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ABSTRACT: A discrete Fourier transform (DFT)-based iterative
method of moments (IMoM) algorithm is developed to provide an
O(N,,,) computational complexity and memory storages for the efficient
analysis of electromagnetic radiation/scattering from large phased ar-
rays. Here, N,,, is the total number of unknowns. Numerical results for
both printed and free-standing dipole arrays are presented to validate
the algorithm’s efficiency and accuracy. © 2003 Wiley Periodicals, Inc.
Microwave Opt Technol Lett 39: 89-94, 2003; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
11136
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1. INTRODUCTION

There is a growing interest in the analysis of the electromagnetic
radiation/scattering from large and finite phased arrays, due to the
fact that present and future EM sensor systems are expected to
utilize large phased arrays. However, when the number of ele-
ments in the array increases, majority of the conventional analysis
methods suffer greatly from the memory storage requirements and
computing time. The conventional method of moments (MoM) [1]
requires an operational count of O(N3,,) (of order N3,) and
memory storage of O(N2,), where N,,, is the total number of
elements, whereas both the memory storage and the operation
count for MoM in conjunction with iterative schemes (iterative
MoM) are O(N7,,) for ordinary matrix-vector multiplication at
each iteration. Many methods have been attempted to simplify the
computational complexity and to reduce the memory requirements
[2-12]. Among them, the fast multipole method (FMM) [2] (with
operational count O(N/;7) and its subsequent extensions [3, 4],
multi-level FMM with operational count O(N,, log N,,,, as well as
conjugate gradient-fast Fourier transform (CG-FFT with O(N,,,-
log N,,,) [5], are some typical successful efforts. Other examples
of analysis methods to reduce the number of unknowns in MoM
modeling, based on a hybrid combination of MoM with either
uniform geometrical theory of diffraction (UTD) [11] or discrete
Fourier transform (DFT) [12], can also be found in the literature.
On the other hand, several infinite array approaches to handle large
finite arrays exist in the literature [13]. However, none of them
provides the complete finite array truncation effects, which signif-
icantly effects both the element input impedance and the array
radiation/scattering patterns.

In this paper, a discrete Fourier transform (DFT) [14] based
acceleration algorithm [7] is used in conjunction with the bicon-
jugate gradient stabilized method (Bi-CGSTABM) to reduce the
computational complexity and memory storage of the iterative
MoM (IMoM) solution to O(N,,,,) in the analysis of phased arrays

tot.

of both free-standing and printed dipoles. The O(N,,,) complexity
of the solution is due to this DFT-based acceleration algorithm,
which divides the contributing elements into “strong” and “weak”
interaction groups for a receiving element in the IMoM. The
contributions from the strong group are obtained by conventional
element-by-element computation to assure fundamental accuracy.
On the other hand, the entire induced current distribution is ex-
pressed in terms of a global domain DFT representation. Signifi-
cant DFT terms are identified based on a previous work on DFT-
MoM [12] and employed to obtain the interactions from the weak
group. In general, only a few significant DFT terms are sufficient
to provide accurate results due to the fact that they provide minor
corrections to the solution in contrast to the dominating strong
group.

It should be noted at this point that, recently, the same DFT-
based acceleration technique was used in conjunction with a for-
ward-backward method (FBM) to analyze large phased arrays of
free-standing dipoles in [7] and then extended to large phased
arrays of printed dipoles in [8, 9]. The use of FBM in conjunction
with this DFT-based acceleration algorithm shows some signifi-
cant convergence problems in the analysis of printed dipole phased
arrays when either the thickness of the substrate or the relative
dielectric constant of the substrate (e, > 1) (or both) are high [8,
9]. However, such problems have not been observed in [10] nor in
this study.

This paper is organized in the following order. In section 2, the
IMoM formulation of the problem for a large phased array of both
free-standing and printed dipoles is reviewed, together with a brief
explanation of Bi-CGSTABM. Section 3 presents the DFT-based
acceleration algorithm. In section 4, numerical results are pre-
sented using this method and compared with conventional MoM to
validate the method’s efficiency and accuracy. An ¢/’ time de-
pendence is assumed and suppressed throughout this paper.

2. REVIEW OF IMOM AND BI-CGSTABM

Consider a uniformly excited, rectangular, finite, planar, periodic
array of (2N + 1) X (2M + 1) dipoles. The array elements might
be identical, short and thin, perfectly conducting wire dipole
elements oriented along the x direction in the z = 0 plane in air
(free-standing dipoles), as illustrated in Figure 1(a), or identical
printed dipoles on a grounded dielectric substrate with a thickness
d and relative dielectric constant €,, as depicted in Figure 1(b). For
both geometries, each dipole is assumed to have a length L and
width W, and is uniformly spaced from its neighbors by distances
d, and d,, in the x and y directions, respectively. The dipoles are
assumed to be center fed with infinitesimal generators.

2.1. The Method of Moments Solution

The dipoles are assumed to be thin (W < L), so that only
%-directed currents are required. Therefore, the current distribution
on each dipole is given by

I)'ll?l(x’) :AIIHIPHH1(X,)f;1m(x,)7 (1)

where A, is the unknown coefficient of f,,,,(x") that determines
the current at the feed point on the element, and

_[1 x € nm"element ’
P, (x) = 0 otherwise. @

For the free-standing dipole array, the current £, (x') on the nm™
(-N=n=N, —M = m = M) dipole is of the type
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Figure 1 Geometry of a periodic array of (2N + 1) X 2M + 1) (a)
free-standing dipoles and (b) printed dipoles

L
fam(x') = sin[k()(E — | - ndJ)] 3)

where k,, is the free space wave number. Similarly, for the printed
dipole array, the current f,,,,(x’) on the nm™ dipole is expanded in

nm

terms of piecewise sinusoidal (PWS) modes, defined as

. L.,
sin| k, 3~ |x" — nd,|

— “
W sm(ka 5)

fnm(x/) =

where k, = k,V (€, + 1)/2 is the wavenumber of the expansion
mode.

An electric field integral equation (EFIE) is formed by enforc-
ing the boundary condition, such that the total E. field must vanish
on the dipole surfaces. This EFIE is solved using a Galerkin MoM
solution, leading to the following set of linear equations:

Z-1=V )

where Z = [Z,,, ,,], 1 = [A,,,], and V = [V, e /ordsg /hvady],
In Eq. (5), the right-hand side is related to the excitation at the pg™

dipole to radiate a direction beam according to (k,, k), defined by

nm

k. = kosin 0,cos ¢;; k, = kysin 0;sin ¢;, (6)

where (6;, ;) is the scan direction of the beam. Also, Z,,,,, ,, on

the left-hand side is the mutual impedance between the nm™ and
pgq™ dipoles, and is given by

an,pq = ]w”/ f dx j d-x,f})q( X) Gxx(r])q‘rl;nt)f;lm(x,) (7)
Lyg Lum

where r,, and r,,, are the position vectors of the pq™ and nm™
dipoles and Gxx(rpq|r,’1m) is the corresponding component of the
(1) free-space dyadic Green’s function for the free-standing dipole
array, and the (ii) planar microstrip dyadic Green’s function [16]
for the printed dipole array.

Finally, note that for a scattering problem where an external
plane wave is incident on the array, in which the elements are now
passive, the right-hand side of Eq. (5) is associated with the

incident field Ei(r,,), namely,

E\(x,g) = Vyge /0% M08(x = pd,). ®)
2.2. BiConjugate Gradient Stabilized Method (Bi-CGSTABM)
Bi-CGSTABM is a very reliable form of the conjugate gradient

method (CGM) in terms of convergence. In this method, let I, be
the value of I at the i iteration with I,, the initial guess. Then,

R,=V-7Z-1,S, =R, )

At the i" iteration, the Bi-CGSTABM updates each vector in the
following way:

<Ri’ R!> 7
i m’ L=L+aS.R =R, —aZ-S; (10)
and
R Rip)
C,'Z#,Siﬁ»]:Ri*’l-‘rcisi’ (ll)

<Ri7 R!)

where (, ) denotes the inner product without complex conjugate.
This procedure continues until a converged result is obtained.
Details of this method can be found in [15].

3. ACCELERATION ALGORITHM BASED ON DFT
EXPANSION

The repeated and time-consuming computations of Z - I [I = I, in
Eq. (9) and I = S, in Eq. (10)] type matrix-vector multiplications
in IMoM are accelerated using this DFT-based acceleration algo-
rithm. In this algorithm, the contributing elements are divided into
“strong” and “weak” interaction groups, as depicted in Figure 2(a),
such that

Z I= z Aannm,]lq + E A"”'Z’"”’vl"l' (] 2)

nmeEstrong nmEweak

The contributions coming from the strong interaction group are
obtained via exact element-by-element computation and are the
same for each receiving element. The size of the strong region is
fixed and very small, compared to the entire array. Therefore, the
computational complexity remains O(N,,,,). Since the dominating
contributions are, in general, radiated from the strong group, the
exact computation assures the fundamental accuracy of the
method. On the other hand, the computation of contributions
coming from the weak interaction group is based on a DFT
expansion of the entire induced current on the array. Consequently,
the contributions coming from the weak region to the pg™ element
is given by

Eweak(rpq) = E Aannm,pqa (13)

nmEweak
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Figure 2 (a) Decomposition of interaction elements in terms of strong
and weak groups; (b) the forward weak group corresponding to the pg™
receiving element (the solid loop) is decomposed into two groups indicated
by dotted and dashed loops. The dashed loop is identical to the dash-dotted
loop, which is the forward weak group of p(¢ — 1)™ receiving element,
except for a location shift, corresponding to a phase shift

and by substituting the DFT representation [14] of A,,, into Eq.
(13), we obtain

N

M
Eweak(rpq) = 2 E Bkl

k=—NI=—M

X E anwqefjknzd‘e7/kv\md,ei/27r(kn/2N+l)ef_/Zw(lm/ZMJrl)’ (14)

nmEweak

where B,, is the coefficient of the kI DFT term and can be found
from the inverse DFT [14]. For a rectangular array, the significant
DFT terms can be determined based on the criterion presented in
[12], where the DFT terms of the orthogonal column (k = 0) and
row (I = 0) dominate. However, considering the fact that contri-
butions coming from the weak region provide minor corrections to
the solution in contrast to the dominating strong group, very few
significant DFT terms can be retained during the calculation of Eq.
(14). Consequently, substituting (14) into (12) and keeping only
the significant DFT terms, results in

Z * I = E Auman,pq + E Blekl,pqv (15)

nm€Estrong kleQ
where Q denotes the selected DFT terms, and

Cklm — 2 an‘pq o ~kands = jkymdy )2kl 2N+1) , = j2{lm] 2M+1). (16)

nmEweak

With this expression, only QO DFT terms (Q is a small, fixed
number), which can be computed and stored before the Bi-CG-
STABM proceeds, need to be computed for a given receiving
element in addition to the contributions from the strong group.
Consequently, O(N,,,) of computational complexity can be ob-
tained. Note that the coefficients of the DFT terms are initially
obtained from the infinite array assumption, where only the central

element B, is nonzero. Then, they are continuously updated at
each iteration.

Cy1.pq in Eq. (16) denotes the contribution of the kI"™ DFT term
to the pg™ receiving element, where each DFT term represents a
linear phase impression. One way of fast computing Cy, ,, is to
employ asymptotic techniques [12], which will decompose Eq.
(16) in terms of few ray-like contributions due to edge and corner
diffractions. However, in this paper, an alternative approach is
employed which retains the computation complexity at O(N,,,). In
this approach, the weak group is also divided into “forward” and
“backward” subgroups, where the “forward” group consists of
elements in the front of the pg™ receiving element, and the rest of
the weak group elements are included in the “backward” group. It
should be mentioned that the number of elements in these two
groups varies according to the location of the pg™ element, but the
total number remains roughly the same for each receiving element.

It is assumed that the iterative procedure sweeps elements in
the order of —N = p = N, —-M = g = M (that is, pq = {11,
21,31, ...,12,22,...,13,23,...}). Then, one may find the
contributions due to the “forward” subgroup C{,’ pq and the “back-
ward” subgroup C%, ,independently but iteratively. Cry pq 18 ONly

kl.pg
their superposition. One may explain C{,Lp o in the following form:

— —Jjkndy , —jkymdy , —j2m(kn/ 2N+1) , —j27(Im/ 2M+1
Clipg = D Zyp g g TTomdsg 2 2N g 20441

mnEW

N
+ E Zn(—M),pq o ~Iknds o —iky(=M)dy , = 2(kn/ 2N+1) e—jzn{l(—m/wﬂ]’

n=-N

a7

where W is the “forward” when the (—M)™ column [or 1% column
with respect to Fig. 1(a) or (b)] of the array is subtracted. Note that
the mutual impedance Z,,,, ,, depends only on (p — n) and (¢ —
m) for a periodic structure. As a result, the first term on the
right-hand side of Eq. (17) can be related to C{,J)(q, 1y by

v = o pikdy , =2l 2M+1)
Ckl.pq - Ckl,p(qfl) e ¢

N
+ E Z, —Mpg —jkindy gy = k(= M)dy = j2mlknl 2N+1) = 2al(—M) 2M+ 1].

n=-N

(18)

The details are illustrated in Figure 2(b). Basically, the forward
weak group corresponding to the pg™ receiving element [the solid
loop in Figure 2(b)] is decomposed into two groups, as indicated
by dotted and dashed loops. The dashed loop is identical to the
dash-dotted loop, which is the forward weak group of p(¢ — 1)™
receiving element, except a location shift which corresponds to a
phase shift. It is noted that in the forward sweep C{,Vp(q_,) is
obtained before CY, ,  is interested. The next step is the compu-

kl.pq
tation of the second term in Eq. (18), namely,

N
_ —jkands, ko —M)dy , —j2m(kn/ N+1) | —j2{l(~ M) 2M+1
DZIM - 2 Zo s pge e )dy g, =2 (kn. )p ~i2ll(=M) ]

n=—N

19

which contains the contributions coming from a one-dimensional
(1D) array with the receiving element located far away from this
array. Then, utilizing the dependence of Z,,, ,, on (p — n), Eq.
(19) can be expressed as
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Figure 3 Comparison of the magnitude of induced current |A,,,| ob-
tained via IMoM-DFT and conventional MoM for the (a) middle (16™)
column (n = —15:15 and m = 0); (b) middle (16™) row (m =
—15:15and n = 0)

N
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—jk(=N)dx , —jk,(—M)d,
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X @ PAKNY2N+1] = j2al(= M)/ 20+1] (20)

and the first term can be related to D}, L(p—1)q DY

Dzl,pq = Dic

., —jkudx , —j2m(kl 2N+1)
1(p-1)q " € e

— a1 kN 1)y =ik (~M)ds =2 k(N + 1/ 2N+ 1] p =2l M)/ 2+ 1]

+ Z(fN)(fM).pqe 7jk,(7N)d\e 7_fkj-(7M)d\e —j2mlk(=N)/ 2N+ l]e —j2a{l(=M)/ 2M+l].

ey

Note that, if ¢ is in the first few columns where the strong region
occupies all contributing rows, special treatments must be em-
ployed, even though the fundamental concepts are the same.

Cy pq» due to the “backward” group, can be found in a similar
fashion by a backward sweep (that is, pg = {NM, (N — 1)M,
N—=—2)M,...,N\M — 1), (N — 1)(M — 1), ...}). Indeed,
the formulation is identical to (17)—(21), except that the multipli-
cation “ -+ ” is replaced by division “/”.

The storage and complexity requirements of this algorithm are
as follows: (a) storage of the unknown current vector in the
iterative process is N,,,; (b) storage of DFT terms is Q, where Q
< N,,, and is fixed regardless of the array size; (c) storage of
Cripg 18 @ X N,,; (d) the complexity of the strong region of
computation is N, X N,,,,, where N, < N, , and N, the size of the

strong region, is fixed regardless of the array size; (e) the com-
plexity of the weak region of computation is Q X N,,,; (f) finally,
the total complexity for the computations of C, ,, and Dy, ,, is
20 X N,,,, consequently, the total cost is O(N,,,).

4. NUMERICAL RESULTS

In this section, the accuracy and efficiency of the proposed method
are investigated. Numerical results for both free-standing and
printed dipole arrays are obtained using this IMoM method with
the DFT-based acceleration algorithm, and compared with the
results obtained via conventional MoM. In all examples, the arrays
are excited uniformly in amplitude so that V,,, = 1 in Eq. (5) for
each pg™ dipoles.

In Figure 3(a) and (b), magnitude of the current distribution
(A,,,,) of the middle column (16" column, m = 0) and middle row
(16" row, n = 0) versus element position pertaining to a 31 X 31
free-standing dipole array with d, = 0.6\, and d, = 0.3, (with
A, the free-space wavelength) are shown. The length and the radius
of each dipole is 0.4\, and 0.0005A,, respectively. The elements
are phased to radiate a beam maximum in the direction of (6 =
20°, ¢ = 10°). For this example, 15 DFT terms are selected (Q =
15) and the size of the strong region is 3 X 3 (N, = 9) with the
receiving element being located at the center of the strong region.
The results obtained from IMoM-DFT agree well with the refer-
enced results.

As for the printed dipoles, Figure 4(a) and (b) depicts the
magnitude of the current distribution (A,,,) of the middle (21
column, m = 0) and last (41*" column, m = 20) columns versus

0.0155

Conventional Mok
sl IMokd-DFT
00153 |
001 52 |
E

: O.0151 |

0.0148 -
20 15 10 5 [ 5 10 15 20
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D048 | - L
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g
£
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Figure 4 Comparison of the magnitude of induced current |A,,,| ob-
tained via IMoM-DFT and conventional MoM for the (a) middle (21%)
column (n = —20:20 and m = 0); (b) last (41°) column (n =
—20:20 and m = 20)
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element position, pertaining to a 41 X 41 printed dipole array with
d, = d, = 0.5A,. The slab has a thickness of 0.05A, (relatively
thin) and its relative permittivity is €, = 2.55. The length and
width of each dipole is 0.39A, and 0.01A,, respectively, and the
elements are phased to radiate a beam maximum in the direction of
(0 = 30° ¢ = 40°). Overall, five DFT terms with a strong region
of 3 X 3 are used. Very good agreement between IMoM-DFT and
conventional MoM is obtained, as illustrated by these results.

In a similar way, a 31 X 31 printed dipole array with the same
parameters for each element is investigated for a thicker substrate
d = 0.19A, with the same €, = 2.55. The comparison between
the IMoM-DFT and conventional MoM of the magnitude of the
current distribution (A,,,,) of the 2" (m = —14) and 13" (m =
—3) are illustrated in Figure 5(a) and (b) for a broadside scan case
(0 = 0° ¢ = 0°). Again, fairly good agreement is obtained. The
only problem is that, regardless of the size of the array, as the
thickness of the substrate increases due to the surface waves, more
DFT terms (or a slight increase in the strong region) may be
required. Therefore, in this example Q = 21, although the strong
region has still the same size (3 X 3). Nevertheless, this is a case
where FBM accelerated with a DFT-based algorithm has conver-
gence problems, which are probably due to the nature of FBM, as
claimed in [9].

Finally, the radiation pattern (E,) of a 21 X 21 printed dipole
array, with d, = d, = 0.5A,, d = 0.05A,, and €, = 2.55 is
obtained with IMoM-DFT and compared with the result of the
conventional MoM in Figure 6. The length and the width of each
element is [, = 0.39A, and w,;,, = 0.01A,, respectively, and
elements are phased to radiate a beam maximum in the direction of
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Figure 5 Comparison of the magnitude of induced current |A,,,| ob-
tained via IMOM-DFT and conventional MoM for the (a) 2™ column (n =
—15:15andm = —14); (b) 13® column (n = —15: I1Sandm = —3)

I ]
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40} ———— e
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Figure 6 Far-field pattern of a 21 X 21 printed dipole array radiate a
beam maximum in the direction of (6 = 30°, ¢ = 40°)

(0 = 30°, ¢ = 40°). Agreement with the referenced result is again
very good, thereby establishing confidence in the present IMoM-
DFT approach.

5. DISCUSSION AND CONCLUSION

An efficient and accurate analysis method for radiation/scattering
from electrically large phased arrays of both free-standing and
printed dipoles is presented. Both the computational complexity
and the memory storage of the IMoM solution are reduced to
O(N,,,) by using a DFT-based acceleration algorithm. Numerical
results demonstrate the efficiency and accuracy of this method.
The present approach will be extended to treat finite arrays with
tapered excitations and non-rectangular array shapes. It should be
noted that the contributions from DFT terms can also be efficiently
found by asymptotic techniques [12], in terms of ray solutions.
Consequently, they can be incorporated into ray-tracing codes to
account for the interactions between the array and the environ-
ment.
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ABSTRACT: The effects of dielectric, radiative leakage and ohmic
losses in CPWs on the propagation of Gaussian and sinusoidally modu-
lated Gaussian pulses are investigated. These CPWs are assumed to be
fabricated on a single-layer low-temperature co-fired ceramic (LTCC)
substrate. It is shown that, based on the improved empirical formula for
accurate prediction of the ohmic attenuation constant presented by

Liao et al., the lossy effects in LTCC CPWs are dominated by the ohmic
loss of the center and ground conductive planes in the frequency range
up to 40 GHz. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol
Lett 39: 94-97, 2003; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/mop.11137

Key words: coplanar waveguides (CPWs); LTCCs; ohmic loss; pulse
wave; attenuation

1. INTRODUCTION

The conductor losses of coplanar waveguides (CPWs) have been
studied by many researchers using different techniques [1-9].
Physically, as the operating frequency increases, the dielectric loss,
radiation loss, and ohmic loss of CPWs have significant effects on
the pulse-waveform distortion [7, 8]. In particular, Liao and Pon-
chak et al. have presented two sets of new empirical formulas to
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Figure 1 Geometry of an LTCC CPW: (a) three-dimensional view; (b)
cross-sectional view

predict the ohmic loss for CPWs [8, 9], respectively, which are
characterized by different conductivities and thicknesses of the
center strip and ground planes over a wideband frequency range.

In this work, we focus on different lossy effects of low-
temperature co-fired ceramic (LTCC) CPWs on the transient char-
acteristics of Gaussian or sinusoidally modulated Gaussian pulse
propagation. Because LTCCs have excellent high-frequency per-
formances, they have been widely used as substrates or super-
strates in high-density interconnects and packaging systems [10,
11]. This paper is organized as follows: in section 2, the geometry
of a LTCC CPW is shown, and some formulas to determine the
dielectric loss, radiation leakage loss and ohmic loss are intro-
duced. Based on these formulas and the fast Fourier transformation
(FFT), in section 3, the transient propagated pulses are computed
and compared, for different LTCC substrates and center strip and
ground plane thicknesses, and their conductivities. Some conclu-
sions of this work is presented in section 4.

2. GEOMETRY

The geometry of an LTCC CPW is shown in Figure 1, with LTCC
thickness D, center strip width is W, and strip spacing S. Physi-
cally, the permittivity and loss tangent of LTCCs can be chosen as
(g,, tan 8) = (4.2, 0.003), (5.9, 0.002), (7.0, 0.002), (7.8, 0.0015),
(8.2, 0.002), and (10.6, 0.001), respectively. The thickness and
conductivity of the center strip and ground plane are characterized
by t and o, respectively.

Mathematically, the attenuation constant that results from the
dielectric loss of the LTCC substrate can be evaluated by [5]:

&y sre(f) — I tan
\&e(f) g — 1 Ao

B
a, = 0.3145 (Np/unit length), (1)

where ¢,,(f) is the effective dielectric constant of the CPW, and
can be accurately determined by some empirical formulas; f is the
operating frequency, and A, is the wavelength in free space. The
attenuation constant of the CPW at high frequency due to the
radiative leakage can be determined by [5, 8]:

1 _ 8r(’(f) 2
N 5 e, (w + 25)%¥? .
alf) = 2(5) o) | KRR

&,

(Np/unit length), (2)

where k = w/(w + 2s), and K(k) and K'(k) are the complete
elliptic integrals of the first and second kinds, respectively. The
attenuation constant of the CPW due to ohmic loss can be evalu-
ated by [5]:
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