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Abstract—We present a new trajectory based approach for
state feedback stabilization of switched linear continuous-time
systems with a time-varying input delay. In contrast with finding
classical common Lyapunov function or multiple Lyapunov
functions for establishing the stability of the closed-loop switched
system, the new trajectory based approach relies on verifying
certain inequalities along the solution of a supplementary system.
This study does not make any assumption regarding the stabiliz-
ability of all of the constituent subsystems of the switched system.
Moreover, no assumption is needed about the differentiability of
the delay and no constraint is imposed on the upper bound of
the delay derivative. Finally, an illustrative example is included
to illustrate the applicability of our results.

Index Terms—Switched systems, delay, state feedback, stability.

I. INTRODUCTION

A switched linear continuous-time system is described by a

finite set of Linear Time-Invariant (LTI) continuous-time sub-

systems (modes) and a switching signal (piecewise constant)

which decides the mode to be activated at each instant of time.

These systems have many practical applications; see [2], [3],

[16], and [17].

There are three fundamental problems pertaining to the sta-

bility of switched systems, [10]; (i) finding conditions so that a

switched system is stable for any arbitrary switching signal, (ii)

determining important classes of switching signals for which

a switched system is stable, and (iii) designing a switching

signal that renders a switched system stable. In what follows,

we review some classical solutions that have been reported in

the literature for problem (i) and (ii). The most typical solution

to problem (i) is to find conditions such that there exists a

common quadratic Lyapunov function. A common quadratic

Lyapunov function is a single quadratic Lyapunov function

which is a global Lyapunov function for all of the modes

of the switched system. A well known solution to problem

(ii) in the literature is slowly switching signals i.e. if each

subsystem is stable then the overall switched system is stable

provided that the difference between consecutive switching

time instants (which is termed as dwell-time) is sufficiently
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large. This result can be established by using multiple Lya-

punov functions. However, both common quadratic Lyapunov

function based approach and dwell-time based results require

to assume that all the modes of the switched system are

stabilizable, [10]. This motivates us to study the stabilization

of switched systems using dwell-time based results without

requiring an assumption that all the constituent modes of the

switched system are stabilizable. This idea is based on a new

way to approach problem (ii). Moreover, motivated by the

engineering applications of switched systems with time-delays

in networked control systems [9], [11], and power systems [6],

[15], we consider in this paper a time-varying delay in the

input of the switched system.

To the authors’ knowledge, very few contributions pertain-

ing to the study of stabilization problem for switched systems

with time-delays have been reported in literature up to now;

see [5], [7], [8], [12], and [18] through [25]. In most of the

contributions, the stability of the closed-loop switched systems

was established by finding a common quadratic Lyapunov

function or multiple Lyapunov functions. However, it has

been shown in [4] that finding a common quadratic Lyapunov

function even for a switched system with LTI modes is an

NP-hard problem. Moreover, it becomes even more difficult

to use classical Lyapunov based stability analysis methods

for the case when a time-varying delay is present in the

input of a switched system. Therefore, we propose a new and

easier trajectory based approach to establish a robustness result

with respect to presence of a pointwise delay in the input of

a switched system. The trajectory based approach relies on

verifying that there exist constants υ ∈ (0, 1) and η > 0 such

that every trajectory κ of a system satisfies a certain inequality

of the form |κ(t)| ≤ υ supl∈[t−η,t] |κ(l)|; see [13] and [14].

This method applies to a wide range of systems with time-

varying delays. Moreover, we do not make any assumption

about the stabilizability of all of the constituent subsystems of

the switched system and impose no constraint on the upper-

bound of the derivative of the delay. In fact, we do not even

assume that the delay is differentiable.

The rest of the paper is organized as follows. In Section

II, some notations and preliminaries that will be utilized

in Section III are introduced. Section III presents our main

result based on a new trajectory based approach. Section IV

provides an illustrating numerical example to demonstrate the

effectiveness of our result. Finally, we summarize our findings

and suggest some future research directions in Section V.
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II. NOTATION AND PRELIMINARIES

The notation will be simplified whenever no confusion can

arise from the context. In what follows, all dimensions are ar-

bitrary. The usual Euclidean norm of vectors, and the induced

norm of matrices, are denoted by | · |. Let C1 denote the set of

all continuously differentiable functions, where the domains

and ranges will be clear from the context. Given any constant

τ > 0, we let C([−τ, 0],Rn) denote the set of all continuous

R
n-valued functions that are defined on [−τ, 0]. We abbreviate

this set as Cin, and call it the set of all initial functions. Also,

for any continuous function ϕ : [−τ,∞) → R
n and all t ≥ 0,

we define ϕt by ϕt(q) = ϕ(t + q) for all q ∈ [−τ, 0], i.e.,

ϕt ∈ Cin is the translation operator. For each α ∈ N and each

function F : [0,∞) → R
α, we set F(t−) = lim

β→t,β<t
F(β) for

all t > 0.

Consider the switched linear continuous-time system de-

scribed by

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) (1)

where x ∈ R
n is the state and u ∈ R

p is the control input.

We consider a sequence tk such that there is a constant δ > 0
such that t0 = 0 and tk+1 − tk = δ. Let σ : [0,∞) → N =
{1, ..., N} be a switching sequence such that for all k ∈ N,

there is i ∈ N such that σ(t) = i for all t ∈ [tk, tk+1). Ai and

Bi, for i ∈ N , are state and input matrices which are assumed

to be real and constant. In this paper, we consider the control

input u(t) in the following state-feedback form

u(t) = Kσ(t)x(t− τ(t))

where the input delay τ is assumed to be a piecewise con-

tinuous function such that, for all t ≥ 0, τ(t) ∈ [0, τ̄ ] with

τ̄ > 0.

We introduce an assumption, which pertains to the stabiliz-

ability of the system (1), but does not imply that all the pairs

(Ai, Bi) are stabilizable.

Assumption 1. There are matrices Ki and a switching law σ

such that the system

ξ̇(t) = Ωσ(t)ξ(t) + ς(t)

with

Ωi = Ai +BiKi

where ς is a piecewise continuous function, satisfies the

following property: there are constants T > τ , a ∈ [0, 1),
and b ≥ 0 such that for all t ≥ T

|ξ(t)|2 ≤ a|ξ(t− T )|2 + b sup
ℓ∈[t−T,t]

|ς(ℓ)|2.

Remark 1. For more details on how to determine the con-

stants a, b, T , and δ to satisfy Assumption 1, the reader is

refered to the journal version, [1].

III. MAIN RESULTS

We are ready to state and prove our main result.

Theorem 1. If Assumption 1 holds, then there is a constant

τ̄ > 0 such that if τ(t) ≤ τ̄ for all t ≥ 0, then the control

u(t) = Kσ(t)x(t − τ(t))

renders the origin of the system

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) (2)

Globally Uniformly Exponentially Stable (GUES).

Proof. Introducing the control input u(t) = Kσ(t)x(t − τ(t))
into (2) yields the following closed-loop switched linear sys-

tem:

ẋ(t) = Aσ(t)x(t) +Bσ(t)Kσ(t)x(t − τ(t)) (3)

which can be modified as

ẋ(t) = (Aσ(t) +Bσ(t)Kσ(t))x(t) +Bσ(t)Kσ(t)z(t)

with z(t) = x(t− τ(t)) − x(t).
From the definition of Ωi, we obtain

ẋ(t) = Ωσ(t)x(t) +Bσ(t)Kσ(t)z(t).

From Assumption 1, it follows that, for all t ≥ T + τ̄ ,

|x(t)|2 ≤ a|x(t− T )|2 + b sup
ℓ∈[t−T,t]

|Bσ(ℓ)Kσ(ℓ)z(ℓ)|
2. (4)

Now, observe that

|z(t)| ≤

∫ t

t−τ̄

|ẋ(m)| dm

≤

∫ t

t−τ̄

∣

∣Ωσ(m)x(m) +Bσ(m)Kσ(m)z(m)
∣

∣ dm

≤ τ̄ sup
ℓ∈[t−τ̄ ,t]

|Ωσ(ℓ)x(ℓ) +Bσ(ℓ)Kσ(ℓ)z(ℓ)|.

It follows that

|z(t)|2 ≤ 2τ̄2 sup
ℓ∈[t−τ̄ ,t]

|Ωσ(ℓ)x(ℓ)|
2

+2τ̄2 sup
ℓ∈[t−τ̄ ,t]

|Bσ(ℓ)Kσ(ℓ)z(ℓ)|
2.

(5)

Using the following constants:

s1 := sup
i∈N

|BiKi| , s2 := sup
i∈N

|Ωi|,

we deduce from (4) and (5) that

|x(t)|2 ≤ a|x(t− T )|2 + bs1
2 sup
ℓ∈[t−T,t]

|z(ℓ)|2 (6)

and
|z(t)|2 ≤ 2s2

2τ̄2 sup
ℓ∈[t−τ̄ ,t]

|x(ℓ)|2

+2s1
2τ̄2 sup

ℓ∈[t−τ̄ ,t]

|z(ℓ)|2.
(7)

To analyze the consequences of these inequalities, we

introduce the function

Λ(x(t), z(t)) = |x(t)|2 + r|z(t)|2
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where r > 0 is a constant to be selected later. The inequalities

(6) and (7) imply that, for all t ≥ T + τ̄ ,

Λ(x(t), z(t)) ≤ a|x(t− T )|2 + bs21 sup
ℓ∈[t−T,t]

|z(ℓ)|2

+2s22rτ̄
2 sup
ℓ∈[t−τ̄ ,t]

|x(ℓ)|2

+2s21rτ̄
2 sup
ℓ∈[t−τ̄ ,t]

|z(ℓ)|2

≤ aΛ(x(t− T ), z(t− T ))

+
bs2

1

r
sup

ℓ∈[t−T,t]

Λ(x(t), z(t))

+2s22rτ̄
2 sup
ℓ∈[t−τ̄ ,t]

Λ(x(t), z(t))

+2s21τ̄
2 sup
ℓ∈[t−τ̄ ,t]

Λ(x(t), z(t)).

Consequently,

Λ(x(t), z(t)) ≤
(

a+
bs2

1

r
+ 2s22rτ̄

2 + 2s21τ̄
2
)

× sup
ℓ∈[t−T,t]

Λ(x(ℓ), z(ℓ)).

Choosing, for instance, r =
2bs2

1

1−a
, we obtain

Λ(x(t), z(t)) ≤
[

a+1
2 +

(

4bs2
2

1−a
+ 2

)

s21τ̄
2
]

× sup
ℓ∈[t−T,t]

Λ(x(ℓ), z(ℓ)).

Since a+1
2 < 1, we conclude that if τ̄ is such that

a+ 1

2
+

(

4bs22
1− a

+ 2

)

s21τ̄
2 < 1

then the origin of (2) is GUES (see [13]), which gives the

condition

τ̄ <
1− a

2s1

√

1

2bs22 + 1− a
. (8)

This concludes the proof.

IV. NUMERICAL EXAMPLE AND SIMULATION

Consider the closed-loop switched linear time-delay system

given by

ẋ(t) = Aσ(t)x(t) +Bσ(t)Kσ(t)x(t− τ(t)) (9)

with x ∈ R
2, τ ∈ [0, τ ] for any τ > 0, σ : [0,+∞) →

N = {1, 2},

A1 =

[

0 0
0 1

2

]

, B1 =

[

− 4
5 0
0 0

]

and

A2 =

[

0 1
2

− 1
2 0

]

, B2 =

[

− 1
3 0
0 2

]

.

It is easy to verify that the subsystem 1 is not stabilizable

whereas the subsystem 2 is stabilizable.

We choose the linear state feedback gain Ki corresponding

to each subsystem of (9) as

K1 =

[

1
2 0
0 0

]

, K2 =

[

9 0
0 − 3

2

]

.

Then, the feedback subsystem Ωi = Ai+BiKi is given by

Ω1 =

[

− 2
5 0
0 1

2

]

, Ω2 =

[

−3 1
2

− 1
2 −3

]

.

The eigenvalues for the feedback subsystems Ω1 and Ω2

are
{

1
2 , − 2

5

}

and
{

−3± j 1
2

}

, respectively. Therefore, the

matrix Ω1 = A1 + B1K1 is not Hurwitz whereas the matrix

Ω2 = A2+B2K2 is Hurwitz. The constants s1 and s2 can be

computed as

s1 = sup
i∈{1,2}

|BiKi| = 3

and

s2 = sup
i∈{1,2}

|Ωi| = 3.0414.

We choose a = 0.0143, b = 6.9813, T = 4 which gives

us 0 < τ̄ < 0.0144. Using the idea presented in [1], one can

easily substantiate that (4) is satisfied with our choice of a, b,

T , K1, K2, and a periodic switching signal σ(t) with δ = 1
shown in Fig. 1d.

Fig. 1 shows the simulation of the feedback switched linear

system (9) for a time-varying delay τ(t) of Fig. 1a with an

initial condition xo = [−3 2]T using a periodic switching

signal shown in Fig. 1d. The state trajectories and phase

portrait depicted in Figs. 1b and 1c verify the GUES of the

closed-loop switched time-delay system (9).

Remark 2. The dwell-time based approach presented in [20]

fails for our example because it requires to assume that all

the constituent modes of the switched system are controllable.

Moreover, our results are better suited to certain applications

because we do not require to impose any constraint on the

upper bound of the delay derivative as opposed to [18].

V. CONCLUDING REMARKS

In this paper, we presented state feedback stabilization

results for switched linear systems with a time-varying input

delay. We adopted a new trajectory based approach instead of a

Lyapunov method. This made it possible to obtain results that

are not based on restrictive assumptions that are traditionally

made in the literature regarding the stability and design of

switched systems with delay such as stabilizability of all of the

constituent subsystems, differentiability of the delay or upper

bound on the delay derivative. Some open problems to be

addressed in future studies include: (i) extending these results

to the output feedback case, (ii) exhibiting a systematic way

to determine the constants a, b and T to satisfy Assumption 1

for computing an explicit value of τ̄ for some broad families

of systems, and (iii) achieving less conservative results for τ̄

to guarantee the GUES of the closed-loop switched time-delay

system.
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Fig. 1: Illustration of Theorem 1 and simulation of (9).
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