
QUANTIFYING AND PROTECTING
GENOMIC PRIVACY

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Mohammad Mobayenjarihani

July 2018



Quantifying And Protecting Genomic Privacy

By Mohammad Mobayenjarihani

July 2018

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Erman Ayday(Advisor)

Atila Bostan

Altay Guvenir

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
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ABSTRACT

QUANTIFYING AND PROTECTING GENOMIC
PRIVACY

Mohammad Mobayenjarihani

M.S. in Computer Engineering

Advisor: Erman Ayday

July 2018

Today, genome sequencing is more accessible and affordable than ever. It is also

possible for individuals to share their genomic data with service providers or on

public websites. Although genomic data has significant impact and widespread

usage on medical research, it puts individuals’ privacy in danger, even if they

anonymously or partially share their genomic data. In this work, first, we im-

prove the existing work on inference attack on genomic privacy using observable

Markov model, recombination model between the haplotypes, kinship relations,

and phenotypic traits. Then to address this privacy concern, we present a dif-

ferential privacy-based framework for sharing individuals’ genomic data while

preserving their privacy. Different from existing differential privacy-based so-

lutions for genomic data (which consider privacy-preserving release of summary

statistics), we focus on privacy-preserving sharing of actual genomic data. We as-

sume an individual with some sensitive portion on his genome (e.g., mutations or

single nucleotide polymorphisms - SNPs that reveal sensitive information about

the individual). The goals of the individual are to (i) preserve the privacy of

his sensitive data, (ii) preserve the privacy of interdependent data (data that be-

longs to other individuals that is correlated with his data), and (iii) share as much

data as possible to maximize utility of data sharing. As opposed to traditional

differential privacy-based data sharing schemes, the proposed scheme does not

intentionally add noise to data; it is based on selective sharing of data points.

Previous studies show that hiding the sensitive SNPs while sharing the others

does not preserve individual’s (or other interdependent peoples’) privacy. By ex-

ploiting auxiliary information, an attacker can run efficient inference attacks and

infer the sensitive SNPs of individuals. In this work, we also utilize such infer-

ence attacks, which we discuss in details first, in our differential privacy-based

data sharing framework and propose a SNP sharing platform for individuals that

provides differential privacy guarantees. We show that the proposed framework
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does not provide sensitive information to the attacker while it provides a high

data sharing utility. Through experiments on real data, we extensively study the

relationship between utility and several parameters that effect privacy. We also

compare the proposed technique with the previous ones and show our advantage

both in terms of privacy and data sharing utility.

Keywords: Genomic Privacy, Inference Attacks, Differential Privacy.
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Günümüzde, genom dizilimi her zamankinden daha erişilebilir ve hesaplıdır.

Ayrıca bireylerin genom verilerini servis sağlayıcıları veya kamuya açık web

sitelerinde paylaşmaları da mümkündür. Genomik verilerin tıbbi araştırmalarda

önemli bir etkisi ve yaygın kullanımı olmasına rağmen, genetik verilerini

anonim veya kısmen paylaşsalar bile bireylerin gizliliğini tehlikeye atmak-

tadır. Bu çalışmada, ilk olarak, gözlemlenebilir Markov modeli, haploti-

pler, akrabalık ilişkileri ve fenotipik özellikler arasındaki rekombinasyon mod-

eli kullanılarak genomik gizlilik çıkarsama saldırısı üzerinde mevcut çalışmaları

geliştiriyoruz. Daha sonra bu gizlilik konusunu ele almak için, bireylerin

mahremiyetlerini korurken genomik verilerini paylaşmaya yönelik gizlilik temelli

farklı bir yazilim çerçevesi sunuyoruz. Genomik veriler için var olan farklı gi-

zlilik temelli çözümlerden farklı olarak (özet istatistiklerinin gizliliğin korun-

masını da göz önünde bulundurarak), gerçek genomik verilerin gizliliğinin ko-

runarak paylaşilmasina odaklanıyoruz. Kendi genomunda (örneğin, mutasy-

onlar veya tek nükleotid polimorfizmleri - bireyle ilgili hassas bilgileri açığa

çıkaran SNP’ler) bazı hassas kısımları olan bir bireyi ele aliyoruz. Bireyin

amaçları (i) hassas verilerinin gizliliğini korumak, (ii) birbirine bağlı verilerin

gizliliğini korumak (kendi verileriyle ilişkili olan diğer bireylere ait veriler) ve

(iii) veri paylaşiminin faydasini artirabilmek icin mumkun oldugunca fazla veri

paylaşmak. Geleneksel farklı gizlilik temelli veri paylaşım şemalarının aksine,

önerilen plan, verilere kasıtlı olarak gürültü eklemez; veri noktalarının seçici bir

şekilde paylaşılmasına dayanır. Önceki çalışmalar, diğerlerini paylaşırken hassas

SNP’leri gizlemenin, bireyin (ya da diğer birbirine bağlı halkların) gizliliğini koru-

madığını göstermektedir. Yardımcı bilgilerden yararlanarak, bir saldırgan, etkili

çıkarım saldırıları gerceklestirebilir ve bireylerin hassas SNP’lerini çıkartabilir. Bu

çalışmada, öncelikle gizlilik temelli veri paylaşımı çerçevemizde, ayrıntılı olarak

tartıştığımız bu çıkarım saldırılarını ve farklı gizlilik garantileri sağlayan bireyler
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için bir SNP paylaşım platformu önermekteyiz. Önerilen çerçevenin, yüksek bir

veri paylaşımi sağlarken saldırgana hassas bilgiler elde edemedigini gösteriyoruz.

Gerçek veriler üzerinde yapılan deneyler sayesinde, fayda ile gizliligi etkileyen

çeşitli parametreler arasındaki ilişkiyi kapsamlı bir şekilde inceliyoruz.Ayrıca,

önerilen tekniği daha öncekilerle karşılaştırıyoruz ve hem gizlilik hem de veri

paylaşımı yararı açısından avantajımız olduğunu gösteriyoruz.

Anahtar sözcükler : genom gizliliki, farklı mahremiyet, çıkarım saldırıları .
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Chapter 1

Introduction

Taking benefits of low cost and accessible sequencing of genomes, nowadays, even

ordinary individuals can obtain their digital genome sequences in an affordable

way via some online services such as 23andme [2]. They also share their genomic

data with medical institutions, on public repositories (such as OpenSNP [3]), and

with other direct-to-consumer service providers. Individuals typically use such

services to be informed about their predisposition to certain diseases (e.g., cancer)

[4, 5], to find their ancestors, or even to find compatible genomic partners. More-

over, this wide availability of genomes opens a new horizon for research in medical

field (e.g., treatment of genomic-related diseases or personalized medicine). Al-

though these direct-to-consumer services and potential revolution in medicine

look appealing, they also raise significant privacy concerns and ramifications.

Because genes have critical information about one’s medical profile and pre-

disposition to sensitive diseases, once the identity of a genome donor is revealed,

he or she is faced with the risk of discrimination by employers or insurance com-

panies. Therefore, almost all public genomic data sharing repositories hide the

identities of their donors (or participants). However, it has been shown that

anonymization is not an effective technique for privacy-preserving genomic data

sharing [6, 7].
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Despite such risks, users in some online platforms (such as OpenSNP) share

their genomic data with their identities, or some scientists publish their own ge-

nomic data on their personal websites [8]. Such individuals tend to hide sensitive

parts of their genome (e.g., parts that reveal their predisposition to a sensitive dis-

ease) while sharing their genomic data. However, it has been shown that hiding is

not sufficient for privacy. One prominent example of such is the Apolipoprotein E

(APOE) status of James Watson (co-discoverer of the DNA). James Watson has

publicly shared his DNA sequence except for the Apolipoprotein E (APOE) gene,

which is the main predictor for the development of Alzheimer’s disease. Although

Dr. Watson tried to hide his APOE status, later it has been shown that it is pos-

sible to predict his APOE status [9] using the pairwise correlations that exists

between single nucleotide polymorphisms (SNPs) in the genome, also referred to

as linkage disequilibrium (LD) [10].1. According to the mentioned works, we need

to define a quantity ot measure the genomic privacy of individuals.

Humbert et al. previously proposed a framework to quantify genomic privacy

of individuals considering (i) partial genomic data that is publicly shared by

the individual and his family members, (ii) simple pairwise correlations in the

genome (i.e., linkage disequilibrium), and (iii) other public genomic knowledge

(e.g., minor allele frequencies) [11]. In a recent study, Samani et al. showed that

higher order correlations in the genome actually enables stronger inference power

compared to the pairwise correlations [45]. However, in that work, authors did

not study the implications of this result on kin genomic privacy.

For the first part of our work, Chapter 3, we show the extend of privacy risk

on the individuals and their family members due to (i) complex correlations (i.e.,

high order correlations) in the genome, and (ii) publicly available phenotype in-

formation (e.g., physical traits or disease information) about the individuals. The

main objective of chapter is to develop a new unifying framework for quantifica-

tion of genomic privacy of individuals. Similar to the previous work[11], we use a

graph-based, iterative algorithm to build this framework efficiently. Our results

show that the attacker’s inference power (on the genomic data of individuals)

1All auxiliary information for such an attack (e.g., methodology and the dataset to compute
such correlations) are publicly available.
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significantly improves by using complex correlations and phenotype information

(along with information about their family bonds). We show that hiding the

genomic data partially is not sufficient to preserve the privacy of individuals and

even their family.

Although public availability of genome sequences is a privacy threat, limiting

access to public genomic datasets is a barrier for both medical research and all of

the aforementioned benefits. Thus, we need a trade-off between utility and pri-

vacy. That is, we need a method to ensure individuals about their sensitive genes’

privacy, while providing high genomic data sharing utility to the researchers. In

this paper, we build a framework to protect the privacy of individuals’ genomic

data while providing high utility for genomic data sharing. Our proposed tech-

nique relies on the differential privacy concept [12] to control the trade-off between

the utility and privacy.

Differential privacy technique has been already used in genomics literature

to privately release summary statistics (e.g., for privacy-preserving genome-wide

association studies - GWAS). Such works generally focus on secure sharing of sum-

mary statistics [13], finding associated SNPs to a disease and locating them [14],

and scalable data sharing for GWAS [15]. Different from these works that focus

on privacy-preserving sharing of summary statistics, in the second part of this

work, Chapter 4 ,we use the differential privacy concept for privacy-preserving

sharing of individuals’ genome sequences (or a data sequence in general).

Inspired by Miguel et al.’s work on location privacy [16], we use differential

privacy concept in order to establish a method to control the trade-off between

the utility and privacy for genomic data sharing. In [16], Miguel et al. have

used the differential privacy concept for obfuscating and sharing individuals’ lo-

cation data. In a nutshell, they have proposed obfuscating a location within a

radius of r (by adding Laplacian noise) before sharing it with a location-based

service provider. They have also proved that their proposed mechanism implies

ε-differential privacy. Here, we propose a similar idea for genomic data shar-

ing. The main differences of our proposed work from [16] are as follows: (i) we

consider the inherent correlations in data while sharing it, and (ii) rather than

3



adding noise (which implies modifying the content of genomic data, and hence

is not acceptable among medical researchers), we selectively decide whether or

not to share particular SNPs based on our formulation. Different from previous

work on genomic data sharing [1], in our proposed mechanism, not sharing a

SNP does not provide any information about the value of that SNP (or other

sensitive SNPs) to the attacker. We also consider and preserve the privacy of

interdependent data (e.g., genomic privacy of family members).

We assume an individual (called the donor) with a genomic data sequence

that includes some sensitive SNPs (e.g., the ones revealing his predisposition

to a sensitive disease).2 Our goal is to protect the sensitive part of sequence

from inference attacks while sharing as much as possible from the rest (non-

sensitive part). The attacker tries to infer the individual’s sensitive SNPs by

using existing inference attacks (e.g., using kinship information and correlations

among the SNPs) and it has access to the public genomic datasets of different

ethnicities (e.g., from [17, 18, 3]) to build its statistical models for the inference

attacks.

The donor sequentially decides whether or not to share each of his non-sensitive

SNPs. For each decision, we quantify the risk of inference for the sensitive SNPs.

Then, using our formulation of differential privacy concept, we check if the in-

formation available to the attacker (with the sharing of the corresponding SNP)

exceeds a predetermined boundary both for the donor and other interdependent

individuals (e.g., his family members). Based on this, we decide whether or not to

share the corresponding SNP. To demonstrate the common scenarios that happen

during the inference attack and sharing procedure, we also provide a toy example

(in Chapter 4.1.5). We show how our proposed mechanism prevents the attacker

from gaining any extra information about sensitive SNPs beyond a predetermined

boundary. More importantly, we show how neither hide nor share decision (for

a non-sensitive SNP) leak any information about the values of the SNPs in the

sensitive SNP set. This is because the proposed SNP sharing mechanism does

not consider the real values of the sensitive SNPs. We also formally prove that

2Sensitive part of the genome is not fixed, it may vary among individuals.
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this formulation implies ε-differential privacy.

We evaluate the proposed mechanism on real genomic data belonging to Cen-

tral European population [18]. We study the effects of various design parameters

on the privacy and utility. We also compare the proposed scheme with the exist-

ing work of Humbert et al. that proposes an optimization-based solution for the

same problem [1]. We experimentally show that our proposed scheme provides

both higher privacy (in terms of entropy and error) and utility compared to [1].

The rest of this work is organized as follows. In Chapter 2, we bring a brief

introduction about genomics and technical preliminaries, moreover, we summa-

rize the related work in the literature. In Chapter 3, we discuss the quantifying

of genomic privacy plus we explain our inference attack algorithm and evaluate it

with different kinship datasets. In Chapter 4, we explain our privacy preserving

framework in detail, we also evaluate it against the discussed inference attack

algorithm. Finally, in Chapter 5, we conclude our work and discuss the future

work.
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Chapter 2

Background and Related Work

2.1 Genomic

Single nucleotide polymorphism (SNP): Around 99.9% of an individual’s genome

is identical to the reference human genome and the rest is human genetic variation.

The most common genetic variations in humans are the SNPs. SNP is a variation

in the genome in which a single nucleotide (A, C, G, or T) differs between members

of the same species or paired chromosomes of an individual. There are usually two

different alleles (nucleotides) that are observed at a SNP position; one is called

the minor allele and the other is the major allele. Furthermore, each SNP carries

two alleles in total. Hence, the content of a SNP position can be in one of the

following states: (i) BB (homozygous-major genotype), if an individual receives

the same major allele from both parents; (ii) Bb (heterozygous genotype), if he

receives a different allele from each parent (one minor and one major); or (iii)

bb (homozygous-minor genotype), if he inherits the same minor allele from both

parents (this is also shown in Fig. 2.1(a)). For simplicity, in the rest of the paper,

we denote the value (content) of a SNP as the number of minor alleles it carries.

Thus, we denote BB as 0, Bb as 1 and bb as 2.

Reproduction: The Mendel’s first law, the Law of Segregation, states that a child’s

SNPs are independent from his ancestors’, given the SNPs of his parents. Each
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child inherits one allele (nucleotide) of a SNP from his mother and the other one

from his father, and each allele is inherited with a probability of 0.5. In [19]

authors model this law by a function (introduced in Section 3.2) that simply

considers the Mendelian inheritance probabilities as in Fig. 2.1(b). We also use

this inheritance information in this work.

BB
(homozygous major)

bB
(heterozygous)

Bb
(heterozygous)

bb
(homozygous minor)
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B
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b
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Figure 2.1: (a) Mendelian inheritance for a child. (b) Inheritance probabilities for
a SNP, given different genotypes for the parents. The probabilities of the child’s
genotype are represented in parentheses. (c) Inheritance probabilities for a SNP,
given different genotypes for the child and the mother. The probabilities of the
father’s genotype are represented in parentheses (given the child and the father,
the probabilities for the mother are also the same).

Correlations in the genome: It is shown that SNPs on the DNA sequence are

correlated. For example, pairwise correlations between the SNPs in the genome

are referred to as linkage disequilibrium (LD) [20]. In [19], the authors use the LD

values between the SNPs as an input to their inference algorithm. In this work,

we show that more complex, higher order correlations in the genome threaten kin

genomic privacy more than the pairwise correlations.
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Phenotypes: Phenotypes are observable characteristics of individuals (e.g., phys-

ical traits or diseases) that may be related to both their genotype and the envi-

ronment. For example, SNP Rs12821256 on chromosome 12 is associated with

having blonde hair. If an individual has (C,C) nucleotide pair for this SNP, he

is 4 times more likely to have blonde hair compared to other individuals. We

use phenotype information of individuals to improve the inference power of the

proposed algorithm.

2.2 Differential Privacy

Differential privacy [12] is a concept to preserve privacy of records in statistical

databases. Its aim is to preserve a record’s privacy while publishing statistical

information about the database. Differential privacy assumes that any slight

change in the database (e.g., addition or deletion of a single record) should have

a negligible effect on the outcome of a query to the corresponding database. The

general assumption about the attacker is that it knows the entire records in the

database except for one and by issuing queries, it tries to perform a membership

inference attack on that unknown record. More formally, differential privacy

guarantees that an algorithm behaves approximately the same on two neighboring

databases (that differ by a single record) as follows:

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S], (2.1)

where D1 and D2 are neighboring databases, K is a randomized algorithm,

and S is the output of the randomized algorithm (K). Function K is then called

ε-differentially private if (2.1) holds for all neighboring databases.

Although the original formulation of the differential privacy considers neigh-

boring databases, in [21], authors introduce a generalized version of differential

privacy. Instead of neighboring databases, they consider vectors x, y in Rn such

that |x−y|1 ≤ l. Let a mechanism be defined as M = {µx : x ∈ Rn} with output
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from the set S ∈ Rd. Then, for every vector x, y ∈ Rn such that |x − y|1 ≤ l,

mechanism M is ε-differentially private if

µx(S)

µy(S)
≤ exp(lε). (2.2)

Differential privacy concept has been previously utilized in location privacy to

share the location patterns of a user with a location-based service provider [16, 22].

In [16], Miguel et al. modify the original definition of differential privacy in order

to establish a mechanism for location obfuscation. A user with a real location

x ∈ X obfuscates his location within a predetermined radius of r before sharing

it with a location-based service provider. To do so, the user adds noise to his

real location and obtains a noisy output z ∈ Z. Authors call this mechanism as

ε-geo-indistinguishable. A mechanism satisfies ε-geo-indistinguishability iff for

all priors and all observations S ⊆ Z

fracP (x|S)P (x′|S) ≤ eεr
P (x)

P (x′)
∀r > 0 ∀x, x′ : d(x, x′) ≤ r, (2.3)

where the x and x′ are the locations that are apart by at most r and d(x, x′)

is the Euclidean distance between x and x′. Also, S is the set of noisy locations

(noise is sampled from a Laplacian distribution). Authors also proved that (2.3)

is equivalent to (2.2). We develop our proposed mechanism to share genomic data

inspired from the generalized definition of differential privacy and its utilization

for location patterns.

2.3 Inference Attack on Kin Genomic Privacy

Here, we briefly describe the inference attack on kin genomic privacy proposed

in [11]. The attacker has access to the following resources:
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(i) publicly available genomic datasets belonging to different populations [17,

23], (ii) family tree and family relationships between the individuals, and (iii)

genomic data (partial or whole) that is shared by a subset of the family members.

Besides these resources, the attacker uses Mendel’s law (of inheritance) and high-

order correlations between the SNPs [24].

The goal of the attacker is to infer the missing parts of the genomes of the

family members (or a target individual in the family). All aforementioned re-

sources and methodologies provide some information to the attacker about the

probability distributions of the unknown SNPs. Thus, the attacker may use these

resources to calculate the marginal probability distributions of unknown SNP val-

ues. To do this calculation in an efficient way, using a message passing algorithm

(belief propagation [25, 26]) on a graphical model (factor graph) is proposed. A

factor graph is a bipartite graph that includes two sets of nodes: (i) variable

nodes that represent the SNPs of family members, and (ii) factor nodes that rep-

resent the dependencies between the resources of the attacker and the variable

nodes. We discuss this attack methodology in In this setting, the factor nodes

represent: (i) familial relationships (and hence the Mendel’s law) between fam-

ily members, (ii) high-order correlations between SNPs in the genome, and (iii)

genotype-phenotype relationships between the SNPs and physical characteristics

of individuals. The nodes on the factor graph are connected via edges (depend-

ing on the relationship between them) and through these edges, they iteratively

exchange messages throughout the iterative algorithm. At the beginning, each

variable node has its own belief about the marginal probability distribution of

the corresponding SNP (computed using the MAF values). Then, the iterative

algorithm starts and at each round, nodes generate and send messages (in the

form of conditional probabilities) to their neighbors until the marginal probability

distributions of the variable nodes converge.
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2.4 Related Work

Genomic privacy topic has been recently explored by many researchers [27]. Sev-

eral works have studied various inference attack against genomic data. Homer et

al. showed that membership of an individual in a study group can be inferred us-

ing public statistics published about that group [28]. Later, Wang et al. showed

that this attack can be even more severe by also considering the inherent pairwise

correlations in the genome [29]. Recently, Shringarpure and Bustamante showed

that presence of an individual in a genome sharing beacon (genomic datasets that

only allow yes/no queries on the presence of specific alleles in the dataset) can

be inferred using a likelihood-ratio test by repeatedly querying the beacon for

SNPs of the victim [30]. Humbert et al. proposed an efficient inference attack

to quantify kin genomic privacy using the family ties between individuals, pair-

wise correlations between the SNPs (LD), and publicly available statistics about

DNA [11]. Samani et al. has shown that adversary can use high-order and com-

plex correlation in the genome (e.g., Markov chain model and recombination) in

order to infer the hidden parts of a targeted individual’s genome more accurately

compared to using LD [24]. Several countermeasures have been proposed to miti-

gate the aforementioned threats. Some researchers proposed using cryptographic

techniques for privacy-preserving processing of genomic data. Jha et al. proposed

a method for secure comparison of DNA sequences [31]. Blanton et al. focused on

secure outsourcing of sequence comparisons [32]. Cassa et al. proposed a cryp-

tographic scheme to securely transmit externally generated sequence data which

does not require any patient identifiers [33]. Baldi et al. proposed cryptographic

techniques for privacy-preserving computations on genomic data using private set

intersection [34]. Ayday et al. proposed partially homomorphic encryption for

privacy-preserving use of genomic data in clinical settings [35]. Recently, Wang

et al. proposed private edit distance protocols to find similar patients (across

several hospitals) [36]. Some researchers proposed using the differential privacy

concept [21] to release summary statistics in a privacy-preserving way (to miti-

gate membership inference attacks). Fienberg et al. used the differential privacy

concept for sharing the statistics such as minor allele frequencies, p-values, and

chi-square values [13]. Johnson and Shmatikov proposed using the exponential
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mechanism for computation and release of (i) number of SNPs that are associated

with the specific phenotype, (ii) the most significant SNPs related to a pheno-

type, (iii) p-values, and (iv) correlation between pairs of SNPs [14]. Yu et al.

extended the work of Feinberg et al. and presented a scalable algorithm for any

arbitrary number of SNPs [15]. Different from existing differential privacy-based

approaches, in this work, we use the differential privacy concept to share the

genomic sequence of an individual, not summary statistics. To share genomic

sequences in a privacy-preserving way, Humbert et al. proposed an optimization-

based technique that selectively hides portions of shared genomic data by consid-

ering the privacy budgets of both the donor and his family members [1]. Another

goal of Humbert et al.’s work is to maximize the genomic data sharing utility (by

maximizing the number of SNPs shared). This work is the closest in literature

to ours. We compare our proposed mechanism with the work of Humbert et al.

and show that our work outperforms [1] both in terms of privacy and utility.
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Chapter 3

Attack On The Genomic Privacy

In this chapter first we talk about a message passing algorithm called belief

propagation, then quantizing genomic privacy, next we discuss about the attack

methodology, and finally we bring the evaluation and the results of an attack on

the genomic privacy.

3.1 Belief Propagation

Belief propagation [37] is a message-passing algorithm for performing inference on

graphical models (e.g., Bayesian networks or Markov random fields). It is typi-

cally used to compute marginal distributions of unobserved variables conditioned

on the observed ones. Computing marginal distributions is hard in general as it

might require summing over an exponentially large number of terms. The belief

propagation algorithm can be described in terms of operations on a factor graph,

a graphical model that is represented as a bipartite graph. One of the two disjoint

sets of the factor graph’s vertices represents the (random) variables of interest,

and the second set represents the functions that factor the joint probability dis-

tribution (or global function) of the variables based on the dependencies between

them. An edge connects a variable node to a factor node if and only if the variable
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is an argument of the function corresponding to the factor node. The marginal

distribution of an unobserved variable can be exactly computed by using the belief

propagation algorithm if the factor graph has no cycles. However, the algorithm

is still well defined and often gives good approximate results for factor graphs

with cycles (as it has been observed in decoding of LDPC codes) [38]. Belief

propagation is commonly used in artificial intelligence and information theory.

3.2 Quantifying Kin Genomic Privacy

In [19], authors evaluate the genomic privacy of an individual threatened by his

relatives revealing their genomes. Focusing on the SNPs in the genome, they

quantify the loss in genomic privacy of individuals when one or more of their

family members’ genomes are (either partially or fully) revealed. They design a

reconstruction attack, in which they formulate the SNPs, family relationships,

and the pairwise correlations (LD) between SNPs on a factor graph and use the

belief propagation algorithm for inference. Then, using various metrics, they

quantify the genomic privacy of individuals and reveal the decrease in their level

of genomic privacy caused by the published genomes of their family members.

In the following, we briefly summarize the framework of [19] as we build the

proposed scheme on top of this framework.

The goal of the adversary is to infer some targeted SNPs of a member (or

multiple members) of a targeted family. Let F be the set of family members in the

targeted family (whose family tree is GF) and S be the set of SNP IDs (on the DNA

sequence), where |F| = n and |S| = m. Let also xij be the value of SNP j (j ∈ S)

for individual i (i ∈ F), where xij ∈ {0, 1, 2}. Also, X is an n×mmatrix that stores

the values of the SNPs of all family members. Among the SNPs in X, the ones

whose values are unknown are in set XU, and the ones whose values are known

(by the adversary) are in set XK. FR(xMj , x
F
j , x

C
j ) is the function representing the

Mendelian inheritance probabilities (as in Fig. 2.1(b)), where (M,F,C) represent

mother, father, and child, respectively. Finally, P = {pbi : i ∈ S} represents the

set of minor allele probabilities (or MAF) of the SNPs in S.
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The adversary carries out a reconstruction attack to infer XU by relying on his

background knowledge, FR(xMj , x
F
j , x

C
j ), L1, P, and on his observation XK. The

authors formulate this reconstruction attack as finding the marginal probability

distributions of unknown variables XU, and to run this attack in an efficient way,

they formulate the problem on a factor graph and use the belief propagation

algorithm for inference. In this work, we formulate the attack by also considering

complex correlations in the genome and publicly available phenotype information.

We show that the inference attack is significantly stronger when these additional

factors are also considered. In the following, we provide the details of the proposed

framework emphasizing the differences from [19].

Inference attack

Genomic 

knowledge

Family bonds

Quantification of 

genomic privacy

Partial genomes 

of the family 

members

Complex 

correlations in 

the genome

Physical traits of the 

victim and family 

members

Disease information 

of the victim and 

family members

Partial genome 

of the victim

Figure 3.1: Overview of the proposed framework for quantification of genomic
privacy.

1L is a m×m matrix representing the pairwise linkage disequilibrium (LD) between each pair
of SNPs. Instead of the LD values, we use higher order correlations in this work for inference.
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3.3 Proposed Framework

Our main objective is to develop a unifying framework for the quantification of

the genomic privacy of individuals using all available public data on the Web

and background knowledge on genomics. We assume that the attacker has access

to the following resources about the target individuals: (i) the partial genomic

data of individuals (from public genomic databases and genome sharing websites),

(ii) phenotype information (physical characteristics) of individuals from OSNs,

(iii) health related information of individuals from OSNs and health related social

networks, and (iv) family bonds of individuals (e.g., their family trees) from OSNs

or genealogy websites. Our proposed framework is also sketched in Fig. 3.1.

The objective is to infer the missing parts of the genomes of individuals in the

target individuals set. For this, we use family bonds between the individuals in

the target set, probabilistic relationship between the phenotype and genotype,

similar relationship between diseases and the genotype, and some genomic tools

for inference such as high order correlations in the genome and the recombination

model. To run this inference attack efficiently, similar to the previous work, we

rely on the belief propagation algorithm on a factor graph. Then, we quantify

genomic privacy of individuals and show the risk for each individual.

Constructing the factor graph: A factor graph is a bipartite graph containing

two sets of nodes (corresponding to variables and factors) and edges connecting

these two sets. We form a factor graph by setting a variable node for each SNP

xij (j ∈ S and i ∈ F). We use three types of factor nodes2: (i) familial factor

node, representing the familial relationships and reproduction, (ii) correlation

factor node, representing the higher order correlations between the SNPs either

by using a Markov chain or hidden Markov model, and (iii) phenotype factor

node, representing the correlation between the SNPs and the phenotypes (e.g.,

physical traits or diseases) of individuals. The factor graph representation of our

2There are two types of factor nodes in [19] representing the family relationships and the
LD between the SNPs.
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proposed framework is shown in Fig. 3.2. We summarize the connections between

the variable and factor nodes below:

• Each variable node xij has its familial factor node f ij if at least one parent

of individual i is in the target family. Furthermore, xkj (k 6= i) is also

connected to the familial factor node of xij if k is the mother or father of i.

If an individual i’s both parents are not present in the target family, we do

not assign familial factor nodes corresponding to the variable nodes of that

individual. For example, in Fig. 3.2, all familial factor nodes belong to the

child as his parents are present in the toy example. However, father’s and

mother’s variable nodes do not have separate familial factor nodes.

• Variable nodes in set C are connected to a correlation factor node giC (of

individual i) if SNPs in C have correlation among each other. In particular,

we consider higher order correlations in the genome. We model these corre-

lations either using a Markov chain or a hidden Markov model, HMM (i.e.,

recombination model). When we use a Markov chainwith order of k the cor-

relation set of node i is Ci = {nodei−k, nodei−k+1, nodei−k+2, . . . , nodei−1}
if i > k, and Ci = {node1, node2, node3, . . . , nodei−1} if i ≤ k, and when we

use HMM, C includes all SNPs in a chromosome.

• Variable nodes of individual i in set Hi
α are connected to a phenotype factor

node phiα if SNPs in Hi
α are associated with the phenotype phα. Note that

more than one SNP can be associated with a given phenotype. Similarly, a

SNP may be associated with more than one phenotype.

Messages between the nodes: As shown in [39], following the rules of be-

lief propagation, the global probability distribution of the variable nodes can be

factorized into products of local functions that are defined by the factor nodes

following the rules of the belief propagation algorithm. The iterative belief prop-

agation algorithm is based on exchanging messages between the variable and the

factor nodes. We represent these messages as in the following:

• The message µ
(ν)
i→k(x

i
j
(ν)

) (from a variable node i to a factor node k) denotes
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the probability of xij
(ν)

= ` (` ∈ {0, 1, 2}), at the νth iteration.

• The message λ
(ν)
k→i(x

i
j
(ν)

) (from a familial factor node to a variable node)

denotes the probability that xij
(ν)

= `, for ` ∈ {0, 1, 2}, at the νth iteration

given FR(xMj , x
F
j , x

C
j ), P, and the values of SNP j for the other two family

members (other than individual i) that are connected to the corresponding

familial factor node.

• The message β
(ν)
k→i(C, x

i
j
(ν)

) (from a correlation factor node to a variable

node) denotes the probability that xij
(ν)

= `, for ` ∈ {0, 1, 2}, at the νth

iteration given the high order correlation between the SNPs in set C.

• The message δ
(ν)
k→i(x

i
j
(ν)

) (from a phenotype factor node to a variable node)

denotes the probability that xij
(ν)

= `, for ` ∈ {0, 1, 2}, at the νth itera-

tion given the phenotype phk for individual i and the association of the

corresponding phenotype with SNP j.
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Figure 3.2: Factor graph representation of the proposed framework.

Toy example on a trio: Following [19], we choose a simple family tree con-

sisting of a trio (i.e., mother, father, and child) and 3 SNPs (i.e., |F| = 3 and

|S| = 3). In Fig. 3.2, we show how the trio and the SNPs are represented on a

factor graph, where i = m represents the mother, i = f represents the father,
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and i = c represents the child. Furthermore, the 3 SNPs are represented as j = 1,

j = 2, and j = 3, respectively. We describe the message exchange between the

variable node representing the first SNP of the mother (xm1 ), the familial factor

node of the child (f c1), the correlation factor node gmC , and the phenotype fac-

tor node phmα (representing the phenotype α for the mother). Here we assume

that variable nodes in set C are SNPs 1, 2, and 3. We also assume that the

phenotype α is associated with SNPs 1 and 2 (that are in set Hm
α ). The belief

propagation algorithm iteratively exchanges messages between the factor and the

variable nodes, updating the beliefs on the values of the targeted SNPs (in XU)

at each iteration, until convergence. For simplicity, we denote the variable and

factor nodes xm1 , f c1 , gmC , and phmα with the letters i, k, z, and s, respectively.

Messages from variable nodes: Variable node i forms µ
(ν)
i→k(x

m
1

(ν)) by multiplying

all information it receives from its neighbors excluding the familial factor node

k.3 Hence, the message from variable node i to the familial factor node k at the

νth iteration is given by

µ
(ν)
i→k(x

m
1

(ν)) =
1

Z
× β(ν−1)

z→i (C, xm1
(ν−1))× δ(ν−1)s→i (xm1

(ν−1)), (3.1)

where Z is a normalization constant. This computation is repeated for every

neighbor of each variable node. If xm1 ∈ XK (i.e., it is one of the SNPs that

is observed by the attacker), then the message µ
(ν)
i→k(x

m
1

(ν)) is constructed as a

constant, depending on the value of xm1 . Note that following the rules of belief

propagation, to prevent self-bias, the message λ
(ν−1)
k→i (xm1

(ν−1)) is not used while

generating µ
(ν)
i→k(x

m
1

(ν)). Also, if the parents of the mother (m) were also in the

graph, xm1 would have its corresponding familial factor node fm1 , and hence the

λ message generated from this factor node would have been also used when gen-

erating µ
(ν)
i→k(x

m
1

(ν)). Similarly, if SNP x1 is associated with other phenotypes, δ

messages from those phenotype factor nodes are also used while generating the

message.

3Other messages from the variable node i to the other factor nodes (z and s) are also
constructed similarly.
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Messages from familial factor nodes: The message from the familial factor node

k to the variable node i at the νth iteration is formed using the principles of belief

propagation as

λ
(ν)
k→i(x

m
1

(ν)) =
∑
{xf1 ,xc1}

f c1(xm1 , x
f
1 , x

c
1,FR(xMj , x

F
j , x

C
j ),P)×

∏
y∈{f,c}

µ
(ν)

xy1→k
(xy1

(ν)), (3.2)

where, f c1(xm1 , x
f
1 , x

c
1,FR(xMj , x

F
j , x

C
j ),P) is proportional to p(xm1 |x

f
1 , x

c
1,FR(xMj , x

F
j , x

C
j ),P),

and this probability is computed using the table in Fig. 2.1(b). This computation

is performed for every neighbor of each familial factor node.

Messages from correlation factor nodes: The message from the correlation factor

node z to the variable node i at the νth iteration is formed as

β
(ν)
z→i(C, x

m
1

(ν)) =
∑
xm2 ,x

m
3

gmC (xm1 , x
m
2 , x

m
3 )×

∏
y∈{2,3}

µ
(ν)
xmy →k(x

m
y

(ν)). (3.3)

β messages are generated for every neighbor of each correlation factor node.

As mentioned, as opposed to [19], in this work, we consider higher order cor-

relations in the genome to make the inference stronger, and hence the function

gmC (xm1 , x
m
2 , x

m
3 ) depends on the correlation model we use. We consider two dif-

ferent correlation models on the genome: (i) Markov chain, in which we consider

the genome as a sequence of SNPs, where the value of each SNP depends on the

values of neighboring k SNPs. In this scenario, gmC (xm1 , x
m
2 , x

m
3 ) = p(xm1 |xm2 , xm3 ),

for k = 2 (note that LD is a special case of this formalization when k = 1). And,

(ii) hidden Markov model (HMM), in which the genome is modeled as a Markov

process with unobserved (hidden) states. We realize the HMM model for the

genome by using the recombination model [40].

Messages from phenotype factor nodes: Finally, the message from the phenotype

factor node s to the variable node i at the νth iteration is formed as

δ
(ν)
s→i(x

m
1

(ν)) =
∑
xm2

phmα (xm1 , x
m
2 )× µ(ν)

xm2 →s
(xm2

(ν)). (3.4)
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Note that in this toy example, the phenotype α is associated with SNPs x1 and

x2 only. The function phmα (xm1 , x
m
2 ) is computed based on the association of both

SNPs with the corresponding phenotype. In some cases, it is observed that the

associations of the SNPs to a phenotype are independent from each other. On

the other hand, in some cases, we observe that the association depends on the

values of both SNPs. Similarly, in some cases, the association is probabilistic,

while in some cases the association may be deterministic. For example, having

blonde hair color is associated with SNP Rs12821256 [41]. If an individual has

blonde hair, the probability distribution of the corresponding SNP is shown to

be (0.01,0.4,0.59)4, while if he does not have blonde hair, this distribution is

shown to be (0.7,0.28,0.02). Thus, the attacker can improve his inference power

by obtaining phenotype information about the individuals in the target family.

At each iteration of the algorithm, all variable and factor nodes generate their

messages and send to all of their neighbors as described above. At the end

of each iteration, we compute the marginal probabilities of each variable nodes

(by multiplying all incoming messages), and we stop the algorithm when the

values of the marginal probabilities stop changing. Note that the computational

complexity of this inference attack is linear with the number of variable or factor

nodes in the factor graph.

3.4 Evaluation

Here, we summarize our methodology to evaluate the proposed inference frame-

work.

3.4.1 Datasets

In order to evaluate our method we used two datasets:

4Each entry represents the probability that the value of the SNP is 0, 1, and 2, respectively.
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Figure 3.3: Family tree of CEPH/Utah Pedigree 1463 consisting of the 11 family
members that were considered. The blue nodes (i.e., darker ones) represent the
male and the pink ones (i.e., lighter ones) represent the female family members.

• CEPH/Utah Pedigree 1463

• Manuel Corpas Family Pedigree

3.4.1.1 CEPH/UTAH Pedigree 1463

To evaluate the proposed inference algorithm, we used the CEPH/Utah Pedigree

1463 dataset [42]5. We obtained the SNP data both in the genome variant (GVF)

and variant call (VCF) formats. Dataset contains partial DNA sequences of 17

family members and we used 11 of these 17 individuals (to be consistent with the

previous work). The family bonds between these 11 individuals are illustrated in

Fig. 3.3.

We focused on 100 neighboring SNPs (on the DNA sequence) of the target

family on the 22nd chromosome. We also collected data for the MAF and also

to model the higher order correlations in the genome. For this purpose, we used

data of the CEU population from the 1000 Genomes Project and HapMap.

5The previous work by Humbert et al. also use the same dataset.
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3.4.1.2 Manuel Corpas Family Pedigree

Manuel Corpas is a scientist, who released his family DNA dataset in variant

call format (VCF) on his website [43]. The dataset consists DNA sequences of

father, mother, son (Manuel Corpas), daughter, and aunt. The family tree of the

individuals in this dataset is illustrated in Fig. 3.4. Similar to the CEPH/UTAH

Pedigree dataset setup, for this dataset, we focused on the 22nd chromosome and

selected 100 neighboring SNPs of each family member.

GP1 GP2 GP3 GP4

MA F

SD

Figure 3.4: Family tree of Manuel Corpas consisting of the 9 family members
that were considered. The blue nodes (i.e., darker ones) represent the male and
the pink ones (i.e., lighter ones) represent the female family members. Genomic
data for the grandparents (GP1, GP2, GP3 and GP4) is missing in the original
dataset.

3.4.2 Evaluation Metrics

Similar to [19], we evaluated the proposed framework in terms of both attacker’s

incorrectness and uncertainty. Incorrectness quantifies the adversary’s error in in-

ferring the SNPs of the individuals in the target set. This metric can be expressed

as follows:

Ei
j =

∑
xij∈{0,1,2}

p(xij|Ψ)||xij − x̂ij||. (3.5)

where, x̂ij is the true value of the inferred SNP, and Ψ includes all the information

that is available to the attacker (as in Fig. 3.1). The incorrectness metric quanti-

fies how far the adversary is away from the actual value of a SNP in his inference.
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We also evaluated the proposed scheme based on the attacker’s uncertainty. For

this purpose, we used the following normalized entropy metric from [19]:

H i
j =
−
∑

xij∈{0,1,2}
p(xij|Ψ) log(xij|Ψ)

log(3)
. (3.6)

This can be described as the entropy of the adversary for an unobserved SNP.

This metric quantifies the confidence of the adversary about his inference. Note

that one needs the ground truth data in order to evaluate the incorrectness of

the attacker. Here, by using both incorrectness and uncertainty metrics, we show

the correlation between two, as in practice, it is not trivial to possess the ground

truth data in order to evaluate the incorrectness of the attacker. That is, we

show that one can also use the normalized entropy to quantify an individual’s

genomic privacy (and hence the strength of an inference attack). In fact, a recent

work about genomic privacy metrics also reports that both incorrectness and

uncertainty (normalized entropy) are suitable metrics to quantify genomic privacy

(and hence the inference attack power) [44]. We compute the metrics in equations

(3.5) and (3.6) for each SNP and then take the average for all the SNPs in the

unknown set XU.

3.4.3 Results

Due to the nature of kinship and characteristics of genomic data, we cannot

avoid having cycles in our factor graph. Although there is no theoretical proof

that our solution (and belief propagation algorithm in general) will converge

to an optimal result in the presence of cycles, according to several runs of the

algorithm on different SNPs, we observed that belief propagation converges with

a significantly low error.

3.4.3.1 CEPH/UTAH Pedigree 1463

We conducted experiments for both high order correlation models (Markov chain

and HMM). In the first experiment, among the 100 SNPs we considered, we
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Figure 3.5: Decrease in genomic privacy of P5 (in Fig. 3.3) in terms of the incor-
rectness of the attacker. We reveal partial genomes of other family members for
different high order correlation models in the genome. MC stands for the Markov
chain model (with different orders) and HMM stands for the hidden Markov
model.
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Figure 3.6: Decrease in genomic privacy of P5 (in Fig. 3.3) in terms of the un-
certainty of the attacker. We reveal partial genomes of other family members for
different high order correlation models in the genome. MC stands for the Markov
chain model (with different orders) and HMM stands for the hidden Markov
model.
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randomly hide 50 SNPs belonging to P5 in the CEPH/UTAH family (in Fig. 3.3)

and tried to infer them by gradually increasing the background information of the

attacker. We also assumed that the attacker knows the following 3 phenotypes

of each family member (that are associated with the considered SNPs) [41].

• Verbal declarative memory - associated to Rs5747035

• Neurofibromatosis - associated to Rs121434260

• Crohn’s disease - associated to Rs4820425

Because the information about these phenotypes in family members are not

publicly available, we probabilistically simulated these phenotypes for the family

members (using real probabilities obtained from [41]) and used these simulated

phenotypes for the inference. Thus, the contribution of the phenotype informa-

tion to the inference attack will remain the same if we use the real phenotype

information about the individuals as well.

We started revealing 50 random SNPs (out of 100) of other family members

(starting from the most distant one to the P5 in terms of number of hops in

Fig. 3.3) and observe how the inference power of the attacker changes. We run

each experiment 50 times and take the average of each privacy metric. We mod-

elled the high order correlations via both the Markov chain model (for different

orders - k) and HMM. We show our results for the attacker’s incorrectness and

uncertainty in Figs. 3.5 and 3.6, respectively. Note that the case when k = 1

(with no phenotype information) represents the previous work by Humbert et

al. We observed that both the incorrectness and uncertainty of the attacker de-

creases by revealing more data. More importantly, our results show that high

order correlations and phenotype information contributes significantly to the in-

ference power of the attacker. In both figures, we see that for the Markov chain

model, attacker’s inference does not improve much for orders of Markov chain

(k) that is larger than 3. We further discuss the relation between the amount of

unobserved (hidden) SNPs and this bottleneck (about the order of the Markov

chain) in Appendix A.1. We also observed that the HMM increases the attacker’s
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inference power compared to the Markov chain model. In all experiments, the

accuracy of the HMM is better than the Markov chain’s accuracy, which is also

consistent with the previous work [45].

Next, to observe the effect of number of hidden SNPs to the high order corre-

lation model, we run the same experiment for the Markov chain model and HMM

by hiding different number of SNPs from the victim (P5) and the other family

members. This time, we started revealing varying number of random SNPs (out

of 100) of other family members (starting from the most distant one to the P5

as before) and observe the inference power of the attacker. In Figs. 3.7 and 3.8,

we show our results for the Markov chain model when the order of the Markov

chain (k) is 3. We observed that the inference power of the Markov chain model

increases as more SNPs of the family members are observed. We obtained similar

results for the HMM model (as before, we observed that HMM gives better accu-

racy compared to Markov chain for varying number of hidden SNPs). In order to

show the standard deviations of the experiments, we also show the results with

error bars in Appendix A.

3.4.3.2 Manuel Corpas Family Pedigree

We also evaluated our proposed attack on the Manuel Corpas Family Pedigree

dataset. Here, we set our target as the mother (M in Fig. 3.4) and try to infer

her unobserved SNPs. Unlike the previous experiment, here, we started revealing

from the closest family members to the farthest member to show that the strength

of the proposed inference attack is independent of the dataset and evaluation

methodology. Similar to the previous experiment, we assumed that the attacker

knows the same set of three phenotypes about each member of this family and

we revealed 50 random SNPs (out of 100) of other family members. We run each

experiment 50 times and take the average of each privacy metric.

The results for this experiment (in terms of normalized error and normalized

entropy) are given in Figs. 3.9 and 3.10. Obtained results are consistent with
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Figure 3.7: Decrease in genomic privacy of P5 (in Fig. 3.3) in terms of the incor-
rectness of the attacker. We reveal different number of random SNPs from other
family members and use the Markov chain model (with k = 3) to model the high
order correlation in the genome.
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Figure 3.8: Decrease in genomic privacy of P5 (in Fig. 3.3) in terms of the uncer-
tainty of the attacker. We reveal different number of random SNPs from other
family members and use the Markov chain model (with k = 3) to model the high
order correlation in the genome.

28



0 D S GP1 GP2 F A GP8 GP9

Revealed Family Members

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

N
or

m
al

iz
ed

 E
rr

or

MC1 Without Phenotypes
MC1 With Phenotypes
MC2 With Phenotypes
MC3 With Phenotypes
HMM With Phenotypes

Figure 3.9: Decrease in genomic privacy of M (in Fig. 3.4) in terms of the incor-
rectness of the attacker. We reveal partial genomes of other family members for
different high order correlation models in the genome. MC stands for the Markov
chain model (with different orders) and HMM stands for the hidden Markov
model.
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Figure 3.10: Decrease in genomic privacy of M (in Fig. 3.4) in terms of the
uncertainty of the attacker. We reveal partial genomes of other family members
for different high order correlation models in the genome. MC stands for the
Markov chain model (with different orders) and HMM stands for the hidden
Markov model.
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our expectations (error and entropy decrease with each revealed family mem-

ber). Similar to the previous results, it can be seen that high order correlation

and phenotype information contributes significantly to inference power of the at-

tacker. In general, we observed that the results are consistent with CEPH/UTAH

pedigree experiments. However, since we changed the order of revealing family

members, unlike the previous results, here we observed a continuous decrease in

error and entropy for the genomic privacy of the victim. This is because each

family member has a direct effect on our inference power.
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Chapter 4

Defend The Genomic Privacy

In this chapter, first we explain our genome sharing privacy preserving methodol-

ogy which is based on differential privacy, then we evaluate it against attack which

may target individuals or their families. Finally, we compare our methodology

with other method and discuss it robustness based on results.

4.1 Proposed Privacy-Preserving Framework

In this Chapter, we elaborate our proposed framework including our assumptions,

notations we used, and the system model. First, we describe the general settings,

assumptions, and the attacker model. Then, we provide a mathematical formu-

lation of our solution and explain the general data sharing framework. Finally,

we discuss some common scenarios via a toy example.

4.1.1 Assumptions and Notations

In this part, we explain our settings and notations. We have a set of family

members denoted as F. We represent the set of SNP IDs of an individual i
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(i ∈ F) as Ii. We represent the value of a SNP as the number of minor alleles it

carries and we denote the value of a SNP j for individual i as xij (j ∈ Ii). Thus,

xij takes values from set {0, 1, 2}. Also, we denote a SNP j as xj for general

representation (regardless of its value in a specific individual). We denote the

set of sensitive SNPs for individual i as Si. The SNPs in the sensitive set are

never shared by the corresponding individual. However, as will be discussed later,

information about these SNPs can be leaked either by sharing other SNPs that

are not in the sensitive set or SNPs shared by other family members. Also, each

family member may have his own sensitive SNP set.

During the SNP sharing (i.e., data sharing) procedure, by using our proposed

mechanism, an individual decides to hide (or share) each of his SNPs. We denote

the set of hidden SNPs of individual i as Hi and his set of shared SNPs as Ri1.

At the beginning of the sharing procedure (discussed in Section 4.1.4), all of the

SNPs of i are hidden (i.e., Hi = Ii and Ri = φ). Then, based on the result of the

proposed mechanism on each SNP, we decide whether or not to add that SNP to

the set of shared SNPs (Ri). We list the frequently used notations in Table 4.1.

Table 4.1: Frequently used notations.

Definition Notation

Set of family members F

Set of SNPs of individual i Ii

Value of SNP j of individual i xij
Set of sensitive SNPs of individual i Si

Set of hidden SNPs of individual i Hi

Set of shared SNP of individual i Ri

4.1.2 Attacker Model

We assume that the attacker has background knowledge about public statistics

about genomics and the relationship between the family members in F. That

is, the attacker has access to public resources including SNP data belonging to

1SNPs in the sensitive set of individual i are always hidden, and hence Si ⊆ Hi.
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different populations [23, 17]. Using such resources, the attacker can calculate

the minor allele frequency (MAF) for each SNP (frequency at which the minor

allele is observed in a given population). Using similar resources, the attacker can

also compute high-order correlations between the SNPs and use this information

for the inference of the SNPs in the sensitive sets of individuals [24]. For this,

the attacker exploits the method introduced in [24] as follows:

Pk(xj) =

{
0 if F (xi−k,i−1) = 0

F (xi−k,i)

F (xi−k,i−1)
if F (xi−k,i−1) > 0.

(4.1)

Here, Pk(xj) is the probability distribution of SNP j computed using a Markov

chain of order k. Also, F (xi,j) is the frequency of the subsequence xi,j that in-

cludes all the SNPs between xi and xj. Furthermore, the attacker knows that the

shared SNPs of an individual may threaten the kin genomic privacy of his family

members. To utilize this information, the attacker mainly uses the Mendel’s law.

To run its inference attack on the SNPs in the sensitive sets of individu-

als, the attacker uses the combination of all the aforementioned information as

shown in [11] and chapter 3 by using a message passing algorithm on a graphical

model [25, 26] (as introduced in Chapter 2.3). In attacker’s favor, we assume that

the correlation model (i.e., Markov chain order) used by the attacker is the same

as the one we use during the proposed SNP sharing mechanism. Also, as we will

show later via experiments, increasing the order of the correlation model beyond

a value does not increase the inference power, and hence we do not assume that

the attacker uses a higher-order correlation model than the SNP sharing mecha-

nism. In our evaluations, we first focus on an individual’s genomic privacy, then

we also consider the kinship relationships between family members.

4.1.3 Mathematical Formulation

Miguel et al. have utilized the differential privacy notion to establish a method

to protect a user’s location privacy while sharing data with location-based service

providers [16]. The authors have shown that a mechanism is differentially private

if revealing any piece of information via the mechanism keeps the probability of a
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user’s location within an exponential boundary as in (2.3). In this work, inspired

by [16] and the generalized version of differential privacy [21], we introduce a

novel formulation of differential privacy for sharing genomic data.

Similar to (2.2), we assume each SNP j takes a scalar value (from R1) such

that xj ∈ {0, 1, 2}, and hence the L1 norm between any two SNP values (i.e.,

l) is bounded by 2 (i.e., |xj − xi| ≤ 2 for any two SNPs i and j). Unlike other

differentially private data sharing mechanisms, which add noise to shared data

points in order to protect privacy, we introduce a sharing mechanism for the

hidden SNPs. That is, rather than sharing noisy SNP values, we prefer the

proposed mechanism to decide whether or not to share each SNP (this is also the

preferred methodology for medical data in general).

We assume the attacker’s auxiliary information is denoted as A. This informa-

tion includes (i) minor allele frequency (MAF) values of the SNPs, (ii) high-order

correlations between the SNPs, and (iii) the relationship between the family mem-

bers in F. Our proposed mechanism decides whether or not to share each hidden

SNP of a donor i. For each SNP j in Hi, the mechanism calculates the probability

distribution of SNPs in Sm (∀m ∈ F) assuming xij is shared and also using all

the previously shared SNPs of both the donor and the other family members in

F. For this, we use the inference attack introduced in Chapter 2.3.

Let set R include all the SNPs that have been shared by the individuals in F

so far. That is, R =
⋃
i∈F Ri. For individual i to share a new SNP j, we require

that for all sensitive SNPs of all family members, the ratio between probabilities

of different states should not be greater than a boundary as follows:

P (xmk |R ∪ xij,A)

P (xmk
′|R ∪ xij,A)

≤ elεm
P (xmk |A)

P (xmk
′|A)

∀m ∈ F, ∀k ∈ Sm, xmk , x
m
k
′ ∈ {0, 1, 2} xmk 6= xmk

′.

(4.2)

It is important to note that the above condition, and hence the sharing (or hiding)

decision on a particular SNP is independent of the actual values of the sensitive

SNPs of the donor and the other family members. We will further discuss the

importance of this property in later sections.
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Based on this formulation for SNP sharing, we have the following theorem:

Theorem 1. Sharing SNPs of individual by following (4.2) implies generalized

formulation of differential privacy that is shown in (2.2).

Proof Sketch. Similar to (2.2), we consider our data points (xj) as scalars

representing the SNP values. The measure µx(S) (in (2.2)) for general expression

is equivalent to probability of observing a shared SNP sequence S given the

auxiliary information of attacker about sensitive data points (xj). Thus, by using

Bayes’ formula on (2.2), we can show that (2.2) implies posterior probability

distributions should not differ from the priors by more than a boundary, and this is

what we require in (4.2). We provide a more elaborate proof about the equivalency

of our formulation with generalized differential privacy in Appendix B.1. Next,

we discuss how we use this mathematical formulation for sharing genomic data

between a donor and a service provider.

4.1.4 SNP Sharing Mechanism

The overview of the proposed mechanism is shown in Fig. 4.1. Let individual i be

the donor that wants to share his SNPs with a service provider. At the beginning

of the process, all of the SNPs of the individual i are hidden, (i.e., Ri = φ and

Hi = Ii). We first assign the set of sensitive SNPs (Si) and a privacy parameter

(i.e., εi in (4.2)) for individual i. As discussed, these two parameters can be

different for all individuals in F. Then, we pick a SNP j from Hi and calculate

its disclosure effect on the probability distribution of each SNP in the sensitive

SNP set of i (Si) and the sensitive SNP sets of all the other family members in F.

If (4.2) holds true for all SNPs in Sm (∀m ∈ F), then we share the corresponding

hidden SNP and add it to set Ri, otherwise xij remains in Hi. The details of our

proposed mechanism are also shown in Algorithm 1.
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Figure 4.1: The donor (individual i) wants to share his SNP sequence with a
service provider. We illustrate one instance of this sharing for SNP xij.

ALGORITHM 1: SNP Sharing Mechanism

input : Attacker’s auxiliary information A: {MAF values of the SNPs,
high-order correlations, the relationship between members in F},
index of donor i, sensitive SNP sets Sm (m ∈ F), shared SNP sets
Rm (m ∈ F), R =

⋃
i∈F Ri, privacy parameter εm of each family

member m.
output: Set of shared SNPs of donor, Ri

Ri ←− φ;
Hi ←− Ii;
forall the SNP j in Hi\Si do

Run inference attack on Sm, ∀m ∈ F;
Calculate P (xij|R ∪ xij,A);

flag ←− 1;
forall the m in F do

forall the SNP k in Sm do
if (4.2) is violated then

flag ←− 0;
end

end

end
if flag = 1 then

Ri ←− Ri ∪ xij
end

end
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4.1.5 Toy Example

Here, we provide a toy example about the proposed SNP sharing mechanism

to discuss some common scenarios that might happen. Notably, we show that

sharing decision for a particular SNP is independent of the actual values of donor’s

(and family members’) sensitive SNPs. Therefore, the reason for not sharing a

SNP is not necessarily due to the decrease in the estimation error of the attacker

when that SNP is shared, and hence the attacker cannot infer the actual values

of the sensitive SNPs using the decisions of the donor.

Assume we have the population as shown in Table 4.2 that consists of 6 individ-

uals (i1, . . . , i6). For simplicity, in this example, we do not consider the kinship in-

formation between the individuals. The SNP set has three SNPs, Ii = {xi1, xi2, xi3},
and the sensitive set is Si = {xi3} for all individuals.

i1 i2 i3 i4 i5 i6
x1 0 1 2 1 0 2
x2 0 0 0 0 1 1
x3 0 1 0 0 1 2

Table 4.2: The example population including 3 SNPs of 6 individuals. Each
column shows the corresponding individual’s SNP values.

The attacker’s auxiliary information consists of MAF values of the SNPs and

the correlation model between the SNPs. In Table 4.3, we show the prior prob-

ability distribution of each SNP xj (j ∈ {1, 2, 3}) computed using its MAF

value. We assume that the attacker uses the first order Markov chain to cal-

culate the correlation model between the SNPs. That is, the attacker computes

P1(xj) = P (xj|xj−1) ((j ∈ {1, 2, 3})), by using (4.1). We also show these correla-

tion values (computed using the SNP sequences in Table 4.2) in Table 4.4.
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P (x1) P (x2) P (x3)
Homozygous major (0) 0.33 0.67 0.50
Heterozygous (1) 0.33 0.33 0.33
Homozygous minor (2) 0.33 0.00 0.17

Table 4.3: Prior probability distributions of SNPs (in Table 4.2) computed using
their MAF values.

P(x1) P(x2 | x1) P(x3 | x2)
xj = 0, xj−1 = 0 0.33 0.50 0.75
xj = 0, xj−1 = 1 0.33 1.00 0.00
xj = 0, xj−1 = 2 0.33 0.50 0.00
xj = 1, xj−1 = 0 0.33 0.50 0.25
xj = 1, xj−1 = 1 0.33 0.00 0.50
xj = 1, xj−1 = 2 0.33 0.50 0.00
xj = 2, xj−1 = 0 0.33 0.00 0.00
xj = 2, xj−1 = 1 0.33 0.00 0.50
xj = 2, xj−1 = 2 0.33 0.00 0.00

Table 4.4: Correlation model between the SNPs for the first order Markov chain.
The first column shows the different states of sequential SNPs and the remaining
columns show the probabilities. In this example, we do not consider the SNPs
before x1, and hence in the correlation model, all states of x1 are equally likely.

We set the privacy parameter ε = 0.3 for all individuals. We consider the

sharing of xi1 for different individuals in the example population. For that, we

compute how this disclosure changes the probability distribution of the sensitive

SNP xi3 and observe how this change may violate (4.2). We may observe three

different cases (or a combination of them) for the left part of (4.2):

(a) Sharing xi1 may change the ratio between states zero and one of xi3.

(b) Sharing xi1 may change the ratio between states one and two of xi3.

(c) Sharing xi1 may change the ratio between states two and zero of xi3.

For cases (a) and (b), consider individual 4 (i4) as the donor. We show the

prior probability distributions for x43 in Table 4.3. We can compute the effect of

sharing x41 on the posterior probability distribution of x43 as follows:

P (x43|R ∪ x41,A) ∝
∑
x2

P (x43|x42)P (x41 = 1), x43 ∈ {0, 1, 2}.
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Thus, we compute the posterior distribution as P (x43 = 0|R ∪ x41,A) = 1/4,

P (x43 = 1|R ∪ x41,A) = 1/12, and P (x43 = 2|R ∪ x41,A) = 0. Setting x43 = 0 and

x43
′ = 1, we observe that case (a) violates the condition in (4.2). Similarly, setting

x43 = 1 and x43
′ = 2 (case (b)) also violates (4.2). As a result, in this scenario,

we decide not to share x41. As shown, regardless of the real value of x43, condition

in (4.2) may be violated due to several different cases. Therefore, not sharing

x41 would not provide additional information about the actual value of x43 to the

attacker.

To illustrate case (c), we can pick individual 3 as the donor and repeat similar

computations. In this case, setting x33 = 2 and x33
′ = 0 violates (4.2). Therefore,

even though sharing x31 increases the estimation error of the attacker for the value

of the sensitive SNP x33, due to the violation of (4.2), our mechanism does not

share x31 and the attacker cannot infer further information about the value of x33

due to this decision.

From this example, we come up with the following conclusions:

• Since we do not consider the real values of the SNPs in the sensitive set while

computing (4.2), each of the aforementioned cases (or even combination of

them) may occur, and hence the attacker cannot know which violation is

the reason for not sharing a particular SNP. In Section 4.2.6, we show that

not considering the real value of the sensitive SNPs increases the utility of

shared data.

• Sharing a SNP may decrease or increase the estimation error of the attacker

for the sensitive SNPs. Similarly, the decision may also either decrease or

increase the entropy of the sensitive SNPs . Thus, the attacker cannot infer

the real values of the sensitive SNPs from the decision our mechanism gives

about sharing SNPs. We will discuss this further in Chapter 4.3.2.
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4.2 Evaluation

In this section, we evaluate our proposed mechanism using a real-life dataset

and study the effects of various parameters to both privacy and utility. We also

compare the proposed mechanism with a similar work by Humbert et al. that

has a similar goal as ours [1].

We use a dataset that consists of 1000 SNPs belonging to 99 people from Cen-

tral European ethnicity [18]. Using this dataset, first, we compute the auxiliary

information of the attacker. Thus, we generate the correlation model (Markov

chain) on the SNPs of the individuals in the population using (4.1) and also com-

pute the prior probability distributions of the SNPs using their MAF values. We

define the utility of the shared data as the number (or fraction) of SNPs that are

shared as a result of our proposed algorithm. We study the following parameters

that have effect on the privacy and utility (i.e., amount of shared SNPs).

• Order of Markov chain. We study the correlation model between the

SNPs (i.e., the order of Markov chain) on the inference power of the attacker

and on the utility.

• Privacy parameter. We study the effect of ε parameter in (4.2) on both

privacy and utility.

• Size of sensitive SNP set. We study the relationship between the fraction

of sensitive SNPs to the whole SNPs and the utility.

• Attacker’s error and entropy. We study the relationship between the

success of attacker’s inference attack and utility.

• Entropy of the SNPs in the sensitive SNP set. We compare the low

entropy and high entropy sensitive SNPs in terms of utility.

• Kinship relationships. We study the effect of kinship inference attack

which is discussed in [11] and Chapter 3 on the utility.
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4.2.1 Order of Markov Chain and Privacy Parameter

Here, we choose 50 random SNPs as the sensitive ones (out of 1000 SNPs in the

dataset), we repeat the experiment for 10 random individuals using the proposed

SNP sharing mechanism, and report the average results. In Fig. 4.2, we show

the relation between the privacy parameter (ε) and the utility for different orders

of the Markov chain model (for the correlation between the SNPs). We observe

that as expected, with increasing ε value, the average utility also increases. Also,

with increasing Markov chain order, the utility decreases. In other words, higher-

order correlation models improve the inference power of the attacker. We also

observe that (i) for ε > 0.7, the results for correlation models with Markov chain

orders 3 and 4 overlap, and (ii) for correlation models of order higher than 4, the

improvement in the inference power of the attacker is negligible (the results in

Chapter 3 also support this finding).
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Figure 4.2: Relationship between utility (number of shared SNPs), privacy pa-
rameter (ε), and the correlation model (i.e., order of the Markov chain). Here,
the donor has 1000 SNPs in total and the size of the sensitive SNP set is set to
50.

4.2.2 Size of the Sensitive SNP Set

Here, we study the effect of fraction of sensitive SNPs (to the whole SNPs) on

the utility. For this study, we represent the utility as the fraction of the shared

SNPs in the non-sensitive SNP set. Thus, the utility for the SNPs shared by

individual i is defined as |Ri|/(|Ii| − |Si|). As before, we repeat each experiment

for 10 random individuals and report the average.

In Fig. 4.3, we show the effect of the sensitive SNP set size on the utility

for different correlation models (for Markov chains of order 1 and 4) and for

different privacy parameters. The x-axis shows the fraction of the sensitive SNPs

to the whole SNPs in Ii (i.e., |Si|/|Ii|) varying between 1% and 40%. Although
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Figure 4.3: Relationship between utility (fraction of shared non-sensitive SNPs),
fraction of sensitive SNPs, privacy parameter (ε), and the correlation model (i.e.,
order of the Markov chain). Utility is defined as |Ri|/(|Ii| − |Si|) and the fraction
of sensitive SNPs is defined as |Si|/|Ii|.

the utility is defined as the fraction of shared SNPs from the non-sensitive SNP

set, by increasing the fraction of the sensitive SNPs, we observe a decrease in the

utility. This is because as the size of sensitive SNP set increases, more SNPs in the

non-sensitive set becomes correlated with the sensitive SNPs. Also, the decrease

in utility is higher for higher-order correlation models (which is consistent with

the results in Fig. 4.2). We also observe that the improvement in utility gets

smaller and the utility converges to a common value as the ε value gets closer to

1.

4.2.3 Estimation Error and Entropy

In order to evaluate our proposed SNP sharing mechanism in terms of attacker’s

success for inferring the sensitive SNPs, we use two metrics that has been previ-

ously proposed by Humbert et al. [11]: (i) the average distance of the attacker

from true value of the sensitive SNPs (i.e., estimation error or incorrectness),

and (ii) the entropy (or uncertainty) of the attacker based on inferred probabil-

ity distributions of the sensitive SNPs. For attacker’s incorrectness, we use the
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following metric:

Ei =
∑
xij

P (xij)||xij − x̂ij||, j ∈ Si, xij ∈ {0, 1, 2}, (4.3)

where Ei is attacker’s error for individual i’s sensitive SNPs. Also, P (xij) is the

probability distribution of SNP j of individual i that is inferred by the attacker as

a result of the inference attack (as introduced in Chapter 2.3) and x̂ij is the true

value of SNP j of individual i. For attacker’s uncertainty, we use the following

metric:

Hi = −
∑
xij

P (xij) log(P (xij)), j ∈ Si, xij ∈ {0, 1, 2}, (4.4)

where Hi is attacker’s uncertainty (entropy) for individual i’s sensitive SNPs.

We study the effect of fraction of sensitive SNPs to the whole SNPs (i.e.,

|Si|/|Ii|) on the error and entropy (as before, we run 10 experiments and report

the average). In Table 4.5, we show how attacker’s (average) estimation error

changes with different fractions of sensitive SNPs for ε = 0.5 (we did not observe

much change for different ε values between 0.05 and 1). We observe that attacker’s

estimation error increases with increasing fractions of sensitive SNPs. The error

increases fast for small fractions of sensitive SNPs and then it saturates for larger

fractions. Also, the error does not change much for different correlation models.

In fact, the error for Markov chain order 4 is sometimes larger than the one for

order 1. This is because we share less SNPs for order 4 (as shown in Fig. 4.2),

and hence higher order correlation model generates noisy inference results. Also,

in Table 4.6, we show how attacker’s (average) uncertainty changes with different

fractions of sensitive SNPs for ε = 0.5. As in error, we observe that attacker’s

uncertainty (entropy of the sensitive SNPs) increases with increasing fractions of

sensitive SNPs. Note however that, as shown in Fig. 4.3, utility of the SNP sharing

mechanism is different for different fractions of sensitive SNPs and correlation

models.
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Fraction of sensitive SNPs
1% 5% 20% 40%

Markov chain order 1 0.9250 1.0428 1.0684 1.0781
Markov chain order 4 0.9540 1.0517 1.0694 1.0801

Table 4.5: Relationship between attacker’s average estimation error and fraction
of sensitive SNPs (|Si|/|Ii|) for different correlation models. Privacy parameter
(ε) is set to 0.5.

Fraction of sensitive SNPs
1% 5% 20% 40%

Markov chain order 1 0.4387 0.4942 0.5111 0.5229
Markov chain order 4 0.4535 0.5027 0.5088 0.5218

Table 4.6: Relationship between attacker’s average uncertainty and fraction of
sensitive SNPs (|Si|/|Ii|) for different correlation models. Privacy parameter (ε)
is set to 0.5.

4.2.4 Entropy of the SNPs in the Sensitive SNP Set

Here, we study the relationship between the types of SNPs in the sensitive SNP

set and the utility of the SNP sharing mechanism. For this, we categorize the

SNPs as (i) high entropy SNPs, and (ii) low entropy SNPs. Entropy of a SNP

is computed using its prior probability distribution that is computed using its

(publicly known) MAF value (which varies between 0 and 0.5). Therefore, a SNP

with low MAF value (close to 0) has low entropy (i.e., probability distribution of

its states show high differences), whereas a SNP with high MAF value (close to

0.5) has high entropy (i.e., probability distribution of its states is almost uniform).

We construct the low-entropy sensitive SNP set by randomly selecting 50 SNPs

whose entropy is less than 0.5 and we do the opposite for the high-entropy SNP set

(we repeat the same experiment for 10 random individuals in the population).

We show the results in Fig. 4.4 for different correlation models and different

values of the privacy parameter (ε). We observe that in general, the proposed

SNP sharing mechanism provides significantly more utility (i.e., number of shared

SNPs are higher) when the sensitive SNP set includes low entropy SNPs. This

is because the attacker already has a good knowledge (through the public MAF

values) about the values of the low entropy SNPs in the sensitive SNP set. Thus,
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sharing other SNPs typically does not significantly improve this knowledge. On

the other hand, attacker’s knowledge about the values of high entropy SNPs (in

the sensitive SNP set) is more likely to significantly increase with the sharing

of other SNPs. Therefore, for a fixed ε value, we have higher utility when we

include low entropy SNPs in the sensitive set. Furthermore, low entropy SNPs

are expected to be the rare ones and rare SNPs typically have low correlations

with the other ones. Thus, SNPs in the sensitive SNP set have low correlations

with the non-sensitive ones, and hence sharing non-sensitive SNPs does not have

much effect on the privacy of the SNPs in the sensitive set. On the other hand,

high entropy SNPs typically have higher correlations with the other SNPs.

We also compute the attacker’s estimation error for low and high entropy

sensitive SNP sets. The average estimation error of the attacker is around 0.8 for

the high-entropy sensitive SNP set and it is around 0.01 for low-entropy sensitive

SNP set.2 This is expected as the attacker already has a significant background

knowledge (through MAF values) about the values of the low entropy SNPs.

4.2.5 Kinship Relationships

In this part, we evaluate our proposed SNP sharing mechanism by also consid-

ering the kin genomic privacy of individuals (as formulated in Chapter 4.1.3).

Along with kinship relationships and Mendel’s law, we also use higher-order cor-

relations on the DNA as in Chapter 3. We use the inference attack introduced in

Chapter 2.3 to compute the posterior probabilities in (4.2).

For the evaluation, we use a trio (father, mother, and son) from Manuel Corpas

family DNA dataset [8]. We choose 100 neighboring SNPs of the considered family

members. We set the size of the sensitive SNP set to 20 for all family members

and we randomly choose 20 SNPs for each family member to construct their

sensitive SNP sets (i.e., sensitive SNP set of each family member is different).

We assume that the son is the donor and we use the proposed SNP sharing

2These values are almost the same for all correlation models and they slightly decrease with
increasing ε value.
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Figure 4.4: Relationship between the types of SNPs in the sensitive SNP set and
the utility (number of shared SNPs) for different privacy parameter values (ε)
and different correlation models. k represents the order of the Markov chain used
for the correlation model. The dashed lines illustrate sensitive SNP sets with
low entropy SNPs (SNPs whose entropy is less than 0.5) based on their MAF
values and the continuous lines illustrate sensitive SNP sets with high entropy
SNPs (SNPs whose entropy is equal to or higher than 0.5). In all experiments,
the donor has 1000 SNPs in total and the size of the sensitive SNP set is set to
50.

mechanism to share the non-sensitive SNPs of son (by also considering genomic

privacy of other family members). We use the same privacy parameter (ε) for all

family members. We conduct each experiment for 10 times and show the results

for utility (number of shared SNPs) for different ε parameters and correlation

models in Fig. 4.5. In particular, we show that for high-order correlation models,

the value of the privacy parameter should be high to have some utility when we

also consider kin genomic privacy. Note that in this experiment, we assume 20%

of total SNPs as sensitive for each family member and the utility increases as this

fraction decreases.
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Figure 4.5: Relationship between the privacy parameter (ε) and the utility (num-
ber of shared SNPs) for different correlation models when we also consider kin
genomic privacy. We consider a trio (father, mother, and son) and the donor
is the son. Each family member has its own (randomly constructed) sensitive
SNP set and the privacy parameter is the same for all family members. In all
experiments, the donor has 100 SNPs in total and the size of the sensitive SNP
set is set to 20 for all family members.

4.2.6 Comparison With Previous Work

We compare our proposed mechanism with Humbert et al.’s work [1] which has a

similar goal as ours. Humbert et al. propose a SNP sharing mechanism by formu-

lating the problem as an optimization problem, in which the goal is to maximize

the utility while considering privacy constraints of the donor and his family mem-

bers. In the rest of this section, we first briefly introduce the methodology of [1]

and then, we compare our proposed mechanism with [1].
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4.2.6.1 Methodology of Humbert et al. [1]

The set of family members is denoted as F. A family member (referred as the

donor) wants to share a set of his SNPs. The goal is to maximize the number of

donor’s shared SNPs while preserving his and the family members’ genomic pri-

vacy up to a limit. The sharing decisions on SNPs of individual i are represented

with vector yi = {yij : j ∈ Ii}, where yij = 1 means individual i shares SNP j, and

yij = 0 means SNP j remains hidden. The sensitivity of a SNP j for individual i is

denoted as sij. The set of privacy sensitive SNPs of individual i is denoted as Pi
s

and the privacy (loss) tolerance of individual i for the SNPs in Pi
s is denoted as

Pri(i,Pi
s). The background information of the attacker includes the MAF values

of the SNPs, pairwise correlation model between the SNPs (i.e., LD), and rules

of Mendelian inheritance.

First (before sharing any SNPs of the donor), attacker’s estimation error is

computed for the sensitive SNPs of all individuals in F and it is denoted as

Ei
j(y = 0) (for i ∈ F and j ∈ Pi

s).
3 After the donor shares (reveals) some

SNPs, the new estimation error is denoted as Ei
j(y
∗) and the privacy loss for

SNP j of individual i due to the sharing of the donor’s SNPs is represented as

Ei
j(y = 0)−Ei

j(y
∗). To quantify the effect of SNP sharing on the privacy of SNP

j of individual i, a privacy weight (pij) quantity is introduced as follows:

pij = sij × (Ei
j(y = 0)− Ei

j(y
∗)). (4.5)

The utility of a SNP j is denoted as uj. This quantity can be determined by

researchers and genome studies. As discussed, the donor faces an optimization

problem in which he wants to maximize the utility (i.e., number of shared SNPs).

Formally, the optimization problem is defined as follows:

maximize
y

∑
j∈Ii

ujy
i
j

subject to
∑
j∈Pi

s

pij ≤ Pri(i,Pi
s),∀i ∈ F

yij ∈ {0, 1},∀j ∈ Pi
s.

(4.6)

3Estimation error is computed as shown in (4.3).
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In order to find a feasible solution, this optimization problem is first solved

without considering the correlations between the SNPs (i.e., assuming that all

SNPs are independent). Then, SNPs that are shared and violate the privacy

tolerances of the individuals (when the correlations are considered) are hidden

via a fine-tuning algorithm. To do so, first the family member k whose privacy

constraint Pri(k,Pk
s) is violated the most as a result of the optimization part is

identified. After identifying individual k, the next step is to hide some SNPs j

from the shared SNP set of the donor (Ri). To do this, a global privacy weight is

computed for individual k due to each shared SNP j of the donor as follows:

δkj = pkj +
∑
l∈Lj

pkl , (4.7)

where set Lj includes all the SNPs that are in LD with SNP j. Then, for each

shared SNP of the donor, the ratio between its global privacy weight and utility is

computed to obtain rkj = δkj /uj. The SNP j with the highest rkj value is removed

from the set of shared SNPs of the donor (representing the SNP that causes high

privacy loss for individual k while providing low utility). This process iteratively

continues until the privacy constraints of all individuals in F are satisfied. We

compare our proposed mechanism with Humbert et al.’s work [1] (hereafter, re-

ferred to as the “optimization-based mechanism”) first without considering the

kinship relationships between individuals and then, by also considering the kin-

ship.

4.2.6.2 Comparison without considering kinship

For the donor i, we randomly choose 50 SNPs to construct his sensitive SNP set

(Si) among 1000 SNPs (Ii). As discussed before, our mechanism does not share

the SNPs of individual i in Si, thus for sharing, we only consider SNPs in Ii\Si.

To check the privacy constraints, we consider the SNPs in Si. Like Humbert et

al., we assume all of the SNP utilities and the sensitivities to be equal. We repeat

the experiments for 10 random individuals and report the average.

We show the results of the comparison in terms of estimation error, entropy,
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and utility in Fig. 4.6. We observe that to achieve the same utility, the estima-

tion error and the entropy provided by our proposed mechanism is significantly

higher than the optimization-based method. On average, for the same utility, our

mechanism provides 16% higher error and 18% higher entropy, which also means

higher privacy. Moreover, the optimization-based mechanism always shares the

SNPs that increase (or not change) the estimation error (and entropy) for the

sensitive SNPs and hides the ones that decrease the error (and entropy). Thus,

when a particular SNP j of the donor is hidden as a result of the optimization-

based mechanism, the attacker can infer the value of that hidden SNP knowing

that the actual value of that SNP reduces the error (and entropy) of the SNPs in

the sensitive set. On the other hand, (as we have also shown via the toy example

in Chapter 4.1.5) when deciding whether or not to share a SNP j, our proposed

mechanism checks the change of the probability distributions for all the sensitive

SNPs (regardless of the actual values of the SNPs) and if any of them violates

(4.2), it do not share the corresponding SNP. Thus, our decision for sharing (or

not sharing) a SNP does not provide extra information to the attacker.
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(a) Error vs. utility for the proposed SNP
sharing mechanism and the optimization-
based technique.

(b) Entropy vs. utility for the pro-
posed SNP sharing mechanism and the
optimization-based technique.

Figure 4.6: Comparison between the proposed differential privacy-based SNP
sharing mechanism and the optimization-based mechanism [1] when the kinship
relationships between the individuals are not considered. The donor has 1000
SNPs in total and the size of the sensitive SNP set is set to 50. The utility is de-
fined as the number of shared SNPs by the donor. In (a) we show the comparison
in terms of the estimation error of the attacker and in (b) we show the compari-
son in terms of the uncertainty (entropy) of the attacker. The top x-axis in both
plots shows the privacy parameter used for the proposed differential privacy-based
mechanism. Privacy tolerances of individuals (i.e., Pri(i,Pi

s) values) in [1] vary
between 0 and 20.

Using this phenomenon, we also conduct attacker’s inference attack by also

using this additional auxiliary knowledge. That is, we assume that (i) attacker

knows the sensitive SNP set of the donor (just the IDs of the SNPs, not the

values), and (ii) attacker knows “not share” decision for a SNP means that the

actual value of that SNP reduces the entropy of the SNPs in the sensitive set. Note

that attacker cannot compute the estimation error (as it does not know the values

of the SNPs in Si) but it can calculate the entropy (as (4.4) does not require the

knowledge of the SNP values). In Fig. 4.7, we show the additional benefit of this

attack for the attacker for both the proposed scheme and the optimization-based

mechanism [1]. Here, we show the decrease in the estimation error from what

we have shown in Fig. 4.6a. We observe that with this additional information,

attacker’s estimation error remains almost the same for the proposed mechanism.

However, it decreases to almost 0 in the optimization-based mechanism, which

shows the robustness of the proposed mechanism.
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Figure 4.7: Decrease in the estimation error of the attacker from the values
shown in Fig. 4.6a when the attacker uses additional auxiliary information about
the decisions of the donor.

4.2.6.3 Comparison with considering kinship

Similar to Chapter 4.2.5, we use a trio (father, mother, and son) from [8]. We

choose 100 neighboring SNPs, set the size of the sensitive SNP set to 20 for all

family members, and randomly choose 20 SNPs for each family member to con-

struct their sensitive SNP sets. We use both the proposed mechanism and the

optimization-based mechanism to share the non-sensitive SNPs of the son (by

also considering genomic privacy of mother and father). For the proposed mech-

anism, we use the same privacy parameter (ε) for all family members. Overall,

for the same utility, we observe similar trends for entropy as in Fig. 4.6 and closer

estimation error values for both schemes (we do not illustrate the results due to

space constraints and due to the fact that the trend is similar to the previous

experiment). Similar to before, when we also utilize the additional auxiliary in-

formation about the decisions of the donor in the inference attack, we observe
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that attacker’s estimation error remains almost the same for the proposed mech-

anism. However, as before, it decreases to almost 0 in the optimization-based

mechanism. This again shows the robustness of the proposed mechanism.

4.3 Discussion

Here, we discuss the proposed SNP sharing mechanism in terms of its function-

ality/practicality and robustness.

4.3.1 Functionality and Practicality

The proposed genomic data sharing mechanism provides privacy-preserving shar-

ing of genomic data itself (not just the summary statistics from data as most

previous works). As opposed to traditional differential privacy-based data shar-

ing mechanisms, the proposed scheme does not introduce intentional noise to the

shared data; it is based on selective sharing of data points while providing privacy

guarantees for the sensitive parts of donor’s genome. The proposed mechanism

also considers a strong background knowledge of the attacker about the correla-

tion model on the DNA and family relationships between individuals. We have

shown that the proposed mechanism provides high utility while preserving indi-

vidual and interdependent genomic privacy. In practice, a donor, depending on

the entropy of the SNPs in his sensitive SNP set (not the values of those SNPs),

may select a privacy parameter (ε) and share his non-sensitive SNPs with a ser-

vice provider accordingly. It is important to note that the actual values of the

SNPs in the sensitive set are not required for the sharing process (i.e., to check

the condition in (4.2)).

When we do not consider the kinship relationships between the individuals,

the time complexity to share a donor’s SNP sequence of size n (of which m are

in the sensitive set) is O((n −m)n3k + (n −m)m), where k is the order of the

Markov chain that is used for the correlation model. When we also consider f
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of the donor’s family members during this process, the time complexity becomes

O((n−m)n23kf +(n−m)m). Thus, the time complexity scales quadratically (or

cubic when the kinship is considered) with the number of SNPs to be shared by

the donor. Time complexity scales exponentially with the order (k) of the Markov

chain. However, as we discussed and showed via simulations (e.g., in Fig. 4.2),

for correlation models of order higher than 4, the improvement in the inference

power of the attacker is negligible, and hence we can assume the term 3k as a

constant. Considering the mechanism does not need to run in real-time, these

complexity values are reasonable for practicality of the proposed mechanism.

4.3.2 Robustness

Our results illustrate the worst case scenarios in terms of attacker’s power. We

build a correlation model and compute the prior probability distributions of the

SNPs to check the condition in (4.2) during SNP sharing. We use a population

that is consistent with the donor’s to build these models and we assume the

attacker has access to the same population that also includes the victim (donor).

In reality, the attacker may use a similar (but not the same) population for its

inference attack. Therefore, its estimation error will be less than what we show

in the evaluation.

The proposed SNP sharing mechanism considers the fraction of change in the

probability distribution of all possible states of the sensitive SNPs (not the actual

values of the sensitive SNPs of the donor and his family members). Therefore,

not sharing a SNP from the non-sensitive SNP set does not mean that sharing

that SNP would reduce the estimation error and entropy of the attacker about

the SNPs in the sensitive set. In fact, as we have shown via the toy example in

Chapter 4.1.5, sharing a SNP may actually decrease the estimation error (and

entropy) of the attacker for the sensitive SNPs. Thus, the attacker cannot gain

extra information by observing which SNPs are hidden by the mechanism. As

another consequence of this property, for the proposed SNP sharing mechanism,

attacker’s estimation error and entropy do not monotonically decrease with the
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increasing privacy parameter (i.e., increasing ε value or increasing privacy budget

for the donor). In Fig. B.1 (in Appendix B.2), we show the variation of estimation

error and entropy with increasing privacy parameter. On the contrary, in Hum-

bert et al.’s work [1], a SNP is shared only if it does not decrease the estimation

error (and entropy) of the attacker. Also in [1], SNPs shared due to an increase

in privacy budget always cause monotonic decrease in both estimation error and

entropy of the attacker. With this knowledge, the attacker can actually infer the

values of the SNPs the mechanism decides to hide. Our sharing mechanism is

robust against this aforementioned attack.
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Chapter 5

Conclusion And Future Work

We have proposed a privacy-preserving genomic data sharing mechanism based

on differential privacy. Our method keeps an attacker’s knowledge about sen-

sitive parts of individuals’ genomes within a boundary, while providing public

availability of genomic data.

The proposed mechanism considers both individual and interdependent genomic

privacy. That is, when a donor shares his genomic data, both his and his family

member’s genomic privacy are protected. One notable feature of the proposed

scheme is that it selectively shares the SNPs of a donor without considering the

real values of his sensitive SNPs. This prevents the attacker from initiating in-

ference attacks based on the sharing decisions on the SNPs. We have studied

and discussed the effects of different parameters on both utility and privacy of

the proposed mechanism. Specifically, we have shown the relationship between

the amount and type of sensitive SNPs and the utility.We have also shown that

the proposed mechanism outperforms the previous work both in terms of privacy

and utility.

As future work, we will explore more scenarios on different kinship relationships

such as (i) the situation in which some family members already revealed some of

their SNPs, and (ii) practicality of the proposed mechanism on an extended fam-

ily (e.g., which family members to consider and how far to navigate in a family

tree during the SNP sharing process). Furthermore, inspired by the idea about
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watermarking sequential data, we will explore adapting our proposed mechanism

in such a way to provide privacy and address the liability issues at the same time.

58



Bibliography

[1] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti, “Reconciling utility

with privacy in genomics,” in Proceedings of the 13th Workshop on Privacy

in the Electronic Society, pp. 11–20, ACM, 2014.

[2] https://www.23andme.com/en-int/, 2017. [Online; accessed 5-May-2017].

[3] https://opensnp.org/, 2017. [Online; accessed 5-May-2017].

[4] A. Jolie, “My medical choice,” The New York Times, vol. 14, no. 05, p. 2013,

2013.

[5] http://www.eupedia.com/genetics/medical dna test.shtml, 2017. [On-

line; accessed 6-May-2017].

[6] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich, “Identi-

fying personal genomes by surname inference,” Science, vol. 339, no. 6117,

pp. 321–324, 2013.

[7] L. Sweeney, A. Abu, and J. Winn, “Identifying participants in the personal

genome project by name,” 2013.

[8] https://personalgenomics.zone/2016/05/24/my-personal-exome-

analysis-part-i-first-findings-2/, 2017. [Online; accessed 6-May-

2017].

[9] A. APOC, “On jim watson?s apoe status: genetic information is hard to

hide,” European Journal of Human Genetics, vol. 17, pp. 147–149, 2009.

59

https://www.23andme.com/en-int/
https://opensnp.org/
http://www.eupedia.com/genetics/medical_dna_test.shtml
https://personalgenomics.zone/2016/05/24/my-personal-exome-analysis-part-i-first-findings-2/
https://personalgenomics.zone/2016/05/24/my-personal-exome-analysis-part-i-first-findings-2/


[10] M. Slatkin, “Linkage disequilibrium?understanding the evolutionary past

and mapping the medical future,” Nature Reviews Genetics, vol. 9, no. 6,

pp. 477–485, 2008.

[11] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti, “Addressing the con-

cerns of the lacks family: quantification of kin genomic privacy,” in Proceed-

ings of the 2013 ACM SIGSAC conference on Computer & communications

security, pp. 1141–1152, ACM, 2013.

[12] C. Dwork, “Differential privacy: A survey of results,” in International Con-

ference on Theory and Applications of Models of Computation, pp. 1–19,

Springer, 2008.

[13] S. E. Fienberg, A. Slavkovic, and C. Uhler, “Privacy preserving gwas data

sharing,” in Data Mining Workshops (ICDMW), 2011 IEEE 11th Interna-

tional Conference on, pp. 628–635, IEEE, 2011.

[14] A. Johnson and V. Shmatikov, “Privacy-preserving data exploration in

genome-wide association studies,” in Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 1079–

1087, ACM, 2013.

[15] F. Yu, S. E. Fienberg, A. B. Slavković, and C. Uhler, “Scalable privacy-
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Appendix A

Standard Deviation of the

Conducted Experiments

We computed and plotted the standard deviations of the experiments. In Fig. A.1

and Fig. A.2 we show CEPH/UTAH pedigree results with error bars which rep-

resents the standard deviation of 50 runs over error and entropy. As shown, the

results from the experiments do not have significant deviations from the average.
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Figure A.1: Decrease in genomic privacy of P5 (in Fig. 3.3) in terms of the
incorrectness of the attacker. We reveal partial genomes of other family members
for different high order correlation models in the genome. MC stands for the
Markov chain model (with different orders) and HMM stands for the hidden
Markov model.

A.1 Bottleneck of the Markov Chain Order

We have conducted two experiments on the UTAH family in order to see the

relation between bottleneck of the Markov chain order and number of hidden

SNPs. We hide 10 and 90 percent of SNPs of each family member and then

start to infer the missing SNPs. In Fig. A.3 and Fig. A.4 we show the effect

of number of hidden SNPs on error (uncertainty) while inferring SNPs of P5.

We conclude that the Markov chain bottleneck is related to the number of SNPs

we try to infer. When the number of observed SNPs (by the attacker) is a lot,

Markov models have more data to work with, and hence they converge to a small

error value even with low order models. Thus, higher order models would not

make the error any smaller. On the other hand, when the attacker observes fewer

SNPs, increasing the order of the Markov chain model also increases the chance

of inferring an unobserved SNP. For instance, in Fig. A.3, when we reveal 90

percent of each family member’s SNPs (i.e., when the attacker already observes a

significant amount of data), results obtained by Markov order 3 and 4 are totally

overlapping. However, in Fig. A.4, when we reveal only 10 percent of each family

member’s SNPs, Markov order 4 does a significantly better job than Markov order
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Figure A.2: Decrease in genomic privacy of P5 (in Fig. 3.3) in terms of the
uncertainty of the attacker. We reveal partial genomes of other family members
for different high order correlation models in the genome. MC stands for the
Markov chain model (with different orders) and HMM stands for the hidden
Markov model.

3.
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Figure A.3: Decrease in genomic privacy of P5 in terms of the incorrectness of the
attacker, when we reveal 90 percent of random SNPs from other family members.
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Figure A.4: Decrease in genomic privacy of P5 in terms of the incorrectness of the
attacker, when we reveal 10 percent of random SNPs from other family members.
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Appendix B

B.1 Proof of Theorem 1

In this section, we prove that our proposed mechanism for sharing SNPs implies

generalized formulation of differential privacy.

Proof of Theorem 4.1. In the generalized formulation of differential privacy,

Hardt and Talwar introduce a family of probability measures (M), such that,

M = {µx : x ∈ <n}, where each measure µx is defined on <d [21]. A mechanism

is called ε-differentially private if for all x, y ∈ <n, such that |x− y|1 ≤ l, and for

a measurable S ∈ <d, we have
µx(S)

µy(S)
≤ exp(lε).

In our formulation, the mechanism is the sharing procedure. Thus, M can be

considered as the inference attack of the attacker and the S as the shared SNP

sequence of the donor i (Ri in our formulation). x corresponds to each SNP j in

the sensitive SNP set of the donor (Si) and other family members. The measure

µx(S) can then be considered as the probability of observing S given the auxiliary

information of attacker about x. By applying Bayes’ law we have the following:

P (S|x)

P (S|x′)
=
P (x|S)P (x′)

P (x′|S)P (x)
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Substituting the right part of equation in the generalized formulation of differen-

tial privacy, we have:

P (x|S)P (x′)

P (x′|S)P (x)
≤ exp(ε)→ P (x|S)

P (x′|S)
≤ exp(ε)

P (x)

P (x′)
. (B.1)

Thus, we can conclude the equivalence.

B.2 Change in Attacker’s Estimation Error and

Entropy

As we discussed in Section 4.3.2, for the proposed SNP sharing mechanism, at-

tacker’s estimation error and entropy do not monotonically decrease with the

increasing privacy parameter (ε). In Fig. B.1, we show the variation of estima-

tion error and entropy with increasing privacy parameter. Due to this behavior,

the attacker cannot infer the values of the SNPs the mechanism decides to hide.
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Figure B.1: Relationship between the estimation error and utility for increasing
privacy budget (ε value) for the proposed SNP sharing mechanism.
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