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Abstract. The main aim of the present article is to study generalized
quasi-Yamabe gradient solitons on warped product manifolds. First, we
obtain some necessary and sufficient conditions for the existence of gen-
eralized quasi-Yamabe gradient solitons equipped on a warped product
structure. Then we study some important applications in the Lorentzian
and the neutral settings for the particular class, called as gradient Yamabe
soliton. More explicitly, we prove the existence of the non-trivial gradient
Yamabe soliton on generalized Robertson–Walker spacetimes, standard
static spacetimes, Walker manifolds and pp-wave spacetimes.
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1. Introduction

In recent years, self-similar solutions, referred as soliton solutions of some geo-
metric flow equations, have been introduced and studied as they appear to be
possible singularity models. The most famous and studied class of them is the
Ricci solitons, defined as fixed points of the Ricci flow and significant progress
has been made on this research area. Then, in the late 1980’s, Hamilton in-
troduced the Yamabe flow to prove the Yamabe problem, [1]. Basically, the
Yamabe problem is about investigating a metric on an n ≥ 3 dimensional man-
ifold such that the underlying scalar curvature is constant. Thus, the Yamabe
flow is defined as the metric g(t) on a pseudo-Riemannian manifold (Mn, g)
satisfying
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∂g(t)
∂t

= −τg(t)

where τ is the scalar curvature of M . The solution of this particular problem for
two-dimensional case is already guaranteed by the Uniformization Theorem.
For the further studies focused on this problem, we refer to [2–4].

Gradient Yamabe solitons are the solutions of this flow and defined as
follows: an n−dimensional pseudo-Riemannian manifold (Mn, g) is said to be
a gradient Yamabe soliton if M admits a smooth function ϕ and a constant λ
satisfying

Hess(ϕ) = (τ − λ)g. (1)

If λ > 0, λ < 0 or λ = 0, then (Mn, g) is called a shrinking, expanding
or steady gradient Yamabe soliton respectively. One of the most important
results for a solution to the Yamabe problem is given in [4] and it is proved
that the scalar curvature of any compact Yamabe gradient soliton is constant.

In [5], some boundedness conditions of the potential function of gradient
Yamabe solitons were investigated. In [6], it is proved that gradient Yamabe
soliton admits a warped product structure, and this result enables to make
possible studies in both Riemannian and Lorentzian settings. Moreover, in
[7], the three-dimensional complete gradient Yamabe solitons with divergence
free Cotton tensor (i.e., Bach-flat) has been classified in terms of having a
warped product manifold structure. In [8] it is obtained that the fundamental
group of a complete non-compact shrinking Yamabe soliton (M, g, V, λ) is finite
provided that the scalar curvature is strictly bounded above by λ.

After the Ricci flow theory had been introduced and some substantial
amount of progress had been made to classify the Riemannian manifolds and
generalize the Ricci solitons, almost gradient Ricci solitons, quasi-Einstein
manifolds and generalized quasi-Einstein manifolds were introduced and stud-
ied extensively. For further details, we refer to [9–13] and many others. Anal-
ogously, some generalizations of the self-similar solutions of Yamabe flow are
also defined in the related literature. First, the notion of quasi-Yamabe gra-
dient soliton in [14,15] and then notion of generalized quasi-Yamabe gradient
soliton were introduced in [16]:

An n-dimensional pseudo-Riemannian manifold (M, g) is said to be a
generalized quasi-Yamabe gradient soliton if there exist smooth functions ϕ
and μ on M and also a constant λ satisfying

Hess(ϕ) = (τ − λ)g + μdϕ ⊗ dϕ (2)

where dϕ is the dual 1-form of ∇ϕ and τ is the scalar curvature of M . Here, ϕ
is called as a potential function and the underlying generalized quasi-Yamabe
gradient soliton (briefly GQY) is denoted by (M, g, ϕ, μ, λ).

Assume that ϕ is a constant function, then (M, g) is called as a trivial
generalized quasi-Yamabe gradient soliton. Otherwise, it will be called non-
trivial. The restricted case where μ is constant is called quasi-Yamabe gradient
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soliton. Moreover, if μ = 0, then the equation (2) reduces to the fundamental
equation of gradient Yamabe soliton (1).

In [14], it is proved that compact quasi-Yamabe gradient soliton has con-
stant scalar curvature and in [17], Wang studied the special generalized quasi-
Yamabe gradient soliton in which μ = 1

m for some constant m > 0 and proved
that m-quasi-Yamabe gradient soliton has also a warped product structure in
the region ||∇ϕ|| �= 0. In addition to that, it is established that the warping
function is completely defined by the potential function of the soliton. Then in
[16], Neto and Oliveira extended these results to the generalized quasi-Yamabe
gradient solitons.

Inspired by these studies, we investigate some necessary and sufficient
conditions for the existence of generalized quasi-Yamabe gradient solitons
equipped with the warped product structure. Then we study some impor-
tant applications in the Lorentzian and the neutral settings for the class of
gradient Yamabe solitons. We prove the existence of the non-trivial gradient
Yamabe soliton on generalized Robertson–Walker spacetimes, standard static
spacetimes, Walker manifolds and pp-wave spacetimes.

2. Warped Product Generalized quasi-Yamabe Gradient
Solitons

Assume that (B, gB) and (F, gF ) are two pseudo-Riemannian manifolds of
dimensions r and s, respectively. Let π : B × F → B and σ : B × F → F be
the natural projection maps of the Cartesian product B × F onto B and F,
respectively. Also, let b : B → (0,∞) be a positive real-valued smooth function.
The warped product manifold M = B ×b F is the the product manifold B ×F
equipped with the metric tensor defined by

g = π∗ (gB) ⊕ (b ◦ π)2 σ∗ (gF )

where ∗ denotes the pull-back operator on tensors [18–20]. The function b is
called the warping function of the warped product manifold B ×b F , and the
manifolds B and F are called base and fiber, respectively. In particular, if
b = 1, then B ×1 F = B × F is the usual Cartesian product manifold. For the
sake of simplicity, throughout this paper, all relations will be written, without
involving the projection maps from B × F to each component B and F as in
g = gB ⊕ b2gF .

Proposition 1. Let (M, g) be an n-dimensional pseudo-Riemannian manifold.
Then (M, g, ϕ, μ, λ) is a quasi-Yamabe gradient soliton if and only if

Hess(θ) = − θ

m
(τ − λ)g (3)

where μ = 1/m and θ = e−ϕ/m.
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Proof. Introduce μ = 1/m and θ = e−ϕ/m. Then ∇θ = − θ
m∇ϕ and dθ =

− θ
mdϕ. So, for vector fields X and Y on M, we have:

Hess(ϕ)(X,Y ) = g(∇X∇ϕ, Y )

= g
(m

θ2
X(θ)∇θ − m

θ
∇X∇θ, Y

)

=
m

θ2
X(θ)Y (θ) − m

θ
Hess(θ)

=
1
m

dϕ ⊗ dϕ − m

θ
Hess(θ)

Thus Eq. (2) can be reduced to (3). �

As a direct corollary of the above proposition, we have:

Corollary 1. Every quasi-Yamabe gradient soliton is conformal gradient soli-
ton.

Now, we can apply one the results proved by Cheeger and Colding in [21]
where the authors provided some characterization of warped product manifolds
and established that any conformal gradient soliton satisfying Hess(θ) = hg,
for some function h is isometric to a warped product with a base manifold
of some open and connected interval. Thus, taking (3) into consideration, we
conclude that (Mn, g) is isometric to the warped product I ×ρ N , for some
positive function ρ where I ⊆ R is an open and connected interval. Thus:

Corollary 2. Every quasi-Yamabe gradient soliton admits the warped product
structure I ×ρ N , for some positive function ρ, where I ⊆ R is an open and
connected interval.

In what follows, we will present our main result:

Theorem 1. Let M = B ×b F be a warped product manifold equipped with
the metric g = gB ⊕ b2gF . Then (M, g, ϕ, μ, λ) is a generalized quasi-Yamabe
gradient soliton if and only if the followings hold:

1. the potential function ϕ depends only on the base manifold B,
2. the gradient vectors of the potential function ϕ and the warping function

b cannot be orthogonal,
3. the base manifold B is also a conformal gradient soliton,
4. the scalar curvature τF of the fiber manifold (F, gF ) is constant.

Proof. Assume that (M, g, ϕ, μ, λ) is a generalized quasi-Yamabe gradient soli-
ton which is a also warped product. If X,Y are vector fields on B and V,W
are vector fields on F, then apply the last proposition as well as Proposition
35 (pg. 206) of [19] and then obtain:
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Hess(θ)(X,V ) = 0 since g(X,V ) = 0. On the other hand, by decomposing ∇θ
on the base and fiber,

Hess(θ)(X,V ) = g(∇X∇θ, V )
= g(∇Xtan(∇θ), V ) + g(∇Xnor(∇θ), V )
= bX(b)gF (nor(∇θ), V ).

Thus, X(b)gF (nor(∇θ), V ) = 0. If b is not constant, the last equation implies
that nor(∇θ) = 0. So, θ = e−ϕ/m depends only on the base manifold B, that
is, ϕ is only defined on B, ϕ ∈ C∞(B).

Moreover, g(V,W ) = b2gF (V,W ) and ∇θ = tan(∇θ) since nor(∇θ) = 0.

Hess(θ)(V,W ) = g(∇V ∇θ,W )
= g(∇V tan(∇θ),W )
= btan(∇θ)(b)gF (V,W ).

Thus, by the last proposition,

btan(∇θ)(b)gF (V,W ) = − θ

m
(τ − λ)b2gF (V,W ).

Equivalently,
(
btan(∇θ)(b) +

b2θ

m
(τ − λ)

)
gF (V,W ) = 0.

Contracting the last equation over V and W, we obtain:

sb(tan
(∇θ)(b) +

bθ

m
(τ − λ)

)
= 0.

Noting that tan(∇θ) = ∇B(θ) since θ ∈ C∞(B), we have:

gB(∇Bθ,∇Bb) = (λ − τ)
bθ

m
.

Finally,

Hess(θ)(X,Y ) = g(∇X∇θ, Y )
= gB(∇Xtan(∇θ), Y )

= HessB(θ)(X,Y )

since θ ∈ C∞(B), i.e, tan(∇θ) = ∇B(θ). By the last proposition, we can have:

HessB(θ) =
θ

m
(λ − τ)gB .

Hence, B is conformal gradient soliton. It is obvious that λ − τ is defined only
on B. Now applying the scalar curvature τ formula of a warped product (see
Exercise 13 (pg. 214) of [19]), one can easily deduce that the scalar curva-
ture τF of the fiber manifold (F, gF ) is constant. The converse statement is
straightforward. �
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Combining the above results, we can state that:

Corollary 3. Let (M, g, ϕ, μ, λ) be a generalized quasi-Yamabe gradient soli-
ton satisfying the conditions (1–4) of Theorem 1. Then it admits the multiply
warped product structure I ×ρ N ×b F , for some positive functions ρ and b,
where I ⊆ R is an open and connected interval.

3. Applications

3.1. Gradient Yamabe Soliton on Generalized Robertson–Walker Spacetimes

We first define generalized Robertson–Walker spacetimes. Assume that (F, gF )
is an s−dimensional Riemannian manifold and b : I → (0,∞) is a smooth
function. Then the (s + 1)−dimensional product manifold I ×b F equipped
with the metric tensor

g = −dt2 ⊕ b2gF

is called a generalized Robertson–Walker spacetime and is denoted by M =
I ×b F where I is an open and connected interval in R and dt2 is the usual Eu-
clidean metric tensor on I. This structure was introduced to extend Robertson–
Walker spacetimes [22,23] and have been studied by many authors, such as
[24–26]. From now on, we will denote ∂

∂t ∈ X(I) by ∂t to state our results in
compact forms.

We will apply our main result Theorem 1. Assume that ϕ ∈ C∞(I) is a
potential function for a generalized Robertson–Walker spacetime of the form
M = I ×b F.

The equation (τ − λ)gij = Hess(ϕ)ij yields
{

ϕ′′ = −(τ − λ),
b′ϕ′ = (τ − λ)b.

Thus bϕ′′ = −b′ϕ′. By solving the last ODE, as b �= 0, we have:

ϕ(t) = α

∫ t

t0

1
b(t̄)

dt̄ for some α ∈ R.

Hence, we can state that:

Theorem 2. A generalized Robertson–Walker spacetime of the form M = I ×b

F is a gradient Yamabe soliton with the potential function ϕ given by

ϕ(t) = α

∫ t

t0

1
b(t̄)

dt̄ for some α ∈ R.
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3.2. Gradient Yamabe Soliton on Standard Static Spacetimes

We begin by defining standard static spacetimes. Let (F, gF ) be an s−
dimensional Riemannian manifold and f : F → (0,∞) be a smooth func-
tion. Then the (s + 1)−dimensional product manifold fI × F furnished with
the metric tensor

g = −f2dt2 ⊕ gF

is called a standard static spacetime and is denoted by M =f I ×F where I is
an open and connected subinterval in R and dt2 is the usual Euclidean metric
tensor on I.

Note that standard static spacetimes can be considered as a generaliza-
tion of the Einstein static universe [27–30] and many spacetime models that
characterize the universe and the solutions of Einstein’s field equations are
known to have this structure.

Again we apply Theorem 1. Suppose that ϕ ∈ C∞(F ) is a potential
function for a standard static spacetime of the form M =f I × F.

The equation (τ − λ)gij = Hess(ϕ)ij yields{∇ϕ(f) = (τ − λ)f,
HessF (ϕ) = (τ − λ)gF .

By contracting the last equation over F, we have ΔF (f) = s(τ −λ). Then
we obtain:

ΔF (ϕ) =
s

f
∇ϕ(f).

Hence, we conclude that:

Theorem 3. A standard static spacetime of the form M =f I ×F is a gradient
Yamabe soliton with the potential function ϕ given by

ΔF (ϕ) =
s

f
∇ϕ(f).

Example 1. The exterior Schwarzschild spacetime [31,32] can be expressed as
a standard static spacetime of the form Rf × (2m,∞) × S

2 where S
2 is the

2-dimensional Euclidean sphere and the warping function f : (2m,∞) × S
2 →

(0,∞) is given by f(r, θ, φ) =
√

1 − 2m/r, r > 2m and also the line element
on (2m,∞) × S

2 is

ds2 =
(

1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2θdφ2).

It is known that on a standard static spacetime, τ = τF − 2ΔF (f)
f holds. Note

that Schwarzschild spacetime is Ricci-flat, i.e, τ = 0 and so τF = 2ΔF (f)
f .

Also, the fiber F = (2m,∞) × S
2 is noncompact. Then by (3.2), we have

gF (∇ϕ,∇f) = τF
2s this implies that λ = −ΔF (f)

s < 0. Thus the exterior
Schwarzschild metric can admit an expanding gradient Yamabe soliton.
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3.3. Gradient Yamabe Soliton on 3-dimensional Walker Manifolds

In general, a 3-dimensional manifold admitting a parallel degenerate line field
is said to be a Walker manifold, [33,34]. Suppose that (M, g) is a 3-dimensional
Walker Manifold then there exist local coordinates (t, x, y) such that the
Lorentzian metric tensor with respect to the local frame fields {∂t, ∂x, ∂y}
takes the form given as:

g = 2dtdy + dx2 + φ(t, x, y)dy2, (4)

for some function φ(t, x, y). The restricted case of Walker manifolds where φ
described as a function of only x and y is called as a strictly Walker manifold
and in particular strictly Walker manifolds are geodesically complete. Also, it
is known that a Walker manifold is Einstein if and only if it is flat, [33].

The non-zero components of the Levi-Civita connection of (M, g) are
determined by:

Γt
ty = −Γy

yy =
1
2
φt, Γt

xy = −Γx
yy =

1
2
φx, Γt

yy =
1
2
(φφt + φy). (5)

Now, we will investigate conditions on this particular class of manifolds
to have gradient Yamabe solitons, that is,

Hess(f)ij = (τ − λ)gij (6)

where f is a potential function.
Note that this equation implies that

Δ(f)
3

= τ − λ.

By using the metric (4), (5) and straightforward computations, we have:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hess(f)tt = ftt,
Hess(f)tx = ftx,
Hess(f)ty = fty − 1

2φtft,
Hess(f)xx = fxx,
Hess(f)xy = fxy − 1

2φxft,

Hess(f)yy = fyy − 1
2 (φφt + φy)ft + 1

2φxfx + 1
2φtfy.

(7)

Moreover,

Δ(f) = −φftt + 2fty − φtft + fxx. (8)

By combining these, we get:

τ − λ =
1
3

(
−φftt + 2fty − φtft + fxx

)
. (9)
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By applying Eqs. (6), (7) and (9), we obtain the following system of
PDEs: ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ftt = 0,
ftx = 0,
2fxy = φxft,
2fty = 2fxx + φtft,
2fyy − φyft + φxfx + φtfy = 2ftyφ.

(10)

Notice first that ftt = 0 and ftx = 0 imply that

f(t, x, y) = tb(y) + c(x, y), (11)

for some differentiable functions b and c.
Thus the system (10) turns out to be

⎧
⎪⎪⎨
⎪⎪⎩

2cxx(x, y) + φtb(y) = 2b′(y),
2cxy(x, y) = φxb(y),
2[tb′′(y) + cyy(x, y)] − φyb(y) + φxcx(x, y)
+φt[tb′(y) + cy(x, y)] = 2φb′(y).

(12)

Differentiating the first two equations of the system (12) with respect to t,
we have φttb(y) = φxtb(y) = 0. Also, differentiating the last equation of the
system (12) with respect to t, we get

2b′′(y) + φxtcx(x, y) + φttcy(x, y) = [φtb(y)]y. (13)

In this case, two cases should be examined: We define U = {p ∈ M : b(y) �=
0 at p} and V = {p ∈ M : b(y) = 0 in a neighborhood of p}. Then U ∪ V
is a dense open subset in M . If we assume that M is connected and U �= ∅
(respectively, V �= ∅), then by the continuity argument M = U (respectively,
M = V). Thus, we can construct the gradient Yamabe soliton on U and V
separately.

• Case 1 : If p ∈ U , then φtt = φxt = 0 which implies that

φ(t, x, y) = tB(y) + D(x, y)

for some differentiable functions B and D. Then by (13), we obtain

B(y) =
2b′(y) + α0

b(y)
, α0 ∈ R. (14)

Then from the Eqs. (11), (14) and integrating the first equation of the system
(12), we get

c(x, y) = −α0

4
x2 + xh(y) + k(y),

for some differentiable functions h and k. Thus, integrating the second equation
of the system (12), we get

D(x, y) = xE(y) + F (y),
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for some differentiable functions E and F . Thus, in so far we found the poten-
tial function

f(t, x, y) = tb(y) − α0

4
x2 + xh(y) + k(y)

and the relevant function φ of the 3-dimensional Walker metric

φ(t, x, y) = t
(2b′(y) + α0

b(y)

)
+ xE(y) + F (y).

• Case 2 : If p ∈ V, then b(y) = 0, i.e, f(t, x, y) = c(x, y) and φtt �= 0,
φxt �= 0. Thus from the system (12), we have cxx = 0 and cxy = 0 imply that
c(x, y) = κ0x + η(y), for some κ0 ∈ R. Also, from the last equation of the
system (12), we have 2fyy(x, y) + φxfx(x, y) + φtfy(x, y) = 0, which implies
that

η(y) = κ1 − κ0

∫
φxt

φtt
dy,

for some constant κ1 ∈ R. Therefore, in this case, the potential function is
given by:

f(x, y) = κ1 +
(
x −

∫
φxt

φtt
dy

)
κ0.

Hence we obtain the main result of this section:

Theorem 4. Let (M, g) be a connected 3-dimensional Lorenztian Walker man-
ifold equipped with metric:

g = 2dtdy + dx2 + φ(t, x, y)dy2.

Then (M, g) is a gradient Yamabe soliton if and only if one of the following
cases occurs:

1. the potential function of the soliton structure is given by

f(t, x, y) = tb(y) − α0

4
x2 + xh(y) + k(y)

and the function φ defining Walker metric is given by

φ(t, x, y) = t
(2b′(y) + α0

b(y)

)
+ xE(y) + F (y)

for some differentiable functions b(y) �= 0, h(y), k(y), E(y), F (y) and
constant α0 ∈ R,

2. the potential function of the soliton structure is given by

f(x, y) = κ1 +
(
x −

∫
φxt

φtt
dy

)
κ0,

for some constants κ0, κ1 ∈ R, where the relevant function φ satisfies the
conditions φtt �= 0, φxt �= 0 and

2fyy(x, y) + φxfx(x, y) + φtfy(x, y) = 0.
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Note that by Eq. (8) and system (10), we can get: Δ(f) = 3fxx. In
above cases, we conclude that Δ(f) is a non-zero constant and Δ(f) = 0,
respectively. In order to have a non-trivial potential function we may assume
that M is non-compact due to Hopf’s Lemma. Thus, we have:

Corollary 4. Let (M, g) be a 3-dimensional Lorenztian Walker manifold
equipped with metric (4). Then the gradient Yamabe soliton structure on (M, g)
characterized by the Case (1) and Case (2) of Theorem 4 is non-compact.

3.4. Gradient Yamabe Soliton on 4-dimensional Walker Manifolds

Let us now construct the gradient Yamabe soliton structure on 4-dimensional
Walker manifolds.

A 4-dimensional Walker manifold is a triple (M, g,D) consisting of an
indefinite metric g and a 2-dimensional parallel null plane D and in this case g
has neutral signature (−,−,+,+) and in suitable coordinates (x, y, z, t) such
that with respect to the local frame fields {∂x, ∂y, ∂z, ∂t} it can be given by
[33]

g = 2dxdz + 2dydt + a(x, y, z, t)dz2 + 2c(x, y, z, t)dzdt + b(x, y, z, t)dt2,

(15)

for some functions a(x, y, z, t), b(x, y, z, t), c(x, y, z, t) and D =< ∂x, ∂y >. The
case where c(x, y, z, t) = 0 was studied and locally conformally flatness of
this special metric was investigated in [35]. Moreover, some characterization
of gradient Ricci solitons for a 4-dimensional Lorentzian Walker manifold is
provided in [36].

Here, we consider the restricted case of Walker manifold (M, g) where
a = c = 0 and b described as a function of only t so the metric (15) reduces to
the form

g = 2dxdz + 2dydt + b(t)dt2. (16)

The non-zero components of the Levi-Civita connection of (M, g) are
determined by: ⎧

⎨
⎩

Γy
xt = −Γz

tt = 1
2bx, Γy

yt = −Γt
tt = 1

2by,

Γy
zt = −Γx

tt = 1
2bz, Γy

tt = 1
2 (bby + bt).

(17)

Now, we will investigate conditions on this particular class of manifolds
to have gradient Yamabe solitons, that is,

Hess(f)ij = (τ − λ)gij (18)

where f is a potential function.
Note that this equation implies that

Δ(f)
4

= τ − λ.
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By using the metric (16), (17) and straightforward computations, we
have: ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hess(f)xx = fxx, Hess(f)xy = fxy,
Hess(f)xz = fxz, Hess(f)xt = fxt,
Hess(f)yy = fyy, Hess(f)yz = fyz,
Hess(f)yt = fyt, Hess(f)zz = fzz,
Hess(f)zt = fzt, Hess(f)tt = ftt − 1

2btfy.

(19)

Moreover,

Δ(f) = 2fxz − bfyy + 2fyt.

By combining these, we get:

τ − λ =
1
4

(
2fxz − bfyy + 2fyt

)
. (20)

By applying Eqs. (18), (19) and (20), we obtain the following system of
PDEs: ⎧

⎪⎪⎨
⎪⎪⎩

fxx = fxy = fyy = fyz = fzz = 0,
fxt = fzt = 0,

fxz = fyt = Δ(f)
4 ,

ftt − 1
2btfy = bΔ(f)

4 .

(21)

Notice first that fxy = 0, fxx = 0, fyz = 0 and fyy = 0 imply that
f(x, y, z, t) = xβ(z, t) + yA(t) + B(z, t) for some functions β,A and B. Thus
from fxz = fyt, we have βz(z, t) = A′(t). Since fzz = 0 and fxt = 0, A′(t) =
C ′(z) which yields

A(t) = c0t + c1, C(z) = c0z + c2, where c0, c1, c2 ∈ R.

Also, from fxt = 0 and fzt = 0, we obtain β(y, z) = κz + μ and B(z, t) =
c3z + E(t), respectively where c0 ∈ R. As a result, the potential function is
given by

f(x, y, z, t) = x(c0z + c2) + y(c0z + c1) + c3z + E(t).

Substituting this in the last equation of the system (21), we obtain

2E′′(t) − bt(c0t + c1) = 2c0b. (22)

Integrating (22) with respect to t and using integration by parts for the second
term, we get 2E′(t) − b(c0t + c1) = c0

∫ t

t0
b(t̄)dt̄.

Hence we obtain the main result of this section:

Theorem 5. Let (M, g) be a 4-dimensional Walker manifold equipped with met-
ric (16). Then (M, g) is a gradient Yamabe soliton if and only if its potential
function is defined by

f(x, y, z, t) = x(c0z + c2) + y(c0z + c1) + c3z + E(t)
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where ci ∈ R, (i = 0, 1, 2, 3) and the metric function b(t) and E(t) are related
by

2E′(t) − b(c0t + c1) = c0

∫ t

t0

b(t̄)dt̄.

Moreover, Δ(f) = 4c0.

If in additionally, M is compact, then by applying the Divergence Theo-
rem, c0 = 0 and we conclude that:

Corollary 5. Let (M, g) be a 4-dimensional Walker manifold equipped with
metric (16). Then (M, g) is a compact gradient Yamabe soliton if and only
if its potential function is defined by

f(x, y, z, t) = c2x + c1y + c3z +
c1

2

∫ t

t0

b(t̄)dt̄.

where ci ∈ R, (i = 1, 2, 3).

3.5. Gradient Yamabe Soliton on pp-Wave Spacetimes

Before finishing our investigation, finally we consider 4-dimensional pp-wave
(i.e. plane-fronted waves with parallel rays) metric introduced by Brinkmann
[37].

A pp-wave spacetime is a Lorentzian manifold with the local coordinates
{u, v, x, y} equipped with the metric tensor given by

ds2 = H(u, x, y)du2 + 2dudv + dy2.

In this spacetime, D = Span{∂v} is the degenerate parallel line field.
The nonzero Christoffel symbols of this metric are given by:⎧

⎨
⎩

Γv
uu = 1

2Hu, Γv
ux = −Γx

uu = 1
2Hx,

Γv
uy = −Γy

uu = 1
2Hy.

(23)

Moreover, from (23), we have⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hess(ϕ)uu = ϕuu − 1
2Huϕv + 1

2Hxϕx + 1
2Hyϕy,

Hess(ϕ)uv = ϕuv,
Hess(ϕ)ux = ϕux − 1

2Hxϕv,
Hess(ϕ)uy = ϕuy − 1

2Hyϕv,
Hess(ϕ)vv = ϕvv, Hess(ϕ)vx = ϕvx, Hess(ϕ)vy = ϕvy,
Hess(ϕ)xx = ϕxx, Hess(ϕ)xy = ϕxy, Hess(ϕ)yy = ϕyy.

(24)

Thus,

Δϕ = 2ϕuv − Hϕvv + ϕxx + ϕyy.

The fundamental equation of gradient Yamabe soliton

Hessϕ = (τ − λ)g and τ − λ =
1
4
Δϕ
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and (24) imply that
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕuu − 1
2Huϕv + 1

2Hxϕx + 1
2Hyϕy = Δϕ

4 H,

ϕuv = ϕxx = ϕyy = Δϕ
4 ,

ϕux = 1
2Hxϕv,

ϕuy = 1
2Hyϕv,

ϕvv = ϕvx = ϕvy = ϕxy = 0.

(25)

The last item of the system (25) implies that

ϕ = vA(u) + B(u, x, y), (26)

for two smooth functions A and B. Thus, we have

Δϕ = 4ϕxx = 4ϕyy = 4A′(u) (27)

where

ϕxx = Bxx, ϕyy = Byy, Bxy = 0. (28)

Integrating the third and the forth equations of the system (25) with
respect to x and y, respectively and comparing the resulting equations we get

Bu(u, x, y) =
1
2
HA(u) + E(u). (29)

for some function E. Now, using the Eqs. (26)–(29),we get

vA′′(u) + E′(u) +
1
2
HxBx(u, x, y) +

1
2
HyBy(u, x, y) =

1
2
HA′.

By differentiating the both sides of the last equation with respect to v, we
obtain that A′′(u) = 0. Thus A(u) = au + b for some a and b. Using this into
(28), we obtain Bxx = Byy = a and Bxy = 0 imply that

B(u, x, y) =
ax2

2
+ xK(u) +

ay2

2
+ yM(u),

for some smooth functions K and M . Consequently, the potential function
takes the form

ϕ = (au + b)v +
ax2

2
+

ay2

2
+ xK(u) + yM(u). (30)

Now, using (30) into the third and the forth equations of the system (25),
we obtain

K ′(u) =
1
2
(au + b)Hx and M ′(u) =

1
2
(au + b)Hy.

Integrating the first and the second equations of above with respect to x
and y, respectively and comparing the resulting equations, we get the function
H related with the pp-wave metric as follows

1
2
(au + b)H = xK ′(u) + yM ′(u). (31)
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From (31), we also have

xK ′′(u) + yM ′′(u) =
a

2
H +

1
2
(au + b)Hu.

By virtue of (30) and the last relation, the first equation of the system (25)
reduces to

[ax + K(u)]Hx + [ay + M(u)]Hy = aH. (32)

Therefore, (31) satisfies (32), provided K(u)K ′(u) + M(u)M ′(u) = 0 that
implies that

K2(u) + M2(u) ≡ constant.

Hence we can state the following:

Theorem 6. Let (M, g) be a 4-dimensional pp-wave spacetime endowed with
the metric

ds2 = H(u, x, y)du2 + 2dudv + dy2.

Then (M, g) is a gradient Yamabe soliton if and only if
(1) its potential function is given by

ϕ = (au + b)v +
ax2

2
+

ay2

2
+ xK(u) + yM(u),

(2) the metric function H is given by

H(u, x, y) =
2[xK ′(u) + yM ′(u)]

au + b
,

where a and b are nonzero constants and K and M are two smooth functions
such that K2(u) + M2(u) ≡ constant.
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