Online Balancing Two Independent Criteria

Savio S.H. Tse

Department of Computer Engineering,
Bilkent University,
Ankara 06800, Turkey
sshtse@cs.bilkent.edu.tr
http://www.cs.bilkent.edu.tr/~sshtse

Abstract. We study the online bicriteria load balancing problem in
this paper. We choose a system of distributed homogeneous file servers
located in a cluster as the scenario and propose two online approximate
algorithms for balancing their loads and required storage spaces.

We first revisit the best existing solution for document placement, and
rewrite it in our first algorithm by imposing some flexibilities. The sec-
ond algorithm bounds the load and storage space of each server by less
than three times of their trivial lower bounds, respectively; and more im-
portantly, for each server, the value of at least one parameter is far from
its worst case. The time complexities for both algorithm are O(log M).

Keywords: Approximate, Distributed, Online algorithm; Load balanc-
ing, Scheduling; Distributed file server; Document placement.

1 Introduction

Load balancing is a technique to achieve better coordination between entities
such that the load burdened on each entity should not differ too much from
that on others. In other words, load balancing is to prevent overwhelming any
small subset of entities. The problem becomes NP-hard if we aim at evenly
distributing the workload to all entities which provide the same services, or
minimizing the difference between them. Therefore, approximate solutions are
expected. The load on an entity can be its access rate, the number of execution
of some important steps for each access, the number of bits transferred for each
request, etc.. There are some different types of approximate solutions for load
balancing. A common one is to bound the load of each entity by a limit [4/T214].
Its variant is to set the limit according to the capacity of each individual entity
[3]. In this paper, we choose the first type. In reality, there are often more than
one parameter needed to be balanced. For example, execution time and memory
utilization are two common parameters requiring simultaneous balancing. In
this paper, we address the online bicriteria load balancing problem, and the two
criteria are independent. We consider a system of distributed homogeneous file
servers in a cluster, and the parameters to be balanced are the load and storage
space. Hereafter, the single word “load” is referred to a parameter while “load

J. Cao ct al. (Eds.): NPC 2008, LNCS 5245, pp. 244 2008.
© IFIP International Federation for Information Processing 2008

Online Balancing Two Independent Criteria 245

balancing” is referred to the classical problem. The load of a document stored
in the file server system can be one of the quantities discussed above, and the
storage space can be its physical size, or the memory space needed to process
the document. The system designer can also take any other reasonable choices.

1.1 Related Works

With applying a limit to a set of homogeneous servers for bounding their loads,
the single criterion load balancing problem is basically the NP-hard multipro-
cessor scheduling problem, which is reduced from the classical problem PARTI-
TION [§]. Many heuristics have been proposed for solving it. The latest result

was given by Fleischer and Wahl [7], which is an online (14 \/ 1"';“ 2)-competitive

algorithm. (An online algorithm is c-competitive if the parameter needed to be
minimized is bounded by ¢ times its optimal values.) It is asymptotically the
best known upper bound result. The latest lower bound result is by Rudin et al.
[13], which shows that no c-competitive algorithm exists if ¢ < 1.88.

For bicriteria load balancing, as there is one more constraint to tackle, higher
upper bounds for both load and storage space are expected. In 2001, Chen et al.
gave two offline algorithms, and one of them balances both the load and storage
space []. It bounds the load by 4L using at most 45 storage space, where L and
S (defined in Section[Z]) are commonly used as the trivial worst case lower bounds
for load and storage space, respectively. In 2005, we proposed some algorithms
[14], including an O(log M)-time online algorithm which bounds the load and
btorage space of each server by k;L and kS, respectively, where k; > 2, ks > 2,
and ' 4,1, < 1. In 2006, Bilo et al. gave a (FF , M1 1)-competitive
algorlthm [, where k can be any integer from 1 to M. It bounds the load and
storage space by M ot —k , L and M+kk 1S, respectively. It slightly improves the
result for the online algomthm in [I4], especially for small values of M. This is
the best known result which can be generalized for balancing multi-parameters.
Note that k; < 3 < ks > 3, and M F <3— 4 o Mkl >3 4
Therefore, asymptotically (M — 00), there is no result which can bound the
load by h;L, and the storage space by hsS, where h; and hg are any positive real
numbers less than three.

1.2 Owur Contribution

By modifying a technique in [14], we improve slightly on their last result in our
first algorithm. This result is essentially the same as, but more flexible than, the
upper bound result in [2]. The bounds of the load and storage space in our first
result are tlL and tsS, respectlvely, where t;,ts > 1 are real numbers satisfying
both |, L S+, and [V12 1171\4_11¢I+] = LY+ Lo < M)

Comparlng Wlth the algorithm in ﬂZﬂ practically, the advantage of our algorithm
is the flexibility in choosing suitable servers. An example in Section B.2shows the

possibility of finding a server which can allow us to gain a lot in storage space

246 S.S.H. Tse

at the expense of little sacrifice on load. However, we improve the searching
algorithm only for bicriteria load balancing, which is a special case for multi-
criteria load balancing tackled in [2].

We present our result in two equations, in which we can easily see the tradeoff
between the upper bounds of load and storage space, and their symmetry and
asymptotic behaviour (as M — o). This representation has more theoretical
benefit.

The last algorithm bounds the load and storage space of each server by (3 —
1\24)L and (3— AQ/I)S, respectively, with a feature that dictates if the load is higher
than (5 — ,3,)L, then the storage space is less than (5 — ,3,)S (and vice versa).
In other words, at most one of load and storage space in each server can get
close to their upper bounds. It is another style of load balancing, which does not
exist in the literature [AT2/T4], as far as we know.

2 Definitions and Models

Each document has two fundamental independent attributes, namely load and
size. For the convenience of discussion, assume the load of a document to be
the product of its access rate and its size plus the number of execution of some
specific I/O steps. There are M servers and N documents. The value of N
changes accordingly upon each placement and deletion. If server insertion is
considered, The value of M will also increase by one on each server insertion.
For every i € {1,..., N}, the ith document has positive load I/; and size s;. For
convenience, assume the indices of documents will automatically shift up upon
each document deletion. The load and storage space of a server is the summation
of loads and sizes of all documents stored, respectively. For all j € {1,..., M},
the load of the jth server is denoted as £; and the storage space as S;. We do
not assume any fixed limit on their values.

Let L and S be the average load and storage space of all servers in the sys-

to the upper bound of the cost of document recollocation, in order to keep
its value reasonably small, M is assumed to be large enough although our al-
gorithms also work for small M. Let L be max(max;c(i,. n}li, L) and S be
max(max;e(1,... N} 5i;). Note that L, S, L and S only depend on the exist-
ing documents stored and the number of servers. These algorithm-independent
quantities are used in the descriptions of the upper bounds of £; and &;, for all
j€{1,..., M}, respectively, for all algorithms in this paper. Clearly, L and S
are trivial lower bounds on the highest load and storage space of each server,
respectively. For completeness, assume L = S =0 and L = S = 0 when there is
no document in the server system. We define the capacity index C; for the jth
server to be LLj + ‘Zj, for each j € {1,..., M}. It is a metric that measures the
combined effect of the loads and storage spaces of the servers, and the trivial
lower bound of its worst case is obviously two. It is basically the sum of the
normalized load and normalized storage space, and therefore, less affected by

absolute values of two individual parameters. Obviously, zje{l,...,M} C; <2M.

Online Balancing Two Independent Criteria 247

The purpose of the capacity index is to enhance further balancing among servers.
For example, if £; < 3L, §; <3S, and C; < 4, for all j € {1,..., M}, one can
conclude that although the worst case of the load and storage space can be three
times of L and S, respectively, only of them can be close to its worst case.

Let #;,t5 € (1, M] be two real numbers satisfying both

1 1 2
+ <1+ and 1
11— s - -
t;—1 t 1 M-—1> ()
VoL Vol g =1V + 1Y) < M. (2)

These two values are used throughout the paper to reflect the tradeoff between
the bounds of loads and storage spaces for all servers. The relationship between
t; and t, for all feasible pairs of values and the intuition of these two equations
will be discussed later in Section Bl Fact [below will be used in some proofs
in this paper.

M—-1

Fact 1. Suppose x1,x2 € I such that z1 < 1

To < M.

and xo < %:11 Then, x1 +

Proof. Tfboth }/=} and '~} are integers, then (let) y = 21 +x2 < (Y7 —1)+

t
(/=1 = 1) < M. If the former one (say) is an integer, then y < (Y= — 1) +

Yo =0 =)+ (Y51 - 1) < M 4+ 1-2 < M. If both of them are not
integers, then y <]tvll:llj + L%:llj < M.

We apply a tree structure like B*-tree [11] which is widely employed for storing
the information of the servers in this paper. We call it B%-tree, as [14]. A B%-tree
stores a set {(I, s)|l, s € R }. In each order pair (I, s), [and s are referred to load
and storage space of a server, respectively. We assume the elements stored in a
BO-tree are unique. (Precisely, the set can be organized as (Bj, Ba, ..., Bu),
where B; = (I, s) for some [,s € RT,Vj € {1,...,M'}, M’ < M.) Like B*-tree,
data (keys) are stored in leaves, and all leaves are located at the bottom level.
Except for the root, each internal node has 12(to K children. The root has 1 to
K children. Like BT-tree, the data in the bottom level are sorted according to
s-values, and unlike BT -tree, a parent node stores a copy of one of its children
with smallest [-value. If there are two children having the smallest [-value, choose
the one with smaller s-value. Hence, the root contains the copy of the data with
minimum /-value. The normal operations are similar to those of BT-tree. To keep
the time for maintenance in O(logt), where ¢ is the number of data stored in the
tree, there is an auxiliary BT-tree for storing the s-values only. For simplicity,
we skip the discussion of those necessary but trivial steps for operations, like
lookup, insertion and deletion on the data structure.

Let SEEK be the algorithm for performing searching and updating on a B°-
tree. This algorithm will be used in the following sections. For any input (X,Y),
where X, Y € RT, SEEK can search an element ([, s) in a B°-tree and perform
updating within O(logt) time, where s is the smallest possible value such that
[< X. If there are two [’s with smallest s-value, choose the smaller one. In the
case that [> X for each (I, s) in the tree, SEEK will output false. The next step

248 S.S.H. Tse

is to check s < Y. If true, output (I, s); otherwise, output false. That means,
if output is (I, s), then I < X and s < Y. In other words, SEEK is used for
searching a server with load and storage space inclusively bounded by certain
values, respectively, and storage space is as less as possible.

By the similar construction, we can easily obtain an algorithm SEEK™ such
that if output is (I, s), then [< X and s < Y. In other words, SEEK™ is used for
searching a server with load and storage space exclusively bounded by certain
values, respectively, and storage space is as less as possible.

For conciseness, all B-trees used in this paper will be automatically updated
and maintained, unless specified.

Let T4 be {(£;,S;)lj € {1,...,M}} which is stored in a B°-tree. That is,
it stores the loads and storage spaces of all servers. The reallocation cost of a
document is defined as its size. In particular, if all documents in the ith server
are reallocated, the cost will be S;.

Lastly, our results are for synchronous networks; that is, before the completion
of updating the data structures and reallocating the necessary documents for the
previous operation, the next operation will not be performed.

3 The First Result

We consider document placement into a distributed file server. Our aim is to
bound the loads and storage spaces of all servers by ;L and t45, respectively.
With smaller values of ¢; and t,, the upper bounds are tightened and imply
better balancing on load and storage space, respectively. The bounds are loosened
slowly with M according to Equations () and (2]). This matches with the fact
that it is more difficult to coordinate more resources. However, such difficulty is
not unlimited, as the bounds asymptotically tend to the result in [I4]. We now
apply tighter equations for ¢; and ¢; and analyse on the upper bounds.

Algorithm FIRST:

1. Upon the arrival of a document d with load [and size s

1.1 Perform SEEK on Ty with input (7 (¢ — 1)L, ;1 (ts — 1))
and get output (L;,S;);

1.2 Place d into the jth server;

1.3 Update L and S;

Theorem 1. The new document can be placed into a server, and after place-
ment, the load and storage space of the server are no more than t;L and tsS,
respectively.

Proof. If the server system is initially empty, the algorithm can place the docu-
ment and give the bounds L and S, respectively.
Assume there are some documents in the server system. Before placing the

document d, there are less than]2’4:11 servers with load more than MA{ (ti—1)L,

Online Balancing Two Independent Criteria 249

M—-1
ts—1

servers with storage space more than Mj\f 1 (ts = 1)S. By Fact [Il the number of
servers exceeding the load bound or the storage space bound is less than M.
Hence, there exists one server with load and storage space at most M Lt —=1)L

otherwise, the total load will exceed M L. Similarly, there are less than

and MM L (ts = 1)S, respectively, and SEEK will output such a server as the jth
server in Step 1.1.
Suppose that the average load is L after Step 1.2. Then, L'=L+ Al4 L is then

at most M (t;—1)L+1= M (t,—1)(L' = })+1= M (-1)L'+(1- 11
!

The result for load follows as L' and [are no more than the final L. By using

similar arguments, the result for storage space follows.

3.1 The Feasible Region for Values of ¢; and t,

We discuss the feasible region for values of ¢; and ¢, satisfying Equations ()
and (). The purpose is to provide more information to the system designer to
choose values for t; and ts for different Situations

For the case that , ', + . ' <1+, ., Equations (@) and @) are always
true. The region for thlb case 15 labeled as A in Figure [

For the case that tl*l + tFl =1+ Mil, if M 1 and M 11 are non-integers,
then L]t\fjllj + L%:llj = M, which implies that Equation @) is false. Then,
we cannot use Fact [Il to guarantee the existence of a server for placement. In
order to keep Equation (2)) true, one of M:11 nd M:11 must be an integer.
As]t‘j[_ll + i\/[_% M + 1, both]‘{_11 and M_ll are integers between 1 and
M, 1nc1uswe1y In other Words there are M feasible pairs of ¢; and ts on the
curve tl*l + tFl =1+ Mfl, satisfying Equation (@)). Let k£ = %711 Then,
1214:11 = M — k + 1. Rewriting the result in Theorem [in terms of M and k,
our load bound ;L = 1\3]‘—/[1;51 L, and storage space bound t,5 = M*,f’l S. This
matches exactly with the (2"~ Jfl , MHE=1) competitive algorithm in [2]. In other
words, if we equalize the inequality in Equation (), the algorithm FIRST has
identical upper bounds as in [2]. As k is ranged from 1 to M, there are M feasible
points for (¢;,ts) on the curve tll_l +, =1+ M .-

Claims B]] and B]] below 1nvest1gate the structure for ¢; and ¢4 satisfying

]'+M71 tlfl—’_tsfl <1+M71'

Claim. For all t;,t, € R satisfying 1+ /', < ' + 1 <1+ 7,
Equation (@) is true if and only if there exists a k € {1,2,..., M} such that
te > M and > GMCK

Proof. Suppose Equation (@) is true. If one of Jt\f:ll and i‘fjll is an integer,

without loss of generality, assume that M 11 is an integer, and let k = %:11 Then

to= Mot 41 As Mol Mol oy 1, we have Y71 < M 41—k, and result

follows. If both 12l4:11 and %:11 are non-integers, then ng:llj + L%:llj < M. Let

k= L%:llj Then 1214:11 -1< ng:llj < M — k, and result follows.

250 S.S.H. Tse
Suppose Equation (@) is false. Then, both %~ and =1 are non-integers and
Y+ 1Y =M Forall k e {1,2,. M}, we have ty > ML ok >
M1 M1 M-1 M-1| _ M-1 2M—k
t1 > ln e M-k<|{] @M—kﬂ Syl <pi et < gl
Result follows.
Claim. For all k € {1,2,..., M —1}, the point (> ~#~1 M*k=1)is on the curve
1 T 1
1 T =

=1+ —
. |) t -1 M-1
+ =1+ — \
-1 t -1 M-1 | \
Feasible region
(M2 Mokl A
M-k-1 7 k2 “u
¥y
M-k-1 Msk Sy
ty (M-k ksl) N z"
Infeasible region -~
(M-k M+k-1) o
M-k+l 7k T

Fig. 1. Feasible Region for values of ¢; and ¢

We skip the trivial proof for Claim Bl Recalling the M feasible points is on the
curve tll_l + tsl_l =1+ M2_17 and together with Claims B and Bl the whole
feasible region is now clear and is shown in Figure[Il In the figure, the feasible
and infeasible regions are separated by the solid zigzag (-horizontal-vertical-)
line Which is bounded tightly by two dotted curves tlil + .. 14 =1+ Ml , and
t,—l + 4. 1 =1+ M 1» and the vertices of the zigzag line touch the curves
alternatlvely The feasible region is divided into two types of sub-regions. The
largest sub-region is the open-ended one bounded below by the upper curve. We
label it as A. The sub-regions of the second type, which are disjoint, spread over
the gap between two curves. The ones labeled as x, y and 2z are examples. The
values inside the sub-regions of this type satisfy Equation ([2)). In contrast, the
points between two adjacent sub-regions turn Equation (2) false. Examples are
u and v in the figure. It is easily seen that the M feasible points in the lower
curve are the best in the whole feasible region. Precisely, for every other point in
the feasible region, there is a better choice from these M feasible points. Since
the two curves will narrow and become one as M — oo, the sub-regions of the

Online Balancing Two Independent Criteria 251

second type diminish with M, and the M best points will coincide with the
upper curve.

From the feasible region, we have some suggestions to the system designer.
First if M is unchanged, we can use one of the M best points on the lower curve.
After the system designer chooses a point, he can proceed to check if both
Equations ([I) and (@) remain true. If yes, he can apply his values. Otherwise,
use binary search to find a point out of the M best points, which is nearest to his
original choice. The time needed is O(log M). Binary search can be used because
of the convex nature of the feasible region.

If M can be increased by server insertion, the previous M points may become
infeasible as the lower curve shifts upwards. Even when M decreases by server
deletion, some points may fall into infeasible region when the two curves shifts
down. One can easily see from the figure that there are no two consecutive points
staying in the feasible region as M decreases by 1. In order not to put burden on
the system maintenance, we suggest to use the points, satisfying tll_l + tsl_l <1,
in the region A, if M can change. These points, used in [I4], are independent of
M, and is suitable for a system in which the number of servers is changing.

3.2 Remarks on Algorithm FIRST

Comparing Algorithm FIRST with the result in [2], our algorithm has two advan-
tages. First, our upper bounds can spread through the continuous feasible region,
not only the M best points. The second advantage comes from the difference of
searching algorithms. The algorithm in [2] ignores the servers of the first M — k
highest load, k € {1,..., M }. In the case that the loads of some of these ignored
servers are not very high but the storage spaces of them are very low, our algo-
rithm is beneficial. Take for an example. Forall j € {1,..., M —k—1}, £; = L+¢
and §; = %S:I‘S; Ly =Land Sy =6;and forall j e {M—k+1,...,M},
Lj=L—- M_kk_l 6and S; = %5_1‘57 where § is extremely small. Then, one of the
last k servers will be chosen by the algorithm in [2], but algorithm SEEX will
choose the (M — k)th one. The former have little advantage on load but pays
much higher price on storage space. Nevertheless, the searching algorithm in [2]
can be easily generalized for balancing more than two criteria. Although SEEK
is better, it is designed for two criteria only. Further research can be done on

finding better searching algorithms for multi-criteria load balancing problem.

4 The Second Result

In this section, we study the capacity index which measures the integrated effect
of load and storage space on each server. Qur aim is to bound the load, the
storage space and the capacity index of each server by (3 — 1\24)L7 (3—]\Q/I)S7 and
5 — 3 respectively, after each document placement.

-3,
Consider the algorithm FIRST. We choose t; = ts = 3 — Mil for odd M.
For even M, we choose t; = 3 —]\24, and ts = 3 — Mi27 or vice versa. Then, a

252 S.S.H. Tse

trivial upper bound 6 — Mil on the capacity index can be obtained immediately.

In this section, by using algorithm SECOND, the capacity index is improved to
5— 3, at the expense of a slightly higher upper bound(s) for load and/or storage
space, respectively. In other words, if we sacrifice the asymptotically nothing in
the upper bounds of load and storage space, respectively, then we gain much
more in capacity index in return.

Directly from the definition, the capacity index 5 —]\34 implies that for each
server, at most one of the two parameters, load and storage space, can be close
to its upper bound of worst case. For example, if the load in a server gets very
close to (3 —]\Q/I)L7 then its storage space keeps a distance of nearly S from the
upper bound (3 —]\24)S. In other words, by using algorithm SECOND, the worst
cases of load and storage space are shared by more servers. However, by using
algorithm FIRST, the load and storage space can both simultaneously reach
their upper bounds, respectively. Therefore, algorithm SECOND beats FIRST
when ¢; and ¢, are chosen close to three.

The improvement in capacity index also gives hope that both parameters could
be very close to 2.5 of their trivial lower bounds simultaneously. If succeed, it
will then an important step towards the asymptotic latest known upper bound
of 1.9201 [7] and the lower bound of 1.88 [I3] for balancing a single parameter.

As there always exists a j € {1,...,M} such that £; < 2L, §; < 25, and
Cj <2 (otherwise, > ;_, 5, Cj > 2M), an O(M)-time algorithm can be applied
to search this server in order to obtain a better upper bound on capacity index. For
small M, the average storage space is large, and this trivial approach is a better
choice. However, when M is large, an O(log M)-time algorithm CAPACITY will
be given. Its idea is as follows: Upon the arrival of a new document d, if there is a
server in which load and storage space are bounded by L and 25, respectively,
Step 1.1 of the algorithm will find it and Step 1.2.1 will place d into it. After
placement, the load, the storage space, and the capacity index are kept under
the mentioned bounded. The details are shown in Theorem 2l Suppose no such
server exists in the system. We aim at a server in which load and storage space are
bounded by 2L and S, respectively. It such a server exists, Step 1.3.1 will find it
out and Step 1.3.2 will place d into it. The correctness proof is based on the ob-
servation that if Step 1.1 fails in searching a server, then Step 1.3.1 will succeed.

The algorithm SECOND is given below, and is followed by Theorem

Algorithm SECOND:

1. Upon the arrival of a document d with load [and size s
1.1 Perform SEEL™ on Ty with input (L, 2S5) and get output;
1.2 If output is (£;, S;);
1.2.1 Place d into the jth server;
1.3 If output is false
1.3.1 Perform SEEL™ on Ty with input (2L, S)
and get output (£;,S;);
1.3.2 Place d into the ith server;

1.4 Update L and S;

Online Balancing Two Independent Criteria 253

Theorem 2. The new document can be placed into a server, and after place-
ment, the load and storage space of the server are less than (3 — 1\24)L and
3-— AQ/I)S, respectively, and the capacity index less than 5 — Ai}

Proof. Assume for contradiction that for all j € [1,M], £; > 2L, §; > 2S5, or
[£; > L and S; > S]. Suppose there are M; servers which loads are at least 2L,
M, servers which storage spaces are at least 2.5, and M3 servers which loads are
more than L, and storage spaces more than S. Obviously, M + Ms+ M3 > M. If
M; = 0, total storage space will exceed M S. Hence My # 0. Similarly, My # 0.
Consider that M3 = 0. Since all servers have positive loads, total load is greater
than 2M; L, which implies M; < M,. On the other hand, since all servers have
positive storage spaces, total storage space is greater than 2M7 S, which implies
My < M. Hence, M3 # 0. Considering Z;‘il[ij + ‘Zf] > 2Mq + 2Ms + 2M3 >
2M, which is a contradiction. Therefore, there exists a j € [1, M], such that
Lj <2L,S; <25, and [£; < L or S; < S]. Rewriting it, we have either [£; < L
and S; < 25] or [S; < S and £; < 2L]. We assume the former case while the
argument for the latter one is similar.

After placing d into the server, the average load becomes ' =L+ z\lp the
average storage space becomes S =8+ 2> and the values of L and S become
L'and . Then, £; < L' — L +1 =L +(1— L) < (2—)L For storage
space, S; < 2(S = $)+s5=25 +(1— 2)s<(3— 2)5" Hence, C; <5— 3,.

References

1. Amita, G.C.: Incremental data allocation and reallocation in distributed database
systems. Data warehousing and web engineering, 137-160 (2002)

2. Bilo, V., Flammini, M., Moscardelli, L.: Pareto Approximations for the Bicriteria
Scheduling Problem. Journal of Parallel and Distributed Computing 66(3), 393-402
(2006)

3. Brinkmann, A., Salzwedel, K., Scheideler, C.: Compact, Adaptive Placement
Schemes for Non-Uniform Requirements. In: Proceedings of ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2002), Winnipeg, Manitoba,
Canada (August 2002)

4. Chen, L.C., Choi, H.A.: Approximation Algorithms for Data Distribution with
Load Balancing of Web Servers. In: Proc. of IEEE International Conference on
Cluster Computing, Newport Beach, CA, USA, pp. 274-281 (October 2001)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill, New York (2001)

6. Fisher, M.L., Hochbaum, D.S.: Database Location in Computer Networks. Journal
of ACM 27, 718-735 (1980)

7. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling, Special
Issue on Approximation Algorithms for Scheduling Algorithms (part 2) 3(6), 343
353 (2000)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

9. Haddad, E.: Runtime reallocation of divisible load under processor execution dead-
lines. In: Proceedings of the Third Workshop on Parallel and Distributed Real-Time
Systems, April 1995, pp. 30-31 (1995)

254

10.

11.

12.

13.

14.

S.S.H. Tse

Harada, H., Ishikawa, Y., Hori, A., Tezuka, H., Sumimoto, S., Takahashi, T.: Dy-
namic home node reallocation on software distributed shared memory. In: Pro-
ceedings of the Fourth International Conference/Exhibition on High Performance
Computing in the Asia-Pacific Region, May 2000, vol. 1, pp. 158-163 (2000)
Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, Section
6.2.4, vol. 3. Addison-Wesley, Reading (1973)

Narendran, B., Rangarajan, S., Yajnik, S.: Data Distribution Algorithms for Load
Balanced Fault-Tolerant Web Access. In: Proc. of the 16th Symposium on Reliable
Distributed Systems, Durham, NC, USA, pp. 97-106 (October 1997)

Rudin III, J.F.: Improved bounds for the online scheduling problem. PhD thesis,
The University of Texas at Dallas (2001)

Tse, S.S.H.: Approximation Algorithms for Document Placement in Distributed
Web Servers. IEEE Transactions on Parallel and Distributed Systems 16(6), 489
496 (2005)

	Online Balancing Two Independent Criteria
	Introduction
	Related Works
	Our Contribution

	Definitions and Models
	The First Result
	The Feasible Region for Values of t_l and t_s
	Remarks on Algorithm FIRST

	The Second Result
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

