentheses denote
the countries’ positions in the nominal GDP ranking in the
world at the end of year 2019 by IMF estimates. The result-
ing country sample accounts for more than 65% of global
GDP in the same year.9 The details of the empirical analy-
sis and data are provided in Appendix C in the Supporting
Information.

5.1.1 Dependent variable

The monthly IP values cover from the end of December 2019
till the end of May 2020 (June 2020) for Brazil, Canada,
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8 SHAHMANZARI ET AL.Production and Operations Management

Germany, France, the United Kingdom, Italy, Russia, and
Turkey (for China, Japan, Korea, and the United States).
Since we consider the monthly changes in IP values as the
dependent variable, we end up with 64 country × month
observations in an unbalanced panel data format. Accord-
ingly, our dependent variablegt,y is the percentage change in
IP in month t for country y, that is,

gt,y =

(
IPt,y − IPt−1,y

)
IPt−1,y

. (15)

5.1.2 Main independent variable

In our setup, the independent variable of special interest
is a government’s level of containment measures. Suppose
that the independent variable mt,y ∈ [0, 1] denotes the level
of government containment measures in month t for coun-
try y. In our dataset, this variable ranges from no con-
tainment (mt,y = 0) to total lockdown (mt,y = 1) over time
across the countries. For example, when COVID-19 was for-
mally announced as a pandemic, Sweden and the United
Kingdom took almost no containment measures for a few
months while Italy and Spain quickly moved to full con-
tainment and lockdown. As a proxy for this variable, we
use Oxford’s Government Stringency Index C (University of
Oxford, 2020). As explained in the Introduction, this index
categorizes government containment and closure actions dur-
ing the pandemic into eight subgroups, measures the sever-
ity/intensity of each action, and then combines these val-
ues to form a single aggregate containment index between 0
and 1.

This index is weekly updated, whereas our IP variable is
a monthly indicator. Therefore, we synchronize these two
datasets by taking only the monthly changes in Oxford’s
index. In our empirical analysis, we consider the monthly
level change (index-level difference between two consecutive
months) as the key independent variable:

Δmt,y = mt,y − mt−1,y (16)

However, since measures taken by a government in the
previous period can also affect the current period’s IP, we
include both the current (Δmt,y) and lagged (Δmt−1,y) val-
ues of this variable in our model (we experimented with
other lagged containment variables and found that they had
no significant impact; see Appendix C in the Supporting
Information).

5.1.3 Control variables

We also included a number of control variables that would
likely condition the impact of a government’s containment
measures on economic activity. In particular, we included the
monthly change in the variables described in Table 2.10

5.1.4 Model and results

We estimate the following model in the form of an unbal-
anced panel regression to measure the impact of government
containment and closure actions:

gt,y = a + b1Δmt,y + b2Δmt−1,y + b3Δet,y + b4Δomt,y

+ b5Δomt−1,y + b6Δoet,y + 𝜀t,y (17)

To have a robust framework, we use three alternative panel
regression models, namely (i) pooled estimation, (ii) fixed-
effect estimation, and (iii) random effects (generalized least
square) estimation, where standard errors are heteroscedas-
ticity and autocorrelation robust. We observe that the model
performs a fairly good fit to the data with an R2 value around
0.50 for all estimation methods. Both quantitative and qual-
itative results are similar across the alternative estimation
techniques, and therefore we interpret the economic findings
based on the pooled regression results provided in Table 3.
We observe that Δmt,y, Δmt−1,y, and Δomt−1,y are the only
significant variables. In particular, a 0.1-point increase in a
country’s stringency index decreases its IP by 1.62% in the
current month and 1.68% in the following month. Moreover,
as hypothesized, the weighted stringency index of the major
trading partners also has a negative effect on a country’s IP.
According to our estimates, a 0.1-point increase in the trade
partners’ stringency index dampens the IP of that country by
2.43% in the following month. A more detailed description of
the models and discussion of the empirical results are avail-
able in Appendix C in the Supporting Information.

On the basis of our empirical analysis, we use the signif-
icant variables and their coefficients in Table 3 to describe
the relationship between containment measures and the level
of IP index, that is, given IPt−1, the IP index in period t,
IPt(⃖⃑mt; cIP, �̃�IP), in the optimization model is specified such
that ⃖⃑mt = [mt−2,mt−1,mt] and the control variable cIP is
Δomt−1. For expositional clarity, we present our numerical
analysis in Section 6 for the case when the value of the con-
trol variable is set to zero.

5.2 Estimating the sensitivity of
containment measures on disease spread

In this part, we examine the effect of a government’s level of
containment measures on the infection rate of the disease, that
is, we estimate Δ𝛽t(⃖⃑mt; �̃�𝛽). At this stage, our main depen-
dent variable is Δ𝛽t,y = 𝛽t,y − 𝛽t−1,y, that is, the change in
infection rate in period t for country y, whereas the inde-
pendent variables are Δmt,y, Δmt−1,y, … , Δmt−4,y, that is, the
change in the level of a government’s containment mea-
sures in periods t, t − 1, … , t − 4, respectively, for country y
(we experimented with further lagged containment variables;
however, we found that estimations produce unreasonable
findings mostly due to the noise arising from including many
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DISEASE CONTAINMENT MEASURES DURING A PANDEMIC 9
Production and Operations Management

TA B L E 2 Explanation of control variables

Control variable Description Justification Data

Δet,y Change in economic countermeasures
taken by country y in month t to
mitigate the negative economic impact
of pandemic

While containment measures are expected to
decrease the economic activity in a country,
economic stimulus packages such as furlough
support and shared work programs may help
businesses increase output

Oxford’s Government
Economic Response Index
E

Δomt,y

Δomt−1,y

Change in average weighted level of
containment measures taken by the 10
largest trade partners in months t and
t − 1 for country y

Containment measures taken by major economic
partners may have a dampening effect on
bilateral international trade through diminished
export/import activities

Oxford’s Government
Stringency Index C, and
TradeMap database

Δoet,y Change in average weighted level of
economic countermeasures taken by the
10 largest trade partners in month t for
country y

Although containment measures taken by trading
partners are expected to decrease the
export/import volumes between these countries,
economic stimulus packages provided by
trading partner countries may stimulate
international trade

Oxford’s Government
Economic Response Index
E, and TradeMap database

TA B L E 3 Pooled estimation results for the impact of containment
measures on economic activity

Pooled estimation Coefficient t-stat p-Value

Δmt,y −0.162 −1.89 0.06*

Δmt−1,y −0.168 −2.23 0.03**

Δet,y −0.092 −1.23 0.23

Δomt,y 0.097 0.54 0.60

Δomt−1,y −0.243 −2.33 0.02**

Δoet,y 0.017 0.09 0.93

R2 = 0.501

lags). We expect that containment measures have a lagged
negative effect on the infection rate. As in Section 5.1, we
use Oxford’s Government Stringency Index C as a proxy for
the level of containment measures.

In our setup, both 𝛽t,y and mt,y are available weekly, there-
fore we proceed by working on the weekly observations for
an enriched sample. The time frame for the estimations is
from March 20, 2020 to January 29, 2021, giving us 46 weeks
in total. We consider all countries that have data on both
infection rate and containment measures, which totals 87
countries, encompassing more than 90% of the global popu-
lation. Overall, we utilize 87 × 46 = 4002 country × week
observations in a balanced panel structure. To analyze the
impact of containment measures on the infection rate, we run
the following empirical model:

Δ𝛽t,y = c1Δmt,y + c2Δmt−1,y +⋯+ c5Δmt−4,y + 𝜀t,y (18)

For robustness, we use three alternative models, namely (i)
pooled estimation, (ii) fixed-effect estimation, and (iii) ran-
dom effects (generalized least square) estimation. Since all
models yield similar results, we only report the coefficients
obtained via pooled estimation.

According to the estimation results, the current and past
4 weeks’ containment measures taken by a government can

TA B L E 4 Pooled estimation results for the impact of containment
measures on disease spread

Pooled estimation Coefficient t-stat p-Value

Δmt,y −0.0723 −5.50 0.000***

Δmt−1,y −0.0587 −4.47 0.000***

Δmt−2,y −0.0375 −2.85 0.004***

Δmt−3,y −0.0284 −2.20 0.028**

Δmt−4,y −0.0202 −1.81 0.070*

R2 = 0.0201

significantly reduce the disease infection rate in that country,
which confirms our earlier expectations. Table 4 also shows
that the impact of containment measures on infection rate
is gradually recognized over time. Based on our empirical
analysis, we use the significant variables and their coeffi-
cients in Table 4 to describe the relationship between con-
tainment measures and the change in disease spread, that is,
Δ𝛽t(⃖⃑mt; �̃�𝛽) is specified such that ⃖⃑mt = [mt−5, … ,mt−1,mt].

5.3 SIRD model estimates and numerical
setup

Our disease-spread model includes two key parameters:
recovery rate 𝛾 and base infection rate 𝛽0, that is, the natu-
ral rate of disease infection in the absence of any containment
measures. Without loss of generality, 1∕𝛾 consequently corre-
sponds to the recovery period of the infectious disease. In the
case of COVID-19, this duration ranges from 5 to 30 days (in
severe cases). Following the extant literature on COVID-19,
we take the average duration of recovery to be 14 days, which
corresponds to a recovery rate of 𝛾 = 1/14. For sensitivity
analysis, we consider three levels of average recovery dura-
tion, such that 1∕𝛾 = {7, 14, 21}, where 14 days denotes the
base-case scenario.

Regarding the base infection rate 𝛽0 of the disease,
a range of figures from 0.1 to 0.56 is reported in the
literature (Roques et al., 2020; Sanche et al., 2020;
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10 SHAHMANZARI ET AL.Production and Operations Management

Sugishita et al., 2020; Tang et al., 2020; Trilla, 2020).11 The
fluctuations in base infection rates are driven by a number
of causes, including treatment quality and social differences
across countries as well as increasing public awareness about
the disease. Virus mutation, which we model in Appendix B
in the Supporting Information, also directly impacts infection
rate.12 For our base-case scenario, we set 𝛽0 = 0.25 and
conduct our analysis for the range 𝛽0 = {0.2, 0.25, 0.3}. We
set the variance of the random shocks �̃�𝛽 and �̃�IP low enough
to avoid negative parameters and reduce the computational
time needed to achieve a sufficiently low level of statistical
variability in our results. In our numerical experiments, we
assume that �̃�𝛽 follows a normal distribution with mean 0
and standard deviation 0.001, and the variance of �̃�IP is set
to zero.

For COVID-19, the hospitalized fraction of individuals
𝜌H ranges between 0.7% and 4% of reported cases (Ritchie
et al., 2020). Given the above-mentioned studies, we posit
that the reason for this variation may be due to testing
and reporting differences as well as country-specific health-
care practices. For our numerical study, we set 𝜌H = 2%.
To account for the increased case fatality rate when the
healthcare resources are saturated, we introduce 𝜌L and �̂�L:
fatality rate of individuals when the utilization of health-
care capacity is below a critical level UC and above UC,
respectively. We let UC = 1. Based on the COVID-19 data,
we set 𝜌L = 0.5% and consider three levels of �̂�L, such that
�̂�L ∈ {1.2𝜌L, 1.4𝜌L, 1.6𝜌L}. Regarding healthcare capacity,
we assume 10 ICU units per 100,000 people (after normaliza-
tion, this number corresponds to H = 0.0001 in our model)
and run a sensitivity analysis for three levels of H, such
that H ∈ {0.00008, 0.0001, 0.00012}. Finally, we consider
a planning horizon of 700 days.

6 ANALYSIS: CONTAINMENT
POLICIES

The high dimensionality and nonconvexity of the dynamic
program in Equations (6)–(14) render it impossible to opti-
mally solve real-sized problems. Therefore, motivated by
our practical observations, we focus on two common classes
of control policies: (i) static containment policies and (ii)
dynamic containment policies. We use the infectious ratio,
ut = itst, to trigger changes in the level of containment
actions, which provides a good measure of the speed of
disease spread at a given time t. First, we consider static
containment policies, such that a government initiates a
fixed containment level mS once the infectious ratio ut
reaches a certain threshold Qtr. After containment measures
are put in place, they are kept fixed until the end of the
planning horizon unless the infectious ratio becomes very
close to zero. Obviously, countries may revise their contain-
ment levels over time as the infectious ratio fluctuates in
response to the development of the pandemic and contain-
ment measures. We will explore those dynamic policies in
Section 6.2.

6.1 Static containment policies

Static containment policies may be desirable by governments
due to their simplicity and the provided certainty about plan-
ning future social and economic activities. Canceling work
meetings and travel plans in response to a change in con-
tainment measures would have both economic and social
consequences. Similarly, frequently opening and closing a
business, as a result of changes in containment levels, may
result in deadweight hiring and layoff costs. Similar dead-
weight losses also apply when negotiating rents and financial
contracts in the markets. In addition, from a societal point
of view, uncertainty associated with containment measures
may lead to social disturbances and instability. In this sense,
implementing a static containment policy provides individ-
uals and businesses with more certainty about the level of
containment measures, enabling them to avoid deadweight
social and economic costs due to cancellations and updates,
but these policies have limited flexibility to respond to the
evolution of the pandemic.

During the COVID-19 pandemic, we have observed exam-
ples of static policies in China and Sweden. China triggered
a full containment policy in Wuhan soon after infection num-
bers reached a certain threshold and kept those strict contain-
ment measures in place until the infection numbers signifi-
cantly decreased. Sweden adopted a static policy to the other
extreme. After infection numbers reached a certain level in
the country, they initiated loose voluntary social distancing
and mask use and they have mostly kept these measures fixed
throughout the pandemic.

The generalized version of the static policies discussed
above is given in Equation (19). Here, Qtr denotes an initial
policy trigger, such that if the infectious ratio ut exceeds Qtr,
then the containment level is raised to a static level of mS and
kept fixed until ut falls significantly below that initial trigger.
The parameter 𝜃 > 1 describes the exit strategy, that is, if the
infectious ratio falls below Qtr∕𝜃 after the implementation of
measures, the decision maker sets mt = 0 and lifts the mea-
sures. We observe that 𝜃 ranges from 2 to 5 in practice based
on COVID-19 data. In our experiments, we set 𝜃 = 2:

if ut ≥ Qtr : mt = mS, ∀t ∈ T

if Qtr∕𝜃 ≤ ut < Qtr :

{
mt = mS|mt−1 ≠ 0
mt = 0|mt−1 = 0

, ∀t ∈ T.

if 0 ≤ ut < Qtr∕𝜃 : mt = 0, ∀t ∈ T

(19)

In practice, it is not possible to initiate a containment mea-
sure as soon as the first person gets infected by a disease. It
takes a certain amount of time and effort for governments to
detect and verify the significance of an infection and for the
World Health Organization to determine the importance and
severity of the situation. On the basis of COVID-19 expe-
rience, we will take this threshold to be Qmin

tr = 0.00086%,
that is, during COVID-19, most countries began to initi-
ate containment measures after infectious ratio ut reached
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F I G U R E 3 Feasible and Pareto-efficient static policies with
minimum intervention trigger Qmin

tr = 0.00086% and 𝜃 = 2 [Color figure
can be viewed at wileyonlinelibrary.com]

0.00086%.13 Hence, we restrict our static policy search to
Qtr > Qmin

tr . Figure 3 illustrates the results of the static pol-
icy in terms of the decision maker’s dual objectives. Unless
otherwise stated, all analyses are conducted under the base-
case parameter setting, as described in Section 5.3.

In Figure 3, each point corresponds to a particular static
policy identified by the pair of containment level and policy
trigger (mS, Qtr). For each point, the x-axis provides the num-
ber of lives lost per 100,000 people, and the y-axis shows
the level of economic activity (average IP index) during the
planning horizon. In the figure, the line formed by the red
points provides the Pareto-efficient set of static policies (effi-
cient frontier), such that the policies in this set are undomi-
nated among the feasible static policies. The efficient frontier
in Figure 3 illustrates the trade-off between lives lost and eco-
nomic activity under static policies. Point A at the bottom left
corresponds to a full lockdown (mS = 1, Qtr = 0.002), point
B at the top right denotes a herd immunity approach (mS =
0, Qtr = 0.003), and for illustrative purposes, we present
an intermediate case on the efficient frontier with point C
(mS = 0.6, Qtr = 0.002) in the middle. Under herd immunity,
as expected, the impact on economic activity is minimal yet a
relatively large number of lives are lost. The full lockdown is
the opposite case, with the fewest number of lives lost yet
the highest impact on economic activity. We note that the
containment level decreases along the efficient frontier as we
move from point A to B.

The shape of the efficient frontier in Figure 3 reveals an
important relationship (which also persists under the dynamic
policies) between the level of economic activity and lives lost
during the pandemic. For low and high levels of IP index,
the number of lives lost is highly sensitive to changes in eco-
nomic activity, whereas this sensitivity decreases under inter-
mediate levels of IP index. For example, increasing the level
of economic activity from 75% to 80% results in 78 addi-
tional lives lost, whereas increasing economic activity from
80% to 85% results in fewer than 35 additional lives lost. A
close examination of this result together with the structure
of containment policies on the efficient frontier reveals a key

managerial insight: Under low or high economic activity tar-
gets, containment has a marginal impact on economic activity
but has a significant influence on lives lost. However, when
economic activity targets are set at intermediate levels, the
number of lives lost becomes less sensitive to variations in
containment level.

Static policies are desirable due to their stable nature and
predictability in practice. However, they lack the flexibility
to react to changes in infection numbers. Next, we discuss
another class of common policies, which dynamically revises
containment level based on disease spread, and compare it
with static policies.

6.2 Dynamic containment policies: Band
control policies

Band-type dynamic containment policies are commonly used
by governments. In this case, when the infectious ratio
ut reaches a certain threshold, the government initiates a
set of containment actions that are kept in place for as
long as the infectious ratio stays within certain bounds,
that is, within a band. When the infectious ratio exceeds
the bounds of the current containment measures (in either
direction), the containment measures are revised accordingly
and again kept fixed for as long as ut stays within a new
band.

In practice, most governments’ dynamic policies resemble
single- and double-band policies, and hence we only focus on
such policies. Equation (20) formalizes a single-band control
policy, and Figure 4 provides a visual illustration of it for the
base-case parameters:

If ut ≥ Q2 : mt = mH , ∀t ∈ T

If Q1 ≤ ut < Q2 :

{
mt = mH|mt−1 = mH
mt = mL|mt−1 ≠ mH

, ∀t ∈ T

If Q1∕𝜃 ≤ ut < Q1 :

{
mt = mL|mt−1 ≠ 0
mt = 0|mt−1 = 0

, ∀t ∈ T

If 0 ≤ ut < Q1∕𝜃 : mt = 0, ∀t ∈ T

such that Q1 < Q2 and mL < mH . (20)

The single-band policy is described by a control band
(Q1,Q2) and a containment level pair (mL,mH). That is, when
the infectious ratio ut first exceeds the lower bound of the
band Q1, the containment level is raised to mL and stays at
this level unless ut exceeds the upper bound Q2 or falls below
the exit threshold Q1∕𝜃. If the infectious ratio ut exceeds the
upper bound of the band Q2, the containment level is raised
to mH and is kept at that level as long as ut remains above the
lower bound of the band, that is, Q1 ≤ ut.

Figure 4 illustrates implementing an arbitrary single-band
policy with parameters (Q1 = 0.05,Q2 = 0.1) and (mL =
0.2,mH = 0.8). The figure shows the level of containment
measures mt, number of infected it, and infectious ratio ut
over time. We also present the number of infected under herd
immunity as a comparison. The band policy effectively caps
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12 SHAHMANZARI ET AL.Production and Operations Management

F I G U R E 4 Illustration of a single-band policy [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Illustration of a double-band policy [Color figure can be viewed at wileyonlinelibrary.com]

the peak of the pandemic and spreads it over a longer period
of time as compared to herd immunity. As illustrated in Fig-
ure 4, band containment policies lift containment measures
with a lag as the infectious ratio starts to decrease. This pol-
icy structure is in line with our practical observations during
COVID-19 that most governments are more cautious in lift-
ing measures as compared to imposing them. Next, we dis-
cuss the double-band policy, which is formalized in Equa-
tion (21):

If ut ≥ Q3 : mt = mH , ∀t ∈ T

If Q2 ≤ ut < Q3 :

{
mt = mH|mt−1 = mH

mt = mM|mt−1 ≠ mH
, ∀t ∈ T

If Q1 ≤ ut < Q2 :

{
mt = mM|mt−1 = mM or mH

mt = mL|mt−1 = mL or 0
, ∀t ∈ T

If Q1∕𝜃 ≤ ut < Q1 :

{
mt = mL|mt−1 ≠ 0
mt = 0|mt−1 = 0

, ∀t ∈ T

If 0 ≤ ut < Q1∕𝜃 : mt = 0, ∀t ∈ T
such that Q1 < Q2 < Q3 and mL < mM < mH .

(21)

Figure 5 depicts implementing an arbitrary double-band
policy with parameters (Q1 = 0.05,Q2 = 0.08, Q3 = 0.12)
and (mL = 0.2,mM = 0.4,mH = 0.7). Simply, a double-band
policy is a generalization of a single-band policy. It is

F I G U R E 6 Pareto-efficient set of static, single-, and double-band
policies Note: In our numerical illustrations, we report infection numbers
and infectious ratios with daily intervals for better granularity [Color figure
can be viewed at wileyonlinelibrary.com]

described by two control bands, given by the pairs (Q1,Q2)
and (mL,mM), and (Q2,Q3) and (mM ,mH). Based on the
infectious ratio ut, the policy determines the level of con-
tainment similar to the single-band case, except that now
there are two nested control bands. Next, to compare static
and dynamic policies, we numerically determine the Pareto-
efficient set of dynamic policies.

Figure 6 illustrates the Pareto-efficient set of static and
dynamic policies under our base-case parameter setting,
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F I G U R E 7 Containment measures and infected individuals over time under the Pareto-efficient double-band policies with IP index = (a) 80%, policy
A; (b) 85%, policy B; and (c) 90%, policy C. Note: In Figure 7a,b, the threshold Q1 is too low to be observed visually [Color figure can be viewed at
wileyonlinelibrary.com]

where the upper, middle, and lower lines represent Pareto-
efficient double-band, single-band, and static policies, respec-
tively. We observe that there can be a significant gap between
the performance of static and dynamic policies. Moreover,
double-band policies outperform single-band policies as well.
After two bands, considering more control bands has little
value in our model, and hence we focus on double-band poli-
cies for the rest of our numerical analysis when referring to
dynamic containment policies.

In Figure 7, we examine the performance of three Pareto-
efficient double-band containment policies such that the level
of economic activity corresponds to 80% (policy A), 85%
(policy B), and 90% (policy C). Figure 7a shows the per-
formance of policy A, which generates 483.5 lives lost per
100,000 individuals. The policy results in two peaks in the
pandemic. It initiates a low level of intervention at the
beginning of the pandemic, followed by a strict contain-
ment after day 56; once the infectious ratio decreases sub-
stantially around day 203, the policy decreases the contain-
ment level, and the number of active cases starts to increase
again, resulting in a second peak around day 301, followed
by another short period of strict containment. After day

385, the government decreases the containment level again
and keeps it low until the pandemic almost ends after day
700.

Policy B on the efficient frontier results in an economic
activity level of 85% and 515.3 lives lost per 100,000 indi-
viduals. In this case, the policy reacts less aggressively to
the spread of the pandemic, that is, the decision maker waits
longer to initiate a high level of containment, and the level is
kept high for a shorter period of time. As a result, we observe
a single but steeper peak in the pandemic.

When we move to point C on the efficient frontier, the
level of economic activity increases to 90% and lives lost per
100,000 individuals increase to 577.4. In this case, as com-
pared to policy B, the government initiates a high contain-
ment level earlier but keeps it for a shorter period, resulting
in a slightly lower pandemic peak with a fatter and longer tail.
These actions result in a higher level of economic activity at
the expense of more lost lives.

When we compare policies A and C on the efficient fron-
tier of the double-band containment policies, we observe that
a 10-point increase in economic activity from 80% to 90%
results in a 19.42% increase in lives lost under our base-case

 19375956, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.13656 by B
ilkent U

niversity, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 SHAHMANZARI ET AL.Production and Operations Management

TA B L E 5 Absolute and percentage change in lives lost on the efficient
frontier when the level of economic activity increases from 80% to 90% for
varying levels of H and �̂�L∕𝜌L

�̂�L∕𝝆L

1.2 1.4 1.6

H

0.00008 98.2 (21.85%) 102.6 (19.61%) 108.9 (19.16%)

0.00010 93.9 (19.42%) 95.6 (18.19%) 99.2 (17.81%)

0.00012 81.5 (17.69%) 87.5 (17.28%) 97.0 (16.53%)

parameter settings. This trade-off, however, naturally depends
on the level of healthcare capacity and the rate of increase in
lives lost when healthcare capacity is saturated, as measured
by �̂�L∕𝜌L. Table 5 shows the impact of these two variables on
lives lost when the level of economic activity increases from
80% to 90% on the efficient frontier.

To increase the level of economic activity, the govern-
ment implements milder containment measures, which leads
to more lives lost. As healthcare capacity increases, lives lost
due to capacity saturation decreases, leading to a relatively

lower death toll due to increased economic activity on the
efficient frontier. Similarly, increasing the ratio �̂�L∕𝜌L leads
to more lives lost.

6.3 Impact of disease parameters on
Pareto-efficient policies

In this section, we examine the performance of Pareto-
efficient solutions under a varying base infection rate (𝛽0)
and recovery period (1∕𝛾) as stated in Section 5.3, that is,
𝛽0 = {0.2, 0.25, 0.3} and 1∕𝛾 = {7, 14, 21}.

In Figure 8, we consider the Pareto-efficient dynamic poli-
cies that achieve an 80% economic activity level.14 Our base-
case corresponds to the setting with 1∕𝛾 = 14 and 𝛽0 = 0.25.
We observe that, when the base infection rate is low and
recovery is fast (𝛽0 = 0.2, 1∕𝛾 = 7), adopting a mild con-
tainment regime prevents the disease from becoming a pan-
demic. Under a short recovery period (1∕𝛾 = 7), as the base
infection rate increases, the Pareto-efficient policy leads to
multiple small peaks when 𝛽0 = 0.25 and 0.3. We observe a

F I G U R E 8 Impact of base infection rate 𝛽0 and recovery period 1∕𝛾 on disease spread and Pareto-efficient dynamic containment policies at 80%
economic activity level [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 9 Impact of base infection rate 𝛽0 and recovery period 1∕𝛾 on disease spread and Pareto-efficient dynamic containment policies at 90%
economic activity level [Color figure can be viewed at wileyonlinelibrary.com]

similar pattern when the spread rate is low (𝛽0 = 0.2) and the
recovery period is either medium or high (1∕𝛾 = 14 or 21). In
general, for any given recovery period, higher infection rates
result in fewer but steeper peaks over the course of pandemic.
If the recovery is slow and the infection rate is high, then
we typically observe a single steep peak, as the containment
measures prove to be less effective in reducing the disease
spread.

Figure 9 presents the same set of results for the Pareto-
efficient dynamic policies that achieve a 90% economic activ-
ity level, that is, when the government targets a higher level
of economic activity as compared to Figure 8. The results are
qualitatively the same as the case in Figure 8, except that now
we observe the government implements weak containment
policies leading to fewer but steeper peaks in the pandemic.
We repeated our analysis with other levels of economic activ-
ity and found that the insights above are robust with respect
to the level of economic activity.

6.4 Value of dynamic policies

In this section, we present the value of dynamic poli-
cies as compared to static policies under the Pareto-
efficient set of decisions (Figure 10). In particular, for a
given level of economic activity, we compare the mini-
mum lives lost under dynamic and static policies. This
analysis helps to enclose the economic and operational
parameters under which dynamic policies provide signif-
icant gains (in terms of reduced lives lost) over static
approaches. On the efficient frontier, we define the ben-
efit of dynamic policy as: (lives lost under static policy −
lives lost under dynamic policy).

We observe that the value of dynamic policies is highest
when the level of economic activity is neither too high nor
too low. This is because, under very high or low economic
activity targets, there is little room for updating containment
levels in response to changes in disease spread. We observe
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16 SHAHMANZARI ET AL.Production and Operations Management

F I G U R E 1 0 Value of dynamic policy for varying levels of economic activity, base infection rate 𝛽0, and recovery period 1∕𝛾 [Color figure can be
viewed at wileyonlinelibrary.com]

that the maximum benefit from a dynamic policy is obtained
under low infection rate 𝛽0 and high recovery period 1∕𝛾. As
observed in Figures 8 and 9, under such disease patterns, the
pandemic has the potential to cause many lives lost plus it is
optimal to have multiple peaks, and hence flexibility becomes
valuable.

7 CONCLUSION

During a pandemic, governments face a key trade-off when
imposing containment measures. Such measures can be effec-
tive in reducing disease spread and the load on the healthcare
system, but they can also cause economic stall and social and
political unrest, indirectly leading to reduced quality of life
for the population. In this study, we examine this trade-off by
providing a multiobjective decision model that incorporates
both the economic and health implications of containment
measures into a decision maker’s objective function. We hope
that our analysis will provide decision makers with valuable
insights about when and how to implement containment mea-
sures during a pandemic.

We develop a decision-support framework for policymak-
ers to determine the level of containment measures during a
pandemic by integrating disease spread models with stochas-
tic dynamic optimization models. We identify the Pareto-
efficient set of containment policies under two common
classes of control policies, namely static and dynamic. In gen-
eral, as the recovery gets faster or the infection rate decreases,
we observe more frequent but less steep peaks in the pan-
demic as the containment measures prove to be very effective
in controlling the disease spread. However, when recovery is
slow and the infection rate is high, then we typically observe a
single steep peak because managing the spread of the disease
with containment measures becomes very difficult. In addi-
tion, targeting a high level of economic activity is also likely
to generate fewer but higher peaks in the pandemic.

The shape of the efficient frontier also reveals a key man-
agerial insight about the sensitivity of governmental objec-
tives to containment measures: Under low or high contain-
ment levels, the marginal impact of containment is low on
economic activity but high on lives lost. However, for inter-
mediate levels of containment measures, our results sug-
gest that increasing (decreasing) containment level quickly
reduces (increases) economic activity while resulting in little
reduction (increase) in lives lost.

We also compare the performance of static and dynamic
containment policies on the efficient frontier. We find that
under very high or low economic activity targets, there is
little room for updating containment levels in response to
changes in disease spread, and hence there is little gain in
using dynamic containment policies. Dynamic policies are
particularly valuable when the disease parameters are likely
to generate multiple peaks under a target economic activity
level.

Our work can be extended in several directions. One pos-
sible extension could be considering an open population.
Unlike the main assumption in the basic SIRD model, rather
than requiring a closed population, one may include the possi-
bility of incoming passengers through open and/or semiopen
borders in the model. As another future work, an analysis
could be conducted to incorporate the number of lives lost
due to reduced economic activity and jobs lost driven by strict
containment measures. Also, modeling uncertain vaccination
effectiveness due to emerging new virus strains may be an
interesting extension.

In addition to imposing disease containment measures to
slow down disease spread, investing in healthcare capacity
is an important dimension of pandemic management. In this
study, we treat the healthcare capacity as a constant over
time. While it is difficult to expand ICU capacity overnight,
in medium and long term, acute care beds may be converted
to ICUs or additional ICUs can be created. During the
pandemic, governments have strived to increase healthcare
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capacity either by building new and temporary hospitals
(Lardieri, 2020; Zhu et al., 2020) or by converting acute care
beds to ICUs (Panico, 2020) to meet the increasing demand
for healthcare resources. A promising future research direc-
tion would be to consider integrating disease containment
measures with healthcare capacity expansion decisions to
improve the effectiveness of pandemic management.
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E N D N O T E S
1 https://www.worldometers.info/coronavirus/.
2 https://www.reuters.com/article/us-usa-economy-idUSKBN29D0J9.
3 The IP index is available on a monthly basis, and hence it is preferable

to use GDP data (available on a quarterly basis) to track the impact of
pandemic and containment measures on economic activity.

4 When characterizing an outbreak, R0, known as the basic reproduction
number, is frequently used. R0 is a dimensionless ratio approximating
the number of new infections caused by one infection. As an example,
the seasonal flu is estimated to have an R0 of approximately 1.3, while
recent estimates for the R0 of COVID-19 ranges from 1.4 to as high as
6.7 (usually early studies suggest larger numbers). Intuitively, any value
smaller than 1 does not cause an outbreak. At any time t, this number is
calculated by dividing the infection rate 𝛽t by effective recovery rate 𝛾.

5 The dependence of IPt
(
⃖⃑mt; cIP, �̃�IP

)
on IPt–1 is suppressed for notational

brevity.
6 In our notation, mt is decided in period t, and it influences the infection

number of the next period it+1, according to Equations (9), (12), and (13).
For expositional simplicity, however, we denote lt(v⃗t , m⃗t; �̃�𝛽) as the num-
ber of lives lost in period t, since mt is determined in period t (although
it+1 is realized in the next period).

7 This nonconvexity is driven by the evolution dynamics of pandemic dis-
eases. When we present the models (6)–(14) in aggregate form, the deci-
sion variables are multiplied in constraints (8) and (9) leading to a non-
convex feasible region.

8 http://www.nber.org/cycles/recession.html.
9 https://www.imf.org/external/pubs/ft/weo/2019/02/weodata/index.aspx.

10 Macroeconomic variables such as changes in labor and technology are
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In our analysis, even the whole sample period is less than 1 year.
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𝛾 = 1/14.

12 There are many novel variants of COVID-19 virus, including B.1.1.7 that
was first detected in the United Kingdom. Volz et al. (2021) study the
novel COVID-19 lineage, B.1.1.7 in the United Kingdom, and report that
the new strain has 57% higher transmissibility on average. Their findings
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tre for the Mathematical Modelling of Infectious Diseases at the London
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2020 (ECDC, 2021). Based on the ECDC data, we estimate Qmin

tr to be
0.00086%.

14 Note that the upper bounds in Figures 8i and 9i are slightly higher than
other graphs to fit the charts within the panel.

R E F E R E N C E S
Albi, G., Pareschi, L., & Zanella, M. (2021). Control with uncertain data of

socially structured compartmental epidemic models. Journal of Mathe-
matical Biology, 82, https://doi.org/10.1007/s00285-021-01617-y

Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A.
R., Reuter, U., Rabczuk, T., & Atkinson, P. M. (2020). Covid-19 outbreak
prediction with machine learning. Algorithms, 13(10), 249. https://doi.
org/10.3390/a13100249

Boloori, A., & Saghafian, S. (2020). COVID-19: Health and economic
impacts of societal intervention policies in the US. SSRN. http://doi.org/
10.2139/ssrn.3681610

Chen, N., Gardner, L., & Rey, D. (2016). Bilevel optimization model for the
development of real-time strategies to minimize epidemic spreading risk
in air traffic networks. Transportation Research Record, 2569(1), 62–69.
https://doi.org/10.3141/2569-07

Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Mun-
day, J., Pearson, C. A. B., Russell, T. W., Tully, D. C., Washburne, A. D.,
Wenseleers, T., Gimma, A., Waites, W., Wong, K. L. M., van Zandvoort,
K., Silverman, J. D., CMMID COVID-19 Working Group, Diaz-Ordaz,
K., Keogh, R.,… Edmunds, W. J. (2021). Estimated transmissibility
and severity of novel SARS-CoV-2 variant of concern 202012/01
in England. MedRxiv. https://doi.org/10.1101/2020.12.24.2024
8822

Delen, D., Eryarsoy, E., & Davazdahemami, B. (2020). No place like home:
Cross-national data analysis of the efficacy of social distancing during
the COVID-19 pandemic. JMIR Public Health and Surveillance, 6(2),
e19862. https://doi.org/10.2196/19862

ECDC. (2021). Data on country response measures to COVID-19.
https://www.ecdc.europa.eu/en/publications-data/download-data-
response-measures-covid-19

Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer Science
& Business Media.

Eryarsoy, E., & Shahmanzari, M., & Tanrisever, F. (2022). Models for gov-
ernment intervention during a pandemic. European Journal of Opera-
tional Research. https://doi.org/10.1016/j.ejor.2021.12.036

Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin,
M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G.,
Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A.,
Hinsley, W., Okell, L. C., van Elsland, S., … Ghani, A. (2020). Report 9:
Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19
mortality and healthcare demand. Imperial College London, London, UK.

Funk, S., Camacho, A., Kucharski, A. J., Eggo, R. M., & Edmunds, W.
J. (2018). Real-time forecasting of infectious disease dynamics with a
stochastic semi-mechanistic model. Epidemics, 22, 56–61. https://doi.org/
10.1016/j.epidem.2016.11.003

Ghaffarzadegan, N., & Rahmandad, H. (2020). Simulation-based estima-
tion of the early spread of COVID-19 in Iran: Actual versus confirmed
cases. System Dynamics Review, 36(1), 101–129. https://doi.org/10.1002/
sdr.1655

Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di
Matteo, A., & Colaneri, M. (2020). Modelling the COVID-19 epidemic
and implementation of population-wide interventions in Italy. Nature
Medicine, 26(6), 855–860. https://doi.org/10.1038/s41591-020-0883-7

Gormsen, N. J., & Koijen, R. S. (2020). Coronavirus: Impact on stock prices
and growth expectations. The Review of Asset Pricing Studies, 10(4), 574–
597. https://doi.org/10.1093/rapstu/raaa013

Harris, J. (1987). QALYfying the value of life. Journal of Medical Ethics,
13(3), 117–123. https://doi.org/10.1136/jme.13.3.117

Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM
Review, 42(4), 599–653. https://doi.org/10.1137/S0036144500371907

Keeling, M. J., & Rohani, P. (2011). Modeling infectious diseases in humans
and animals. Princeton University Press.

Kyrychko, Y. N., Blyuss, K. B., & Brovchenko, I. (2020). Mathemat-
ical modelling of the dynamics and containment of COVID-19 in
Ukraine. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-
020-76710-1

 19375956, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.13656 by B
ilkent U

niversity, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-2019-4490
https://orcid.org/0000-0003-2019-4490
https://orcid.org/0000-0003-2019-4490
http://www.nber.org/cycles/recession.html
https://www.imf.org/external/pubs/ft/weo/2019/02/weodata/index.aspx
https://doi.org/10.1007/s00285-021-01617-y
https://doi.org/10.3390/a13100249
https://doi.org/10.3390/a13100249
http://doi.org/10.2139/ssrn.3681610
http://doi.org/10.2139/ssrn.3681610
https://doi.org/10.3141/2569-07
https://doi.org/10.1101/2020.12.24.20248822
https://doi.org/10.1101/2020.12.24.20248822
https://doi.org/10.2196/19862
https://www.ecdc.europa.eu/en/publications-data/download-data-response-measures-covid-19
https://www.ecdc.europa.eu/en/publications-data/download-data-response-measures-covid-19
https://doi.org/10.1016/j.ejor.2021.12.036
https://doi.org/10.1016/j.epidem.2016.11.003
https://doi.org/10.1016/j.epidem.2016.11.003
https://doi.org/10.1002/sdr.1655
https://doi.org/10.1002/sdr.1655
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1093/rapstu/raaa013
https://doi.org/10.1136/jme.13.3.117
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1038/s41598-020-76710-1
https://doi.org/10.1038/s41598-020-76710-1


18 SHAHMANZARI ET AL.Production and Operations Management

Lardieri, A. (2020, April 2). New York begins construction on more
temporary hospitals as coronavirus spreads. US News and World
Report.

Mrozek, J. R., & Taylor, L. O. (2002). What determines the value of life? A
meta-analysis. Journal of Policy analysis and Management, 21(2), 253–
270. https://doi.org/10.1002/pam.10026

Murray, C. J. (1994). Quantifying the burden of disease: The technical basis
for disability-adjusted life years. Bulletin of the World Health Organiza-
tion, 72, 429–445.

Ouardighi, F. E., Khmelnitsky, E., & Sethi, S. P. (2021). Epidemic con-
trol with endogenous treatment capability under popular discontent and
social fatigue. Production and Operations Management. https://doi.org/
10.1111/poms.13641

Ritchie, H., Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Ortiz-
Ospina, E., Hasell, J., Macdonald, B., Beltekian, D., & Roser, M.
(2020). Coronavirus pandemic (COVID-19). Our World in Data. https:
//ourworldindata.org/coronavirus

University of Oxford. (2020). Coronavirus government response tracker.
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-
government-response-tracker

Panico, R. (2020, April 4). Bergen County hospital converts unused space
into ICU beds for coronavirus patients. NJ.com.

Qiu, Y., Chen, X., & Shi, W. (2020). Impacts of social and economic fac-
tors on the transmission of coronavirus disease 2019 (COVID-19) in
China. Journal of Population Economics, 33, 1127–1172. https://doi.org/
10.1007/s00148-020-00778-2

Roques, L., Klein, E., Papax, J., Sar, A., & Soubeyrand, S. (2020). Using
early data to estimate the actual infection fatality ratio from COVID-19 in
France. MDPI Biology, 9(5), 97.

Rünstler, G., & Sédillot, F. (2003). Short-term estimates of euro area real
GDP by means of monthly data. ECB Working Paper No. 276. European
Central Bank (ECB).

Sanche, S., Lin, Y. T., Xu, C., Romero-Severson, E., Hengartner, N., & Ke,
R. (2020). High contagiousness and rapid spread of severe acute respira-
tory syndrome coronavirus 2. Emerging Infectious Diseases, 26(7), 1470–
1477. https://doi.org/10.3201/eid2607.200282

Sene, N. (2020). SIR epidemic model with Mittag–Leffler fractional deriva-
tive. Chaos, Solitons & Fractals, 137, 109833.

Singh, R., & Adhikari, R. (2020). Age-structured impact of social distancing
on the COVID-19 epidemic in India. arXiv preprint arXiv:2003.12055.

Sugishita, Y., Kurita, J., Sugawara, T., & Ohkusa, Y. (2020). Effects of vol-
untary event cancellation and school closure as countermeasures against
COVID-19 outbreak in Japan. PLoS One, 15(12), e0239455. https://doi.
org/10.1371/journal.pone.0239455

Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J.
(2020). Estimation of the transmission risk of the 2019-nCoV and its
implication for public health interventions. Journal of Clinical Medicine,
9(2), 462. https://doi.org/10.3390/jcm9020462

Thunström, L., Newbold, S. C., Finnoff, D., Ashworth, M., & Shogren, J.
F. (2020). The benefits and costs of using social distancing to flatten the

curve for COVID-19. Journal of Benefit-Cost Analysis, 11(2), 179–195.
https://doi.org/10.1017/bca.2020.12

Trilla, A. (2020). One world, one health: The novel coronavirus COVID-
19 epidemic. Medicina Clínica (English Edition), 154(5), 175–177. https:
//doi.org/10.1016/j.medcle.2020.02.001

Viscusi, W. K., & Aldy, J. E. (2003). The value of a statistical life: A critical
review of market estimates throughout the world. Journal of Risk and
Uncertainty, 27(1), 5–76. https://doi.org/10.1023/A:1025598106257

Volz, E., Mishra, S., Chand, M., Barrett, J. C., Johnson, R., Geidelberg, L.,
… & Ferguson, N. M. (2021). Assessing transmissibility of SARS-CoV-2
lineage B. 1.1. 7 in England. Nature, 593(7858), 266–269.

Wearing, H. J., Rohani, P., & Keeling, M. J. (2005). Appropriate models
for the management of infectious diseases. PLoS Medicine, 2(7), e174.
https://doi.org/10.1371/journal.pmed.0020174

Whitehead, S. J., & Ali, S. (2010). Health outcomes in economic evaluation:
The QALY and utilities. British Medical Bulletin, 96(1), 5–21. https://doi.
org/10.1093/bmb/ldq033

Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the
potential domestic and international spread of the 2019-nCoV outbreak
originating in Wuhan, China: A modelling study. Lancet, 395(10225),
689–697. https://doi.org/10.1016/S0140-6736(20)30260-9

Xie, G. (2020). A novel Monte Carlo simulation procedure for modelling
COVID-19 spread over time. Scientific Reports, 10(1), 1–9. https://doi.
org/10.1038/s41598-020-70091-1

Zeckhauser, R., & Shepard, D. S. (1976). Where now for saving lives? Law
and Contemporary Problems, 40, 5–45.

Zhu, W., Wang, Y., Xiao, K., Zhang, H., Tian, Y., Clifford, S. P., Xu, J.,
& Huang, J. (2020). Establishing and managing a temporary coronavirus
disease 2019 specialty hospital in Wuhan, China. Anesthesiology. https:
//doi.org/10.1097/ALN.0000000000003299

Zlojutro, A., Rey, D., & Gardner, L. (2019). A decision-support frame-
work to optimize border control for global outbreak mitigation. Scientific
Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-38665-w

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information may be found in the online
version of the article at the publisher’s website.

How to cite this article: Shahmanzari, M.,
Tanrisever, F., Eryarsoy, E., & Şensoy, A. (2022).
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