
COVOLUTIONAL NEURAL NETWORKS
BASED ON NON-EUCLIDEAN OPERATORS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

electrical and electronics engineering

By

Diaa Hisham Jamil Badawi

January 2018

Covolutional Neural Networks based on non-Euclidean Operators

By Diaa Hisham Jamil Badawi

January 2018

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Ahmet Enis Çetin(Advisor)

Ramazan Gökberk Çinbiş

Tolga Çukur

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

COVOLUTIONAL NEURAL NETWORKS BASED ON
NON-EUCLIDEAN OPERATORS

Diaa Hisham Jamil Badawi

M.S. in Electrical and Electronics Engineering

Advisor: Ahmet Enis Çetin

January 2018

Dot product-based operations in neural net feedforwarding passes are replaced

with an `1-norm inducing operator, which itself is multiplication-free. The neural

net, which is called AddNet, retains attributes of `1-norm based feature extrac-

tion schemes such as resilience against outliers. Furthermore, feedforwarding

passes can be realized using fewer multiplication operations, which implies en-

ergy efficiency. The `1-norm inducing operator is differentiable w.r.t its operands

almost everywhere. Therefore, it is possible to use it in neural nets that are to

be trained through standard backpropagation algorithm. AddNet requires scal-

ing (multiplicative) bias so that cost gradients do not explode during training.

We present different choices for multiplicative bias: trainable, directly dependent

upon the associated weights, or fixed. We also present a sparse variant of that

operator, where partial or full binarization of weights is achievable.

We ran our experiments over MNIST and CIFAR-10 datasets. AddNet could

achieve results that are 0.1% less accurate than a ordinary CNN. Furthermore,

trainable multiplicative bias helps the network to converge fast. In comparison

with other binary-weights neural nets, AddNet achieves better results even with

full or almost full weight magnitude pruning while keeping the sign information

after training. As for experimenting on CIFAR-10, AddNet achieves accuracy

5% less than a ordinary CNN. Nevertheless, AddNet is more rigorous against

impulsive noise data corruption and it outperforms the corresponding ordinary

CNN in the presence of impulsive noise, even at small levels of noise.

Keywords: deep learning, convolutional neural network, l1 norm, energy effi-

ciency, binary weights, impulsive noise.

iii

ÖZET

ÖKLİDCE MENSUP OLMAYAN OPERATÖRLER
BAZNDA KONVOLÜSYONEL SİNİR AĞILARI

Diaa Hisham Jamil Badawi

Elektrik ve Elekronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Ahmet Enis Çetin

Ocak 2018

Sinir ağı kapsamında, besleme-iletme pasosu geçişindeki nokta bazlı işlemler,

çarpma işlemi gerektirmeyen bir `1-norm indükleyici operatör ile değiştirildi.

AddNet denilen sinir ağı, aykırı değerlere karşı dayanıklılık gibi `1-norma dayalı

öznitelik çıkarma şemalarını özümsemektedir. Ayrıca, besleme-iletme pasoları

daha az çarpma işlemleri kullanarak gerçekleştirilebilir, bu da enerji verimliliğini

ima eder. `1-norm indükleyici operatör, neredeyse her yerde işlenenlerine göre

türevlenebilir. Bu nedenle, standart Backpropagation algoritması ile eğitilecek

olan sinir ağlarında kullanması mümkündür. AddNet, zarar gradyanlarının eğitim

sırasında patlamaması için ölçekleme (çarpımsal) bir yan gerektirir. Çarpımsal

yanı için farklı seçenekler sunuyoruz: eğitilebilir, doğrudan ilişkili ağırlıklara bağlı,

veya sabit. Ayrıca, o operatörün seyrek bir varyantını sunuyoruz sunuyoruz ve

böylelikle, kısmi veya tam benirizasyona ulaşabiliyoruz. Denemelerimizi MNIST

ve CIFAR-10 veri setleri üzerinden yürüttük. AddNet, ortalama bir CNN’den

0.1% daha az doğru sonuç elde edebilir. Ayrıca, eğitilebilir çarpımsal yanı,

ağın hızla yakınsamasına yardımcı olur. Yükleri ikili olan diğer sinir ağlarıyla

karşılaştırıldığında, AddNet daha iyi sonuçlar elde eder; eğitildikten sonra, işaret

bilgilerini tutarken tam veya neredeyse tam ağırlığı büyüklüğünde budama ya-

parken bile. CIFAR-10 üzerinde deneylere gelince, AddNet ortalama bir CNN’den

5% daha az doğruluğa ulaşıyor. Yine de AddNet, verilerinin dürtüsel gürültü ne-

deniyle bozulmasına karşı daha titizdir ve dürtüsel gürültünün bulunduğu yerde

ortalama bir CNN’den daha iyi performans gösterir, küçük gürültü seviyelerinde

olsa bile.

Anahtar sözcükler : derin öğrenme, konvolüsyonel sinir ağı, l1-norm, enerji ver-

imliliği, ikili ağırlıklar, dürtüsel gürültü.

iv

Acknowledgement

First and foremost, I would like to thank my supervisor Prof. A. Enis Çetin for

his wise guidance, patience and his suggestions regarding this work. It has been

an honour for me to work with Prof. A. Enis Çetin and I look forward to working

with him in the future.

I would like also to thank the jury members: Asst. Prof. Ramazan Gökberk

Çinbiş and Asst. Prof. Tolga Çukur for their invaluable comments and sugges-

tions.

I would like to thank Prof. Fatoş Yarman-Vural and her research group at METU

University for our earlier fruitful discussions.

I would like to thank my friends Ma’en Mallah and Abdullah Al-Kilani for their

help in proofreading and translating this work.

Finally, I would like to thank my family for their love and support.

v

To the memory of my mother ...

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Organization of This Thesis . 2

2 Background 4

2.1 Introduction . 4

2.2 Multilayer Perceptron . 5

2.2.1 Feedforward and Backpropagation Equations 7

2.3 Convolutional Neural Networks 13

2.3.1 feedforward and backpropagation in ConvNets 17

2.3.2 Historical Background and Advancement 19

2.4 Benchmark Datasets . 22

2.4.1 MNIST Dataset . 22

2.4.2 CIFAR Dataset . 22

vii

CONTENTS viii

3 Related Work 24

4 Non-Euclidean Operators and Neural Nets 27

4.1 Overview . 27

4.2 `1-norm Inducing Operators . 28

4.2.1 Properties of Operator ⊕ and ⊕s 30

4.2.2 Operator ⊕ and Energy Efficiency 31

4.2.3 Operator ⊕ and Noise . 32

4.3 AddNet: Neural Network based on Operator ⊕ 33

4.3.1 AddNet: Feedforwarding Pass 34

4.3.2 Importance of Multiplicative Bias 35

4.3.3 Backpropagation Pass . 38

4.3.4 Choices for Multiplicative Bias 41

4.3.5 Sparse Operator ⊕ . 43

5 Experimental Results and Discussion 45

5.1 Experiment 1: AddNet over MNIST Dataset 46

5.1.1 Case 0: Ordinary ConvNet 47

5.1.2 Case 1: AddNet with Constant Multiplicative Bias 49

5.1.3 Case 2: AddNet with Normalized `1 Norm Multiplicative

Bias . 49

CONTENTS ix

5.1.4 Case 3: AddNet with Standard Deviation Based Multi-

plicative Bias . 51

5.1.5 Case 4: AddNet with Trainable Multiplicative Bias 52

5.1.6 Case 5: Binarized Weights Network 52

5.1.7 Performance with Salt-and-Pepper Noise 55

5.2 Experiment 2: AddNet over CIFAR-10 Dataset 57

5.2.1 Case 0: Ordinary ConvNet 58

5.2.2 Case 1: AddNet with Constant Multiplicative Bias 59

5.2.3 Case 2: AddNet with Normalized `1 Norm Multiplicative

Bias . 59

5.2.4 Case 3: AddNet with Standard Deviation Based Multi-

plicative Bias . 60

5.2.5 Case 4: AddNet with Trainable Multiplicative Bias 61

5.2.6 Performance with Salt-and-Pepper Noise 64

6 Conclusion 65

A MNIST Samples with Salt-and-Pepper Noise 76

B CIFAR-10 Samples with Salt-and-Pepper Noise 78

List of Figures

2.1 visualization of a perceptron with 3-point input 6

2.2 visualization of an MLP with one hidden layer, blue nodes corre-

spond to neurons(perceptrons) and white nodes correspond to bias

nodes . 6

2.3 Sigmoidal activation (left) and hyperbolic tangent activation

(right) and their derivatives. Blue lines correspond to the func-

tions themselves and red lines to their derivatives. Dashed lines

correspond to the x- and y-axes. 8

2.4 A typical ConvNet, inspired by [1] 14

2.5 Visualisation of ReLU and its variants, black lines corresponds

to ReLU, green line and red line correspond to LeakyReLU with

leakage factor of 5 and 3, respectively 16

2.6 Example samples from MNIST dataset (not shown to scale) . . . 23

2.7 Example samples from CIFAR-10 dataset (not shown to scale) . . 23

4.1 Visualization of Operator ⊕ based neuron, where
∑

is the accu-

mulation of the ”weighted” input, a is the scaling factor and f(.)

is a non-linear activation . 33

x

LIST OF FIGURES xi

5.1 MNIST experiment: cost convergence for cases with constant mul-

tiplicative bias. Refer to Table 5.5 with the corresponding symbol

for full description of the case. 50

5.2 MNIST experiment: performance-memory score of AddNets w.r.t

BWN at different sparsity levels. Cases 1-4 correspond to: con-

stant, `1-norm based, standard deviation and trainable multiplica-

tive bias. The real-valued (unsuppressed) weights are 32-bit long. 54

5.3 MNIST experiment: performance-memory score of AddNets w.r.t

BWN at different sparsity levels. Cases 1-4 correspond to: con-

stant, `1-norm based, standard deviation and trainable multiplica-

tive bias. The real-valued (unsuppressed) weights are 16-bit long. 54

5.4 CIFAR Experiment: ConvNet loss convergence (solid line) and

testing accuracy (dashed line) w.r.t batches 59

5.5 CIFAR experiment: AddNet loss convergence (solid line) and test-

ing accuracy (dashed line) w.r.t batches (`1-norm based multiplica-

tive bias) . 60

5.6 CIFAR experiment: AddNet loss convergence (solid line) and test-

ing accuracy (dashed line) w.r.t batches (standard deviation based

bias) . 61

5.7 CIFAR experiment: comparison between `1 case convergence (�)

and standard deviation case convergence (∗). The two vertical lines

correspond to the points at which the highest accuracy occurred

for both cases . 62

5.8 Loss convergence (solid line) and testing accuracy (dashed line)

w.r.t batches . 62

LIST OF FIGURES xii

5.9 CIFAR experiment: comparison between trainable al case conver-

gence (∗) and `1 norm based al case convergence (�). The two

vertical lines correspond to the points at which the highest accu-

racy occurred for both cases . 63

5.10 CIFAR experiment: comparison between the convergence of Con-

vNet (�) and AddNet (∗) case with `1 based multiplicative bias.

The vertical lines correspond to the points in training at which the

highest accuracy occurs for both cases. 63

List of Tables

4.1 Additive noise impact on Operator ⊕s 33

5.1 MNIST experiment: neural net architecture 46

5.2 MNIST experiment: number of elements-wise multiplication oper-

ations . 47

5.3 MNIST experiment: ConvNet classification error for the normal

case against different normalized levels of sparsity. Classification

error is in percent. Suppressed weights correspond to the percent-

age of the weights below the sparsity level. 48

5.4 MNIST experiment: ConvNet classification error in percent with

different sparsity choices . 48

5.5 MNIST experiment: AddNet classification error in percent for dif-

ferent choices for multiplicative bias al 49

5.6 MNIST experiment: classification accuracy results for hybrid

AddNet with constant multiplicative bias (case ∗ in Table 5.5)

w.r.t different sparsity levels. Affected weights are those whose

magnitudes are suppressed and only their signs are kept. 50

xiii

LIST OF TABLES xiv

5.7 MNIST experiment: AddNet classification error in percent with `1

norm-based multiplicative bias with different activation choices. . 51

5.8 MNIST experiment: AddNet classification error in percent with

`1-based multiplicative bias for different sparsity levels 51

5.9 MNIST experiment: AddNet classification error in percent with

standard deviation-based multiplicative bias for different sparsity

levels . 52

5.10 MNIST Experiment: AddNet classification error in percent with a

trainable multiplicative bias for different sparsity levels 52

5.11 MNIST Experiment: comparison of classification error between

BWN and hybrid AddNet with different activation choices 53

5.12 visualization of example MNIST images with different SAP levels 56

5.13 MNIST Experiment: classification error in percent over SAP-

corrupted MNIST dataset at different levels 56

5.14 CIFAR Experiment: neural net architecture 57

5.15 CIFAR Experiment: number of elements-wise multiplication oper-

ations . 58

5.16 CIFAR experiment: test classification error in percent for three

CIFAR-10 models with SAP-corrupted testing data over different

levels . 64

Chapter 1

Introduction

1.1 Overview

Artificial Neural Networks have become more popular recently owing to their

high success in fields such as computer vision [2, 3, 4, 5, 6, 7], speech recognition

[8, 9, 10] and natural language processing [11, 12, 13].

Despite their success, neural networks are considered computationally intensive

and conventional architectures developed are not suitable to perform recognition

task with limited processing and energy. In order to address this problem, there

have been many attempts to come up with lightweight energy efficient neural net-

works either by using quantization and approximation techniques [14], dedicated

hardware [15] or novel mathematical models [16, 17, 18].

The `1 norm has been used in parameters estimation in order to realise sparse solu-

tions [19, 20] as a replacement for classical `2 based solutions, `1. Furthermore, `1-

norm feature extraction schemes are more resilient against outliers [21, 22, 23, 24]

than `2 based schemes. This has motivated the development of `1-inducing op-

erators, such as in [25, 26] as a replacement to conventional dot-product-based

approaches.

In this work, we introduce AddNet: a convolutional neural network in which dot-

product based operations such as: matrix multiplication and tensor convolution

1

are replaced with the `1-norm inducing operator suggested in [25]. The operator

is referred to as operator ⊕ (reads ”oplus”). This vector induces the a scaled `1

norm by a factor of two.

The importance of this work is two-fold: Firstly, since AddNet is based on an `1 in-

ducing operator, it is expected to possess properties of other `1 feature extraction

schemes, such as: resilience against outliers and impulsive noise [27]. Secondly,

since the above-mentioned operator is multiplier-less, feedforwarding passes in

AddNets involve carrying out fewer multiplication operations and instead per-

form non-linear addition with sign compensation. This is of great importance

when it comes to reducing energy needed in feedforwarding pass.

Additionally, we show that AddNet is trainable through standard backpropaga-

tion: a big advantage when it comes to using high-level deep learning libraries

such as tensorflow [28], Theano [29] and Caffe [30]. However, we need to apply

multiplicative bias in order to control gradient through backpropagation, this

multiplicative bias is inexpensive compared to dot-product based operations in

conventional neural networks.

Furthermore, we show that the weights in AddNets can be fully or partially bina-

rized without much sacrifice of performance. This means that AddNet can realize

binary-weighted neural networks such as in [16, 17, 18], while retaining flexibility

between network size on hardware and performance.

1.2 Organization of This Thesis

The structure of this thesis goes as follows: Chapter 2 contains a comprehen-

sive background about neural networks especially convolutional neural nets. The

background covers basic concepts, mathematical formulation of feedforwarding

and backpropagation passes and a brief history about ConvNets.

Chapter 3 is a survey of the recent techniques and architectures that aim to yield

more energy efficient neural nets.

Chapter 4 is the core chapter in which we discuss the `1-norm based Operator ⊕ in

details. We also mathematically express AddNet. We also mathematically show

that multiplicative bias is needed in order to be able to train AddNet. In this

2

regard, we discuss the different choices regrading multiplicative bias in details.

Furthermore, we discuss the feasibility of making a sparse variant of operator ⊕
for further increase in efficiency.

Chapter 5 presents our experimental results and provide discussion on them. We

provide a cross comparison study between the different choices possible when con-

sidering AddNets, such as: the scope of applying operator ⊕ in the network, the

type of activation, the choice for multiplicative bias. We also compare AddNet

with Binarized Weight Network (BWN), which is introduced in [16]. We also

show the performance with full and partial weight binarization in AddNet. In

addition to that, we compare the performance of AddNet and ordinary convNets

when the data is corrupted by salt-and-pepper noise.

Finally, in chapter 6 we state our conclusions regarding this work.

3

Chapter 2

Background

2.1 Introduction

Artificial neural networks (or simply neural nets) are a class of machine learn-

ing algorithms that are loosely inspired by biological neural networks, where the

building block, the neuron, can be seen as a mathematical abstraction of the bio-

logical neuron, where it ”fires” activation according to the input signal [31]. The

ultimate objective of neural nets in the broadest sense is to be able to perform

meaningful input-output mapping [32].

There have been many models of neural nets, among which is the multilayer per-

ceptron, which has been very successful in supervised learning. In this chapter,

we provide a brief background about multilayer perceptron (MLP) and convolu-

tional neural nets. In Sec 2.2, we provide a mathematical formulation of MLP.

Furthermore, we briefly explain basic concepts regarding: supervised learning,

classification task, data separability and gradient based learning. In Sec 2.3, we

explain basic concepts about convolutional neural net: an important subclass of

MLPs, which is of the main interest in this work, since our experimentation was

to study non-euclidean operator -based convolutional neural nets. Furthermore,

a brief historical background on convoutional neural nets development is pro-

vided. In both sections, we formulate feedforward and backpropagation passes

4

equations, which are compared later with our non-euclidean operator-based neu-

ral networks. The mathematical notations employed in this chapter are used

in later chapters in this thesis.

2.2 Multilayer Perceptron

Multiplayer perceptrons are a class of feedforward neural networks whose build-

ing block is the perceptron and which has at least three layers. A perceptron is a

mathematical modelling of biological neuron, in that it has connections with in-

put units, input gate where input is accumulated based on the ”strength” of these

connections, and an output gate, which fires a response based on the strength

of the accumulated signal. In this regard, the neuron behaviour can be math-

ematically understood as posing a boundary hyperplane in the data space, and

decide on the response based on the location of the data point w.r.t the boundary

hyperplane. In other words, a neuron can separate data points linearly. This can

be expressed mathematically as follows:

f(wTx + b) =

0 wTx < b

1 wTx ≥ b
(2.1)

where x is the input vector, w is the weight strength vector and b is a bias

(threshold) term. f(.) : RN → [0, 1] is the activation function, where N is the

dimensionality of input data.

The question as to how to find w and bias term such that data separation is

meaningful was address by Rosenbaltt’s perceptron algorithm [33], which is an

iterative algorithm used to update the weights based on the readily available

information about where they should belong (true class) and the current response

of the perceptron (actual class). The algorithm converges when perceptron can

assign every data point to its actual class, given that data is linearly separable.

In classification tasks, the aim of the machine is to realize separating boundary

(or boundaries) between different data instances and henceforth attribute mean-

ingful labels (or classes) to these areas. In real life, the boundaries to be realized

5

Figure 2.1: visualization of a perceptron with 3-point input

are far from linear and are expected to be arbitrarily complex. This means that a

perceptron cannot simply do such classification tasks. Nonetheless, Minsky and

Papert showed that one hidden layer is needed to serve as intermediate map-

ping in order to solve the famous XOR problem [34]. Furthermore, Cybenko

et. al. universally proved that multilayer perceptrons with one hidden layer and

non-linear activations are theoretically capable of approximating any continuous

mapping, i.e. realize boundaries of any continuous non-linearities [35], This is

where MLP comes to importance in solving real-world non-trivial problems.

Figure 2.2: visualization of an MLP with one hidden layer, blue nodes correspond
to neurons(perceptrons) and white nodes correspond to bias nodes

Nonetheless, it is not possible to use perceptron update rule because it is not

6

known what the internal representation of the hidden layers should be. Rumehart

et. al. devised Backpropagation algorithm, a gradient-based update rule that

”propagates” a differentiable error criteria through all layers. The weight are

updated based on the gradient of the error sensitivity based on calculus chain rule

[36]. This work has made using MLPs feasible. Since backpropagation is gradient-

based algorithm, the end-end connections and nodes should be differentiable.

This means that hard-limit activations as defined in 2.1 cannot be used. Real-

valued soft limits: such as sigmoid function and tangent function are alternatives

in that they approximate hard-limit however, differentiable. Sigmoid function

sig : R→ [0, 1] is defined as follows:

sig(x) =
1

1 + e−x
(2.2)

Hyperbolic tangent tanh : R→ [−1, 1] is defined as follows:

tanh(x) =
ex − e−x

ex + e−x
(2.3)

both functions are monotonously increasing and continuous, with their limits as

follows:

lim
x→∞

sig(x) = 1

lim
x→−∞

sig(x) = 0

lim
x→∞

tanh(x) = 1

lim
x→−∞

tanh(x) = −1

The derivatives for sigmoid and hyperbolic tangent are given respectively as fol-

lows:

sig′(x) =
e−x

(1 + e−x)2
≡ sig(x)

(
1− sig(x)

)
(2.4)

tanh′(x) = 1−
(ex − e−x
ex + e−x

)2
≡ 1− tanh2(x) (2.5)

Visualization of both functions and their derivatives are shown in Fig. 2.3

2.2.1 Feedforward and Backpropagation Equations

Feedforward neural networks pass input from lower layers to higher layers, start-

ing from the presentation layer, which is merely the data input layer, up until the

7

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.3: Sigmoidal activation (left) and hyperbolic tangent activation (right)
and their derivatives. Blue lines correspond to the functions themselves and red
lines to their derivatives. Dashed lines correspond to the x- and y-axes.

output layer, without any loops in contrast to other models such as: recurrent

neural network [37].

When talking about training neural network, we are also interested in backprop-

agation passes, which go from the output layer up until the input layer.

2.2.1.1 Feedforwarding

As for studying feed forward and backpropagation passes, our mathematical no-

tation is as follows: Let xn be input n and tn be the true corresponding label

(desired output). Let superscript l ∈ {1, 2, ..., L} be the layer index, starting from

1, in which case it corresponds to the input, this layer is known as presentation

layer. The Lth layer is the output layer, where L > 2 depends on the model choice.

We assume that there is at least one hidden layer. Let vli be the pre-activation

of neuron i in layer l. In the case of fully connected layer l, it corresponds to

the weighted sum of all activations of the preceding layer l − 1 accumulated at

that neuron’s input gate. Let wlji be the weight connecting neuron i from the

layer l − 1 with the input gate of neuron j in layer l. Let blj be the bias term of

that neuron, i.e. the offset value at the input gate of that neuron. Let uli be the

activation of neuron i in layer l, i.e. the response of the neuron after applying

non-linearity. Let f(.) be the non-linear activation function.

8

In the case of fully connected layer, Activation uli can be written as:

ulj := f(vlj) = f
(I−1∑

i

wliju
l−1
i + blj

)
(2.6)

In matrix notation, vector ul can be expressed as follows:

ul := f(vl) = f(WlTul−1 + bl
)

(2.7)

where f(.) in 2.7 is the element-wise nonlinearity application, Wl is the weight

matrix connecting layer l − 1 with later l, the superscript T denotes transpose.

The importance of adding a bias term is to apply affine transformation w.r.t the

input. Therefore, the pre-activation is not restricted to a value of 0 when the

input to its corresponding neuron is 0.

In classification tasks, the response of the highest layer is the prediction of a

NN. In a binary classification task, we can express prediction by using only one

output neuron, all that is needed to interpret the response is to set a threshold

as a separating boundary between negative and positive. Applying non-linearity

at the end does not add any value to the prediction itself. Nevertheless, it is

convenient to bound the response to values from [−1, 1] or [0, 1] so as to be able

to set a practical cost criterion that is important for training NNs, in addition to

making the prediction more interpretable by humans.

In the case of M-ary classification, i.e. categorizing data into M classes, tn ∈
{c1, c2, ...cM} where ci is the ith class, e.g ’Apple’ in an image recognition task.

In reality, we simply assign a unique numeric value from 1 to M for each class c.

Therefore, tn simplifies to a numeric value from 1 to M .

As for expressing prediction, it is not possible to use only one neuron for a simple

reason: there is no class order in categorical data and, thus, the distance criterion

should be as follow:

d(cm, cn) =

0 m = n

D otherwise
(2.8)

what Eq 2.8 implies is that classifying xn into any class except its true one should

be as bad as classifying it into any other false class. Therefore, NNs should

preserve this distance criterion inherit to categorical data. This is achievable by

transforming true labels t’s and predicted labels y’s into one-hot vectors. One-

hot vectors are simply vectors of M dimensions with all unit bases multiplied by

9

zero, except the ith base, where i is the numeric value of the label. Based upon

that, one can set the output layer to have M neurons, each of which exclusively

corresponds to one of possible M outcomes. The prediction is then:

yn := prediction(xn) = argmax(vL(xn)) (2.9)

where L is the last layer index, n is the instance index. Ideally, we want yn = tn.

Note that each output neuron preforms binary classification by telling whether

input xn is of that neuron class or not.

It is also common practice to normalize the output layer response so that values

are bound to an interval [0, 1). This is done by applying softmax operator, which

is defined as follows:

si =
ev

L
i∑M

j=1 e
vLj

(2.10)

This ensures that values sum up to unity. Softmax is particularly important when

used in adjacency to cross-entropy loss function.

2.2.1.2 Backpropagation

Since backpropagation algorithm is gradient-based [36], this means that it is

suited for end-end differentiable computational graphs. However, in the case of

supervised learning, the network prediction as defined in (2.9) is itself not dif-

ferentiable w.r.t any node in the network. Therefore, a cost function should be

devised.

Cost function can be understood as a quantification of the network performance

taking into account the desired response of the network. Therefore, training a neu-

ral nets boils down to minimizing the cost given input data. Let J(xn, tn; {W})
be the cost function of input xn when its corresponding true label is tn. As for

choices for cost functions, one of the earliest choices is the square error defined

as follows:

J(xn, tn; {W}) :=
1

2
(uL − t)T (uL − t) (2.11)

where t is the one hot encoded vector of the true label tn. In the case of binary

classification, another important cost metric is the cross entropy metric. In the

10

case of binary classification it is defined as follows:

J(xn, tn; {W}) := (1− tn)log(1− uL)− tnlog(uL) (2.12)

where uL is the sigmoidal response of the output neuron In case of M -ary clas-

sification softmax is usually applied over the output layer and cross entropy cost

is defied as follows:

J(xn, tn; {W}) := −
M∑
i

tni log(si) (2.13)

where tni is the ith component of the one-hot encoded vector corresponding to

scalar tn, si is the ith softmax logit.

In order to propagate the error (or cost) backward, the error sensitivity w.r.t

output bias is defined as:

δL := ∇bLJ :=
∂J

∂bL
(2.14)

The dimensionality of δL is identical to that of the bias vector bL and thus to

that of vL. This sensitivity depends on: 1) the response of the output neurons,

2) the true labels and 3) the choice of the cost criterion J . As for using cross

entropy with softmax logits. The sensitivity w.r.t the ith bias is:

δLi =
∂J

∂bLi
=

∂J

∂vLi
=

M∑
m=1

∂J

∂sm

∂sm
∂vLi

= si − ti (2.15)

where in (2.15) ti is the ith component of the one-hot true vector, si is the softmax

output of the ith neuron. Note that δ’s in this case ∈ (−1, 1).

The sensitivity is then propagated to from layer l+1 to layer l using the following

recursive formula:

δl = (Wl+1δl+1) ◦ f ′(vl) (2.16)

where in (2.16) ◦ denotes Hadamard (element-wise) multiplication between the

vector resulting from multiplying the weight matrix with delta of the higher layer

l + 1 and vector f ′(vl), f ′(.) is the element-wise application of the derivative

function. Since activation f(.) has an specific analytical form, its derivative is

known analytically.

The ultimate goal of back-propagation is to find the derivative of the cost function

w.r.t weights so as to use the derivative information to update the weights. In

this regard, the sensitivity vector δl is used directly to update the weights of

11

its corresponding layers using direct application of calculus chain rule, the cost

function gradient w.r.t weights of layer l is as follows:

∇WlJ =
∂J

∂Wl
= ul−1(δl)T (2.17)

The gradient obtained from (2.17) will be used to update the respective weight

matrix iteratively using the following formula:

Wl
I+1 = Wl

I + ψ
(∂J

∂Wl

)
(2.18)

Furthermore, the sensitivity vectors will directly be used to update the biases as

follows:

blI+1 = blI + ψ(δl) (2.19)

Where I is the iteration index, ψ is the gradient-based update rule.

As for update rules, the simplest rule is Gradient Descent algorithm (GD), in

which the subjects are updated in a direction exactly opposite to the gradient,

i.e. ψ(∇) = −η∇, where η is the learning rate. Nevertheless, Gradient Descent is

never used and Stochastic Gradient Descend (SGD) and its variants are applied.

In SGD, the input-label tuples are randomly permuted and then iterated over.

This is important to insure that different samples are independent from each

other, and thus, the network is guaranteed to not learn any relations between

different samples as it is irrelevant to conventional classification tasks [38].

Since optimizing the cost function is non-convex, the updating algorithm will

get stuck in a local minimum. As a matter of fact, it is very unlikely to ever

hit the global minimum. Therefore, other algorithms have been devised to help

the parameters, to some extent, escape poor local minima. One algorithm is the

momentum update rule [38], which can be expressed mathematically as follows:

VI+1 = VI − η
∂J

∂Wl

Wl
I+1 = Wl

I + µVI+1

(2.20)

where V is the momentum term, µ is the momentum rate. There many variants

of SGD that are readily implemented in high level deep learning libraries such as:

12

Tensorflow [28], Caffe [30], Theano [29] and others.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (also known as ConvNets or CNNs) are a class of

feedforward neural networks where spatial convolution is the operation applied

between inputs and weights instead of applying ordinary matrix multiplication.

Conventionally, CNNs are feedforward neural networks that have convolution op-

erations induced at least between two layers. Usually, the layers are convolutional

except the last few layers (usually 2 or 3) which are fully (densely) connected[39].

Mathematically speaking, discrete convolution is defined as follows:

(x ∗ w)n :=
∑
k

wkxn−k :=
∑
k

xkwn−k (2.21)

However, in the context of deep learning, convolution is sometimes defined as

follows:

(x ∗ w)n :=
∑
k

wkxn+k (2.22)

The difference between 2.21 and 2.22 is that in 2.21 we perform kernel (w) or input

(x) flipping in contrast of 2.22. It is important to note that the second definition

does not quality for proper convolution but rather cross-correlation, which is not

commutative (
∑

k wkxn+k 6=
∑

k xkwn+k). Nevertheless, as far as feedforwarding

and backpropagation are concerned, this distinction is not of importance, and

one can use either definitions without any practical differences.

Since we are dealing with tensors in deep learning networks, definition 2.21 is

straightforwardly extended as follows:(
I ∗W

)
(x, y) :=

∑
j

∑
i

W (i, j)I(x− i, y − j) (2.23)

Equation 2.23 refers to the case of having 2D input. However, it can be extended

to 3D input and 3D kernels. Convolution between input I and kernel W results

in a 2D output or a feature map. In ConvNets, however, we have multiple

filters at a certain levels that comprise a filter bank, each of which convolves

13

with input I to produce a feature map stacked at a certain position. Therefore,

a more generic definition of convolution in feedforward pass can be articulated as

follows:

V (x, y, k) :=
(
I ∗Wk

)
(x, y) (2.24)

Figure 2.4: A typical ConvNet, inspired by [1]

Looking back at 2.23, it can be seen that the depth of the output or the num-

ber of feature maps only depends upon the number of the filters in the filter

bank. The spatial size depends on the convolution type as well as the striding

parameters (explained below).

Figure 2.4 visually demonstrates a typical Convnet. As it can be seen, the spatial

size of high-level features maps is quite small and, in some architectures can be

singular, i.e. 1×1, whereas the depth increases. This is to allow CNNs to capture

many complex patterns that will be then fed into the higher fully connected layers

to perform the intended task, such as: classification, detection or localization.

Convolutional neural networks differ from multi layer perceptrons in that the

weights (or kernels) in the convolutional layers have smaller size than input size

and, thus, certain input units contribute to an output unit. This can be restated

as: output has local receptive fields. Secondly, weights are shared across spa-

tial dimensions. The former constraint yields efficiency in computation [40] since

a fewer add-multiply operations, and, thus, dot product operations are needed

to calculate the output in feedforward pass. Furthermore, this allows kernels to

learn local features such as: directional edges, points and corners. Parameter

sharing is important when it comes to visual features since the location of a fea-

ture is usually unimportant but rather its presence. In addition to that, spatial

pooling is often applied between convolutional layers. Spatial size reduction,

14

which is achievable one way by pooling, is important to reduce the response size

in feedforward and, therefore, enable higher layers of learning data-dependent

generic features, e.g. facial patterns in a face recognition task. Combining these

specifics, ConvNets are, to some extent, shift, scale and distortion invariant fea-

ture extractors [41].

Just as in other feedforward NNs, non-linearity is applied between hidden layers

or feature maps in ConvNets. Although any sigmoidal non-linearity is a valid

choice, the most commonly used non-linear activation is Rectified linear function

(or ReLU), which is defined as follows:

ReLU(x) = max(0, x) =

0 x ≤ 0

x x > 0
(2.25)

Although it is not clear why choosing ReLU in ConvNets has yielded better re-

sults, it can be argued that ReLU is less likely to cause vanishing gradient (see

section 2.3.2). Another advantage of using ReLUs is that it yields sparse out-

put, since all negative responses will be mapped to zero. This is beneficial in

terms of efficiency as these units do not need be multiplied by weight connections

while carrying out convolution, which can be utilized in the context of sparse

matrix multiplication.[add ref]. Other variants of basic ReLU include: Leaky

ReLU which is defined as: LeakyReLU(x; ε) = max(x
ε
, x), where ε is the leakage

parameter, which determines how much of the negative signal should be ’leaked’.

Note that when ε = 1, the mapping reduces to identity(linear) mapping.

Pooling operation, as the name indicates, realizes a singular value out of a

local area (say 2×2) based on a certain criterion. The most common choices are:

average pooling, maximum pooling and p-normed pooling.

Ipool(x, y) = max(x,y)∈Area(I(x, y)) (2.26)

Depending on the domain selection, we can distinguish between 3 types of con-

volution: ’Same’ convolution, ’Valid’ convolution and ’Full’ convolution.The dif-

ference between these thee types is the support of the convolution operation.

15

-1 0 1
-1

0

1

Figure 2.5: Visualisation of ReLU and its variants, black lines corresponds to
ReLU, green line and red line correspond to LeakyReLU with leakage factor of 5
and 3, respectively

Since we’re dealing with discrete domain (Z), the support Supp(.) ⊂ Zn is de-

fined as {~x ∈ Zn s.t. (I ∗ W)(~x) 6= 0}. In 1-D case, ’Full’ convolution has

the largest support possible, where |Supp(I ∗ w)| = |Supp(I)| + |Supp(W)| − 1.

In ’Same’ convolution the domain is chosen such that the support of the con-

volution output is the same as that of the input I. In ’Valid’ convolution the

domain is restricted only to cases where W and I convolve on I support and,

thus, |Supp(I ∗W)| = |Supp(I)|− |Supp(W)|+ 1. ’Same’ convolution is used the

most since the support (and thus the size) of the output is the same as that of

the input, which simplifies design.

When talking about ConvNets, there is an important additional parameter ascrib-

able to convolution operation, which is Striding. Strides determine how much

spacing in the input should be taken while performing convolution. In the above-

mentioned definitions, vertical and horizontal strides are set to 1, that is, we

slide the kernel by one pixel (vertically or horizontally) to find the (vertically or

horizontally) adjacent output. Let SV , SH denote vertical and horizontal striding

parameters, respectively, then strided convolution can be defined as follows:

Conv2D(I,W ;SH , SV) =
∑
j

∑
i

Wk(i, j)I(SHx− i, SV y − j) (2.27)

16

Strided convolution can be thought of as ordinary spatial convolution followed

by a sub-sampling layer. It is obvious that with striding > 1 the size of feature

maps will be reduced by SHSV . Striding achieves spatial size reduction, just as

pooling does. Therefore, one can dispense with using pooling by choosing striding

parameters > 1. In [42] the authors advocate for using strided convolution and

eliminate pooling layers., while achieving a very high classification accuracy over

CIFAR datasets.

2.3.1 feedforward and backpropagation in ConvNets

2.3.1.1 feedforwarding pass

Just like other feedforwarding NNs, learning weights in ConvNets is gradient-

based. Therefore, in this subsection, feedforward pass and backpropagation equa-

tions are derived for CNNs.

Since we are dealing with grey-scale or RGB-color input images as well as 3D

tensors, mathematical formulation needs further indexing than in the case of

MLP, the input and responses are vectorized. Using the same notation conven-

tion adopted in 2.2.1, let Vl and Ul ∈ RX×Y×D, where X and Y are the spatial

domains on which the tensor is defined (the support) and D is the depth domain

of that tensor. As for the kernels, filter banks are denoted as follows: for layer

l, let the filter bank be a 4-D tensor such that Wl ∈ RI×J×D×K, where I and J

are the filter domain in x and y directions, respectively, D is the depth domain

and K is the filter index within the filter bank. the kth filter in Wl is a 3-D

tensor whose depth is identical to that of the input U l−1. for simplicity, it can be

denoted as Wl
k ∈ RI×J×D. Based on this indexing scheme, the feedforward pass

can be written as follows:

Vl(k) := Conv2D(Wl
k,U

l−1) + blk (2.28a)

17

in scalar notation

vl(x, y, k) :=
D∑
d=1

∑
j∈J

∑
i∈I

wlk(i, j, d)ul−1(x− i, y − j, d) + blk (2.28b)

according to (2.28), filter Wl
k will convolve with Ul−1 and yield the 2-D pre-

activation of the kth feature map. Vl does not depend on the depth of the filter

or the output Ul−1, but rather on x,y and the index k. [add fig]

The bias bl is usually taken as a vector ∈ RK so that for each pre-activation

map V l
k , a scaler bias term is added to yield affine transformation. This make a

difference to the MLP case when it comes to backpropagating the error.

The highest feature map, which conventionally has a small spatial size, e.g. 6× 6

and a large depth, e.g. 512 is vectorized before being fed into the fully connected

layer, henceforth, formulation in Sec. 2.3.1 are used.

2.3.1.2 backpropagation pass

In order to derive error sensitivities and gradient w.r.t, calculus chain rule is used.

As for error sensitivity w.r.t pre-activation, it can derived as follows:

δl(x, y, z) :=
∂J

vl(x, y, z)
=
∑
k

∑
y′

∑
x′

∂J

∂vl+1(x′, y′, k)

∂vl+1(x′, y′, k)

∂vl(x, y, z)
(2.29)

The first RHS term inside the summation in(2.29) is δl+1(x′, y′, k) by definition.

As for the second term, it is important to note that kth feature map is not

depended upon any filter except the kth one. Therefore, the second term inside

the summation in (2.29) becomes:

∂vl+1(x′, y′, k)

∂vl(x, y, z)
= wl+1

k (x′ − x, y′ − y, z)f ′
(
vl(x, y, z)

)
(2.30)

Plugging (2.30) into (2.29), it becomes:

δl(x, y, z) =
(∑

k

∑
y′

∑
x′

δl+1(x′, y′, k)wl+1
k (x′ − x, y′ − y, z)

)
f ′
(
vl(x, y, z)

))
(2.31a)

18

or in tensor notation

δlz =
(∑

k

Conv2D
(
δl+1
k , rot{Wl+1

k }(z)
))
◦ f ′
(
Vl(z)

)
(2.31b)

where in (2.31) rot{.} implies rotating the filter in x and y directions by 180◦, the

convolution is carried out between the zth slice of the rotated kernel wlk and δl+1, at

kth position at a time. This is carried out for each kernel wlk and its corresponding

delta map δl+1
k before being added up into a single 2D tensor, which is multiplied

element-wise by tensor f ′
(
vl(x, y, z)

)
. the convolution in (2.31) is type ’full’ if

the convolution in feedforwarding is type ’valid’ in order to ensure dimensionality

consistency in backpropagation.[add figure]

The error sensitivity w.r.t bias blz is as follows:

∂J

∂blz
=
∑
y

∑
x

δl(x, y, z) (2.32)

The error gradient w.r.t weight kernel wkl is:

∂J

∂wlk(x, y, z)
=
∑
y′

∑
x′

∂J

∂vl(x′, y′, k)

∂vl(x′, y′, k)

∂wlk(x, y, z)
(2.33)

The first RHS in (2.33) is δl(x′, y′, z′), the second term is evaluated as:

∂vl(x′, y′, k)

∂wlk(x, y, z)
= ul(x′ − x, y′ − y, z) (2.34)

Plugging (2.34) into (2.33) yield the following formula:

∂J

∂wlk(x, y, z)
=
∑
y′

∑
x′

δl(x′, y′, k)ul(x′ − x, y′ − y, z)

or in tensor notation

∂J

∂Wl
k(z)

= Conv2D(δlk, rot{Ul(z)})

(2.35)

2.3.2 Historical Background and Advancement

Convolution in CNNs can be understood as a special form of vector product where

not all input contributes to a certain output unit and the weights are shared. The

19

idea of parameters sharing in feedforward neural networks dates back to 1988,

where it was first applied in ”Time-delay Neural Networks” in phoneme recogni-

tion tasks [10]. However, the first attempt to apply parameter sharing in neural

network for image recognition tasks was done by le Cun et. al [40] in 1989. In

that work, weight-shared networks were used in classifying binary images of hand-

written digits. 2 × 2 weights sets were shared across the 16 × 16 input images

and the output of the intermediate layers and a fully connected layer was used in

the end. Sigmoidal activation was applied to impose non-linearity. Furthermore,

these networks were trained using the then recently developed back-propagation

algorithm[43] and showed +10% performance improvement in inference accuracy

over fully connected networks. In 1990, weight-shared networks were used in a

more challenging recognition task: recognizing zipcodes for handwritten images

[6].

As these results were promising, using deeper model in more challenging recogni-

tion tasks would be sought. However, this strive was frustrated by encountering a

problem related to gradient-based learning, i.e. backpropagation itself: the prob-

lem of vanishing gradient [44]. Since back-propagation algorithm uses calculus

chain rule of derivatives to calculate the gradient of the loss (or cost) function

w.r.t a layer, the gradient will vanish if the error sensitivity propagated from

higher layers is too small. This mostly happens when sigmoidal response is in

the saturated areas (f(x) ≈ 0 or 1). Therefore, the derivative then is close to

zero. This made training early layers very hard. Other activations used then

such as: Hyperbolic tangent also incur the same problem (derivative is effectively

zero when f(x) ≈ −1 or 1). Due to the resulting inefficiency in gradient-based

learning and due to the computational limitations at the time, training deeper

models was infeasible and thus it was not possible to obtain satisfactory results

promised by the theoretical capabilities of better generalization[45]. This could

not be simply solved by using larger learning rates, as a new problem would

emerge: the problem of exploding gradient. In addition to that, support vector

machines (SVM)[46] caught interest among researchers in 1990s at the expense

of neural networks. Nevertheless, there was ongoing, albeit limited, success in

applying CNNs in computer vision tasks such as: optical charachter recognition

(OCR) as well as facial recognition [41]. For further details see [1].

20

In 2003, Simard et. al. [47] achieved then state-of-the-art recognition performance

over MNIST dataset [48] with performance error equal to 0.4% with CNNs by

devising novel dataset expansion techniques: elastic and affine distortion. Valid

data augmentation techniques, by which the labels are preserved, help the model

be more transformation-invariant and, thus, generalize better.

In 2006, Hinton et. al. [49] devised a new scheme so as to accelerate training

deep MLP models with many layers. In that work greedy layer-wise unsuper-

vised training is carried out initially. Afterwards, the layers are cascaded and the

learned weights serve as initialization values for the supervised task (e.g. clas-

sification). In the supervised learning phase, the gradient-based optimizer only

”fine-tunes” the values of the weights. This work caught the attention of many

researchers in the upcoming years and more effort was devoted to achieving bet-

ter results in hard computer vision tasks

In 2010, Cireşan et. al. [50] trained large MLP networks (including up to 9-

layer models) and could achieve classification accuracy of ≈ 0.35% error rate

over MNIST data set using old-school end-to-end backpropagation training with

no need to pre-process the data or carry out any layer-wise pre-training. This

work is perhaps one of earliest attempts to expedite training deep models by

making use of the parallelization capabilities offered by Graphic Processing Units

(GPUs). With the advent of more powerful and dedicated GPUs as well as GPU-

supported deep learning libraries, using GPUs has become pervasive in training

deep models. GPUs have surpassed CPU clusters in their parallelized computa-

tional capabilities.

In 2012, Krizhevsky et. al. devised a deep ConvNet and trained over ImageNet

dataset [2]. The importance of this work comes out of the fact that it was the

first successful attempt in using CNNs or neural networks in a challenging dataset

and being able to achieve ground-breaking results within the computer vision so-

ciety. This work has changed the perception of neural nets among scholars and

has prompted further development in the field. Other famous networks include:

VGG net [5], GoogleNet [3] and many others.

21

2.4 Benchmark Datasets

One key factor in the advancement of deep learning research is the availability

of large scale dataset that have been collected throughout the years. Although

the ultimate objective is to achieve good performance over real-world datasets.

Benchmark datasets serve as a standard way of assessing performances among

different models and architectures. Furthermore, benchmark datasets can be ad-

equately hard such that achieving good results is on par of real-world recognition

problems.

There are plenty of common datasets used in the community. However, we will

discuss only the two datasets relevant to our experiments: MNIST and CIFAR

dataset.

2.4.1 MNIST Dataset

MNIST dataset consists of 0-9 digit Gray scale images, i.e. has 10 classes [48].

The images size is 28 × 28 pixels. The dataset has 60, 000 images split between

training and validation data as well as 10, 000 test images. Currently, the state-

of-the-art accuracy over the test data is 99.8% achieved by DropConnect [51].

Example photos are shown in Fig. 2.6.

2.4.2 CIFAR Dataset

CIFAR-10 consists of natural coloured images [7]. The dataset has 60, 000 images

with 10 classes, each of which has 6, 000 images. The images are of size 32 RGB

pixels. 50, 000 images are training images and 10, 000 are testing images . CIFAR-

100 is simiar to CIFAR-10 but with 100 classes. This means that fewer examples

are available in CIFAR-100 for each class, which makes a classification task over

CIFAR-100 much harder than over CIFAR-10. This is evident in their state-of-

the art rate of recognition, which that of CIFAR-100 roughly 76.0% [52], while

22

Figure 2.6: Example samples from MNIST dataset (not shown to scale)

the state of the art in the case of CIFAR-10 is roughly 96.5% [4, 53]. Sample

photos are shown in Fig. 2.7.

Figure 2.7: Example samples from CIFAR-10 dataset (not shown to scale)

23

Chapter 3

Related Work

Neural Networks have become very popular in recent years in computer vision,

natural language processing and speech recognition thanks as they have achieved

state-of-the-art performance surpassing classical machine learning techniques at

near-human performance levels [2, 53, 52]. Deep Neural Networks, however, are

computationally intensive since the number of arithmetic operations involved in

feed-forward pass is very high. In fact, in a typical ConvNets, the number of

add-multiply operations is usually in order of tens of millions. This has been

an obstacle towards using ConvNets in systems where processing and energy are

limited [54], such as: Mobile phones and smart sensory devices.

There has been interest in energy efficient neural networks from different points of

view. Weights quantization is one approach to achieving efficiency. Techniques

such as: precision scaling and computation skipping can save up energy [14].

Dedicated energy efficient Neuromorphic systems have been developed [15, 55].

Specialized hardware such as FPGA has been used in achieving energy efficiency

[56].

In 2013, Wan e.t al. [51] proposed DropConnect, in which weight connections

are randomly dropped during feedforwarding pass. The weight dropping scheme

serves as regularization. Furthermore, connections dropping implies fewer arith-

metic operations during feedforwarding. However, DropConnect is only limited

to dense connections.

24

In 2015, Courbariaux et. al. [18] proposed BinaryConnect, which is a DNN

where weights are binarized during feedforwarding pass, either deterministically

or stochastically. In the backpropagation pass, the sensitivities are calculated

for the binary weights but weights values are retained for parameters update.

Binarization in BinaryConnect serves as regularization. YodaNN [57] is an

ASIC (Application-specific integrated circuit) design of binaryConnect that could

achieve up to 32× energy reduction than other ASICs CNNs. BinaryConnect net-

works were extended to TernaryConnect, where weights can have values of either

: −1, 0, 1 [58].

In 2016, Kim et. al. [17] proposed Bitwise Neural Network (BNN), where

input, weights and activation are 1-bit valued. In BNNs, XNOR is the binary

operation applied in feedforwarding between the weights and input from lower

layers. The weights are compressed by using hyperbolic tangent activations. Af-

terwards, the real-valued trained weights are retrained into binary weights using

noisy backpropagation. However, the method was not tried in deep learning ar-

chitecture.

In 2016, Rastegari et. al [16] proposed two networks: Binary Weight Network and

XNOR network, where in the former, weights are binary-valued and in the lat-

ter weights and input tensors are both binary-valued. In BWN, a pre-activation

real-valued scaling scheme is used in order to make the network trainable using

standrad backpropagation. Likewise, in XNOR network, another scaling factor

is used to apprixmate dot product between binary weights and binary inputs.

Ternary Weight Networks (TWN) were proposed by Zhang et. al. [59], where

weights can take up 3 values {−1, 0,+1} instead of binary values. TWN outper-

forms BWN while still being energy efficient.

In 2009, Tuna et. al [25], proposed an `1-norm inducing multiplier-less binary

operator, upon which our AddNet is built. This operator was used to realize

the so-called co-difference matrix between feature vectors. Co-difference matrix

resembles co-variance matrix but dot product is replaced with the referred op-

erator. It was shown that image descriptors based on co-difference matrices can

perform as well as those based on co-variance matrices in image classification

and identification tasks. This multiplier-less operator has found applications in

computer vision and signal processing [26, 60, 61].

25

In 2017, Afrasiyabi et. al. [62], applies the `1-norm inducing operator in neural

net in order to achieve energy efficiency. The work shows that a multiplier-

less network based on the above-mentioned operator can solve the famous XOR

problem and it shows good results on MNIST dataset. However, this work only

investigated multilayer perceptrons. Our earlier work was carried out during the

same time of the above-mentioned work. Furthermore, this thesis focuses on

using the multiplier-less operator in deep neural networks and carrying out ex-

periments on harder datasets, such as: CIFAR-10. Furthermore, we present more

mathematical choices for the multiplicative bias in AddNets.

26

Chapter 4

Non-Euclidean Operators and

Neural Nets

4.1 Overview

This chapter describes non-euclidean `1-inducing operators and their applica-

tions in Neural Nets as a replacement for ordinary dot products used in realizing

responses across neural networks. In this `1-norm scheme, realizing responses

through weighted sums is multiplication-free This means that fewer multiplica-

tion operations overall from end-to-end in feedforwarding passes, which is energy

saving [16, 18, 17]. The operator of interest is called Oplus and notated as ⊕.

We call a neural net which is partially or fully based on operator ⊕ addNet.

In addition to energy saving, operator ⊕ possess some `1-norm features such as

resilience against outliers. This means that AddNets will behave differently than

normal neural nets when the data is corrupt.

The outline of this chapter is as follows: Sec. 4.2 introduces operator ⊕ as an

`1-norm inducing operator. Furthermore, discussion about energy efficiency is

provided as well as the behaviour of ⊕-based systems under noisy inputs.

In the second part (Sec.4.3), we introduce AddNets and their building blocks:

27

AddNeurons, we formulate feedforwarding pass equations as well as backprop-

agation. Furthermore, we introduce Multiplicative Bias: a normalization

scheme at the response level that is necessary so that AddNet can behave prop-

erly in feedforward and backpropagation. A mathematical justification is also

presented. In addition to that, we present different choices for this multiplicative

bias that we investigated in our experimentations. We also discuss ”sparse” op-

erator ⊕, where only the signs of the weights are kept and the magnitudes are

discarded.

4.2 `1-norm Inducing Operators

The `1 norm is a non-Euclidean norm that belongs in Minkowski norms family,

i.e. it satisfies Minowski inequality [63].

||x+ y||p ≤ ||x||p + ||y||p (4.1)

where p ≥ 1. The `p-norm is defined on discrete vector spaces as follows:

||x||p :=
(N∑
i=1

|xi|p
)1/p

(4.2)

The Euclidean (`2) norm is defined as follows:

||x||2 :=

√√√√ N∑
i=1

|xi|2 (4.3)

In the case of the `1 norm p = 1 and (4.2) reduces to:

||x||1 :=
N∑
i=1

|xi| (4.4)

where |.| is the absolute value. The gradient of the `1 norm w.r.t its input vector

x is:

∇x||x||1 = sgn(x) (4.5)

28

Where sgn is the element-wise application of Signum function, i.e. sgn(x) :=

{sgn(xi)}Ni=1, where N is the dimension of the vector. Signum function (sgn(.))

is defined as follows:

sgn(x) =

1 x > 0

0 x = 0

−1 x < 0

(4.6)

The `2 norm can be induced for vector x using dot product ||x||22 =< x,x >.

Based on the definition of Signum function, one can write |x| as x.sgn(x) and

therefore induce the `1 norm of vector x as follows:

||x|| :=
N∑
n=i

|xi| =
N∑
n=i

xisgn(xi) =< x, sgn(x) > (4.7)

However, the `1-inducing operation in (4.7) is not commutative since <

x, sgn(y) >6≡< y, sgn(x) >. In order to overcome the non-commutativity prob-

lem, several binary operations have been defined [25, 26, 64]. The first operator

⊕ is defined as follows:

x⊕ y :=
N∑
i=1

sgn(xi.yi)
(
|xi|+ |yi|

)
(4.8)

where N is the dimensionality of both vectors. Using the fact that sgn(xi.yi) ≡
sgn(xi).sgn(yi) and the fact that |x| ≡ sgn(x).x, (4.8) can be re-written as:

x⊕ y :=
N∑
i=1

(
sgn(xi).yi + sgn(yi).xi

)
(4.9)

It is helpful to express the vector operation ⊕ as a summation of scalar operations

as follows:

x⊕ y :=
N∑
i=1

sgn(xi.yi)
(
|xi|+ |yi|

)
:=

N∑
i=1

xi ⊕s yi (4.10)

where the subscript s in ⊕s stands for ”scalar”.

Based on (4.9), we can break operation ⊕ into dot-product operations as follows:

x⊕ y ≡< sgn(x),y > + < x, sgn(y) > (4.11)

Expressing operator ⊕ in terms of the dot-product and element-wise Signum

operations is handy when it comes to high-level implementations from a practical

29

point of view. Operator ⊕ induces a scaled `1 norm as follows:

x⊕ x = 2||x||1 (4.12)

It is worth mentioning that inducing `1-norm can be achieved through other

commutative vector binary operations, such as: the Min operator and the Max

operator, defined respectively as follows:

x�↓ y :=
N∑
i=1

sgn(xi.yi)min(|xi|, |yi|) (4.13)

x�↑ y :=
N∑
i=1

sgn(xi.yi)max(|xi|, |yi|) (4.14)

Both operators in (4.13) and (4.14) induce `1 norm, i.e. x�↓ x ≡ x�↑ x = ||x||1

4.2.1 Properties of Operator ⊕ and ⊕s

In addition to its ability to induce the `1, operator ⊕ possesses other properties

that are worth mentioning:

4.2.1.1 Commutativity

Proposition 1. Operator ⊕ is commutative

Proof. Since operator ⊕s is commutative, ⊕ is summation of commutative oper-

ations, therefore it is commutative.

4.2.1.2 Sign Preservation

Perhaps the most important property of operator ⊕s is its ability to preserve the

sign of normal multiplication on a scalar level.

Proposition 2. Operator ⊕s preserves the sign of normal multiplication.

30

Proof. since sgn(|x|+ |y|) ≡ 1, sgn(x.y)(|x|+ |y|) = sgn(x.y)

The sign preservation property on a scalar level is an important property which

can be extended to a vector level to make ⊕ resemble dot product. In this regard,

Tuna et al. [25] defines a ”co-difference” matrix that resembles normal co-variance

matrix and use it as image feature descriptor. Co-variance matrix can be defined

as:

Cov(F) =
1

N − 1

N∑
k=1

(fk − µ)(fk − µ)T (4.15)

As for co-difference matrix, it is defined as follows:

Cod(F) =
1

N − 1

N∑
k=1

(fk − µ)⊕ (fk − µ)T (4.16)

where µ is the mean vector estimate of features vectors.

4.2.1.3 Non-linearity

Proposition 3. Operator ⊕s is non-linear

Proof. A counterexample to linearity: 2⊕s 3 = 5, −1⊕s 3 = −4

(2 +−1)⊕s 3 = 4, however (2⊕s 3) + (−1⊕s 3) = 5− 4 = 1 6= 4

4.2.2 Operator ⊕ and Energy Efficiency

From a computational point of view, operator ⊕ can be implemented in

a multiplication-free scheme. Looking at definition (4.8), sgn(xi.yi) ≡
sgn(xi).sgn(yi), therefore, The multiplication between the two signum terms

can be realized using inexpensive operations: XOR in the case of binary sign or

using 2-bit simple logic in case the of ternary sign. the term |xi| + |yi| can be

realized using unsigned addition and normal addition will be needed eventually

to sum up the all the terms contributed by all N components of vector tuple

31

(x,y).

There has been interest in recent years in using fixed-point arithmetic in neural

networks [65, 66, 67] . This motivation stems from the fact that arithmetic in

NNs are error-tolerant, thanks to the high dimensionality data and the redun-

dancy present and the non-uniqueness of the weights that can achieve targeted

recognition rate [40]. Furthermore, techniques such as batch normalization [68]

and local response normalization [2] help control the range of responses and the

weights in feedforwarding passes. Fixed-point representations have simpler arith-

metic and therefore more energy efficient.

Since it can be implemented using using (+, | + |, SL) operations, where, |x| is

unsigned addition, SL represents simple 1-bit or 2-bit logic. Operator ⊕ is based

on operations that consume less energy in fixed-point arithmetic.

4.2.3 Operator ⊕ and Noise

The `1-norm is a more robust metric against outliers [21, 22, 23, 24] than classical

`2-norm metrics, which known to be sensitive towards noise and outliers. It is

worth mentioning that `1 based schemes can also be used in adaptive filtering

for α-stable processes, an important class of non-Gaussian processes [69]. Since

operator ⊕ induces `1-norm, operator ⊕ is expected to be able to account less

for outliers in data due to its additive nature rather than normal dot product. In

case of additive noise, we can write the response of operator ⊕ as follows:

(x + ε)⊕ y =
N∑
i

sgn
(
(xi + εi).yi

)
(|xi + εi|+ |yi|)

=
N∑
i

(
sgn(xi + εi).yi + sgn(yi).(xi + εi)

) (4.17)

where x is the input vector, y can be considered as the system parameters and ε

is additive noise to input vector. Looking at (4.17), we can see that the greatest

effect that εi can have is on term sgn(xi + εi), if |εi| > |xi| and sgn(εi) 6= sgn(xi)

then it will result in total sign inversion, otherwise, the sign will be reserved and

epsilon will affect the amplitude as demonstrated in Table 4.1

32

Table 4.1: Additive noise impact on Operator ⊕s

case response absolute error

|xi| > |εi| sgn(xi.yi)
(
|xi + εi|+ |yi|

) ∣∣|xi + εi| − |xi|
∣∣ = |εi|

|xi| < |εi| sgn(xi) = sgn(εi) sgn(xi.yi)
(
|xi + εi|+ |yi|

) ∣∣|xi + εi| − |xi|
∣∣ = |εi|

|xi| < |εi| sgn(xi) 6= sgn(εi) −sgn(xi.yi)
(
|xi + εi|+ |yi|

)
|xi|+ |xi + εi|+ 2|yi|

As it can be seen from Table 4.1, the absolute error in the first two cases

does not depend on the system parameters y contrary to multiplication, where

absolute error is |εiyi|. if the variance of ε is smaller than that of y then the

relative error of ⊕ will be smaller than that of normal multiplication for the first

two cases in Table 4.1.

4.3 AddNet: Neural Network based on Opera-

tor ⊕

In this section, we describe Our non-Euclidean based neural nets, namely

AddNets. AddNets are feedforwarding neural nets in which dot product in some

or all neural nets are replaced by operator ⊕ as it can be seen from Fig. 4.1.

Figure 4.1: Visualization of Operator ⊕ based neuron, where
∑

is the accumu-
lation of the ”weighted” input, a is the scaling factor and f(.) is a non-linear
activation

Neurons are replaced on a layer level. The scaling factor, which will be called

33

multiplicative bias, is important so as to train the network as shown by the

experimental results. Since operator ⊕ is non-linear by itself, applying non-

linearity to activation is not essential. The (additive) bias term is also applied

so that the neuron is not restricted to output of 0 when its input is 0. However,

since x⊕s 0+ = x and x⊕ 0− = −x, bias becomes of importance for cases where

both input and weights are both close to zero.

4.3.1 AddNet: Feedforwarding Pass

Notations in this section follow the those adopted in Sec. 2.2.1 and Sec. 2.3.1.

Based on the description above, we can mathematically express pre-activation vl

for dense (fully connected) additive-neurons layer as follows:

vlj := alj

I∑
i=1

wlij ⊕s ul−1i + blj

:= aljw
T
j ⊕ ul−1 + blj

(4.18)

where wj is the jth column of matrix Wl, subsequently, activation ul is written

as follows:

ulj := f(vlj) = f
(
alj
(I∑
i=1

wlij ⊕s ul−1i

)
+ blj

)
:= f

(
alj
(I∑
i=1

wlijsgn(ul−1i) +
I∑
i=1

sgn(wlij)u
l−1
i

)
+ blj

) (4.19)

In matrix notation, vector ul can be expressed as follows:

ul := f(vl) = f
(
al ◦

(
sgn
(
WlT

)
ul−1 + WlT sgn

(
ul−1

))
+ bl

)
(4.20)

where sgn(.) is the element-wise application of signum function over a tensor (Wl

and ul−1 in (4.20)), al is the multiplicative bias vector with dimensionality equal

to that of ul and vl, ◦ is Hadamard (element-wise) multiplication carried between

the multiplicative bias al and the output of operator ⊕.

Since operator ⊕ is non-linear, one can set f(.) to identity activation (f(x) = x),

in which case vector ul ≡ vl. Therefore, a model with three layers with the 2nd

34

layer based on ⊕ and with identity activation serves as an ordinary model with

one hidden layer with non-linear activation, albeit the non-linearity applied is

weight-input dependent. It is worth mentioning that identity mapping is also

used in many architectures such as residual neural networks [70].

Likewise, we can define feedforward pass for convolutional layers based on oper-

ator ⊕ as follows:

Vl
k := Al

k ◦
(
Conv2D

(
Wl

k, sgn(Ul−1)
)

+ Conv2D
(
sgn(Wl

k),U
l−1))+ blk

(4.21)

In scalar notation, 4.21 becomes:

vl(x, y, k) := al(x, y, k)
(D∑
d=1

∑
j∈J

∑
i∈I

wlk(i, j, d)sgn
(
ul−1(x− i, y − j, d)

)
+

D∑
d=1

∑
j∈J

∑
i∈I

sgn
(
wlk(i, j, d)

)
ul−1

(
x− i, y − j, d

))
+ blk

(4.22)

Although (4.21) and (4.22) imply Al be a rank-3 tensor whose size is identical

to that of Vl, this would be the most generic case. Indeed, Al can be of any

appropriate dimensionality≤ Xl×Yl×Zl, where Xl,Yl and Zl are the dimensions

of tensor Vl.

For most cases, we chose Al ∈ Rk, i.e. a vector, where k is the depth of pre-

activation V, which is identical to the number of filters in the filter bank Wl. The

motivation is to regularize each feature map Vl
k (a rank-2 tensor) on its own. In

this case, al(x, y, k) ≡ alk and each feature map will share a single multiplicative

bias, just as it shares a scalar additive bias. Broadcasting is used to perform the

element-wise multiplication in (4.21).

4.3.2 Importance of Multiplicative Bias

With multiplicative bias set to 1, models with ⊕ layers, either dense or convolu-

tional, are not able to learn and loss does not decrease. This can be attributed

to two reason.

The first reason is that the output of operator ⊕ is prohibitively large, due to its

35

the additive nature, and thus a scaling scheme is needed to control the range of

its response, in contrast to dot product operations, as in the case of conventional

layers, which are naturally scaling (since multiplication itself is scaling).

To demonstrate this idea, we can consider two three-layer models, the former

is dot-product based and the second is ⊕-based. For both models, we can as-

sume that the 1st layer is the input (presentation layer). Furthermore, we can

assume that input x is N -dimensional, preprocessed such that it is zero-mean

and with variance σ2
x. Weights W1 ∈ RM×N and W2 ∈ R1×M are initialized as:

w1 ∈ W1 ∼ N (0, σ1) and w2 ∈ W2 ∼ N (0, σ2), biases are set to zero initially.

Furthermore, let u1 and u2 be the activations of the hidden layer and the out-

put neuron, respectively. The bias b is initially set to zero. Before training, the

weights are totally random and independent from input vectors x.

For normal (multiplicative) neurons, we can write feed-forwarding as follows:(
u1i

)
MULT

= f
(
v1i

)
MULT

= f
(
w1T
i x + b1i

)
(4.23)(

u2
)
MULT

= f
(
v1i

)
MULT

= w2Tu1 + b2 (4.24)

where the subscript ”MULT” denotes multiplicative dot-product-base connec-

tions and T denotes transpose of the column weight vectors. We assume that

no activation is applied in the last layer. Likewise, we can write feedforwarding

passes for AddNet as follows:(
u1i

)
ADD

= f
(
v1i

)
ADD

= f
(
a1iw

1T
i ⊕ x + b1i

)
(4.25)(

u2
)
ADD

= f
(
v1i

)
ADD

= w2T ⊕ u1 + b2 (4.26)

where the subscript ”ADD” denotes additive ⊕-based connections. The mean

and variance for v1i MULT are:

mean(v1i) = E(v1i) = 0 (4.27a)

var(v1i) = E(v1i
2
) = Nσ2

wσ
2
x (4.27b)

In the case of v1i ADD with a1 set to an all-ones vector, the mean and the variance

are:

mean(v1i) = E(v1i) = 0 (4.28a)

36

var(v1i) = E(v1i
2
) = Nσ2

w +Nσ2
x + 2N

√
2

π
γ(x)σw (4.28b)

where the term
√

2
π
σw arises from the expectation of |w|’s, which have a p.d.f of

”Half-Folded Normal Distribution”; a special case of the so-call ”Folded Normal

Distribution” [64], where the mean of the random variables themselves is zero.

γ(x) is a term dependent upon input x and it comes from the expectation of the `1

norm of the input vector, i.e. γ(x) = E(||x||1). This requires further knowledge

about the statistics of the input. Nevertheless, it is strictly positive. If we assume

that the input vector is i.i.d with p.d.f from each point, (4.28b) becomes:

var(v1i) = E(v1i
2
) = Nσ2

w +Nσ2
x +N

4

π
σwσx (4.29)

However, this assumption can be too bold. Nevertheless, it shows that E(||x||1) =

O(σx) in the least.

As it can be seen from (4.27b) and (4.28b), the variance of the pre-activation

layer in the operator ⊕ based model is always greater than that of the input, i.e.

σ2
x, in contrast with the normal case, where it is controlled by the multiplicative

term σ2
w, for which an appropriate weight initialization scheme such as: Xavier

initialization [71] or He initialization [72] can help control the range of the pre-

activation in order to prevent vanishing-exploding back-propagated gradient [44].

Even in the case of very deep models, ReLU can lead to explosion in feedforward

with poor weight initialization conditions [72]. In both schemes, weights are

initialized so that var(v1i) in Xavier initialization and var(u1i) in He initialization

are set to unity w.r.t input variance, with the difference that He initialization

takes into account ReLU activation. The activations are as follows, for Xavier

and He initialization, respectively:

wlXavier ∼ U

[
−

√
6√

N l +N l+1
,

√
6√

N l +N l+1

]
(4.30)

wlHE ∼ U

[
− 2√

N l
,

2√
N l

]
(4.31)

where U denotes uniform distribution.

Nonetheless, in AddNets, pre-activations are not linearly dependent upon the

37

statistics of the weights, therefore, we cannot control the variance by merely

controlling the weights, as the term Nσ2
x still does not depend on the weights.

In order to overcome this, pre-activations v need to be explicitly normalized

element-wise, in which case, (4.28b) becomes:

var(v1i) = E(ai
2)
(
Nσ2

w +Nσ2
x + 2N

√
2

π
γ(x)σw

)
(4.32)

with appropriate choices of ai, we can control the variance such that it is in order

of that of normal case.

Note that the analysis is also valid for convolutional layers. The second reason is

directly related to backpropagation, which is explained in Sec. 4.3.3.

4.3.3 Backpropagation Pass

Studying the nature of backpropagated cost sensitivities is important so as to

determine whether gradient-based learning is feasible. Firstly, the partial deriva-

tives of the scalar operator ⊕s, which account for each input-weight connection

are:
∂x⊕s w
∂w

≡
∂
(
sgn(w)x+ sgn(x)w

)
∂w

= sgn(x) + 2xδ(w) (4.33a)

∂x⊕s w
∂x

≡
∂
(
sgn(w)x+ sgn(x)w

)
∂x

= sgn(w) + 2wδ(x) (4.33b)

where δ(.) is the Dirac-delta function (not to be confused with δ, the vector of

error sensitivity that is back propagated), which arises from the discontinuity of

signum function at zero. Since δ(.) is zero almost everywhere, it is not suited

to gradient calculation, therefore it can be omitted from (4.33a) and (4.33b), th

simplified partial derivatives are:

∂x⊕s w
∂w

≈ sgn(x) (4.34a)

∂x⊕s w
∂x

≈ sgn(w) (4.34b)

As in Sec 2.2.1, δl := ∂J
∂bl , is the sensitivity propagated to layer l from the upper

layer, with layer L being the top (output) layer, down to layer 2, which is the

first hidden layer. J is the cost function of input-label tuple (x, t), where t is the

38

true label associated with input x.

Since at the least the highest layer L is multiplicative, the cost sensitivities δ’s are

back-propagated through dot-product-based layers based on the recursive formula

(2.16) and calculating weights gradients of these layers follow (2.33), just as in

normal neural nets.

As for operator-⊕ based lower layers, The recursive formula (2.16) becomes then:

δl :=
∂J

∂bl
≡ ∂J

∂vl

= sgn(Wl+1)(δl+1 ◦ al+1) ◦ f ′(vl)
(4.35)

where Wl+1 is the weight matrix associated with layer l+1. ◦ denotes Hadamard

product, f ′(.) is the derivative of activation function. In the case of identity

activation, the last term in (4.35) is omitted. Note that the multiplication between

matrix sgn(W l+1) and vector δl+1 ◦ al+1 is ordinary matrix multiplication. The

derivation is carried out under the definitions of partial derivatives for operator

⊕s in (4.34b), i.e. omitting the resulting Dirac-delta term.

Based on (4.35) and the partial derivative definition in (4.33b), the Cost gradient

w.r.t to weight matrix Wl can be realized using calculus chain rule. Nevertheless,

al can have direct dependence upon the weights Wl in feedforwarding, and thus

ut should be taken into account when deriving the Cost gradient of the weights,

therefore the chain rule for the gradient is

∇WlJ = sgn(ul−1)(δl ◦ al)T + rep(∇a1J, col)T ◦
{
∂al

∂Wl

}
iij

(4.36)

where in (4.36) rep(., col) denotes repetition of the subject vector column wise,

∂al

∂Wl is a rank-3 tensor arising from deriving vector al w.r.t Wl,

{
∂al

∂Wl

}
iij

is the

rank-2 ’diagonal’ sub-tensor (matrix) with sub-indexing equal to iij, where i and

j are ∈ {1, 2, ..., N} and ∈ {1, 2, ...,M}, respectively, where N and M are the

dimensions of layer l−1 and layer l responses, respectively. The quantity ∇alJ is

the cost function sensitivity, which is a vector quantity also realized using calculus

chain rule as follows:

∇alJ = δl ◦ (Wl−1T sgn(ul−1) + sgn(Wl−1)
T
ul−1) (4.37)

The dependency between the weight matrix and the corresponding multiplicative

bias impacts the mathematical formulas of backpropagation. When al has no

39

direct relation with the weight matrix, (4.36) simplifies to:

∇WlJ = sgn(ul−1)(δl ◦ al)T (4.38)

However, al will still impact the learning process overall. In order to see the

importance of multiplicative bias, we can assume that all activations are identity

for the sake of the argument as it is a valid activation function in the case of

AddNet operator ⊕ based layers, furthermore, if the input is zero mean, any

pre-activation with identity activation will also have zero-mean. Initially, the

variance of δli can be found as follows:

var(δli) = E(δli
2
) = E

((∑
k

sgn(wik)δ
l+1
k al+1

k

)2)
= E

(∑
k

(sgn(wik))
2δl+1
k

2
al+1
k

2
)

=
∑
k

E(δl+1
k

2
)E(al+1

k

2
)

(4.39)

The analysis in (4.39) is drawn from [73] and [72]. We assume that the weights are

zero-mean i.i.d’s and so are the multiplicative biases. Therefore, no co-relation

is found between different multiplicative terms. Therefore, the variance is:

var(δli) = K lvar(δl+1)var(al+1) (4.40)

where K is the number of connections from layer l. We can see that the problem

arises from the fact that the variance of the signs of the weights is much larger

than that of the weights themselves. Without any multiplicative bias, δ will grow

exponentially by a factor of:

var(δlsub)

var(δlup)
∝

lup∏
l=lsub

K l (4.41)

where lup is the index of the highest additive layer and lsub is the index of the

subject layer (a lower layer). This will lead to an exploding gradient in the lower

layers.

40

4.3.4 Choices for Multiplicative Bias

There are plenty of options when it comes to selecting the multiplicative bias that

need to account for the constraints mentioned in Sec.4.3.2 and Sec.4.3.3

4.3.4.1 Choice 1: constant

In this case, multiplicative bias a is chosen to be a constant small enough that it

can it does not cause the loss to explode. Potential choices are

al =
1

N
(4.42a)

al =
1

H ×W ×D
(4.42b)

Another choice is:

al = σwl
init

(4.43)

Finally:
σwl

init√
N

(4.44a)

σwl
init√

H ×W ×D
(4.44b)

Where N is the dimension of the input layer (in case of dense connection), H

and W are the kernel width and height, respectively, and D is the kernel depth

in the case of convolutional layers. Thus, H ×W ×D is the size of the receptive

fields. σwl
init

is the standard deviation of the weights before training. Notice that

in this case al is fixed across a layer l. This can be too limiting for the ability of

the network to generalize.

4.3.4.2 Choice 2: Normalized `1 norm

In this case al is directly dependent upon the weights, and calculated as:

ali =
||wl

i||1
N

(4.45a)

41

alk =
||Wl

k||1
H ×W ×D

(4.45b)

This normalization choice is the same as the one adopted in [16], where it arises

as the least-square-solution of minimizing the Euclidean distance between the

weights and their binarization according to this equation:

almin = argmin(||wl
i − alsgn(wl)||22) (4.46)

where ||.||1 is the `1 norm of a vector. Although our operator is non-linear w.r.t

input, it is not possible to formulate an input-independent minimization formula.

Nevertheless, this choice was worth investigating. In this case, the multiplicative

bias vector will be al ∈ RN in the fully connected case and al ∈ RK in the

convolutional case, where k is the number of filters in the filter bank, i.e. each

feature map Vl
k(x, y) will be normalized by a scalar alk.

4.3.4.3 Choice 3: Standard Deviation

In this case, al is realized as follows:

ali = σ(wl
i) (4.47a)

alk = σ(Wl
k) (4.47b)

where σ is the standard deviation estimate of the weights. The dimensionality

of vector al is the same as in the case of normalized `1 norm scheme as in Sec.

4.3.4.2.

4.3.4.4 Choice 4: Trainable through Backpropagation

In this case, al is learned through backpropagation and is updated based on the

its corresponding gradient given in (4.37). Furthermore, since it is not directly

related to the weight matrix or tensor, this opens up for more flexibilty as to the

dimensionality of al in convolutional layers since it can range from a vector of size

K (as in the above-mentioned choices) to a rank-3 tensor Al of size X × Y ×K

42

where X and Y are the response spatial directions and K is the number of the

feature maps or its depth.

As for initializing al, reasonable initialization can be alinit = σ(wl
init).

It is important to note that ⊕-based AddNeurons have leverage over Binarized

Weight Networks (BWN) devised in [16] in that its response is differentiable

w.r.t its input weights as (4.33a) and (4.34a) show, whereas in the case BWN, the

derivative w.r.t weight input (without the term al in (4.45a) and (4.45b)) is Dirac-

delta, which is practically zero. Therefore, models with binarized weight that are

restricted to establishing direct mathematical relation between the normalization

term (multiplicative bias) and its associated weights, i.e. ∂al

∂Wl 6= 0. Therefore,

training networks with binarized weights with purely trainable multiplicative bias

terms will not be possible using standard backpropagation.

4.3.5 Sparse Operator ⊕

Since operator ⊕s relies on the sign of the weights as well as the weights them-

selves. One can eliminate the weights that are small enough while keeping their

corresponding sign. This can be mathematically expressed as follows:

(x⊕s w)sparse =

sgn(xw)
(
|x|+ |w|

)
|w| > T

sgn(xw)
(
|x|) ≡ sgn(w)x |w| ≤ T

(4.48)

where T is a threshold, consequently we can define the sparse vector operator ⊕
as follows:

(x⊕w)sparse =
∑
i

(xi ⊕ wi)sparse (4.49)

In order to select an appropriate thresholding scheme, T is related to the vectors

w in fully connected layers or the rank-3 tensors W in convolutional layers as

follows:

T (wl
i) = t.max(|wl

i|) (4.50a)

T (Wl
k) = t.max(|Wl

k|) (4.50b)

where t in (4.50a) and (4.50b) is a scalar ranging from 0 to 1. (4.50a) corresponds

to thresholding a weight column vector in fully connected layers, i.e. for weight

43

matrix W ∈ RM×N there will be different N thresholds for each N column vec-

tor. (4.50b) corresponds to thresholding rank-3 weight tensors in a filter bank

Wl ∈ RH×W×D×K such that there are K thresholds for each filter in the filter

bank.

It is worth mentioning that when t in (4.50a) and (4.50b) is set to 1. All the

weights magnitudes will be set zero, and only the sign information is kept. This,

however, reduces to a binarized weight scheme similar to models where weights

are binarized after training.

44

Chapter 5

Experimental Results and

Discussion

In this chapter, we report AddNet experimental results over MNIST and CIFAR-

10 datasets. In this regard, we investigated many scenarios under different mul-

tiplicative bias choices as well as different activation functions. In addition, we

studied different cases concerning the scope of applying operator ⊕ in the net-

work, i.e. full application in all layers, or partial application in some layers while

keeping others multiplicative (dot-product based). Throughout this chapter, we

refer to normal dot-product based neural nets as simply ConvNets, since all

networks studied in this chapter are convolutional. Furthermore, we call addNets

with multiplicative hidden layers hybrid AddNets and an addNet with all lay-

ers (except the output layer) based on operator ⊕ full AddNets

Taking into account the above-mentioned criteria, we carried out a comparative

study regarding loss convergence, achievable test accuracy, effect of sparsity and

resilience against salt-and-pepper noise. We implemented our AddNets using

Tensorflow 1.3.

45

5.1 Experiment 1: AddNet over MNIST

Dataset

In this experiment, the task is to perform classification over MNIST dataset.

MNIST dataset consists of 0-9 digit images with a size of 28 × 28 Grayscale

images. For more details about MNIST dataset, see Sec.2.4.1. The archeticture

used in this section is a direct adaptation of Tensorflow example MNIST model.

The neural net has two convolutional layers, two max-pooling layers, one dense

layer and a weighted layer with 10-way softmax applied over the output neurons.

As for the activation function used, we investigated different choices for ReLU,

LeakyRelu as well as identity activations. Convolution used in the convolutional

layers is of type ’same’, which yields a response of the same size as that of the

input. For full architectural details, see Table. 5.1.

Table 5.1: MNIST experiment: neural net architecture

Layer Specifications Response size

Conv layer 1 Filter bank: 32 5× 5 filters 28× 28× 32
Max-pool layer 1 2× 2 max pooling 14× 14× 32

Conv layer 2 Filter bank: 64 5× 5× 32 filters 14× 14× 64
Max-pool layer 2 2× 2 max pooling 7× 7× 64

Fully Connected layer Input size: 7× 7× 64 512
Softmax layer Input size: 512 10

When considering the original ConvNet: a CNN with conventional dot-product

based connections, the numbers of element-wise multiply operations are given in

Fig. 5.2. Notice that bias operations are neglected. The number of total (+,×)

operations needed to realize dot products is roughly twice that of multiply, ne-

glecting adding bias.

The variants of Model 1 concern the following factors: the type of operation

applied in each layer (either dot product or operator ⊕), the activation functions

and the choice for multiplicative bias.

46

Table 5.2: MNIST experiment: number of elements-wise multiplication opera-
tions

Layer Number of element-wise multiplication operations

Conv layer 1 574, 592
Conv layer 2 8, 388, 608

Fully connected layer 1, 605, 632
Softmax layer 5, 120

Total 10, 873, 952

In order to constrain the choices, the same batch size is used throughout experi-

mentation, that is 64 samples per batch. The cost function used is cross-entropy

with softmax logits. The optimizer used was Momentum optimizer, with expo-

nentially decaying weight update factor with initial rate = 0.01 and a decaying

factor = 0.95. The momentum rate was 0.9. The number of training epochs was

15. Dropout of rate 50% was applied during training.

5.1.1 Case 0: Ordinary ConvNet

This is the original neural net with all of its input-weight connections are dot-

product based, i.e. multiplicative. According to Tensorflow website, the test

classification accuracy of this model is 99.18%, which equals the accuracy that

we were able to obtain. Furthermore, `2 regularization term for the fully con-

nected weights and biases is added to the loss is added to the total loss. The

regularization factor is 5× 10−4.

In inference (testing) phase, we applied sparsity over the convolutional weights

using the following criterion:

S(w;T) =

0 |w| ≤ T

w otherwise
(5.1)

where T is the normalized sparsity level as introduced in (4.50a) and(4.50b).

Applying sparsity, however, is different from the scheme of ⊕sparse defined in

(4.49). However, it can be indicative as to how sparsity-tolerant the network is.

The results are given in Table 5.3.

47

Table 5.3: MNIST experiment: ConvNet classification error for the normal case
against different normalized levels of sparsity. Classification error is in percent.
Suppressed weights correspond to the percentage of the weights below the sparsity
level.

Sparsity level 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Classification error 0.82 0.81 0.84 1.00 2.01 5.20 25.28 54.15 71.86

Conv 1 suppressed
weights %

0.0 13.9 26.8 43.6 56.5 68.6 78.6 84.6 89.8

Conv 2 suppressed
weights %

0.0 20.7 40.3 57.6 71.5 82.6 90.3 95.4 98.4

As it can be seen from Table 5.3, the best classification accuracy occurs at

a sparsity level = 0.1. Since weight suppression is a deterministic process, this

means that some weights contribute negatively to the overall classification pro-

cess. Furthermore, more weights get suppressed in the second convolutional layers

(20.7%) than in the first convolutional layer (13.9%), which means that in the

second layer, there are fewer weights with remarkably larger values.

As for different choices for ReLU function, we investigated using LeakyRelu de-

fined as LeakyReLU(x; ε) = max(x
ε
, x), where ε is the leakage factor. LeakyRelu

is only applied in realising the convolutional responses. The leakage factors inves-

tigated are 3 and 5, with test classification errors w.r.t different levels of sparsity

given in Table 5.4. As it can be seen, LeakyRelu’s persistently give higher clas-

sification accuracy that normal ReLU activations.

Table 5.4: MNIST experiment: ConvNet classification error in percent with dif-
ferent sparsity choices

Activation Type
Sparsity levels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Relu 0.82 0.81 0.84 1.00 2.01 5.20 25.28 54.15 71.86
LeakyRelu (ε = 5) 0.78 0.74 0.74 0.95 1.32 2.01 6.14 21.89 46.32
LeakyRelu (ε = 3) 0.78 0.76 0.87 1.05 1.63 3.08 8.89 31.13 41.82

48

5.1.2 Case 1: AddNet with Constant Multiplicative Bias

In this case, we replace the dot-product based two convolutional layers with

operator ⊕-based connections, while keeping the fully connected layer and the

output layer multiplicative (dot-produce based). According to Table 5.2, this

utilizes roughly 90% of the add-multiply operations in this model.

As for the choices of the multiplicative bias, we investigated the choices mentioned

in 4.3.4.1. The results are in Table 5.5. Note that these are the best results

obtained across different trials. The convergence of the cost function some cases

is given in Fig. 5.1. Note that the loss presented in 5.1 corresponds to the same

trials as those reported in Table 5.5.

Table 5.5: MNIST experiment: AddNet classification error in percent for different
choices for multiplicative bias al

Choice al values Cassification error

al = σwl
init

a1 = a2 = 0.1
0.87% (ReLU)∗

1.18% (Identity)

al = 1
H×W×D

a1 = 1
5×5 4.22% (ReLU)†

a2 = 1
5×5×32

al =
σ
wl

init√
H×W×D

a1 = 0.1√
5×5 8.87% (ReLU)�

a2 = 0.1√
5×5×32 3.11% (Identity)

It is important to note that when al =
σ
wl

init√
H×W×D (last row in Table 5.5) the

cost function does not always converge. In fact, with ReLU activation, in more

than 50% of the cases loss convergence does not occur, at least within 15 epochs.

5.1.3 Case 2: AddNet with Normalized `1 Norm Multi-

plicative Bias

The choice in this case was to set al as in Sec. 4.3.4.2. In this regard, we studied

a hybrid AddNet a full AddNet. Test classification results are in Table 5.7. As

49

Table 5.6: MNIST experiment: classification accuracy results for hybrid AddNet
with constant multiplicative bias (case ∗ in Table 5.5) w.r.t different sparsity
levels. Affected weights are those whose magnitudes are suppressed and only
their signs are kept.

Sparsity level 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Classification
error %

0.87 0.87 0.90 0.92 0.89 0.90 0.95 0.93 0.95 0.97 1.20

Conv 1 affected
weights %

0 21.89 37.0 49.3 62.3 73.3 82.1 87.0 91.0 94.0 100.0

Conv 2 affected
weights %

0 18.1 35.1 50.7 64.3 75.6 84.4 91.1 95.9 98.8 100.0

0 20 40 60 80 100 120

0

0.5

1

1.5

2

Figure 5.1: MNIST experiment: cost convergence for cases with constant multi-
plicative bias. Refer to Table 5.5 with the corresponding symbol for full descrip-
tion of the case.

50

for cost function convergence, its rate was almost similar for different activation

choices and there was no noticeable difference.

Table 5.7: MNIST experiment: AddNet classification error in percent with `1
norm-based multiplicative bias with different activation choices.

Activation type Classification error %

ReLU 1.17
LeakyReLU (ε = 5) 0.89
LeakyReLU (ε = 3) 0.91

Identity 1.17

Table 5.8: MNIST experiment: AddNet classification error in percent with `1-
based multiplicative bias for different sparsity levels

Activation type
sparsity levels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LeakyReLU (ε = 5) 0.89 0.90 0.92 0.86 0.90 1.06 1.16 1.24 1.41 1.55 1.57

LeakyReLU (ε = 3) 0.91 0.93 0.90 0.98 0.96 0.97 1.03 1.02 1.07 1.17 1.58

Regarding the case of full AddNet, we tried two networks with two different

activation choices: ReLU and Identity. The test classification errors over MNIST

were 1.08% and 1.13%, respectively.

5.1.4 Case 3: AddNet with Standard Deviation Based

Multiplicative Bias

The choice for al in this case is the standard deviation estimate of the weights

as in Sec. 4.3.4.3. In this regard, we studied using ReLU activation and Identity

activation in a hybrid model. The test classification errors were 1.03% and 1.06%,

respectively. Table 5.9 shows the results w.r.t different sparsity levels.

51

Table 5.9: MNIST experiment: AddNet classification error in percent with stan-
dard deviation-based multiplicative bias for different sparsity levels

activation type
sparsity levels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ReLU 1.03 1.02 1.05 1.05 1.04 1.02 1.13 1.10 1.18 1.22 1.35

Identity 1.06 1.06 1.09 1.11 1.12 1.11 1.18 1.18 1.13 1.20 1.31

5.1.5 Case 4: AddNet with Trainable Multiplicative Bias

The choice here is to set al as a trainable variable in the computational graph

with initialization alkinit = σwinit. We investigated two hybrid models with ReLU

and Identity activation. The results are in Table 5.10.

Table 5.10: MNIST Experiment: AddNet classification error in percent with a
trainable multiplicative bias for different sparsity levels

activation type
Sparsity levels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ReLU 0.96 0.97 1.04 1.02 1.09 1.09 1.05 1.15 1.25 1.31 1.47

Identity 1.44 1.41 1.47 1.39 1.47 1.67 1.70 1.66 1.77 1.83 2.30

5.1.6 Case 5: Binarized Weights Network

We also compared our AddNet with BWN [16], where the weights are binarized

during training and in order to use standard back propagation, al is introduced

as ||w1||1
H×W×D . Therefore, we compare our AddNet with the same `1 norm choice for

multiplicative bias. In order to insure consistency , we implemented hybrid BWN

(the fully connected layer is not binarized) with different activation choices. The

comparative results are given in Table 5.11.

As it can be seen from Table 5.11, hybrid AddNet outperforms BWN for

all activation choices. Identity is not a valid option for BWNs since they are

linear input-weight regimes. Although BWN beats AddNet when weights are

52

Table 5.11: MNIST Experiment: comparison of classification error between BWN
and hybrid AddNet with different activation choices

Activation type
network type

Hybrid BWN
Hybrid AddNet

No sparsity Full sparsity

ReLU 1.21% 1.17% 4.09%
LeakyReLU(ε = 5) 1.25% 0.89% 1.57%
LeakyReLU(ε = 3) 1.23% 0.91% 1.58%

Identity —– 1.17% 1.95%

fully sparse, AddNet can achieve better results with partially suppressed weights

as shown previously.

From a hardware resource point of view, one major advantage of BWN is that it

requires less memory storage. Likewise, in AddNets, weight suppression can lead

to memory saving. Nevertheless, AddNet has flexibility between performance

requirements and memory resources constraints. In this regard, we can devise a

balanced performance-memory score metric for a neural net as follows:

scoreNN :=
1

error × size
(5.2)

where size corresponds to the storage size of the weights and error is the inference

classification error. For notational clarity, let A denote AddNet and B denote

BWN. We can define an optimization ratio between AddNet and BWN as follows:

ratioA/B :=
scoreA
scoreB

=
errorB × sizeB
errorA × sizeA

(5.3)

Looking at the optimization ratio defined in (5.3), we can see that if ratio > 1,

AddNet has an overall better performance-memory score than BWN, and vice

versa. As for the network size, the suppressed weights will contribute 1-bit each

(assuming binary sign). The fully represented weights, however, will contribute

different sizes based on their precision. In any case, we considered 16-bit and

32-bit real-valued unsuppressed weights precision under the assumption that ac-

curacy does not decrease when using 16-bit. We compared the best results for

each multiplicative bias scheme in AddNets at different sparsity (suppression)

levels against BWN, based on the ratio defined in (5.3). The results are in Fig.

5.2 and Fig. 5.3.

53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sparsity Level

0

0.2

0.4

0.6

0.8

1

1.2

O
p
ti
m
iz
a
ti
o
n
R
a
ti
o

Case 1
Case 2
Case 3
Case 4

Figure 5.2: MNIST experiment: performance-memory score of AddNets w.r.t
BWN at different sparsity levels. Cases 1-4 correspond to: constant, `1-norm
based, standard deviation and trainable multiplicative bias. The real-valued (un-
suppressed) weights are 32-bit long.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sparsity Level

0

0.2

0.4

0.6

0.8

1

1.2

O
p
ti
m
iz
a
ti
o
n
R
a
ti
o

Case 1
Case 2
Case 3
Case 4

Figure 5.3: MNIST experiment: performance-memory score of AddNets w.r.t
BWN at different sparsity levels. Cases 1-4 correspond to: constant, `1-norm
based, standard deviation and trainable multiplicative bias. The real-valued (un-
suppressed) weights are 16-bit long.

54

As it can be seen from Fig. 5.2 and Fig. 5.2, full suppression of the weights

yields an optimization ratio equals to 1. Furthermore, with 16-bit representation,

and without loss in precision, we could achieve a higher optimization ratio of 1.05

(case 1, sparsity level=0.9). Note that both AddNet and BWN compared are

hybrid but the argument holds for other cases.

5.1.7 Performance with Salt-and-Pepper Noise

We also investigated the effect of corrupting the test data with salt-and-pepper

noise [27] in order to study the ability of AddNets to generalize in the present of

Impulsive data. In this regard, we trained the normal ConvNet and an AddNet

with noiseless training data. Then, in the inference phase, we corrupted the

test data at various levels and studied the deterioration in the test classification

performance.

In the case of Salt-and-Pepper noise, pixel intensities are either kept intact, set

to zero or to one randomly. We define SAP level (ρ) as the probability of SAP

noise to take place. Therefore, we can write the noising process mathematically

as follows:

ISAP (x, y) =

I(x, y) prob = 1− ρ

1 prob = ρb

0 prob = ρ(1− b)

(5.4)

where in (5.4) I is the original pixel intensity value, ρ is the SAP level, and b is

the bias towards setting pixels to 1 (white) or 0 (black). Since MNIST images

are mostly black, we set the bias to 0.7 in order to add more ”salt” rather than

”pepper”. Example MNIST samples w.r.t different sap levels are given in Table

5.12.

For this comparative analysis, we compared the normal ConvNet with two hybrid

AddNets with trainable multiplicative bias: the former has ReLU activation while

the latter has identity activation. The test classification results are given in Table

5.13.

55

Table 5.12: visualization of example MNIST images with different SAP levels

SAP
Level ρ

Example photos

0.05

0.15

0.3

0.7

As it can be seen from Table 5.13, although SAP persistently deteriorates

the performance of any model, at SAP level ρ = 0.15, the hybrid Operator

⊕ based model with ReLU activation becomes more resilient against salt-and-

pepper corruption than the normal dot-based model. The identity-activation

based model, however, was the least resilient against salt-and-pepper corruption.

Table 5.13: MNIST Experiment: classification error in percent over SAP-
corrupted MNIST dataset at different levels

Model type SAP levels
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7

ConvNet 0.82 1.02 1.54 2.93 5.02 8.93 14.51 22.73 32.52 51.04 66.50 77.47

hybrid AddNet
(ReLU act.)

0.96 1.29 1.57 2.26 3.66 5.29 8.07 11.89 17.51 32.36 51.12 67.53

hybrid AddNet
(identity act.)

1.44 3.05 4.81 8.11 12.67 18.04 24.85 31.78 39.24 51.88 65.92 76.16

56

5.2 Experiment 2: AddNet over CIFAR-10

Dataset

In this eperiment, the task is to perform classification over CIFAR-10 dataset,

which is far more challenging than MNIST dataset because of the larger variety

in patterns in the data that are folded under one class. Therefore, ConvNets

should be able to extract more abstract higher-level features. Although models

with high classification performance rates comprise too many layers, we selected

a rather small model in order to do intensive analysis and compare different vari-

ants of AddNeuron with normal convents.

The archeticture used is also an adaptation of Tensorflow example CIFAR-10

model, which consists of two convolutional layers, two max-pooling layers, two

fully connected layers and a softmax output layer. In this mode, the input layer

takes 28 × 28 windows of the original 32 × 32 RGB images. The description of

the architecture is given in Table 5.14.

It is important to mention that in the original model, a ”Local Response Nor-

malization” [2] Layer is induced after each convolutional layer so as to perform

lateral normalization of the response of the convolutional layers. However, we

opted to eliminate the local response normalization layer since early investigation

proved it unfit for our model and multiplicative bias was applied instead.

Table 5.14: CIFAR Experiment: neural net architecture

Layer Specifications Response size

Conv layer 1 filter bank: 64 5× 5× 3 filters 28× 28× 64
Max-pool layer 1 2× 2 max pooling 14× 14× 64

Conv layer 2 filter bank: 64 5× 5× 64 filters 14× 14× 64
Max-pool layer 2 2× 2 max pooling 7× 7× 64

Fully Connected layer 1 Input size: 7× 7× 64 384
Fully Connected layer 2 Input size: 384 192

Softmax layer Input size: 192 10

The model was trained using batches of size 128. The update rule used is

RMSProp [74] with initial learning rate = 10−4, decay factor = 0.9.

57

Table 5.15: CIFAR Experiment: number of elements-wise multiplication opera-
tions

Layer Number of element-wise multiplication operations

Conv layer 1 3, 447, 552
Conv layer 2 16, 777, 216

Fully connected layer 1 1, 204, 224
Fully connected layer2 73, 728

Softmax layer 1, 920

Total 21, 504, 620

We followed the same data augmentation scheme used in training as the one

in the original model, which goes as follows: images are randomly cropped with

size of 28×28 out of the original 32×32 RGB images. Furthermore, the cropped

images are randomly flipped horizontally. Afterwards, brightness and contrast

are randomly perturbed. This help augment the data during training so that the

model can learn to generalize better. The cost function used is cross-entropy with

10-way softmax.

As it can be seen from Table 5.15, one feedforward pass requires roughly 20 million

add-multiply operations, which is twice as computationally demanding as MNIST

Model 1. This is because the response of the first convolutional layer comprises

64 feature maps, as opposed to 32 feature maps in MNIST case. Therefore, the

computational burden for the 2nd filter banks will be twice. In any case, a hybrid

model with Operator ⊕ based convolutional layers will optimize roughly 90%

of the multiplication operations overall. All activations used in this Model are

ReLU.

5.2.1 Case 0: Ordinary ConvNet

In this case, the original model was investigated while keeping local response

normalization. The classification accuracy was 86.0% after almost 60k batches.

The cross entropy loss then is around 0.5 (excluding the regularization loss).

Without local response normalization, the cost function suffered from divergence.

The loss convergence and test accuracy are shown in Fig.5.4.

58

10 20 30 40 50 60 70 80 90 100
iteration (in thousands)

0.4

0.5

0.6

0.7

0.8

0.9

1

cr
os
s
en
tr
op

y

20

30

40

50

60

70

80

90

cl
as
si
fi
ca
ti
on

ac
cu
ra
cy

(%
)

Figure 5.4: CIFAR Experiment: ConvNet loss convergence (solid line) and testing
accuracy (dashed line) w.r.t batches

5.2.2 Case 1: AddNet with Constant Multiplicative Bias

Contrary to MNIST experiment, our early investigation showed that using a

fixed multiplicative bias did not yield good results. In fact, the accuracy that

we were able to achieve did not exceed 70%. Therefore, we focused on the other

normalization schemes.

5.2.3 Case 2: AddNet with Normalized `1 Norm Multi-

plicative Bias

In this case we used `1-based normalization as in Sec. 4.3.4.2. We chose to

replace operations in the convolutional layers only, i.e. devising a hybrid model.

The highest classification rate was 80.9% which occurred at step 210K as it can

be seen from Fig. 5.5. It is worth noting that the model could not do better at

classification despite the fact that the cost decrease up to 0.3 after 300k steps.

59

Loss in 5.5 is smoothed through moving average.

50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

20

30

40

50

60

70

80

Figure 5.5: CIFAR experiment: AddNet loss convergence (solid line) and testing
accuracy (dashed line) w.r.t batches (`1-norm based multiplicative bias)

5.2.4 Case 3: AddNet with Standard Deviation Based

Multiplicative Bias

In this case we used the standard deviation estimate of the weights as in Sec.

4.3.4.3. We investigated a hybrid model as in the previous case. The results are

in Fig. 5.6. The highest classification accuracy was 80.1%, which occurred after

245k iterations. This means that the model generalizes a little worse than the

case with `1 norm based multiplicative bias.

A comparison between the loss convergence and the accuracy of the two models

is given in Fig. 5.7, where it shows that `1 norm converges faster.

60

50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

20

30

40

50

60

70

80

Figure 5.6: CIFAR experiment: AddNet loss convergence (solid line) and testing
accuracy (dashed line) w.r.t batches (standard deviation based bias)

5.2.5 Case 4: AddNet with Trainable Multiplicative Bias

In this case, we set Al in the convolutional layers as a vector trainable through

backpropagation as discussed in Sec. 4.3.4.4. Therefore, Al ≡ al ∈ RKl , i.e.

al’s have the same dimensionality as in `1 norm and standard deviation estimate

cases. the results are given in 5.8.

The best accuracy rate was 81.0% which means a trainable al performs as well

as `1 norm based al. Convergence and classification accuracy are shown in Table

5.8. Nevertheless, in this case the model reach 81% accuracy faster than in the

previous cases (at 185k iterations). Table 5.9 draws a comparison between the

convergence of trainable al case and `1 norm based case.

61

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 5.7: CIFAR experiment: comparison between `1 case convergence (�) and
standard deviation case convergence (∗). The two vertical lines correspond to the
points at which the highest accuracy occurred for both cases

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

20

30

40

50

60

70

80

Figure 5.8: Loss convergence (solid line) and testing accuracy (dashed line) w.r.t
batches

62

50 100 150 200 250 300 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 5.9: CIFAR experiment: comparison between trainable al case conver-
gence (∗) and `1 norm based al case convergence (�). The two vertical lines
correspond to the points at which the highest accuracy occurred for both cases

50 100 150 200 250 300 350
iteration (in thousands)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

cr
os
s
en
tr
op

y

Figure 5.10: CIFAR experiment: comparison between the convergence of Con-
vNet (�) and AddNet (∗) case with `1 based multiplicative bias. The vertical
lines correspond to the points in training at which the highest accuracy occurs
for both cases.

63

5.2.6 Performance with Salt-and-Pepper Noise

In this part, we report our results regarding the performance of ConvNet and

AddNet under salt-and-pepper data corruption, as we did in our MNIST ex-

periment. We compared the best performing AddNet, which was AddNet with

trainable multiplicative bias with ConvNet. Salt-and-pepper (SAP) level (ρ) is

the probability of inducing SAP noise on a pixel as demonstrated in (5.4). The

difference between noise in this case and the MNIST case, is that noise is unbi-

ased (b is set to 0.5 in (5.4)). Furthermore, since CIFAR images have 3 channels,

there are total of 8 possible outcomes of ”salt and pepper”. Sample images at

different SAP levels can be found in Appendix B.

Our investigation showed that both models ConvNet and AddNet are very sen-

sitive to SAP noise. Because of that, we used smaller SAP levels ρ. The per-

formance of AddNet and ConvNet over different SAP levels is given in Table

5.16.

Table 5.16: CIFAR experiment: test classification error in percent for three
CIFAR-10 models with SAP-corrupted testing data over different levels

Model type SAP levels ρ
0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

ConvNet 86.0 74.3 60.5 49.2 40.0 31.9 27.4 24.2 24.2

AddNet 81.0 74.8 66.4 58.4 50.7 43.5 37.8 34.0 29.8

As it can been seen from Table 5.16, with only a SAP level ρ = 0.01, the

performance of ConvNet deteriorates by almost 12%. Despite that ConvNet

outperforms AddNet over noiseless data by 5%, AddNet outperforms ConvNet

over all SAP-corrupt data even at a level as small as ρ = 0.01.

64

Chapter 6

Conclusion

In this work, we introduce AddNet: a convolutional neural network based on

an `1-norm inducing operator, which replaces the dot-product-based operations

such as: matrix multiplication and tensor convolution with multiplication-free

sign-preserving additive operations. The AddNet structure needs a multiplica-

tive bias in each neuron. Different choices for multiplicative bias are presented.

Our experiments over MNIST dataset show that AddNet performs as well as an

ordinary convoultional neural network on MNIST dataset. Our comparison be-

tween AddNet and Binarized Weight Network (BWN) shows that addNet achieves

better results than BWN in general.

In addition, partial and full weight binarization in AddNets is possible, although

it decreases AddNet performance to some extent. Nevertheless, it is possible to

find a middle ground between performance and memory constraints with partial

binarization. In fact, AddNet could beat the accuracy of BWN over MNIST

dataset with 98.5% of AddNet convolutional weights binarized. The loss in ac-

curacy may be mitigated by fine-tuning, which is worth investigating in future

work.

Our experiments over CIFAR-10 dataset shows that AddNet with fully train-

able multiplicative bias converges the fastest among the other choices, which are

fixed constant, `1-based or standard deviation-based choices. The convergence of

AddNet was slower than that of ordinary CNNs and the classification accuracy

65

was −5% lower than that of the corresponding CNN over CIFAR-10 dataset.

Nonetheless, with salt-and-pepper corrupt testing data, AddNet better results

than CNN. As a matter of fact, with a salt-and-pepper noise level as small as

0.01, AddNet was able to achieve better accuracy at a rate 74.8% compared to

74.3% of the ordinary CNN. This shows that AddNet possesses `1-norm proper-

ties of resilience against outliers. In the context of deep learning, this mean that

AddNets can potentially be more resilient against adversarial attacks [75, 76].

66

Bibliography

[1] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and

applications in vision,” in Circuits and Systems (ISCAS), Proceedings of

2010 IEEE International Symposium on, pp. 253–256, IEEE, 2010.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, pp. 1097–1105, 2012.

[3] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representa-

tion by joint identification-verification,” in Advances in neural information

processing systems, pp. 1988–1996, 2014.

[4] B. Graham, “Fractional max-pooling,” arXiv preprint arXiv:1412.6071,

2014.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.

Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-

propagation network,” in Advances in neural information processing systems,

pp. 396–404, 1990.

[7] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on cifar-

10,” Unpublished manuscript, vol. 40, 2010.

[8] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for

67

acoustic modeling in speech recognition: The shared views of four research

groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[9] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-

current neural networks,” in Acoustics, speech and signal processing (icassp),

2013 ieee international conference on, pp. 6645–6649, IEEE, 2013.

[10] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme

recognition using time-delay neural networks,” IEEE transactions on acous-

tics, speech, and signal processing, vol. 37, no. 3, pp. 328–339, 1989.

[11] R. Collobert and J. Weston, “A unified architecture for natural language

processing: Deep neural networks with multitask learning,” in Proceedings

of the 25th international conference on Machine learning, pp. 160–167, ACM,

2008.

[12] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. M. Schwartz, and J. Makhoul,

“Fast and robust neural network joint models for statistical machine trans-

lation.,” in ACL (1), pp. 1370–1380, 2014.

[13] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Advances in neural information processing sys-

tems, pp. 3104–3112, 2014.

[14] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-

efficient convnets through approximate computing,” in Applications of Com-

puter Vision (WACV), 2016 IEEE Winter Conference on, pp. 1–8, IEEE,

2016.

[15] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn: energy-

efficient neuromorphic systems using approximate computing,” in Proceed-

ings of the 2014 international symposium on Low power electronics and de-

sign, pp. 27–32, ACM, 2014.

[16] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet

classification using binary convolutional neural networks,” in European Con-

ference on Computer Vision, pp. 525–542, Springer, 2016.

68

[17] M. Kim and P. Smaragdis, “Bitwise neural networks,” arXiv preprint

arXiv:1601.06071, 2016.

[18] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep

neural networks with binary weights during propagations,” in Advances in

Neural Information Processing Systems, pp. 3123–3131, 2015.

[19] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of

the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[20] M. Elad and M. Aharon, “Image denoising via sparse and redundant repre-

sentations over learned dictionaries,” IEEE Transactions on Image process-

ing, vol. 15, no. 12, pp. 3736–3745, 2006.

[21] Y. Pang, X. Li, and Y. Yuan, “Robust tensor analysis with l1-norm,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 20, no. 2,

pp. 172–178, 2010.

[22] N. Kwak, “Principal component analysis based on l1-norm maximization,”

IEEE transactions on pattern analysis and machine intelligence, vol. 30,

no. 9, pp. 1672–1680, 2008.

[23] X. Li, Y. Pang, and Y. Yuan, “L1-norm-based 2dpca,” IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, no. 4,

pp. 1170–1175, 2010.

[24] Q. Ke and T. Kanade, “Robust l/sub 1/norm factorization in the presence of

outliers and missing data by alternative convex programming,” in Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, vol. 1, pp. 739–746, IEEE, 2005.

[25] H. Tuna, I. Onaran, and A. E. Cetin, “Image description using a multiplier-

less operator,” IEEE Signal Processing Letters, vol. 16, no. 9, pp. 751–753,

2009.

69

[26] A. Suhre, F. Keskin, T. Ersahin, R. Cetin-Atalay, R. Ansari, and A. E.

Cetin, “A multiplication-free framework for signal processing and applica-

tions in biomedical image analysis,” in Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2013 IEEE International Conference on, pp. 1123–1127,

IEEE, 2013.

[27] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal

by median-type noise detectors and detail-preserving regularization,” IEEE

Transactions on image processing, vol. 14, no. 10, pp. 1479–1485, 2005.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale

machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.

[29] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,

N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and

speed improvements,” arXiv preprint arXiv:1211.5590, 2012.

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast

feature embedding,” in Proceedings of the 22nd ACM international confer-

ence on Multimedia, pp. 675–678, ACM, 2014.

[31] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall

PTR, 1994.

[32] K.-I. Funahashi, “On the approximate realization of continuous mappings

by neural networks,” Neural networks, vol. 2, no. 3, pp. 183–192, 1989.

[33] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: per-

ceptron, madaline, and backpropagation,” Proceedings of the IEEE, vol. 78,

no. 9, pp. 1415–1442, 1990.

[34] M. Minsky and S. Papert, “Perceptrons.,” 1969.

70

[35] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Mathematics of Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp. 303–

314, 1989.

[36] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” tech. rep., California Univ San Diego

La Jolla Inst for Cognitive Science, 1985.

[37] R. J. Williams and D. Zipser, “A learning algorithm for continually running

fully recurrent neural networks,” Neural computation, vol. 1, no. 2, pp. 270–

280, 1989.

[38] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic

approximation approach to stochastic programming,” SIAM Journal on op-

timization, vol. 19, no. 4, pp. 1574–1609, 2009.

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[40] Y. LeCun et al., “Generalization and network design strategies,” Connec-

tionism in perspective, pp. 143–155, 1989.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[42] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving

for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806,

2014.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-

tations by back-propagating errors,” Nature, vol. 323, pp. 533 EP –, Oct

1986.

[44] S. Hochreiter, “The vanishing gradient problem during learning recurrent

neural nets and problem solutions,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

71

[45] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise

training of deep networks,” in Advances in neural information processing

systems, pp. 153–160, 2007.

[46] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support

vector machines,” IEEE Intelligent Systems and their applications, vol. 13,

no. 4, pp. 18–28, 1998.

[47] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., “Best practices for convo-

lutional neural networks applied to visual document analysis.,” in ICDAR,

vol. 3, pp. 958–962, 2003.

[48] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten digit database,”

AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2,

2010.

[49] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for

deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[50] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep

big simple neural nets excel on handwritten digit recognition,” 2010.

[51] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of

neural networks using dropconnect,” in International Conference on Machine

Learning, pp. 1058–1066, 2013.

[52] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate

deep network learning by exponential linear units (elus),” arXiv preprint

arXiv:1511.07289, 2015.

[53] D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint

arXiv:1511.06422, 2015.

[54] V. Sze, Y.-H. Chen, J. Einer, A. Suleiman, and Z. Zhang, “Hardware for ma-

chine learning: challenges and opportunities,” in Custom Integrated Circuits

Conference (CICC), 2017 IEEE, pp. 1–8, IEEE, 2017.

72

[55] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,

A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, et al.,

“Convolutional networks for fast, energy-efficient neuromorphic computing,”

Proceedings of the National Academy of Sciences, p. 201604850, 2016.

[56] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S.

Chung, “Accelerating deep convolutional neural networks using specialized

hardware,” Microsoft Research Whitepaper, vol. 2, no. 11, 2015.

[57] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ultra-low

power convolutional neural network accelerator based on binary weights,”

in VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on,

pp. 236–241, IEEE, 2016.

[58] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks

with few multiplications,” arXiv preprint arXiv:1510.03009, 2015.

[59] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint

arXiv:1605.04711, 2016.

[60] M. T. Arslan, A. Bozkurt, R. A. Sevimli, C. E. Akbas, and A. E. Cetin,

“Approximate computation of dft without performing any multiplications:

Application to radar signal processing,” in Signal Processing and Commu-

nications Applications Conference (SIU), 2014 22nd, pp. 850–853, IEEE,

2014.

[61] Y. H. Habiboğlu, O. Günay, and A. E. Çetin, “Covariance matrix-based fire

and flame detection method in video,” Machine Vision and Applications,

pp. 1–11, 2012.

[62] A. Afrasiyabi, B. Nasir, O. Yildiz, F. T. Y. Vural, and A. E. Cetin, “An

energy efficient additive neural network,” in Signal Processing and Commu-

nications Applications Conference (SIU), 2017 25th, pp. 1–4, IEEE, 2017.

[63] E. Kreyszig, Introductory functional analysis with applications, vol. 1. wiley

New York, 1989.

73

[64] F. Leone, L. Nelson, and R. Nottingham, “The folded normal distribution,”

Technometrics, vol. 3, no. 4, pp. 543–550, 1961.

[65] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep

convolutional networks,” in International Conference on Machine Learning,

pp. 2849–2858, 2016.

[66] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning

with limited numerical precision,” in Proceedings of the 32nd International

Conference on Machine Learning (ICML-15), pp. 1737–1746, 2015.

[67] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks

with low precision multiplications,” arXiv preprint arXiv:1412.7024, 2014.

[68] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning, pp. 448–456, 2015.

[69] O. Arikan, A. E. Cetin, and E. Erzin, “Adaptive filtering for non-gaussian

stable processes,” IEEE Signal Processing Letters, vol. 1, pp. 163–165, Nov

1994.

[70] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep resid-

ual networks,” in European Conference on Computer Vision, pp. 630–645,

Springer, 2016.

[71] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, pp. 249–256, 2010.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-

ing human-level performance on imagenet classification,” in Proceedings of

the IEEE international conference on computer vision, pp. 1026–1034, 2015.

[73] B. Xu, R. Huang, and M. Li, “Revise saturated activation functions,” arXiv

preprint arXiv:1602.05980, 2016.

74

[74] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by

a running average of its recent magnitude,” COURSERA: Neural networks

for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[75] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep neural

networks,” arXiv preprint arXiv:1710.08864, 2017.

[76] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint

arXiv:1312.6199, 2013.

75

Appendix A

MNIST Samples with

Salt-and-Pepper Noise

SAP Level ρ Example images

0.0

0.05

0.1

0.15

0.2

76

0.25

0.3

0.35

0.4

0.5

0.6

0.7

77

Appendix B

CIFAR-10 Samples with

Salt-and-Pepper Noise

SAP level ρ example images

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

78

