
Published online 20 January 2023 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 1
https://doi.org/10.1093/nargab/lqad004

BLEND: a fast, memory-efficient and accurate
mechanism to find fuzzy seed matches in genome
analysis
Can Firtina 1,*, Jisung Park1,2, Mohammed Alser1, Jeremie S. Kim 1, Damla Senol Cali3,
Taha Shahroodi4, Nika Mansouri Ghiasi1, Gagandeep Singh1,
Konstantinos Kanellopoulos1, Can Alkan 5 and Onur Mutlu1,*

1ETH Zurich, Zurich 8092, Switzerland, 2POSTECH, Pohang 37673, Republic of Korea, 3Carnegie Mellon University,
Pittsburgh, PA 15213, USA, 4TU Delft, 2600 AA Delft, Netherlands and 5Bilkent University, Ankara 06800, Turkey

Received July 29, 2022; Revised December 16, 2022; Editorial Decision December 24, 2022; Accepted January 10, 2023

ABSTRACT

Generating the hash values of short subsequences,
called seeds, enables quickly identifying similari-
ties between genomic sequences by matching seeds
with a single lookup of their hash values. How-
ever, these hash values can be used only for find-
ing exact-matching seeds as the conventional hash-
ing methods assign distinct hash values for differ-
ent seeds, including highly similar seeds. Finding
only exact-matching seeds causes either (i) increas-
ing the use of the costly sequence alignment or
(ii) limited sensitivity. We introduce BLEND, the first
efficient and accurate mechanism that can identify
both exact-matching and highly similar seeds with
a single lookup of their hash values, called fuzzy
seed matches. BLEND (i) utilizes a technique called
SimHash, that can generate the same hash value
for similar sets, and (ii) provides the proper mech-
anisms for using seeds as sets with the SimHash
technique to find fuzzy seed matches efficiently. We
show the benefits of BLEND when used in read
overlapping and read mapping. For read overlap-
ping, BLEND is faster by 2.4×–83.9× (on average
19.3×), has a lower memory footprint by 0.9×–14.1×
(on average 3.8×), and finds higher quality over-
laps leading to accurate de novo assemblies than
the state-of-the-art tool, minimap2. For read map-
ping, BLEND is faster by 0.8×–4.1× (on average
1.7×) than minimap2. Source code is available at
https://github.com/CMU-SAFARI/BLEND.

INTRODUCTION

High-throughput sequencing (HTS) technologies have rev-
olutionized the field of genomics due to their ability to pro-
duce millions of nucleotide sequences at a relatively low
cost (1). Although HTS technologies are key enablers of al-
most all genomics studies (2–7), HTS technology-provided
data comes with two key shortcomings. First, HTS tech-
nologies sequence short fragments of genome sequences.
These short fragments are called reads, which cover only
a smaller region of a genome and contain from about one
hundred up to a million bases depending on the technol-
ogy (1). Second, HTS technologies can misinterpret signals
during sequencing and thus provide reads that contain se-
quencing errors (8). The average frequency of sequencing er-
rors in a read highly varies from 0.1% up to 15% depend-
ing on the HTS technology (9–13). To address the short-
comings of HTS technologies, various computational ap-
proaches must be taken to process the reads into meaningful
information accurately and efficiently. These include (i) read
mapping (14–18), (ii) de novo assembly (19–21), (iii) read
classification in metagenomic studies (22–24), (iv) correct-
ing sequencing errors (25–27).

At the core of these computational approaches, simi-
larities between sequences must be identified to overcome
the fundamental limitations of HTS technologies. However,
identifying the similarities across all pairs of sequences is
not practical due to the costly algorithms used to calcu-
late the distance between two sequences, such as sequence
alignment algorithms using dynamic programming (DP)
approaches (28,29). To practically identify similarities, it is
essential to avoid calculating the distance between dissimi-
lar sequence pairs. A common heuristic is to find matching
short subsequences, called seeds, between sequence pairs by
using a hash table (14,15,30–54). Sequences that have no or
few seed matches are quickly filtered out from performing
costly sequence alignment. There are several techniques that

*To whom correspondence should be addressed. Tel: +41 44 632 64 29; Email: firtinac@ethz.ch
Correspondence may also be addressed to Onur Mutlu. Tel: +41 44 632 64 29; Email: omutlu@ethz.ch

C© The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

http://orcid.org/0000-0002-6548-7863
http://orcid.org/0000-0001-6153-9008
http://orcid.org/0000-0002-5443-0706
http://https://github.com/CMU-SAFARI/BLEND

2 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

Figure 1. Finding seed matches with a single lookup of hash values.

Figure 2. Examples of common seeding techniques. 1. Finding the mini-
mizer k-mers. 2. A spaced seeding technique. Masked characters are high-
lighted by X in red. 3. A simple example of the strobemers technique.

generate seeds from sequences, known as seeding techniques.
To find the matching seeds efficiently, a common approach
is to match the hash values of seeds with a single lookup us-
ing a hash table that contains the hash values of all seeds
of interest. Figure 1 shows an overview of how hash tables
are used to find seed matches between two sequences. Seeds
in Figure 1 are extracted from sequences based on a seed-
ing technique. These seeds are used to find matches between
sequences. To find seed matches, the hash values of seeds
are used for filling and querying the hash table, as shown
in Figure 1. Querying the hash table with hash values en-
ables finding the positions where a seed from the second se-
quence appears in the first sequence with a single lookup.
The use of seeds drastically reduces the search space from
all possible sequence pairs to the similar sequence pairs to
facilitate efficient distance calculations over many sequence
pairs (55–57).

Figure 2 shows the three main directions that existing
seeding techniques take. The first direction aims to mini-
mize the computational overhead of using and storing seeds
by selectively choosing fewer seeds from all fixed-length
subsequences of reads, called k-mers, where the fixed length
is k. The existing works such as minimap2 (15), MHAP (58),
Winnowmap2 (59,60), reMuval (61) and CAS (62) use sam-
pling techniques to choose a subset of k-mers from all k-
mers of a read without significantly reducing their accu-

racy. For example, minimap2 uses only the k-mers with the
minimum hash value in a window of w consecutive k-mers,
known as the minimizerk-mers (56) (1 in Figure 2). Such a
sampling approach guarantees that one k-mer is sampled
in each window to provide a fixed sampling ratio that can
be tuned to increase the probability of matching k-mers be-
tween reads. Alternatively, MHAP uses the MinHash tech-
nique (63) to generate many hash values from each k-mer of
a read using many hash functions. For each hash function,
only the k-mer with the minimum hash value is used as a
seed with no windowing guarantees. MHAP is mainly ef-
fective for matching sequences with similar lengths since the
number of hash functions is fixed for all sequences, whereas
it can generate too many seeds for shorter sequences when
the sequence lengths vary greatly (14). While these k-mer se-
lection approaches reduce the number of seeds to use, all of
these existing works find only exact-matching k-mers with a
single lookup, as they use hash functions with low-collision
rates to generate the hash values of these k-mers. The exact-
matching requirement imposes challenges when determin-
ing the k-mer length. Longer k-mer lengths significantly de-
crease the probability of finding exact-matching k-mers be-
tween sequences due to genetic variations and sequencing
errors. Short k-mer lengths (e.g., 8–21 bp) result in match-
ing a large number of k-mers due to both the repetitive na-
ture of most genomes and the high probability of finding the
same short k-mer frequently in a long sequence of DNA let-
ters (64). Although k-mers are commonly used as seeds, a
seed is a more general concept that can allow substitutions,
insertions and deletions (indels) when matching short sub-
sequences between sequence pairs.

The second direction is to allow substitutions when
matching k-mers by masking (i.e., ignoring) certain charac-
ters of k-mers and using the masked k-mers as seeds2. Pre-
defined patterns determine the fixed masking positions for
all k-mers. Seeds generated from masked k-mers are known
as spaced seeds (34). The tools such as ZOOM! (41) and
SHRiMP2 (52) use spaced seeds to improve the sensitivity
when mapping short reads (i.e., Illumina paired-end reads).
S-conLSH (65,66) generates many spaced seeds from each
k-mer using different masking patterns to improve the sen-
sitivity when matching spaced seeds with locality-sensitive
hashing techniques. There have been recent improvements
in determining the masking patterns to improve the sensitiv-
ity of spaced seeds (67,68). Unfortunately, spaced seeds can-
not find any arbitrary fuzzy matches of k-mers with a single
lookup due to (i) fixed patterns that allow mismatches only
at certain positions of k-mers and (ii) low-collision hashing
techniques that can be used for finding only exact-matching
spaced seeds, which are key limitations in improving the sen-
sitivity of spaced seeds.

The third direction aims to allow both substitutions and
indels when matching k-mers. A common approach is to
link a few selected k-mers of a sequence to use these linked
k-mers as seeds, such as paired-minimizers (69) and strobe-
mers (70,71). These approaches can ignore large gaps be-
tween the linked k-mers. For example, the strobemer tech-
nique concatenates a subset of selected k-mers of a sequence
to generate a strobemer sequence, which is used as a seed.
Strobealign (71) uses these strobemer seeds for mapping
short reads with high accuracy and performance. Strobe-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 3

mers enable masking some characters within sequences
without requiring a fixed pattern, unlike spaced k-mers.
This makes strobemers a more sensitive approach for de-
tecting indels with varying lengths as well as substitutions.
However, the nature of the hash function used in strobemers
requires exact matches of all concatenated k-mers in strobe-
mer sequences when matching seeds. Such an exact match
requirement introduces challenges for further improving the
sensitivity of strobemers for detecting indels and substitu-
tions between sequences.

To our knowledge, there is no work that can efficiently
find fuzzy matches of seeds without requiring (i) exact
matches of all k-mers (i.e., any k-mer can mismatch) and
(ii) imposing high performance and memory space over-
heads. In this work, we observe that existing works have
such a limitation mainly because they employ hash func-
tions with low-collision rates when generating the hash val-
ues of seeds. Although it is important to reduce the collision
rate for assigning different hash values for dissimilar seeds
for accuracy and performance reasons, the choice of hash
functions also makes it unlikely to assign the same hash
value for similar seeds. Thus, seeds must exactly match to
find matches between sequences with a single lookup. Mit-
igating such a requirement so that similar seeds can have
the same hash value has the potential to improve further
the performance and sensitivity of the applications that use
seeds with their ability to allow substitutions and indels at
any arbitrary position when matching seeds.

A hashing technique, SimHash (72,73), provides useful
properties for efficiently detecting highly similar seeds from
their hash values. The SimHash technique can generate sim-
ilar hash values for similar real-valued vectors or sets (72).
Such a property enables estimating the cosine similarity be-
tween a pair of vectors (74) based on the Hamming distance
of their hash values that SimHash generates (i.e., SimHash
values) (72,75). Although MinHash can provide better co-
sine similarity estimations than SimHash (76), SimHash
enables generating compact hash values that are practi-
cally useful for similarity estimations based on the Ham-
ming distance. To efficiently find the pairs of SimHash val-
ues with a small Hamming distance, the number of match-
ing most significant bits between different permutations of
these SimHash values are computed (73). This permutation-
based approach enables exploiting the Hamming distance
similarity properties of the SimHash technique for various
applications that find near-duplicate items (73,77–80).

In genomics, the properties of the SimHash and the
permutation-based techniques are used for cell type classifi-
cation (81) and short sequence alignment (82). In read align-
ment, the permutation-based approach (73) is applied for
detecting mismatches by permuting the sequences without
generating the hash values using the SimHash technique.
This approach can find the longest prefix matches between a
reference genome and a read since the mismatches between
a pair of sequences may move to the last positions of these
sequences after applying different permutations while keep-
ing the Hamming distance between sequences the same.
This approach uses various versions of permutations to find
the prefix matches. Apart from the permutation-based tech-
nique, a pigeonhole principle is also used for tolerating mis-
matches in read alignment (39,40,42,62,83). Unfortunately,

Figure 3. Replacing the hash functions in seeding techniques with
BLEND.

none of these works can find highly similar seed matches
that have the same hash value with a single lookup, which
we call fuzzy seed matches.

Our goal in this work is to enable finding fuzzy matches
of seeds as well as exact-matching seeds between sequences
(e.g., reads) with a single lookup of hash values of these
seeds. To this end, we propose BLEND, the first efficient and
accurate mechanism that can identify both exact-matching
and highly similar seeds with a single lookup of their hash
values. The key idea in BLEND is to enable assigning
the same hash value for highly similar seeds. To this end,
BLEND (i) exploits the SimHash technique (72,73) and
(ii) provides proper mechanisms for using any seeding tech-
nique with SimHash to find fuzzy seed matches with a
single lookup of their hash values. This provides us with
two key benefits. First, BLEND can generate the same
hash value for highly similar seeds without imposing ex-
act matches of seeds, unlike existing seeding mechanisms
that use hash functions with low-collision rates. Second,
BLEND enables finding fuzzy seed matches with a single
lookup of a hash value rather than (i) using various permu-
tations to find the longest prefix matches (82) or (ii) match-
ing many hash values for calculating costly similarity scores
(e.g., Jaccard similarity (84)) that the conventional locality-
sensitive hashing-based methods use, such as MHAP (58) or
S-conLSH (65,66). These two ideas ensure that BLEND can
efficiently find both (i) all exact-matching seeds that a seed-
ing technique finds using a conventional hash function with
a low-collision rate and (ii) approximate seed matches that
these conventional hashing mechanisms cannot find with a
single lookup of a hash value.

Figure 3 shows two examples of how BLEND can re-
place the conventional hash functions that the seeding tech-
niques use in Figure 2. The key challenge is to accurately
and efficiently define the items of sets from seeds that the
SimHash technique requires. To achieve this, BLEND pro-
vides two mechanisms for converting seeds into sets of
items: (i) BLEND-I and (ii) BLEND-S. To perform a sen-
sitive detection of substitutions, BLEND-I uses all overlap-
ping smaller k-mers of a potential seed sequence as the items
of a set for generating the hash value with SimHash. To al-
low mismatches between the linked k-mers that strobemers

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

4 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

and similar seeding mechanisms use, BLEND-S uses only
the linked k-mers as the set with SimHash. We envision that
BLEND can be integrated with any seeding technique that
uses hash values for matching seeds with a single lookup
by replacing their hash function with BLEND and using
the proper mechanism for converting seeds into a set of
items.

Using erroneous (ONT and PacBio CLR), highly accu-
rate (PacBio HiFi), and short (Illumina) reads, we exper-
imentally show the benefits of BLEND on two important
applications in genomics: (i) read overlapping and (ii) read
mapping. First, read overlapping aims to find overlaps be-
tween all pairs of reads based on seed matches. These over-
lapping reads are mainly useful for generating an assem-
bly of the sequenced genome (14,85). We compare BLEND
with minimap2 and MHAP by finding overlapping reads.
We then generate the assemblies from the overlapping reads
to compare the qualities of these assemblies. Second, read
mapping uses seeds to find similar portions between a refer-
ence genome and a read before performing the read align-
ment. Aligning a read to a reference genome shows the edit
operations (i.e., match, substitution, insertion, and dele-
tions) to make the read identical to the portion of the refer-
ence genome, which is useful for downstream analysis (e.g.,
variant calling (86)). We compare BLEND with minimap2,
LRA (87), Winnowmap2, S-conLSH and Strobealign by
mapping long and paired-end short reads to their reference
genomes. We evaluate the effect of the long read mapping
results on downstream analysis by calling structural vari-
ants (SVs) and calculating the accuracy of SVs. This paper
provides the following key contributions and major results:

• We introduce BLEND, the first mechanism that can
quickly and efficiently find fuzzy seed matches between
sequences with a single lookup.

• We propose two mechanisms for converting seeds into
a set of items that the SimHash technique requires:
(i) BLEND-I and (ii) BLEND-S. We show that BLEND-
S provides better speedup and accuracy than BLEND-
I when using PacBio HiFi reads for read overlapping
and read mapping. When using ONT, PacBio CLR and
short reads, BLEND-I provides significantly better accu-
racy than BLEND-S with similar performance.

• For read overlapping, we show that BLEND provides
speedup compared to minimap2 and MHAP by 2.4×–
83.9 × (on average 19.3×), 28.4×–4367.8× (on average
808.2×) while reducing the memory overhead by 0.9×–
14.1 × (on average 3.8×), 36.0×–234.7× (on average
127.8×), respectively.

• We show that BLEND usually finds longer overlaps be-
tween reads while using fewer seed matches than other
tools, which improves the performance and memory
space efficiency for read overlapping.

• We find that we can construct more accurate assemblies
with similar contiguity by using the overlapping reads
that BLEND finds compared to those that minimap2
finds.

• For read mapping, we show that BLEND pro-
vides speedup compared to minimap2, LRA, Win-
nowmap2 and S-conLSH by 0.8×–4.1× (on average
1.7×), 1.2×–18.6× (on average 6.8×), 1.1×–9.9× (on

Figure 4. Overview of BLEND. 1. BLEND uses BLEND-I or BLEND-S
for converting a sequence into its set of items. 2. BLEND generates the
hash value of the input sequence using its set of items with the SimHash
technique. 3. BLEND uses hash tables for finding fuzzy seed matches with
a single lookup of the hash values that BLEND generates.

average 4.3×), 1.4×–29.8× (on average 13.3×) while
maintaining a similar memory overhead by 0.5×–1.1×
(on average 1.0×), 0.3×–1.0× (on average 0.6×), 0.9×–
4.1× (on average 1.5×), 0.2×–4.2× (on average 1.6×),
respectively.

• We show that BLEND provides a read mapping accuracy
similar to minimap2, and Winnowmap2 usually provides
the best read mapping accuracy.

• We show that BLEND enables calling structural vari-
ants with the highest F1 score compared to minimap2,
LRA and Winnowmap2.

• We open source our BLEND implementation as inte-
grated into minimap2.

• We provide the open-source SIMD implementation of the
SimHash technique that BLEND employs.

MATERIALS AND METHODS

We propose BLEND, a mechanism that can efficiently find
fuzzy (i.e., approximate) seed matches with a single lookup
of their hash values. To find fuzzy seed matches, BLEND
introduces a new mechanism that enables generating the
same hash values for highly similar seeds. By combining this
mechanism with any seeding approach (e.g., minimizer k-
mers or strobemers), BLEND can find fuzzy seed matches
between sequences with a single lookup of hash values.

Figure 4 shows the overview of steps to find fuzzy seed
matches with a single lookup in three steps. First, BLEND
starts with converting the input sequence it receives from
a seeding technique (e.g., a strobemer sequence in Figure 3)
to its set representation as the SimHash technique generates
the hash value of the set using its items1. To enable effective
and efficient integration of seeds with the SimHash tech-
nique, BLEND proposes two mechanisms for identifying
the items of the set of the input sequence: (i) BLEND-I and
(ii) BLEND-S. Second, after identifying the items of the set,
BLEND uses this set with the SimHash technique to gen-
erate the hash value for the input sequence2. BLEND uses
the SimHash technique as it allows for generating the same
hash value for highly similar sets. Third, BLEND uses the
hash tables with the hash values it generates to enable find-
ing fuzzy seed matches with a single lookup of their hash
values.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 5

Figure 5. Overview of two mechanisms used for determining the set items
of input sequences. 1. BLEND-I uses the hash values of all the overlapping
k-mers of an input sequence as the set items. 2. BLEND-S uses the hash
values of only the k-mers selected by the strobemer seeding mechanism.

Sequence to set conversion

Our goal is to convert the input sequences that BLEND
receives from any seeding technique (Figure 3) to their
proper set representations so that BLEND can use the items
of sets for generating the hash values of input sequences
with the SimHash technique. To achieve effective and effi-
cient conversion of sequences into their set representations
in different scenarios, BLEND provides two mechanisms:
(1) BLEND-I and (2) BLEND-S, as we show in Figure 5.

The goal of the first mechanism, BLEND-I, is to provide
high sensitivity for a single character change in the input
sequences that seeding mechanisms provide when generat-
ing their hash values such that two sequences are likely to
have the same hash value if they differ by a few charac-
ters. BLEND-I has three steps. First, BLEND-I extracts all
the overlapping k-mers of an input sequence, as shown in
1 of Figure 5. For simplicity, we use the neighbors term to
refer to all the k-mers that BLEND-I extracts from an in-
put sequence (Figure 5). Second, BLEND-I generates the
hash values of these k-mers using any hash function. Third,
BLEND-I uses the hash values of the k-mers as the set items
of the input sequence for SimHash. AlthoughBLEND-I can
be integrated with any seeding mechanism, we integrate it
with the minimizer seeding mechanism, as shown in Fig-
ure 3 as proof of work.

The goal of the second mechanism, BLEND-S, is to al-
low indels and substitutions when matching the sequences
such that two sequences are likely to have the same hash
value if these sequences differ by a few k-mers. BLEND-S
has three steps. First, BLEND-S uses only the selected k-
mers that the strobemer-like seeding mechanisms find and
link (70) as neighbors, as shown in 2 of Figure 5. BLEND-S
can enable a few of these linked k-mers to mismatch between
strobemer sequences because a single character difference
does not propagate to the other linked k-mers as opposed to
the effect of a single character difference propagating to sev-
eral overlapping k-mers in BLEND-I. To ensure the correct-
ness of strobemer seeds when matching them based on their
hash values, BLEND-S uses only the selected k-mers from
the same strand. Second, BLEND-S generates the hash val-
ues of these linked k-mers using any hash function. Third,

Figure 6. The overview of the steps in the SimHash technique for calculat-
ing the hash value of a given set of items. The set items are the hash values
represented in their binary form. Binary to Vector Encoding converts these
set items to their corresponding vector representations. Sum performs the
vector additions and stores the result in a separate vector that we call the
counter vector. Decoding generates the hash value of the set based on the
values in the counter vector. BLEND uses SIMD operations for these three
steps, as indicated by SIMD. We highlight in red how 0 bits are converted
and propagated in the SimHash technique.

BLEND-S uses the hash values of all such selected k-mers
as the set items of the input sequence for SimHash.

Integrating the simhash technique

Our goal is to enable efficient comparisons of equivalence
or high similarity between seeds with a single lookup by
generating the same hash value for highly similar or equiv-
alent seeds. To enable generating the same hash value for
these seeds, BLEND uses the SimHash technique (72). The
SimHash technique takes a set of items and generates a
hash value for the set using its items. The key benefit of
the SimHash technique is that it allows generating the same
hash value for highly similar sets while enabling any arbi-
trary items to mismatch between sets. To exploit the key
benefit of the SimHash technique, BLEND efficiently and
effectively integrates the SimHash technique with the set
items that BLEND-I or BLEND-S determine. BLEND uses
these set items for generating the hash values of seeds such
that highly similar seeds can have the same hash value to
enable finding fuzzy seed matches with a single lookup of
their hash values.

BLEND employs the SimHash technique in three steps:
(i) encoding the set items as vectors, (ii) performing vector
additions, and (iii) decoding the vector to generate the hash
value for the set that BLEND-I or BLEND-S determine, as
we show in Figure 6. To enable efficient computations be-
tween vectors, BLEND uses SIMD operations when per-
forming all these three steps. We provide the details of our
SIMD implementation in Supplementary Section S3 and
Supplementary Figures S1 and S2.

First, the goal of the binary to vector encoding step is to
transform all the hash values of set items from the binary
form into their corresponding vector representations so that
BLEND can efficiently perform the bitwise arithmetic oper-
ations that the SimHash technique uses in the vector space.
For each hash value in the set item, the encoding can be
done in two steps. The first step creates a vector of n ele-
ments for an n-bit hash value. We assume that all the ele-
ments in the vector are initially set to 1. For each bit posi-
tion t of the hash value, the second step assigns −1 to the
tth element in the vector if the bit at position t is 0, as we
highlight in Figure 6 with red colors of 0 bits and their corre-
sponding −1 values in the vector space. For each hash value

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

6 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

in set items, the resulting vector includes 1 for the positions
where the corresponding bit of a hash value is 1 and −1 for
the positions where the bit is 0.

Second, the goal of the vector addition operation is to
determine the bit positions where the number of 1 bits is
greater than the number of 0 bits among the set items, which
we call determining the majority bits. The key insight in de-
termining these majority bits is that highly similar sets are
likely to result in similar majority results because a few dif-
ferences between two similar sets are unlikely to change the
majority bits at each position, given that there is a suffi-
ciently large number of items involved in this majority cal-
culation. To efficiently determine the majority of bits at each
position, BLEND counts the number of 1 and 0 bits at a po-
sition by using the vectors it generates in the vector encod-
ing step, as shown with the addition step (Sum) in Figure 6.
The vector addition performs simple additions of +1 or −1
values between the vector elements and stores the result in
a separate counter vector. The values in this counter vector
show the majority of bits at each position of the set items.
Since BLEND assigns −1 for 0 bits and 1 for 1 bits, the ma-
jority of bits at a position is either (i) 1 if the corresponding
value in the counter vector is greater than 0 or (ii) 0 if the
values are less than or equal to 0.

Third, to generate the hash value of a set, BLEND uses
the majority of bits that it determines by calculating the
counter vector. To this end, BLEND decodes the counter
vector into a hash value in its binary form, as shown in
Figure 6 with the decoding step. The decoding operation
is a simple conditional operation where each bit of the final
hash value is determined based on its corresponding value
at the same position in the counter vector. BLEND assigns
the bit either (i) 1 if the value at the corresponding position
of the counter vector is greater than 0 or (ii) 0 if otherwise.
Thus, each bit of the final hash value of the set shows the
majority voting result of set items of a seed. We use this fi-
nal hash value for the input sequence that the seeding tech-
niques provide because highly similar sequences are likely
to have many characters or k-mers in common, which essen-
tially leads to generating similar set items by using BLEND-
I or BLEND-S. Properly identifying the set items of simi-
lar sequences enables BLEND to find similar majority vot-
ing results with the SimHash technique, which can lead to
generating the same final hash value for similar sequences.
This enables BLEND to find fuzzy seed matches with a sin-
gle lookup using these hash values. We provide a step-by-
step example of generating the hash values for two different
seeds in Supplementary Section S2 and Supplementary Ta-
bles S3–S10.

Using the hash tables

Our goal is to enable an efficient lookup of the hash values
of seeds to find fuzzy seed matches with a single lookup.
To this end, BLEND uses hash tables in two steps. First,
BLEND stores the hash values of all the seeds of target se-
quences (e.g., a reference genome) in a hash table, usually
known as the indexing step. Keys of the hash table are hash
values of seeds and the value that a key returns is a list of
metadata information (i.e., seed length, position in the tar-
get sequence, and the unique name of the target sequence).

BLEND keeps minimal metadata information for each seed
sufficient to locate seeds in target sequences. Since similar
or equivalent seeds can share the same hash value, BLEND
stores these seeds using the same hash value in the hash ta-
ble. Thus, a query to the hash table returns all fuzzy seed
matches with the same hash value.

Second, BLEND iterates over all query sequences (e.g.,
reads) and uses the hash table from the indexing step to find
fuzzy seed matches between query and target sequences.
The query to the hash table returns the list of seeds of the
target sequences that have the same hash value as the seed
of a query sequence. Thus, the list of seeds that the hash ta-
ble returns is the list of fuzzy seed matches for a seed of a
query sequence as they share the same hash value. BLEND
can find fuzzy seed matches with a single lookup using the
hash values it generates for the seeds from both query and
target sequences.

BLEND finds fuzzy seed matches mainly for two impor-
tant genomics applications: read overlapping and read map-
ping. For these applications, BLEND stores all the list of
fuzzy seed matches between query and target sequences to
perform chaining among fuzzy seed matches that fall in the
same target sequence (overlapping reads) optionally, fol-
lowed by alignment (read mapping) as described in min-
imap2 (15).

RESULTS

Evaluation methodology

We replace the mechanism in minimap2 that generates hash
values for seeds with BLEND to find fuzzy seed matches
when performing end-to-end read overlapping and read
mapping. We also incorporate the BLEND-I and BLEND-
S mechanisms in the implementation and provide the user
to choose either of these mechanisms when using BLEND.
We provide a set of default parameters we optimize based
on sequencing technology and the application to perform
(e.g., read overlapping). We explain the details of the
BLEND parameters in Supplementary Table S16 and the
parameter configurations we use for each tool and dataset
in Supplementary Tables S17 and S18. We determine these
default parameters empirically by testing the performance
and accuracy of BLEND with different values for some pa-
rameters (i.e., k-mer length, number of k-mers to include
in a seed, and the window length) as shown in Supplemen-
tary Table S14. We show the trade-offs between the seed-
ing mechanismsBLEND-I andBLEND-S in Supplementary
Figures S3 and S4 and Supplementary Tables S11–S13 re-
garding their performance and accuracy.

For our evaluation, we use real and simulated read
datasets as well as their corresponding reference genomes.
We list the details of these datasets in Table 1. To eval-
uate BLEND in several common scenarios in read over-
lapping and read mapping, we classify our datasets into
three categories: (i) highly accurate long reads (i.e., PacBio
HiFi), (ii) erroneous long reads (i.e., PacBio CLR and Ox-
ford Nanopore Technologies) and (iii) short reads (i.e., Il-
lumina). We use PBSIM2 (88) to simulate the erroneous
PacBio and Oxford Nanopore Technologies (ONT) reads
from the Yeast genome. To use realistic depth of coverage,
we use SeqKit (89) to down-sample the original E. coli, and

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 7

Table 1. Details of datasets used in our evaluation

Organism Library Reads (#) Seq. Depth SRA Accession Reference Genome

Human CHM13 PacBio HiFi 3 167 477 16 SRR11292122-3 T2T-CHM13 (v1.1)
ONT* 10 380 693 30 Simulated R9.5 T2T-CHM13 (v2.0)

Human HG002 PacBio HiFi 11 714 594 52 SRR10382244-9 GRCh37
D. ananassae PacBio HiFi 1 195 370 50 SRR11442117 (90)
Yeast PacBio CLR* 270 849 200 Simulated P6-C4 GCA 000146045.2

ONT* 135 296 100 Simulated R9.5 GCA 000146045.2
Illumina MiSeq 3 318 467 80 ERR1938683 GCA 000146045.2

E. coli PacBio HiFi 38 703 100 SRR11434954 (90)
PacBio CLR 76 279 112 SRR1509640 GCA 000732965.1

* We use PBSIM2 to generate the simulated PacBio and ONT reads.
We show the simulated chemistry under the SRA Accession column.

D. ananassae reads to 100× and 50× sequencing depth of
coverage, respectively.

We evaluate BLEND based on two use cases: (i) read
overlapping and (ii) read mapping to a reference genome.
For read overlapping, we perform all-vs-all overlapping to
find all pairs of overlapping reads within the same dataset
(i.e., the target and query sequences are the same set of se-
quences). To calculate the overlap statistics, we report the
overall number of overlaps, the average length of overlaps,
and the number of seed matches per overlap. To evaluate the
quality of overlapping reads based on the accuracy of the
assemblies we generate from overlaps, we use miniasm (14).
We use miniasm because it does not perform error correc-
tion when generating de novo assemblies, which allows us
to directly assess the quality of overlaps without using ad-
ditional approaches that externally improve the accuracy
of assemblies. We use mhap2paf.pl package as provided
by miniasm to convert the output of MHAP to the format
miniasm requires (i.e., PAF). We use QUAST (91) to mea-
sure statistics related to the contiguity, length, and accuracy
of de novo assemblies, such as the overall assembly length,
largest contig, NG50, and NGA50 statistics (i.e., statistics
related to the length of the shortest contig at the half of the
overall reference genome length), k-mer completeness (i.e.,
amount of shared k-mers between the reference genome and
an assembly), number of mismatches per 100 kb, and GC
content (i.e., the ratio of G and C bases in an assembly). We
use dnadiff (92) to measure the accuracy of de novo assem-
blies based on (i) the average identity of an assembly when
compared to its reference genome and (ii) the fraction of
overall bases in a reference genome that align to a given as-
sembly (i.e., genome fraction). We compare BLEND with
minimap2 (15) and MHAP (58) for read overlapping. For
the human genomes, MHAP either (i) requires a memory
space larger than what we have in our system (i.e., 1TB) or
(ii) generates a large output such that we cannot generate
the assembly as miniasm exceeds the memory space we have.

For read mapping, we map all reads in a dataset
(i.e., query sequences) to their corresponding reference
genome (i.e., target sequence). We evaluate read mapping
in terms of accuracy, quality, and the effect of read map-
ping on downstream analysis by calling structural vari-
ants. We compare BLEND with minimap2, LRA (87), Win-
nowmap2 (59,60), S-conLSH (65,66) and Strobealign (71).
We do not evaluate (i) LRA, Winnowmap2 and S-conLSH
for short reads as these tools do not support mapping

paired-end short reads, (ii) Strobealign for long reads as it
is a short read aligner, (iii) S-conLSH for the D. ananas-
sae as S-conLSH crashes due to a segmentation fault when
mapping reads to the D. ananassae reference genome and
(iv) S-conLSH for mapping HG002 reads as its output can-
not be converted into a sorted BAM file, which is required
for variant calling. We do not evaluate the read mapping ac-
curacy of LRA and S-conLSH because (i) LRA generates a
CIGAR string with characters that the paftools mape-
val tool cannot parse to calculate alignment positions, and
(ii) S-conLSH due to its poor accuracy results we observe
in our preliminary analysis.

Read mapping accuracy. We measure (i) the overall read
mapping error rate and (ii) the distribution of the read map-
ping error rate with respect to the fraction of mapped reads.
To generate these results, we use the tools in paftools
provided by minimap2 in two steps. First, the paftools
pbsim2fq tool annotates the read IDs with their true map-
ping information that PBSIM2 generates. The paftools
mapeval tool calculates the error rate of read mapping
tools by comparing the mapping regions that the read map-
ping tools find with their true mapping regions annotated
in read IDs. The error rate shows the ratio of reads mapped
to incorrect regions over the entire mapped reads.

Read mapping quality. We measure (i) the breadth of cov-
erage (i.e., percentage of bases in a reference genome cov-
ered by at least one read), (ii) the average depth of cover-
age (i.e., the average number of read alignments per base
in a reference genome), (iii) mapping rate (i.e., number of
aligned reads) and (iv) rate of properly paired reads for
paired-end mapping. To measure the breadth and depth of
coverage of read mapping, we use BEDTools (93) and Mos-
depth (94), respectively. To measure the mapping rate and
properly paired reads, we use BAMUtil (95).

Downstream analysis. We use sniffles2 (96,97) to call struc-
tural variants (SVs) from the HG002 long read mappings.
We use Truvari (98) to compare the resulting SVs with the
benchmarking SV set (i.e., the Tier 1 set) released by the
Genome in a Bottle (GIAB) consortium (99) in terms of
their true positives (TP), false positives (FP), false negatives
(FN), precision (P = TP/(TP + FP)), recall (R = TP/(TP
+ FN)) and the F1 scores (F1 = 2 × (P × R)/(P + R)).
False positives show the number of the called SVs missing

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

8 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

Figure 7. Fuzzy seed matching statistics. Collision count shows the number of non-identical seeds that generate the same hash value and the edit distance
between these sequences. Ratio is the proportion of collisions between non-identical sequences at a certain edit distance over all collisions. BLEND-n shows
the number of neighbors (n) that BLEND uses.

in the benchmarking set. False negatives show the number
of SVs in the benchmarking set missing from the called SV
set. The Tier 1 set includes 12 745 sequence-resolved SVs
that include the PASS filter tag. GIAB provides the high-
confidence regions of these SVs with low errors. We follow
the benchmarking strategy that GIAB suggests (99), where
we compare the SVs with thePASS filter tag within the high-
confidence regions.

For both use cases, we use the time command in Linux
to evaluate the performance and peak memory footprints.
We provide the average speedups and memory overhead of
BLEND compared to each tool, while dataset-specific re-
sults are shown in our corresponding figures. When applica-
ble, we use the default parameters of all the tools suggested
for certain use cases and sequencing technologies (e.g., map-
ping HiFi reads in minimap2). Since minimap2 and MHAP
do not provide default parameters for read overlapping us-
ing HiFi reads, we use the parameters that HiCanu (100)
uses for overlapping HiFi reads with minimap2 and MHAP.
We provide the details regarding the parameters and ver-
sions we use for each tool in Supplementary Tables S17–
S19. When applicable in read overlapping, we use the same
window and the seed length parameters that BLEND uses
in minimap2 and show the performance and accuracy re-
sults in Supplementary Figure S5 and Supplementary Ta-
ble S15. For read mapping, the comparable default param-
eters in BLEND are already the same as in minimap2.

Empirical analysis of fuzzy seed matching

We evaluate the effectiveness of fuzzy seed matching by find-
ing non-identical seeds with the same hash value (i.e., col-
lisions) when using a low-collision hash function that min-
imap2 uses (hash64) and BLEND in two ways.

Finding minimizer collisions. Our goal is to evaluate the ef-
fects of using a low-collision hash function and the BLEND

mechanism on the hash value collisions between non-
identical minimizers. We use minimap2 and BLEND to find
all the minimizer seeds in the E. coli reference genome (90),
as explained in Supplementary Section S1.1. Figure 7 shows
the edit distance between non-identical seeds with hash
collision when using minimap2 and BLEND. We evalu-
ate BLEND for various numbers of neighbors (n) as ex-
plained in the Sequence to set conversion section, which
we show as BLEND-n in Figure 7, Supplementary Ta-
bles S1 and S2. We make three key observations. First,
BLEND significantly increases the ratio of hash collisions
between highly similar minimizer pairs (e.g., edit distance
less than 3) compared to using a low-collision hash func-
tion in minimap2. This result shows that BLEND favors
increasing the collisions for highly similar seeds (i.e., fuzzy
seed matching) than uniformly increasing the number of
collisions by keeping the same ratio across all edit distance
values. Second, the number of collisions that minimap2
and BLEND find are similar to each other for the mini-
mizer pairs that have a large edit distance between them
(e.g., larger than 6). The only exception to this observa-
tion is BLEND-13, which substantially increases all col-
lisions for any edit distance due to using many small k-
mers (i.e., thirteen 4-mers) when generating the hash val-
ues of 16-character long seeds. We note that the number of
collisions is significantly higher when the edit distance be-
tween minimizers is 2 compared to the collisions with edit
distance 1. We argue that this may be due to the distribu-
tion of the edit distances between minimizer pairs where
there may be significantly a large number of minimizer pairs
with edit distance 2 than 1. Third, increasing the number of
neighbors can effectively reduce the average edit distance
between fuzzy seed matches with the cost of increasing the
overall number of minimizer seeds, as shown in Supplemen-
tary Table S1. We conclude that BLEND can effectively find
highly similar seeds with the same hash value as it increases
the ratio of collisions between similar seeds while provid-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 9

Figure 8. CPU time and peak memory footprint comparisons of read overlapping.

ing a collision ratio similar to minimap2 for dissimilar
seeds.

Identifying similar sequences. Our goal is to find non-
identical k-mer matches with the same hash value (i.e., fuzzy
k-mer matches) between highly similar sequence pairs, as
explained in Supplementary Section S1.2. Supplementary
Table S2 shows the number and portion of similar sequence
pairs that we can find using only fuzzy k-mer matches.
We make two key observations. First, BLEND is the only
mechanism that can identify similar sequences from their
fuzzy k-mer matches since low-collision hash functions can-
not increase the collision rates for high similarity matches.
Second, BLEND can identify a larger number of similar
sequence pairs with an increasing number of neighbors.
For the number of neighbors larger than 5, the percent-
age of these similar sequence pairs that BLEND can iden-
tify ranges from 1.2% to 7.9% of the overall number of se-
quences we use in our dataset. We conclude that BLEND
enables finding similar sequence pairs from fuzzy k-mer
matches that low-collision hash functions cannot find.

Use Case 1: read overlapping

Performance. Figure 8 shows the CPU time and peak
memory footprint comparisons for read overlapping. We
make the following five observations. First, BLEND pro-
vides an average speedup of 19.3× and 808.2× while reduc-
ing the memory footprint by 3.8× and 127.8× compared
to minimap2 and MHAP, respectively. BLEND is signif-
icantly more performant and provides less memory over-
heads than MHAP because MHAP generates many hash
values for seeds regardless of the length of the sequences,
while BLEND allows sampling the number of seeds based
on the sequence length with the windowing guarantees of
minimizers and strobemer seeds. Second, when considering
only HiFi reads, BLEND provides significant speedups by
40.3× and 1580.0× while reducing the memory footprint
by 7.2× and 214.0× compared to minimap2 and MHAP,

respectively. HiFi reads allow BLEND to increase the win-
dow length (i.e., w = 200) when finding the minimizer k-
mer of a seed, which improves the performance and re-
duces the memory overhead without reducing the accuracy.
This is possible mainly because BLEND can find both fuzzy
and exact seed matches, which enables BLEND to find
unique fuzzy seed matches that minimap2 cannot find due
to its exact-matching seed requirement. Third, we find that
BLEND requires less than 16GB of memory space for al-
most all the datasets, making it largely possible to find over-
lapping reads even with a personal computer with relatively
small memory space. BLEND has a lower memory foot-
print because (i) BLEND uses as many seeds as the num-
ber of minimizer k-mers per sequence to benefit from the
reduced storage requirements that minimizer k-mers pro-
vide, and (ii) the window length is larger than minimap2 as
BLEND can tolerate increasing this window length with the
fuzzy seed matches without reducing the accuracy. Fourth,
when using erroneous reads (i.e., PacBio CLR and ONT),
BLEND performs better than other tools with memory
overheads similar to minimap2. The set of parameters we
use for erroneous reads prevents BLEND from using large
windows (i.e., w = 10 instead of w = 200) without reducing
the accuracy of read overlapping. Smaller window lengths
generate more seeds, which increases the memory space re-
quirements. Fifth, we use the same parameters (i.e., the
seed length and the window length) with minimap2 that
BLEND uses to observe the benefits that BLEND provides
with PacBio CLR and ONT datasets. We cannot perform
the same experiment for the HiFi datasets because BLEND
uses strobemer seeds of length 31, which minimap2 cannot
support due to its minimizer seeds and the maximum seed
length limitation in its implementation (i.e., max. 28). We
use minimap2-Eq to refer to the version of minimap2 where
it uses the parameters equivalent to the BLEND parameters
for a given dataset in terms of the seed and window lengths.
We show in Supplementary Figure S5 that minimap2-Eq
performs, on average, ∼ 5% better than BLEND with sim-
ilar memory space requirements when using the same set

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

10 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

Figure 9. Average number and length of overlaps, and average number of
seeds used to find a single overlap.

of parameters with the BLEND-I technique. Minimap2-
Eq provides worse accuracy than BLEND when generat-
ing the ONT assemblies, as shown in Supplementary Ta-
ble S15, while the erroneous PacBio assemblies are more
accurate with minimap2-Eq. The main benefit of BLEND
is to provide overall higher accuracy than both the baseline
minimap2 and minimap-Eq, which we can achieve by find-
ing unique fuzzy seed matches that minimap2 cannot find.
We conclude that BLEND is significantly more memory-
efficient and faster than other tools to find overlaps, espe-
cially when using HiFi reads with its ability to sample many
seeds using large values of w without reducing the accuracy.

Overlap statistics. Figure 9 shows the overall number of
overlaps, the average length of overlaps, and the average
number of seed matches that each tool finds to identify
the overlaps between reads. The combination of the overall
number of overlaps and the average number of seed matches
provides the overall number of seeds found by each method.
We make the following four key observations. First, we ob-
serve that BLEND finds overlaps longer than minimap2
and MHAP can find in most cases. BLEND can (i) uniquely
find the fuzzy seed matches that the exact-matching-based
tools cannot find and (ii) perform chaining on these fuzzy
seed matches to increase the length of overlap using many
fuzzy seed matches that are relatively close to each other.
Finding more distinct seeds and chaining these seeds en-
able BLEND to find longer overlaps than other tools. Al-
though these unique features of BLEND can lead to chain-
ing longer overlaps, we also note that BLEND may not
be able to find very short overlaps due to larger window
lengths it uses, which can also contribute to increasing the
average length of overlaps. Second, BLEND uses signifi-
cantly fewer seed matches per overlap than other tools, up

to 27.3×, to find these longer overlaps. This is mainly be-
cause BLEND needs much fewer seeds per overlap as it
uses (i) larger window lengths than minimap2 and (ii) pro-
vides windowing guarantees, unlike MHAP. Third, finding
fewer seed matches per overlap leads to (i) finding fewer
overlaps than minimap2 and MHAP find and (ii) report-
ing fewer seed matches overall. These overlaps that BLEND
cannot find are mainly because of the strict parameters that
minimap2 and MHAP use due to their exact seed match-
ing limitation (e.g., smaller window lengths). BLEND can
increase the window length while producing more accurate
and complete assemblies than minimap2 and MHAP (Ta-
ble 2). This suggests that minimap2 and MHAP find redun-
dant overlaps and seed matches that have no significant ben-
efits in generating accurate and complete assemblies from
these overlaps. Fourth, the sequencing depth of coverage
has a larger impact on the number of overlaps that BLEND
can find compared to the impact on minimap2 and MHAP.
We observe this trend when comparing the number of over-
laps found using the PacBio (200× coverage) and ONT
(100× coverage) reads of the Yeast genome. The gap be-
tween the number of overlaps found by BLEND and other
tools increases as the sequencing coverage decreases. This
suggests that BLEND can be less robust to the sequencing
depth of coverage. Such a trend does not impact the accu-
racy of the assemblies that we generate using the BLEND
overlaps, while it provides lower NGA50 and NG50 val-
ues as shown in Table 2. We conclude that the performance
and memory-efficiency improvements in read overlapping
are proportional to the reduction in the seed matches that
BLEND uses to find overlapping reads. Thus, finding fewer
non-redundant seed matches can dramatically improve the
performance and memory space usage without reducing the
accuracy.

Assembly quality assessment. Our goal is to assess the
quality of assemblies generated using the overlapping reads
found by BLEND, minimap2, and MHAP. Table 2 shows
the statistics related to the accuracy of assemblies (i.e., the
six statistics on the leftmost part of the table) and the statis-
tics related to assembly length and contiguity (i.e., the four
statistics on the rightmost part of the table) when compared
to their respective reference genomes. We make the follow-
ing five key observations based on the accuracy results of
assemblies.

First, we observe that we can construct more accurate as-
semblies in terms of average identity and k-mer complete-
ness when we use the overlapping reads that BLEND finds
than those minimap2 and MHAP find. These results show
that the assemblies we generate using the BLEND overlaps
are more similar to their corresponding reference genome.
BLEND can find unique and accurate overlaps using fuzzy
seed matches that lead to more accurate de novo assemblies
than the minimap2 and MHAP overlaps due to their lack
of support for fuzzy seed matching. Second, we observe
that assemblies generated using BLEND overlaps usually
cover a larger fraction of the reference genome than min-
imap2 and MHAP overlaps. Third, although the average
identity and genome fraction results seem mixed for the
PacBio CLR and ONT reads such that BLEND is best in
terms of either average identity or genome fraction, we be-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 11

Table 2. Assembly quality comparisons

Average Genome k-mer Aligned
Mismatch

per Average Assembly Largest

Dataset Tool
Identity

(%)
Fraction

(%)
Compl.

(%)
Length
(Mb)

100 kb
(#) GC (%)

Length
(Mb)

Contig
(Mb)

NGA50
(kb)

NG50
(kb)

CHM13 BLEND 99.8526 98.4847 90.15 3092.54 22.02 40.78 3095.21 22.8397 5442.25 5442.31
(HiFi) minimap2 99.7421 97.1493 83.05 3094.79 55.96 40.71 3100.97 47.1387 7133.43 7134.31

MHAP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Reference 100 100 100 3054.83 0.00 40.85 3054.83 248.387 154 260 154 260

D. ananassae BLEND 99.7856 97.2308 86.43 240.391 143.13 41.75 247.153 6.23256 792.407 798.913
(HiFi) minimap2 99.7044 96.3190 72.33 289.453 191.53 41.68 298.28 4.43396 273.398 278.775

MHAP 99.5551 0.7276 0.21 2.29 239.76 42.07 2.34951 0.028586 N/A N/A
Reference 100 100 100 213.805 0.00 41.81 213.818 30.6728 26 427.4 26 427.4

E. coli BLEND 99.8320 99.8801 87.91 5.12155 3.77 50.53 5.12155 3.41699 3416.99 3416.99
(HiFi) minimap2 99.7064 99.8748 79.27 5.09249 19.71 50.47 5.09436 3.08849 3087.05 3087.05

MHAP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Reference 100 100 100 5.04628 0.00 50.52 5.04628 4.94446 4944.46 4944.46

CHM13 BLEND N/A N/A 29.26 2891.28 4077.53 41.32 2897.87 25.2071 5061.52 5178.59
(ONT) minimap2 N/A N/A 28.32 2860.26 4660.73 41.36 2908.55 66.7564 13 189.2 13 820.3

Reference 100 100 100 3117.29 0.00 40.75 3117.29 248.387 150 617 150 617
Yeast BLEND 89.1677 97.0854 33.81 12.3938 2672.37 38.84 12.4176 1.54807 635.966 636.669
(PacBio) minimap2 88.9002 96.9709 33.38 12.0128 2684.38 38.85 12.3325 1.56078 810.046 828.212

MHAP 89.2182 88.5928 32.39 10.9039 2552.05 38.81 10.9896 1.02375 85.081 436.285
Reference 100 100 100 12.1571 0.00 38.15 12.1571 1.53193 924.431 924.431

Yeast BLEND 89.6889 99.2974 35.95 12.3222 2529.47 38.64 12.3225 1.10582 793.046 793.046
(ONT) minimap2 88.9393 99.6878 34.84 12.304 2782.59 38.74 12.3725 1.56005 796.718 941.588

MHAP 89.1970 89.2785 33.58 10.8302 2647.19 38.84 10.9201 1.44328 118.886 618.908
Reference 100 100 100 12.1571 0.00 38.15 12.1571 1.53193 924.431 924.431

E. coli BLEND 88.5806 96.5238 32.32 5.90024 1857.56 49.81 6.21598 2.40671 769.981 2060.4
(PacBio) minimap2 88.1365 92.7603 30.74 5.37728 2005.72 49.66 6.02707 3.77098 367.442 3770.98

MHAP 88.4883 90.5533 31.32 5.75159 1999.48 49.69 6.26216 1.04286 110.535 456.01
Reference 100 100 100 5.6394 0.00 50.43 5.6394 5.54732 5547.32 5547.32

Best results are highlighted with bold text. For most metrics, the best results are the ones closest to the corresponding value of the reference genome.
The best results for Aligned Length are determined by the highest number within each dataset. We do not highlight the reference results as the best results.
N/A indicates that we could not generate the corresponding result because tool, QUAST, or dnadiff failed to generate the statistic.

lieve these two statistics should be considered together (e.g.,
by multiplying both results). This is because a highly accu-
rate but much smaller fraction of the assembly can align to
a reference genome, giving the best results for the average
identity. We observe that this is the case for the D. ananassae
and Yeast (PacBio CLR) genomes such that MHAP pro-
vides a very high average identity only for the much smaller
fraction of the assemblies than the assemblies generated us-
ing BLEND and minimap2 overlaps. Thus, when we com-
bine average identity and genome fraction results, we ob-
serve that BLEND consistently provides the best results for
all the datasets. Fourth, BLEND usually provides the best
results in terms of the aligned length and the number of mis-
matches per 100Kb. In some cases, QUAST cannot gener-
ate these statistics for the MHAP results as a small por-
tion of the assemblies aligns the reference genome when
the MHAP overlaps are used. Fifth, we find that assem-
blies generated from BLEND overlaps are less biased than
minimap2 and MHAP overlaps, based on the average GC
content results that are mostly closer to their correspond-
ing reference genomes. We conclude that BLEND overlaps
yield assemblies with higher accuracy and less bias than the
assemblies that the minimap2 and MHAP overlaps generate
in most cases.

Table 2 shows the results related to assembly length and
contiguity on its rightmost part. We make the following
three observations. First, we show that BLEND yields as-
semblies with better contiguity when using HiFi reads based
on the largest NG50, NGA50 and contig length results

compared to minimap2 with the exception of the human
genome. Second, minimap2 provides better contiguity for
the human genomes and erroneous reads. Third, the over-
all length of all assemblies is mostly closer to the reference
genome assembly. We conclude that minimap2 provides bet-
ter contiguity for the assemblies from erroneous and human
reads while BLEND is usually better suited for using the
HiFi reads.

Use Case 2: read mapping

Performance. Figure 10 shows the CPU time and the peak
memory footprint comparisons when performing read map-
ping to the corresponding reference genomes. We make
the following four key observations. First, we observe that
BLEND provides an average speedup of 1.7×, 6.8×, 4.3×
and 13.3× over minimap2, LRA, Winnowmap2, and S-
conLSH, respectively. Although BLEND performs better
than most of these tools, the speedups we see are usually
lower than those we observe in read overlapping. Read map-
ping includes an additional computationally costly step that
read overlapping skips, which is the read alignment. The
extra overhead of read alignment slightly hinders the ben-
efits that BLEND provides that we observe in read over-
lapping. Second, we find that LRA and minimap2 require
0.6× and 1.0× of the memory space that BLEND uses,
while Winnowmap2 and S-conLSH have a larger memory
footprint by 1.5× and 1.6×, respectively. BLEND cannot
provide similar reductions in the memory overhead that we

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

12 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

Figure 10. CPU time and peak memory footprint comparisons of read mapping.

observe in read overlapping due to the narrower window
length (w = 50 instead of w = 200) it uses to find the mini-
mizer k-mers for HiFi reads. Using a narrow window length
generates more seeds to store in a hash table, which pro-
portionally increases the peak memory space requirements.
Third, BLEND provides performance and memory usage
similar to minimap2 when mapping the erroneous ONT and
PacBio reads because BLEND uses the same parameters
as minimap2 for these reads (i.e., same w and seed length).
Fourth, Strobealign is the best-performing tool for map-
ping short reads with the cost of larger memory overhead.
We conclude that BLEND, on average, (i) performs better
than all tools for mapping long reads and (ii) provides a
memory footprint similar to or better than minimap2, Win-
nowmap2, S-conLSH, and Strobealign, while LRA is the
most memory-efficient tool.

Read mapping accuracy. Table 3 and Figure 11 show the
overall read mapping accuracy and fraction of mapped
reads with their average mapping accuracy, respectively. We
make two observations. First, we observe that BLEND gen-
erates the most accurate read mapping in most cases, while
minimap2 provides the most accurate read mapping for the
human genome. These two tools are on par in terms of
their read mapping accuracy and the fraction of mapped
reads. Second, although Winnowmap2 provides more accu-
rate read mapping than minimap2 for the PacBio reads from
the Yeast genome, Winnowmap2 always maps a smaller
fraction of reads than that BLEND and minimap2 map. We
conclude that although the results are mixed, BLEND is the
only tool that generates either the most or the second-most
accurate read mapping in all datasets, providing the overall
best accuracy results.

Read mapping quality. Our goal is to assess the quality
of read mappings in terms of four metrics: average depth
of coverage, breadth of coverage, number of aligned reads,
and the ratio of the paired-end reads that are properly

Table 3. Read mapping accuracy comparisons

Overall error rate (%)

Dataset BLEND minimap2 Winnowmap2

CHM13 (ONT) 1.5168427 1.4914009 1.7001222
Yeast (PacBio) 0.2403134 0.2504307 0.2474206
Yeast (ONT) 0.2386617 0.2468770 0.2534777

Best results are highlighted with bold text.

paired in mapping. Table 4 shows the quality of read map-
pings based on these metrics when using BLEND, min-
imap2, LRA, Winnowmap2, and Strobealign. We exclude
S-conLSH from the read mapping quality comparisons as
we cannot convert its SAM output to BAM format to prop-
erly index the BAM file due to issues with its SAM output
format. We make five observations.

First, all tools cover a large portion of the reference
genomes based on the breadth of coverage of the reference
genomes. Although LRA provides the lowest breadth of
coverage in most cases compared to the other tools, it also
provides the best breadth of coverage after mapping the hu-
man HG002 reads. This result shows that these tools are
less biased in mapping reads to particular regions with their
high breadth of coverage, and the best tool for covering the
largest portion of the genome depends on the dataset.

Second, both BLEND and minimap2 map an almost
complete set of reads to the reference genome for all the
datasets, while Winnowmap2 suffers from a slightly lower
number of aligned reads when mapping erroneous PacBio
CLR and ONT reads. The only exception to this obser-
vation is the HG002 dataset, where BLEND provides a
smaller number of aligned reads compared to other tools,
while BLEND provides the same breadth of coverage as
minimap2. We investigate if such a smaller number of
aligned reads leads to a coverage bias genome-wide in
Supplementary Figures S6–S8. We find that the distribu-
tion of the depth of coverage of BLEND is mostly simi-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 13

A B C

Figure 11. Fraction of simulated reads with an average mapping error rate. Reads are binned by their mapping quality scores. There is a bin for each
mapping quality score as reported by the read mapper, and bins are sorted based on their mapping quality scores in descending order. For each tool, the
nth data point from the left side of the x-axis shows the rate of incorrectly mapped reads among the reads in the first n bins. We show the number of reads
in these bins in terms of the fraction of the overall number of reads in the dataset. The data point with the largest fraction shows the average mapping error
rate of all mapped reads.

lar to minimap2. There are a few regions in the reference
genome where minimap2 provides substantially higher cov-
erage than BLEND provides, as we show in Supplementary
Figure S8, which causes BLEND to align a smaller num-
ber of reads than minimap2 aligns. Since these regions are
still covered by both BLEND and minimap2 with differ-
ent depths of coverage, these two tools generate the same
breadth of coverage without leading to no significant cov-
erage bias genome-wide.

Third, we find that all the tools generate read mappings
with a depth of coverage significantly close to their sequenc-
ing depth of coverage. This shows that almost all reads map
to the reference genome evenly. Fourth, Strobealign gener-
ates the largest number of (i) short reads mappings to the
reference genome and (ii) properly paired reads compared
to BLEND and minimap2. Strobealign can map more reads
using less time (Figure 10, which makes its throughput
much higher than BLEND and minimap2. Fifth, although
Strobealign can map more reads, it covers the smallest
portion of the reference genome based on the breadth of
coverage compared to BLEND and minimap2. This sug-
gests that Strobealign provides a higher depth of coverage
at certain regions of the reference genome than BLEND
and minimap2 while leaving larger gaps in the reference
genome. We conclude that the read mapping qualities of
BLEND, minimap2, and Winnowmap2 are highly similar,
while LRA provides slightly worse results. It is worth not-
ing that BLEND provides a better breadth of coverage than
minimap2 provides in most cases while using the same pa-
rameters in read mapping. BLEND does this by finding
unique fuzzy seed matches that the other tools cannot find
due to their exact-matching seed requirements.

Downstream analysis. To evaluate the effect of read map-
ping on downstream analysis, we call SVs from the HG002
long read mappings that BLEND, minimap2, LRA, and
Winnowmap2 generate. Table 5 shows the benchmarking
results. We make two key observations. First, we find that
BLEND provides the best overall accuracy in downstream
analysis based on the best F1 score compared to other tools.

This is because BLEND provides the best true positive and
false negative numbers while providing the second-best false
positive numbers after LRA. These two best values over-
all contribute to achieving the best recall and second-best
precision that is on par with the precision LRA provides.
Second, although LRA generates the second-best F1 score,
it provides the worst recall results due to the largest num-
ber of false negatives. We conclude that BLEND is consis-
tently either the best or second-best in terms of the metrics
we show in Table 5, which leads to providing the best overall
F1 accuracy in structural variant calling.

DISCUSSION

We demonstrate that there are usually too many redundant
short and exact-matching seeds used to find overlaps be-
tween sequences, as shown in Figure 9. These redundant
seeds usually exacerbate the performance and peak memory
space requirement problems that read overlapping and read
mapping suffer from as the number of chaining and align-
ment operations proportionally increases with the number
of seed matches between sequences (15). Such redundant
computations have been one of the main limitations against
developing population-scale genomics analysis due to the
high runtime of a single high-coverage genome analysis.

There has been a clear interest in using long or fuzzy
seed matches because of their potential to find similarities
between target and query sequences efficiently and accu-
rately (28). To achieve this, earlier works mainly focus on
either (i) chaining the exact k-mer matches by tolerating the
gaps between them to increase the seed region or (ii) link-
ing multiple consecutive minimizer k-mers such as strobe-
mer seeds. Chaining algorithms are becoming a bottleneck
in read mappers as the complexity of chaining is determined
by the number of seed matches (101). Linking multiple min-
imizer k-mers enables tolerating indels when finding the
matches of short subsequences between genomic sequence
pairs, but these seeds (e.g., strobemer seeds) should still ex-
actly match due to the nature of the hash functions used
to generate the hash values of seeds. This requires the seed-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

14 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

Table 4. Read mapping quality comparisons

Dataset Tool
Average depth of

Cov. (×)
Breadth of

coverage (%)
Aligned reads

(#)
Properly paired

(%)

CHM13 BLEND 16.58 99.991 3 171 916 NA
(HiFi) minimap2 16.58 99.991 3 172 261 NA

LRA 16.37 99.064 3 137 631 NA
Winnowmap2 16.58 99.990 3 171 313 NA

HG002 BLEND 51.25 92.245 11 424 762 NA
(HiFi) minimap2 53.08 92.242 12 407 589 NA

LRA 52.48 92.275 13 015 195 NA
Winnowmap2 53.81 92.248 12 547 868 NA

D. ananassae BLEND 57.37 99.662 1 223 388 NA
(HiFi) minimap2 57.57 99.665 1 245 931 NA

LRA 57.06 99.599 1 235 098 NA
Winnowmap2 57.40 99.663 1 249 575 NA

E. coli BLEND 99.14 99.897 39 048 NA
(HiFi) minimap2 99.14 99.897 39 065 NA

LRA 99.10 99.897 39 063 NA
Winnowmap2 99.14 99.897 39 036 NA

CHM13 BLEND 29.34 99.999 10 322 767 NA
(ONT) minimap2 29.33 99.999 10 310 182 NA

LRA 28.84 99.948 9 999 432 NA
Winnowmap2 28.98 99.936 9 958 402 NA

Yeast BLEND 195.87 99.980 270 064 NA
(PacBio) minimap2 195.86 99.980 269 935 NA

LRA 194.65 99.967 267 399 NA
Winnowmap2 192.35 99.977 259 073 NA

Yeast BLEND 97.88 99.964 134 919 NA
(ONT) minimap2 97.88 99.964 134 885 NA

LRA 97.25 99.952 132 862 NA
Winnowmap2 97.04 99.963 130 978 NA

Yeast BLEND 79.92 99.975 6 493 730 95.88
(Illumina) minimap2 79.91 99.974 6 492 994 95.89

Strobealign 79.92 99.970 6 498 380 97.59
E. coli BLEND 97.51 100 83 924 NA
(PacBio) minimap2 97.29 100 85 326 NA

LRA 93.61 100 80 802 NA
Winnowmap2 89.78 100 69 884 NA

Best results are highlighted with bold text.
Properly paired rate is only available for paired-end Illumina reads.

Table 5. Benchmarking the structural variant (SV) calling results

HG002 SVs (high-confidence tier 1 SV set)

Tool TP (#) FP (#) FN (#) Precision Recall F1

BLEND 9229 855 412 0.9152 0.9573 0.9358
minimap2 9222 915 419 0.9097 0.9565 0.9326
LRA 9155 830 486 0.9169 0.9496 0.9329
Winnowmap2 9170 1029 471 0.8991 0.9511 0.9244

Best results are highlighted with bold text.

ing techniques to generate exactly the same seed to find ei-
ther exact-matching or approximate matches of short sub-
sequences. We state that any arbitrary k-mer in the seeds
should be tolerated to mismatch to improve the sensitivity
of any seeding technique, which has the potential for find-
ing more matching regions while using fewer seeds. Thus, we
believe BLEND solves the main limitation of earlier works
such that it can generate the same hash value for similar
seeds to find fuzzy seed matches with a single lookup while
improving the performance, memory overhead, and accu-
racy of the applications that use seeds.

We hope that BLEND advances the field and inspires fu-
ture work in several ways, some of which we list next. First,

we observe that BLEND is most effective when using high
coverage and highly accurate long reads. Thus, BLEND
is already ready to scale for longer and more accurate se-
quencing reads. Second, the vector operations are suitable
for hardware acceleration to improve the performance of
BLEND further. Such an acceleration is mainly useful when
a massive amount of k-mers in a seed are used to generate
the hash value for a seed, as these calculations can be done
in parallel. We already provide the SIMD implementation
to calculate the hash values BLEND. We encourage imple-
menting our mechanism for the applications that use seeds
to find sequence similarity using processing-in-memory and
near-data processing (102–114), GPUs (115–117), and FP-
GAs and ASICs (118–123) to exploit the massive amount
of embarrassingly parallel bitwise operations in BLEND
to find fuzzy seed matches. Third, we believe it is possi-
ble to apply the hashing technique we use in BLEND for
many seeding techniques with a proper design. We already
show we can apply SimHash in regular minimizer k-mers
or strobemers. Strobemers can be generated using k-mer
sampling strategies other than minimizer k-mers, which are
based on syncmers and random selection of k-mers (i.e.,
randstrobes) (71). It is worth exploring and rethinking the
hash functions used in these seeding techniques. Fourth, po-
tential machine learning applications can be used to gener-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 15

ate more sensitive hash values for fuzzy seed matching based
on learning-to-hash approaches (124) and recent improve-
ments on SimHash for identifying nearest neighbors in ma-
chine learning and bioinformatics (125–127).

Limitations. We identify two main limitations of our work
that requires further improvements. First, BLEND may
generate the same hash values for 1% − 8% of all the sim-
ilar sequence pairs in a dataset, as we show in Supplemen-
tary Table S2. Such 1% − 8% of similar sequence pairs that
cannot be found using low-collision hash functions can be
significant in improving the accuracy and performance of
some genomics applications. However, such a percentage
may also be considered low for other use cases. We observe
that increasing the number of neighbors (n) can increase the
percentage of similar sequence pairs that BLEND can find
with the cost of causing more collisions for dissimilar se-
quence pairs. A newer generation of the SimHash-like hash
functions, such as DenseFly (125) or FlyHash (128) has the
potential to improve the rate of similar sequence pairs with
the same hash value. Second, the advantage of BLEND is
mainly observed when using highly accurate and long reads
with high sequencing depth of coverage in read overlap-
ping and downstream analysis, while the improvements are
lower in other datasets. Although BLEND scales better as
the sequencing technologies become cheaper and generate
longer and highly accurate reads, it is also essential to fur-
ther improve its accuracy and performance for existing read
datasets with erroneous long reads and short reads. This re-
quires further optimizations in the parameter settings for
erroneous long reads and short reads. We leave these two
limitations as future work along with the other potential fu-
ture works that we discuss earlier.

Conclusion. We propose BLEND, a mechanism that can
efficiently find fuzzy seed matches between sequences to im-
prove the performance, memory space efficiency, and ac-
curacy of two important applications significantly: (i) read
overlapping and (ii) read mapping. Based on the exper-
iments we perform using real and simulated datasets,
we make six key observations. First, for read mapping,
BLEND provides an average speedup of 19.3× and 808.2×
while reducing the peak memory footprint by 3.8× and
127.8× compared to minimap2 and MHAP. Second, we ob-
serve that BLEND finds longer overlaps, in general, while
using significantly fewer seed matches by up to 27.3× to
find these overlaps. Third, we find that we can usually gen-
erate more accurate assemblies when using the overlaps
that BLEND finds than those found by minimap2 and
MHAP. Fourth, for read mapping, we find that BLEND,
on average, provides speedup by (i) 1.7×, 6.8×, 4.3× and
13.3× compared to minimap2, LRA, Winnowmap2, and S-
conLSH, respectively. Fifth, Strobealign performs best for
short read mapping, while BLEND provides better mem-
ory space usage than Strobealign. Sixth, we observe that
BLEND, minimap2, and Winnowmap2 provide both high
quality and better accuracy in read mapping in all datasets,
while BLEND and LRA provide the best SV calling results
in terms of downstream analysis accuracy. We conclude that
BLEND can use fewer fuzzy seed matches to significantly
improve the performance and reduce the memory overhead

of read overlapping without losing accuracy, while BLEND,
on average, provides better performance and a similar mem-
ory footprint in read mapping without reducing the read
mapping quality and accuracy.

DATA AVAILABILITY

We provide the accession numbers of all the public datasets
we use in Table 1. We make the simulated datasets
we use available on the Zenodo website. The human
CHM13 (simulated ONT) dataset is available at https://doi.
org/10.5281/zenodo.7261610. The Yeast (simulated PacBio
CLR) dataset is available at https://doi.org/10.5281/zenodo.
7261660. The Yeast (simulated ONT) dataset is available
at https://doi.org/10.5281/zenodo.7261655. We also provide
all the scripts (i) with the Zenodo links to download real
and simulated datasets and (ii) to fully reproduce our results
and figures at https://github.com/CMUSAFARI/BLEND/
tree/master/test. The source code of BLEND is available at
https://github.com/CMU-SAFARI/BLEND and at https:
//doi.org/10.5281/zenodo.7502134. For easy installation, we
also make BLEND available in Docker (firtinac/blend) and
bioconda (blend-bio).

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

We thank the SAFARI Research Group members for
their valuable feedback and the stimulating intellectual
and scholarly environment they provide. SAFARI Research
Group acknowledges the generous gifts of our industrial
partners, including Intel and VMware. We are grateful
for the detailed comments that Kristoffer Sahlin provided,
which improved our mechanism and the manuscript greatly.

FUNDING

Intel [to O.M.]; VMware [to O.M.].
Conflict of interest statement. None declared.

REFERENCES
1. Shendure,J., Balasubramanian,S., Church,G.M., Gilbert,W.,

Rogers,J., Schloss,J.A. and Waterston,R.H. (2017) DNA sequencing
at 40: past, present and future. Nature, 550, 345–353.

2. Aynaud,M.-M., Hernandez,J.J., Barutcu,S., Braunschweig,U.,
Chan,K., Pearson,J.D., Trcka,D., Prosser,S.L., Kim,J.,
Barrios-Rodiles,M. et al. , (2021) A multiplexed, next generation
sequencing platform for high-throughput detection of SARS-CoV-2.
Nat. Commun., 12, 1405.

3. Logsdon,G.A., Vollger,M.R. and Eichler,E.E. (2020) Long-read
human genome sequencing and its applications. Nat. Rev. Genet.,
21, 597–614.

4. Mantere,T., Kersten,S. and Hoischen,A. (2019) Long-read
sequencing emerging in medical genetics. Front. Genet., 10, 426.

5. B.M. Knoppers for the Paediatric Task Team of the Global Alliance
for Genomics and Health Regulatory and Ethics Work Stream,
Friedman,J.M., Bombard,Y., Cornel,M.C., Fernandez,C.V.,
Junker,A.K., Plon,S.E. and Stark,Z. (2019) Genome-wide
sequencing in acutely ill infants: genomic medicine’s critical
application? Genet. Med., 21, 498–504.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

http://https://doi.org/10.5281/zenodo.7261610
http://https://doi.org/10.5281/zenodo.7261660
http://https://doi.org/10.5281/zenodo.7261655
http://https://github.com/CMUSAFARI/BLEND/tree/master/test
http://https://github.com/CMU-SAFARI/BLEND
http://https://doi.org/10.5281/zenodo.7502134
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad004#supplementary-data

16 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

6. Merker,J.D., Wenger,A.M., Sneddon,T., Grove,M., Zappala,Z.,
Fresard,L., Waggott,D., Utiramerur,S., Hou,Y., Smith,K.S. et al.
(2018) Long-read genome sequencing identifies causal structural
variation in a Mendelian disease. Genet. Med., 20, 159–163.

7. Alkan,C., Coe,B.P. and Eichler,E.E. (2011) Genome structural
variation discovery and genotyping. Nat. Rev. Genet., 12, 363–376.

8. Goodwin,S., McPherson,J.D. and McCombie,W.R. (2016) Coming
of age: ten years of next-generation sequencing technologies. Nat.
Rev. Genet., 17, 333–351.

9. Stoler,N. and Nekrutenko,A. (2021) Sequencing error profiles of
Illumina sequencing instruments. NAR Genom. Bioinform., 3,
lqab019.

10. Zhang,H., Jain,C. and Aluru,S. (2020) A comprehensive evaluation
of long read error correction methods. BMC Genom., 21, 889.

11. Hon,T., Mars,K., Young,G., Tsai,Y.-C., Karalius,J.W.,
Landolin,J.M., Maurer,N., Kudrna,D., Hardigan,M.A.,
Steiner,C.C. et al. (2020) Highly accurate long-read HiFi sequencing
data for five complex genomes. Sci. Data, 7, 399.

12. Ma,X., Shao,Y., Tian,L., Flasch,D.A., Mulder,H.L.,
Edmonson,M.N., Liu,Y., Chen,X., Newman,S., Nakitandwe,J. et al.
(2019) Analysis of error profiles in deep next-generation sequencing
data. Genome Biol., 20, 50.

13. Senol Cali,D., Kim,J.S., Ghose,S., Alkan,C. and Mutlu,O. (2019)
Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and future
directions. Brief. Bioinform., 20, 1542–1559.

14. Li,H. (2016) Minimap and miniasm: fast mapping and de novo
assembly for noisy long sequences. Bioinformatics, 32, 2103–2110.

15. Li,H. (2018) Minimap2: pairwise alignment for nucleotide
sequences. Bioinformatics, 34, 3094–3100.

16. Canzar,S. and Salzberg,S.L. (2017) Short read mapping: an
algorithmic tour. Proc. IEEE, 105, 436–458.

17. Kim,J.S., Firtina,C., Cavlak,M.B., Senol Cali,D., Hajinazar,N.,
Alser,M., Alkan,C. and Mutlu,O. (2021) AirLift: a fast and
comprehensive technique for remapping alignments between
reference genomes. bioRxiv doi:
https://doi.org/10.1101/2021.02.16.431517, 17 February 2021,
preprint: not peer reviewed.

18. Kim,J.S., Firtina,C., Cavlak,M.B., Senol Cali,D., Alkan,C. and
Mutlu,O. (2022) FastRemap: a tool for quickly remapping reads
between genome assemblies. Bioinformatics, 38, 4633–4635.

19. Ekim,B., Berger,B. and Chikhi,R. (2021) Minimizer-space de Bruijn
graphs: whole-genome assembly of long reads in minutes on a
personal computer. Cell Syst., 12, 958–968.

20. Cheng,H., Concepcion,G.T., Feng,X., Zhang,H. and Li,H. (2021)
Haplotype-resolved de novo assembly using phased assembly graphs
with hifiasm. Nat. Methods, 18, 170–175.

21. Robertson,G., Schein,J., Chiu,R., Corbett,R., Field,M.,
Jackman,S.D., Mungall,K., Lee,S., Okada,H.M., Qian,J.Q. et al.
(2010) De novo assembly and analysis of RNA-seq data. Nat.
Methods, 7, 909–912.

22. Meyer,F., Fritz,A., Deng,Z.-L., Koslicki,D., Lesker,T.R.,
Gurevich,A., Robertson,G., Alser,M., Antipov,D., Beghini,F. et al.
(2022) Critical assessment of metagenome interpretation: the second
round of challenges. Nat. Methods, 19, 429–440.

23. LaPierre,N., Alser,M., Eskin,E., Koslicki,D. and Mangul,S. (2020)
Metalign: efficient alignment-based metagenomic profiling via
containment min hash. Genome Biol., 21, 242.

24. Wood,D.E., Lu,J. and Langmead,B. (2019) Improved metagenomic
analysis with Kraken 2. Genome Biol., 20, 257.

25. Firtina,C., Kim,J.S., Alser,M., Senol Cali,D., Cicek,A.E., Alkan,C.
and Mutlu,O. (2020) Apollo: a sequencing-technology-independent,
scalable and accurate assembly polishing algorithm. Bioinformatics,
36, 3669–3679.

26. Vaser,R., Sović,I., Nagarajan,N. and Šikić,M. (2017) Fast and
accurate de novo genome assembly from long uncorrected reads.
Genome Res., 27, 737–746.

27. Loman,N.J., Quick,J. and Simpson,J.T. (2015) A complete bacterial
genome assembled de novo using only nanopore sequencing data.
Nat. Methods, 12, 733–735.

28. Alser,M., Rotman,J., Deshpande,D., Taraszka,K., Shi,H.,
Baykal,P.I., Yang,H.T., Xue,V., Knyazev,S., Singer,B.D. et al. (2021)
Technology dictates algorithms: recent developments in read
alignment. Genome Biol., 22, 249.

29. Alser,M., Lindegger,J., Firtina,C., Almadhoun,N., Mao,H.,
Singh,G., Gomez-Luna,J. and Mutlu,O. (2022) From Molecules to
Genomic Variations: Accelerating Genome Analysis via Intelligent
Algorithms and Architectures. Comput. Struct. Biotechnol. J., 20,
4579–4599.

30. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

31. Altschul,S.F., Madden,T.L., Schäffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

32. Ning,Z., Cox,A.J. and Mullikin,J.C. (2001) SSAHA: a fast search
method for large DNA databases. Genome Res., 11, 1725–1729.

33. Kent,W.J. (2002) BLAT––the BLAST-Like alignment tool. Genome
Res., 12, 656–664.

34. Ma,B., Tromp,J. and Li,M. (2002) PatternHunter: faster and more
sensitive homology search. Bioinformatics, 18, 440–445.

35. Schwartz,S., Kent,W.J., Smit,A., Zhang,Z., Baertsch,R.,
Hardison,R.C., Haussler,D. and Miller,W. (2003) Human––mouse
alignments with BLASTZ. Genome Res., 13, 103–107.

36. Slater,G. S.C. and Birney,E. (2005) Automated generation of
heuristics for biological sequence comparison. BMC Bioinformatics,
6, 31.

37. Wu,T.D. and Watanabe,C.K. (2005) GMAP: a genomic mapping
and alignment program for mRNA and EST sequences.
Bioinformatics, 21, 1859–1875.

38. Ondov,B.D., Varadarajan,A., Passalacqua,K.D. and Bergman,N.H.
(2008) Efficient mapping of applied biosystems SOLiD sequence
data to a reference genome for functional genomic applications.
Bioinformatics, 24, 2776–2777.

39. Li,R., Li,Y., Kristiansen,K. and Wang,J. (2008) SOAP: short
oligonucleotide alignment program. Bioinformatics, 24, 713–714.

40. Jiang,H. and Wong,W.H. (2008) SeqMap: mapping massive amount
of oligonucleotides to the genome. Bioinformatics, 24, 2395–2396.

41. Lin,H., Zhang,Z., Zhang,M.Q., Ma,B. and Li,M. (2008) ZOOM!
Zillions of oligos mapped. Bioinformatics, 24, 2431–2437.

42. Smith,A.D., Xuan,Z. and Zhang,M.Q. (2008) Using quality scores
and longer reads improves accuracy of Solexa read mapping. BMC
Bioinformatics, 9, 128.

43. Alkan,C., Kidd,J.M., Marques-Bonet,T., Aksay,G., Antonacci,F.,
Hormozdiari,F., Kitzman,J.O., Baker,C., Malig,M., Mutlu,O. and
et,al. (2009) Personalized copy number and segmental duplication
maps using next-generation sequencing. Nat. Genet., 41, 1061–1067.

44. Homer,N., Merriman,B. and Nelson,S.F. (2009) BFAST: an
alignment tool for large scale genome resequencing. PLOS One, 4,
e7767.

45. Schneeberger,K., Hagmann,J., Ossowski,S., Warthmann,N.,
Gesing,S., Kohlbacher,O. and Weigel,D. (2009) Simultaneous
alignment of short reads against multiple genomes. Genome Biol.,
10, R98.

46. Weese,D., Emde,A.-K., Rausch,T., Döring,A. and Reinert,K. (2009)
RazerS––fast read mapping with sensitivity control. Genome Res.,
19, 1646–1654.

47. Rumble,S.M., Lacroute,P., Dalca,A.V., Fiume,M., Sidow,A. and
Brudno,M. (2009) SHRiMP: accurate mapping of short color-space
reads. PLoS Comput. Biol., 5, e1000386.

48. Li,R., Yu,C., Li,Y., Lam,T.-W., Yiu,S.-M., Kristiansen,K. and
Wang,J. (2009) SOAP2: an improved ultrafast tool for short read
alignment. Bioinformatics, 25, 1966–1967.

49. Hach,F., Hormozdiari,F., Alkan,C., Hormozdiari,F., Birol,I.,
Eichler,E.E. and Sahinalp,S.C. (2010) mrsFAST: a cache-oblivious
algorithm for short-read mapping. Nat. Methods, 7, 576–577.

50. Wu,T.D. and Nacu,S. (2010) Fast and SNP-tolerant detection of
complex variants and splicing in short reads. Bioinformatics, 26,
873–881.

51. Rizk,G. and Lavenier,D. (2010) GASSST: global alignment short
sequence search tool. Bioinformatics, 26, 2534–2540.

52. David,M., Dzamba,M., Lister,D., Ilie,L. and Brudno,M. (2011)
SHRiMP2: Sensitive yet Practical Short Read Mapping.
Bioinformatics, 27, 1011–1012.

53. Egidi,L. and Manzini,G. (2013) Better spaced seeds using quadratic
residues. J. Comp. Syst. Sci., 79, 1144–1155.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

https://doi.org/10.1101/2021.02.16.431517

NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 17

54. Liu,B., Guan,D., Teng,M. and Wang,Y. (2016) rHAT: fast alignment
of noisy long reads with regional hashing. Bioinformatics, 32,
1625–1631.

55. Baichoo,S. and Ouzounis,C.A. (2017) Computational complexity of
algorithms for sequence comparison, short-read assembly and
genome alignment. Biosystems, 156-157, 72–85.

56. Roberts,M., Hayes,W., Hunt,B.R., Mount,S.M. and Yorke,J.A.
(2004) Reducing storage requirements for biological sequence
comparison. Bioinformatics, 20, 3363–3369.

57. Schleimer,S., Wilkerson,D.S. and Aiken,A. (2003) Winnowing: local
algorithms for document fingerprinting. In: Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data.
pp. 76–85.

58. Berlin,K., Koren,S., Chin,C.-S., Drake,J.P., Landolin,J.M. and
Phillippy,A.M. (2015) Assembling large genomes with
single-molecule sequencing and locality-sensitive hashing. Nat.
Biotechnol., 33, 623–630.

59. Jain,C., Rhie,A., Hansen,N.F., Koren,S. and Phillippy,A.M. (2022)
Long-read mapping to repetitive reference sequences using
Winnowmap2. Nat. Methods, 19, 705–710.

60. Jain,C., Rhie,A., Zhang,H., Chu,C., Walenz,B.P., Koren,S. and
Phillippy,A.M. (2020) Weighted minimizer sampling improves long
read mapping. Bioinformatics, 36, i111–i118.

61. DeBlasio,D., Gbosibo,F., Kingsford,C. and Marçais,G. (2019)
Practical universal K-Mer sets for minimizer schemes. In:
Proceedings of the 10th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics, BCB
’19. Association for Computing Machinery, NY, pp. 167–176.

62. Xin,H., Shao,M. and Kingsford,C. (2020) Context-aware seeds for
read mapping. Algorithm. Mol. Biol., 15, 10.

63. Broder,A. (1997) On the resemblance and containment of
documents. In: Proceedings. Compression and Complexity of
Sequences 1997 (Cat. No. 97TB100171). pp. 21–29.

64. Xin,H., Lee,D., Hormozdiari,F., Yedkar,S., Mutlu,O. and Alkan,C.
(2013) Accelerating read mapping with FastHASH. BMC Genom.,
14, S13.

65. Chakraborty,A. and Bandyopadhyay,S. (2020) conLSH: context
based locality sensitive hashing for mapping of noisy SMRT reads.
Comput. Biol. Chem., 85, 107206.

66. Chakraborty,A., Morgenstern,B. and Bandyopadhyay,S. (2021)
S-conLSH: alignment-free gapped mapping of noisy long reads.
BMC Bioinformatics, 22, 64.

67. Petrucci,E., Noé,L., Pizzi,C. and Comin,M. (2020) Iterative spaced
seed hashing: closing the gap between spaced seed hashing and
K-mer hashing. J. Comput. Biol., 27, 223–233.

68. Mallik,A. and Ilie,L. (2021) ALeS: adaptive-length spaced-seed
design. Bioinformatics, 37, 1206–1210.

69. Chin,C.-S. and Khalak,A. (2019) Human genome assembly in 100
minutes. bioRxiv doi: https://doi.org/10.1101/705616, 17 July 2019,
preprint: not peer reviewed.

70. Sahlin,K. (2021) Effective sequence similarity detection with
strobemers. Genome Res., 31, 2080–2094.

71. Sahlin,K. (2022) Strobealign: flexible seed size enables ultra-fast and
accurate read alignment. Genome Biol., 23, 260.

72. Charikar,M.S. (2002) Similarity estimation techniques from
rounding algorithms. In: Proceedings of the Thiry-fourth Annual
ACM Symposium on Theory of Computing, STOC ’02. Association
for Computing Machinery, NY , pp. 380–388.

73. Manku,G.S., Jain,A. and Das Sarma,A. (2007) Detecting
near-duplicates for web crawling. In: Proceedings of the 16th
International Conference on World Wide Web, WWW ’07.
Association for Computing Machinery, NY, pp. 141–150.

74. Goemans,M.X. and Williamson,D.P. (1995) Improved
approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. ACM, 42, 1115–1145.

75. Pratap,R., Deshmukh,A., Nair,P. and Ravi,A. (2020) Scaling up
simhash. In: Proceedings of the 12th Asian Conference on Machine
Learning. PMLR Vol. 129 of Proceedings of Machine Learning
Research, pp. 705–720.

76. Shrivastava,A. and Li,P. (2014) In defense of minhash over simhash.
In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics. PMLR Vol.33 of Proceedings of
Machine Learning Research, Reykjavik, Iceland, pp. 886–894.

77. Uddin,M.S., Roy,C.K., Schneider,K.A. and Hindle,A. (2011) On
the effectiveness of simhash for detecting near-miss clones in large
scale software systems. In: 2011 18th Working Conference on Reverse
Engineering. pp. 13–22.

78. Sood,S. and Loguinov,D. (2011) Probabilistic near-duplicate
detection using simhash. In: Proceedings of the 20th ACM
International Conference on Information and Knowledge
Management, CIKM ’11. Association for Computing Machinery,
NY, pp. 1117–1126.

79. Feng,X., Jin,H., Zheng,R. and Zhu,L. (2014) Near-duplicate
detection using GPU-based simhash scheme. In: 2014 International
Conference on Smart Computing. pp. 223–228.

80. Fröbe,M., Bevendorff,J., Gienapp,L., Völske,M., tein,B.,
Potthast,M. and Hagen,M. (2021) CopyCat: Near-duplicates within
and between the clueweb and the common crawl. In: Proceedings of
the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’21. Association for
Computing Machinery, NY, pp. 2398–2404.

81. Sun,Q., Peng,Y. and Liu,J. (2021) A reference-free approach for cell
type classification with scRNA-seq. iScience, 24, 102855.

82. Lederman,R. (2013) A random-permutations-based approach to
fast read alignment. BMC Bioinformatics, 14, S8.

83. Xin,H., Greth,J., Emmons,J., Pekhimenko,G., Kingsford,C.,
Alkan,C. and Mutlu,O. (2015) Shifted Hamming distance: a fast
and accurate SIMD-friendly filter to accelerate alignment
verification in read mapping. Bioinformatics, 31, 1553–1560.

84. Jaccard,P. (1908) Nouvelles recherches sur la distribution florale.
Bull. Soc. Vaud. Sci. Nat., 44, 223–270.

85. Pop,M., Phillippy,A., Delcher,A.L. and Salzberg,S.L. (2004)
Comparative genome assembly. Brief. Bioinform., 5, 237–248.

86. McKenna,A., Hanna,M., Banks,E., Sivachenko,A., Cibulskis,K.,
Kernytsky,A., Garimella,K., Altshuler,D., Gabriel,S., Daly,M. et al.
(2010) The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res., 20,
1297–1303.

87. Ren,J. and Chaisson,M. J.P. (2021) lra: A long read aligner for
sequences and contigs. PLOS Comput. Biol., 17, e1009078.

88. Ono,Y., Asai,K. and Hamada,M. (2021) PBSIM2: a simulator for
long-read sequencers with a novel generative model of quality
scores. Bioinformatics, 37, 589–595.

89. Shen,W., Le,S., Li,Y. and Hu,F. (2016) SeqKit: A Cross-Platform
and Ultrafast Toolkit for FASTA/Q File Manipulation. PLOS One,
11, e0163962.

90. Tvedte,E.S., Gasser,M., Sparklin,B.C., Michalski,J., Hjelmen,C.E.,
Johnston,J.S., Zhao,X., Bromley,R., Tallon,L.J., Sadzewicz,L. et al.
(2021) Comparison of long-read sequencing technologies in
interrogating bacteria and fly genomes. G3 Genes|Genomes|Genetics,
11, jkab083.

91. Gurevich,A., Saveliev,V., Vyahhi,N. and Tesler,G. (2013) QUAST:
quality assessment tool for genome assemblies. Bioinformatics, 29,
1072–1075.

92. Marçais,G., Delcher,A.L., Phillippy,A.M., Coston,R., Salzberg,S.L.
and Zimin,A. (2018) MUMmer4: A fast and versatile genome
alignment system. PLoS Comput. Biol., 14, e1005944.

93. Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics, 26,
841–842.

94. Pedersen,B.S. and Quinlan,A.R. (2018) Mosdepth: quick coverage
calculation for genomes and exomes. Bioinformatics, 34, 867–868.

95. Jun,G., Wing,M.K., Abecasis,G.R. and Kang,H.M. (2015) An
efficient and scalable analysis framework for variant extraction and
refinement from population scale DNA sequence data. Genome Res.,
25, 918–925.

96. Sedlazeck,F.J., Rescheneder,P., Smolka,M., Fang,H., Nattestad,M.,
von Haeseler,A. and Schatz,M.C. (2018) Accurate detection of
complex structural variations using single-molecule sequencing.
Nat. Methods, 15, 461–468.

97. Smolka,M., Paulin,L.F., Grochowski,C.M., Mahmoud,M.,
Behera,S., Gandhi,M., Hong,K., Pehlivan,D., Scholz,S.W.,
Carvalho,C.M. et al. (2022) Comprehensive structural variant
detection: from mosaic to population-level. bioRxiv doi:
https://doi.org/10.1101/2022.04.04.487055, 05 April 2022, preprint:
not peer reviewed.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

https://doi.org/10.1101/705616
https://doi.org/10.1101/2022.04.04.487055

18 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

98. English,A.C., Menon,V.K., Gibbs,R., Metcalf,G.A. and
Sedlazeck,F.J. (2022) Truvari: refined structural variant comparison
preserves allelic diversity. Genome Biol., 23, 271.

99. Zook,J.M., Hansen,N.F., Olson,N.D., Chapman,L., Mullikin,J.C.,
Xiao,C., Sherry,S., Koren,S., Phillippy,A.M., Boutros,P.C. et al.
(2020) A robust benchmark for detection of germline large deletions
and insertions. Nat. Biotechnol., 38, 1347–1355.

100. Nurk,S., Walenz,B.P., Rhie,A., Vollger,M.R., Logsdon,G.A.,
Grothe,R., Miga,K.H., Eichler,E.E., Phillippy,A.M. and Koren,S.
(2020) HiCanu: accurate assembly of segmental duplications,
satellites, and allelic variants from high-fidelity long reads. Genome
Res., 30, 1291–1305.

101. Guo,L., Lau,J., Ruan,Z., Wei,P. and Cong,J. (2019) Hardware
acceleration of long read pairwise overlapping in genome
sequencing: a race between FPGA and GPU. In: 2019 IEEE 27th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). pp. 127–135.

102. Senol Cali,D., Kanellopoulos,K., Lindegger,J., Bingöl,Z.,
Kalsi,G.S., Zuo,Z., Firtina,C., Cavlak,M.B., Kim,J., Ghiasi,N.M.
et al. (2022) SeGraM: A universal hardware accelerator for genomic
sequence-to-graph and sequence-to-sequence mapping. In:
Proceedings of the 49th Annual International Symposium on
Computer Architecture, ISCA ’22. Association for Computing
Machinery, NY, pp. 638–655.

103. Mansouri Ghiasi,N., Park,J., Mustafa,H., Kim,J., Olgun,A.,
Gollwitzer,A., Senol Cali,D., Firtina,C., Mao,H., Almadhoun
Alserr,N. et al. , (2022) GenStore: A high-performance in-storage
processing system for genome sequence analysis. In: Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. Association for
Computing Machinery ASPLOS, NY, pp. 635–654.

104. Shahroodi,T., Zahedi,M., Firtina,C., Alser,M., Wong,S., Mutlu,O.
and Hamdioui,S. (2022) Demeter: a fast and energy-efficient food
profiler using hyperdimensional computing in memory. IEEE
Access, 10, 82493–82510.

105. Diab,S., Nassereldine,A., Alser,M., Luna,J.G., Mutlu,O. and
Hajj,I.E. (2022) High-throughput pairwise alignment with the
wavefront algorithm using processing-in-memory. arXiv doi:
https://arxiv.org/abs/2204.02085, 05 April 2022, preprint: not peer
reviewed.

106. Khalifa,M., Ben-Hur,R., Ronen,R., Leitersdorf,O., Yavits,L. and
Kvatinsky,S. (2022) FiltPIM: In-memory filter for DNA sequencing.
arXiv doi: https://arxiv.org/abs/2205.15140, 30 May 2022, preprint:
not peer reviewed.

107. Khatamifard,S.K., Chowdhury,Z., Pande,N., Razaviyayn,M.,
Kim,C.H. and Karpuzcu,U.R. (2021) GeNVoM: Read mapping
near non-volatile memory. IEEE/ACM Trans. Comput. Biol.
Bioinform., 19, 3482–3496.

108. Senol Cali,D., Kalsi,G.S., Bingöl,Z., Firtina,C., Subramanian,L.,
Kim,J.S., Ausavarungnirun,R., Alser,M., Gomez-Luna,J.,
Boroumand,A. et al. (2020) GenASM: A high-performance,
low-power approximate string matching acceleration framework for
genome sequence analysis. In: 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). pp.
951–966.

109. Chen,F., Song,L., Li,H.H. and Chen,Y. (2020) PARC: A
Processing-in-CAM architecture for genomic long read pairwise
alignment using ReRAM. In 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC). pp. 175–180.

110. Kaplan,R., Yavits,L. and Ginosasr,R. (2020) BioSEAL: In-memory
biological sequence alignment accelerator for large-scale genomic
data. In: Proceedings of the 13th ACM International Systems and
Storage Conference. Association for Computing Machinery, Haifa,
Israel, pp. 36–48.

111. Laguna,A.F., Gamaarachchi,H., Yin,X., Niemier,M.,
Parameswaran,S. and Hu,X.S. (2020) Seed-and-Vote based
in-memory accelerator for DNA read mapping. In: IEEE/ACM
International Conference On Computer Aided Design. IEEE, San
Diego, CA, USA, pp. 1–9.

112. Angizi,S., Sun,J., Zhang,W. and Fan,D. (2020) PIM-Aligner: A
processing-in-MRAM platform for biological sequence alignment.
In: 2020 Design, Automation Test in Europe Conference Exhibition
(DATE). pp. 1265–1270.

113. Nag,A., Ramachandra,C.N., Balasubramonian,R., Stutsman,R.,
Giacomin,E., Kambalasubramanyam,H. and Gaillardon,P.-E.
(2019) GenCache: Leveraging in-cache operators for efficient
sequence alignment. In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’52.
Association for Computing Machinery, NY, pp. 334–346.

114. Kim,J.S., Senol Cali,D., Xin,H., Lee,D., Ghose,S., Alser,M.,
Hassan,H., Ergin,O., Alkan,C. and Mutlu,O. (2018) GRIM-Filter:
Fast seed location filtering in DNA read mapping using
processing-in-memory technologies. BMC Genom., 19, 89.

115. Sadasivan,H., Maric,M., Dawson,E., Iyer,V., Israeli,J. and
Narayanasamy,S. (2022) Accelerating Minimap2 for accurate long
read alignment on GPUs. bioRxiv doi:
https://doi.org/10.1101/2022.03.09.483575, 10 March 2022, preprint:
not peer reviewed.

116. Zeni,A., Guidi,G., Ellis,M., Ding,N., Santambrogio,M.D.,
Hofmeyr,S., Buluç,A., Oliker,L. and Yelick,K. (2020) LOGAN:
High-performance GPU-based X-Drop long-read alignment. In:
2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 462–471.

117. Goenka,S.D., Turakhia,Y., Paten,B. and Horowitz,M. (2020)
SegAlign: A scalable gpu-based whole genome aligner. In: SC20:
International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–13.

118. Singh,G., Alser,M., Senol Cali,D., Diamantopoulos,D.,
Gómez-Luna,J., Corporaal,H. and Mutlu,O. (2021) FPGA-based
near-memory acceleration of modern data-intensive applications.
IEEE Micro., 41, 39–48.

119. Chen,Y.-L., Chang,B.-Y., Yang,C.-H. and Chiueh,T.-D. (2021) A
high-throughput FPGA accelerator for short-read mapping of the
whole human genome. IEEE Transactions on Parallel and
Distributed Systems, 32, 1465–1478.

120. Yan,Y., Chaturvedi,N. and Appuswamy,R. (2021) Accel-Align: a
fast sequence mapper and aligner based on the seed–embed–extend
method. BMC Bioinformatics, 22, 257.

121. Fujiki,D., Wu,S., Ozog,N., Goliya,K., Blaauw,D., Narayanasamy,S.
and Das,R. (2020) SeedEx: A genome sequencing accelerator for
optimal alignments in subminimal space. In: 53rd Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, Athens, Greece, pp. 937–950.

122. Alser,M., Shahroodi,T., Gómez-Luna,J., Alkan,C. and Mutlu,O.
(2020) SneakySnake: a fast and accurate universal genome
pre-alignment filter for CPUs, GPUs and FPGAs. Bioinformatics,
36, 5282–5290.

123. Turakhia,Y., Bejerano,G. and Dally,W.J. (2018) Darwin: A genomics
Co-processor provides up to 15,000X acceleration on long read
assembly. SIGPLAN Not., 53, 199–213.

124. Wang,J., Zhang,T., Song,J., Sebe,N. and Shen,H.T. (2018) A survey
on learning to hash. IEEE Trans. Pattern Anal. Mach. Intell., 40,
769–790.

125. Sharma,J. and Navlakha,S. (2018) Improving similarity search with
high-dimensional locality-sensitive hashing. arXiv doi:
https://arxiv.org/abs/1812.01844, 05 December 2018, preprint: not
peer reviewed.

126. Chen,Y., Chen,S. and Zhang,X. (2020) Using DenseFly algorithm
for cell searching on massive scRNA-seq datasets. BMC Genom., 21,
222.

127. Sinha,K. and Ram,P. (2021) Fruit-Fly inspired neighborhood
encoding for classification. In: Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, KDD
’21. Association for Computing Machinery, NY, pp. 1470–1480.

128. Dasgupta,S., Stevens,C.F. and Navlakha,S. (2017) A neural
algorithm for a fundamental computing problem. Science, 358,
793–796.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad004/6993940 by BILKEN

T user on 21 M
arch 2024

https://arxiv.org/abs/2204.02085
https://doi.org/10.48550/arXiv.2205.15140
https://doi.org/10.1101/2022.03.09.483575
https://arxiv.org/abs/1812.01844

