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WEIGHTED BLOCH, LIPSCHITZ, ZYGMUND, BERS, AND GROWTH
SPACES OF THE BALL: BERGMAN PROJECTIONS AND

CHARACTERIZATIONS

H. Turgay Kaptanoğlu and Serdar Tülü

Abstract. We determine precise conditions for the boundedness of Bergman
projections from Lebesgue classes onto the spaces in the title, which are mem-
bers of the same one-parameter family of spaces. The projections provide
integral representations for the functions in the spaces. We obtain many prop-
erties of the spaces as straightforward corollaries of the projections, integral
representations, and isometries among the spaces. We solve the Gleason prob-
lem and an extremal problem for point evaluations in each space. We establish
maximality of these spaces among those that exhibit Möbius-type invariances
and possess decent functionals. We find new Hermitian non-Kählerian metrics
that characterize half of these spaces by Lipschitz-type inequalities.

1. INTRODUCTION

Let B be the unit ball in CN with respect to the usual hermitian inner product
〈z, w〉 = z1w1 + · · ·+ zNwN and the norm |z| =

√〈z, z〉. Let H(B) denote the
space of holomorphic functions on B and H∞ its subclass of bounded functions.

We let ν be the Lebesgue measure on B normalized so that ν(B) = 1, which is
the normalized area measure on the unit disc D when N = 1. For q ∈ R, we also
define on B the measures

dνq(z) = (1− |z|2)q dν(z).
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For 0 < p < ∞, we denote the Lebesgue classes with respect to νq by Lpq . The
Lebesgue class of essentially bounded functions on B with respect to any νq is the
same (see [10, Proposition 2.3]); we denote it by L∞. For α ∈ R, we also define
the weighted classes

L∞
α = {ϕ measurable on B : (1− |z|2)α ϕ(z) ∈ L∞ }.

Let’s also call the subspace of L∞
α consisting of holomorphic functions H∞

α .
We use C0 to denote the space of continuous functions on the closure B and C00

its subspace of those that vanish on the boundary ∂B. We also define

Cα = {ϕ ∈ C0 : (1− |z|2)α ϕ(z) ∈ C0 }
and

Cα0 = {ϕ ∈ C0 : (1− |z|2)α ϕ(z) ∈ C00 }.
Further, the ball algebra is A(B) = H(B) ∩ C0.

Almost all results in this work depend on certain radial differential operators
Dt
s of order t ∈ R for any s ∈ R that map H(B) to itself defined in detail in [10,

Definition 3.1]. Consider the linear transformation I ts defined for f ∈ H(B) by

I tsf(z) = (1− |z|2)tDt
sf(z).

Definition 1.1. For any α ∈ R, we define the weighted Bloch space Bα to
consist of all f ∈ H(B) for which I tsf belongs to L∞

α for some s, t satisfying

(1) α + t > 0.

The weighted little Bloch space Bα0 is the subspace of Bα consisting of those f for
which I tsf lies in Cα0 for some s, t satisfying (1).

Condition (1) ascertains that all Bα and Bα0 contain the polynomials and there-
fore are nontrivial. The spaces B0 and B00 are the usual Bloch and little Bloch
spaces. In notation concerning C and B, a single subscript indicates boundedness,
and double subscripts, the second of which is always 0, indicate vanishing on the
boundary.

Our use of α is nontraditional, follows [12, Section 8], conforms with the
notation of closely related Besov spaces, and is more logical in view of the operators
I ts. Most other authors use α− 1 where we use α.

Definition 1.1 can be shown to be independent of s, t satisfying (1) using the
methods of [2, p. 41]; note that s does not affect the order of the radial differential
operator Dt

s. Similarly, these spaces can be defined using other kinds of derivatives;
see also [26, Chapter 7]. We show independence from s and t essentially under
(1) and (2) in Corollaries 3.4 and 3.5 below as easy consequences of Bergman
projections and other similar integral operators.
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Definition 1.2. For s ∈ R and z, w ∈ B, the generalized Bergman-Besov kernels
are

Ks(z, w) =


1

(1− 〈z, w〉)N+1+s
=

∞∑
k=0

(N + 1 + s)k
k!

〈z, w〉k, if s>−(N+1);

2F1(1, 1; 1−N − s; 〈z, w〉)
−N − s

=
∞∑
k=0

k! 〈z, w〉k
(−N − s)k+1

, if s≤−(N+1);

and the extended Bergman projections are

Psϕ(z) =
∫

B

Ks(z, w)ϕ(w) dνs(w)

for suitable ϕ.

Above, 2F1 is the hypergeometric function, and (a)b is the Pochhammer symbol
given by

(a)b =
Γ(a+ b)

Γ(a)

when a and a+b are off the pole set −N of the gamma function Γ. The presentations
of Ks and Ps follow those in [2, Section 1] and [10]. Note that Ks(·, w) ∈ H(B)
and thus Psf ∈ H(B) whenever the integral exists. Throughout, s and t can take
complex values too as done in [6] and [10].

The following is our first main result.

Theorem 1.3. Ps : L∞
α → Bα is bounded if and only if

(2) α < s+ 1.

Given an s satisfying (2), if t satisfies (1), then for f ∈ B α,

(3) PsI
t
sf =

N !
(1 + s + t)N

f =:
1

Cs+t
f.

Also either Ps : Cα → Bα0 or Ps : Cα0 → Bα0 is bounded if and only if (2) holds.

Note that (1) and (2) together imply s+t>−1 so that Cs+t makes sense. Thus
Ps : L∞

α →Bα is surjective and I ts : Bα→L∞
α is an imbedding. For s, t satisfying

(2) and (1), each of Cs+tI ts is a right inverse for Ps on L∞
α , and C−1

s+t Ps is a
left inverse for each of Its on Bα. Similar statements hold for the “little” spaces.
Moreover, (3) is a family of integral representations for f ∈ Bα which take the form

(4) f(z) =
(1 + s+ t)N

N !

∫
B

Ks(z, w) (1− |w|2)s+tDt
sf(w) dν(w) (z ∈ B)
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when written explicitly.
The case α = 0 of Theorem 1.3 has been treated earlier in [4, Theorem 2],

[10, Corollary 5.3], and [13, Corollary 5.3]. Bergman projections Ps for s > −1
from Lebesgue classes of the form L∞

α ∩ Lps with 1 ≤ p < ∞ and α > 0 to Bα,
and between Bα with −1 < α < 0, have been considered in [3]. Bergman-type
projections, in which Ks1 is used with νs2 , from L∞ or C0 to Bα or Bα0 have been
considered in several theorems dealing with various ranges of α in [26, Chapter 7].
Neither of the last two sources gives a necessary condition on the parameters or a
right inverse. Only [26] handles s1 ≤ −(N + 1), but with the restriction that it is
an integer. Further, [8, Theorem 3] obtains the case s = α > −1 and t = 1 of (4)
with a method that does not make use of the idea of a Bergman projection.

Having integral representations is very fruitful, and we exploit (4) and Theorem
1.3 to extract many properties of the weighted Bloch spaces in Sections 3-6, giving
also easier proofs of a few known facts. But several properties of these spaces
require other considerations. A recurring theme is using kernels to define a new
concept on one space and then using radial differential operators to carry them to
the remaining spaces.

Consider the extremal problem of determining

(5) Sα(b) := sup
{
f(b) > 0 : f ∈ Bα, ‖f‖Bα = ‖I tsf‖L∞

α
= 1

}
,

for each b ∈ B and if possible finding a function realizing it. Note that Sα(b) also
depends on s, t satisfying (1). There is also the problem of determining Sα0(b) in
which f is allowed to vary only in Bα0.

Theorem 1.4. For any α, the extremal function attaining Sα(b) exists and is
unique. This solution is also the solution for S α0(b).

The proof of Theorem 1.4 depends on the following construction. For α ≥ 0,
define the linear transformations
(6) Tαψ f(z) = f(ψ(z)) (Jψ(z))2α/(N+1),

where ψ is a holomorphic automorphism of B, J denotes the complex Jacobian, and
an appropriate fixed branch of the logarithm is used for the fractional power. We
extend Tαψ to all α by setting

(7) Wα
ψ = D−t

s+tT
α+t
ψ Dt

s,

where s, t satisfy (1).

Definition 1.5. Let (X, ‖ · ‖) be a Banach space of holomorphic functions on
B containing the constants. We call X an α-Möbius-invariant space if W α

ψ f ∈ X
for some s, t satisfying (1) whenever f ∈ X , ‖Wα

ψ f‖ ≤ C ‖f‖, and the action
ψ 
−→Wα

ψ f is continuous for f ∈ X and unitary ψ.
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Theorem 1.6. The space Bα contains with continuous inclusion those α-M öbius-
invariant spaces that possess a decent linear functional.

All our results mentioned so far including their consequences and applications
are general and cover all real values of α. If no range for α is specified, that
means α ∈ R is arbitrary. Most of the results are completely new for the spaces
Bα with α < 0, which are actually the Lipschitz spaces Λ−α as explained in
the next section. The original definition of these spaces for −1 < α < 0 states
that Λ−α is the space of holomorphic functions f on B satisfying the so-called
Lipschitz condition |f(z)− f(w)| ≤ C |z − w|−α for all z, w ∈ B. For α = 0, the
corressponding equivalent condition is |f(z)−f(w)| ≤ C ρ0(z, w), where ρ0 is the
Bergman metric; see [19, Theorem 3.4 (3)]. We extend this condition to all α > 0
by finding new metrics ρα in B in place of the Euclidean or the Bergman metrics.

Theorem 1.7. For each α > 0, there exists a complete Hermitian non-Kählerian
metric ρα on B such that if f ∈ Bα, then |f(z)−f(w)| ≤ C ρα(z, w). The converse
also holds for N = 1.

The next section gives some preparatory material on the spaces under consider-
ation and the tools to be used. We prove Theorem 1.3 in Section 3. In Sections 4
and 5, we apply Theorem 1.3 and (3) to a solution of the Gleason problem in Bα,
to the growth of functions in Bα near ∂B, and to the growth of their Taylor series
coefficients. In Section 6, we exhibit pairings that yield (pre)duality relationship
between the Besov spaces B1

q and the spaces Bα and Bα0, and find the complex
interpolation space between two weighted Bloch spaces, again by applying Theo-
rem 1.3. In Section 7, we prove Theorem 1.4 by determining explicitly the extremal
functions. We prove Theorem 1.6 in Section 8, where a decent linear functional is
also defined. In the final Section 9, we define some new Hermitian metrics similar
to the hyperbolic metric that are specific to the Bα spaces and prove Theorem 1.7.

2. PRELIMINARIES

Stirling formula gives

(8)
Γ(c+ a)
Γ(c+ b)

∼ ca−b and
(a)c
(b)c

∼ ca−b (Re c→ ∞),

where x ∼ y means that |x/y| is bounded above and below by two positive constants.
Such constants are always independent any parameters or functions in the formulas
and are all denoted by the generic upper case C.

We occasionally use multi-index notation in which λ = (λ1, . . . , λN) ∈ NN is
an N -tuple of nonnegative integers, |λ| = λ1 + · · ·+λN , λ! = λ1! · · ·λN !, 00 = 1,
and zλ = zλ1

1 · · · zλN
N .
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We follow the notation and results of [16, Section 2.2] regarding the automor-
phism group Aut(B). If ψ ∈ Aut(B) and b = ψ−1(0), then the complex Jacobian
of ψ is

(9) Jψ(z) = η1

(
1 − |ψ(z)|2

1− |z|2
)(N+1)/2

= η2
(1− |b|2)(N+1)/2

(1 − 〈z, b〉)N+1
,

where η1, η2 are complex numbers of modulus 1. The group Aut(B) is generated
by the involutive Möbius transformations ϕb exchanging 0 and b ∈ B and unitary
operators U on CN . For these special kinds of automorphisms, we write T αb and
TαU in place of Tαψ defined in (6). When ψ = ϕb, then η2 = (−1)N . To avoid the
annoying appearance of η2 in calculations, we redefine T αb as

(10) Tαb f(z) =
(1 − |b|2)α

(1− 〈z, b〉)2α f(ϕb(z)).

Let f ∈ H(B) and f =
∑∞

k=0 fk be its homogeneous expansion, where fk is a
holomorphic homogeneous polynomial of degree k. The action of Dts on f is that
of a coefficient multiplier in the form

(11) Dt
sf =

∞∑
k=0

dkfk,

where dk depends on s, t in such a way that dk ∼ kt as k → ∞ for any s. So Dts
is a continuous operator on H(B). In particular, Dt

sz
λ = d|λ|zλ for any multi-index

λ. An important property of our particular dk is that dk �= 0 for all k = 0, 1, 2, . . .,
and this makes Dt

s invertible on H(B). Coupled with the facts that D0
s = I , the

identity, and Du
s+tD

t
s = Du+t

s , we obtain the two-sided inverse

(12) (Dt
s)

−1 = D−t
s+t

for any s, t ∈ R.
The differential operators Dt

s relate well with the Bergman-Besov kernels Ks

for

(13) Dt
sKs(z, w) = Ks+t(z, w)

for any s, t ∈ R, where differentiation is performed on the holomorphic variable z.
All the above properties of Dt

s are taken from [10, Section 3]. Moreover, if s > −1
and f ∈ H(B), then for any t,

(14) Dt
sf(z) = Cs lim

r→1−

∫
B

Ks+t(z, w) (1− |w|2)s f(rw) dν(w);

see [10, Lemma 5.1].
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The space L∞
α is normed with

‖ϕ‖L∞
α

:= ess sup
z∈B

(1 − |z|2)α |ϕ(z)|.

The norm on Cα is given by the same formula. For any s, t satisfying (1), there is
induced the norm

(15) ‖f‖Bα := ‖I tsf‖L∞
α

on Bα. This is a genuine norm, because Dt
s is an invertible operator. Different s, t

satisfying (1) give equivalent norms as mentioned above, mainly as a consequence
of Corollary 3.4. It is clear from Definition 1.1 that

(16) Bα ⊂ Bβ0 ⊂ Bβ (α < β),

and the inclusion is continuous.

Proposition 2.1. For any α and s, t, Dt
s(Bα) = Bα+t is an isomorphism, and

an isometry when appropriate norms are used in the two spaces.

Proof. Let f ∈ Bα and put g = Dt
sf . Take u so large that α+ (t+ u) > 0.

Then Du
s+tg = Du

s+tD
t
sf = Dt+u

s f and I t+us f ∈ L∞
α . This is equivalent to Ius+tg ∈

L∞
α+t. Hence g ∈ Bα+t and the norms ‖f‖Bα = ‖I t+us f‖L∞

α
and ‖g‖Bα+t =

‖Ius+tg‖L∞
α+t

are equal. Since D−t
s (Bα+t) = Bα the same way, both claims are

established.

Example 2.2. A “typical” function in B0 is known and can be checked by Def-
inition 1.1 to be f0(z) = log(1−z1)−1 ∼ ∑

k z
k
1/k. By Proposition 2.1, a “typical”

function in Bα is fα(z) =
∑

k k
α−1zk1 . Using the series expansion in Definition 1.2

and (8), fα(z) essentially is (1 − z1)−α for α > 0, and a hypergeometric function
for α < 0. The same reasoning shows that all the inclusions in (16) are strict.
Letting β − α = 2ε > 0 and using a large enough t in Definition 1.1, it is easy
to see that fβ ∈ Bβ \ Bβ0 and fα+ε ∈ Bβ0 \ Bα. Thus all Bα and Bα0 spaces are
different.

By [9, Definition 4.13], the space Bα for α > 0 is the growth space A−α.
The space B2 is also called the Bers space. A growth space does not require any
derivative in its definition since now t = 0 satisfies (1). So an f ∈ H(B) belongs
to Bα for α > 0 whenever f(z) ≤ C (1 − |z|2)−α for all z ∈ B. Thus for α > 0,
the spaces Bα and H∞

α coincide.
Also by [26, Theorems 7.17 and 7.18], the space Bα for α < 0 is the holomor-

phic Lipschitz space Λ−α. Proposition 2.1 for α < 0 and t = −α appears in [26,
Theorems 7.19 and 7.20].
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Proposition 2.1 is the usual way to extend the definition of Lipschitz spaces
Λ−α beyond −1 ≤ α < 0. The space B−1 = Λ1 is called the Zygmund class. It is
traditionally defined via a second-order difference quotient as opposed to first-order
difference quotients for −1 < α < 0; see [15, Section 8.8]. This is no surprise,
because the least integer value of t specified by (1) is 1 for −1 < α < 0 and is 2
for α = −1. Hence the case α = 0 and t = −1 of Proposition 2.1 is in [1, 3.5.2].

Remark 2.3. All the statements in this section for the Bα spaces, including
Proposition 2.1, have obvious counterparts for the Bα0 spaces.

Definition 2.4. For q ∈ R and 0 < p <∞, the Besov space Bp
q consists of all

f ∈ H(B) for which I tsf belongs to Lpq for some s, t satisfying

(17) q + pt > −1.

This definition too is independent of s, t under (17), and thus we have the
equivalent norms ‖f‖Bp

q
= ‖I tsf‖Lp

q
on Bpq . Bergman projections on Besov spaces

have been characterized in [10, Theorem 1.2].

Theorem 2.5. For 1 ≤ p <∞, Ps : Lpq → Bpq is bounded if and only if

(18) q + 1 < p (s+ 1).

Given s satisfying (18), if t satisfies (17), then (3) holds for f ∈ B p
q .

We use α as a subscript on B rather than the usual superscript, because this not
only follows the notation for L∞ and C, but also follows the notation for the Besov
spaces Bp

q , where the upper parameter is for the power on the function, and the
lower parameter is for the power on the weight 1 − |z|2. The power on a function
in a Bα space, if anything, is ∞ and not shown.

Remark 2.6. There are close connections between the Besov and weighted
Bloch families of spaces. It is explained in [12, Section 8] that Bα is the limiting
case of Bpαp (or of Bpβ+αp) at p = ∞. This is further reflected in the inequalities;
(1) is the p = ∞ case of (17) with q = αp, and (2) is the p = ∞ case of (18) with
q = αp. The set of (p, q) in the right half plane satisfying q = β+αp is a ray with
slope α and q-intercept β.

For another connection between the two families, see [12, Theorem 8.3], where
the Carleson measures of Besov spaces characterize the functions in weighted Bloch
spaces, which yields different proofs of Corollaries 3.4 and 3.5 below.

3. PROJECTIONS

We now prove Theorem 1.3 and indicate several immediate corollaries.

Proof of Theorem 1.3. Fix α throughout the proof.
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Let ϕ ∈ L∞
α . Take t to satisfy (1), and for the moment so large that also

s + t > −(N + 1) holds. To show Psϕ ∈ Bα, we need to show Its(Psϕ) ∈ L∞
α .

Using (13) and the assumptions on s, t, we obtain

(1−|z|2)α |I ts(Psϕ)(z)| = (1−|z|2)α+t

∣∣∣∣Dt
s

∫
B

Ks(z, w) (1−|w|2)s ϕ(w) dν(w)
∣∣∣∣

≤ ‖ϕ‖L∞
α

(1−|z|2)α+t

∫
B

(1−|w|2)s−α
|1−〈z, w〉|N+1+s+t

dν(w),

and the last integral is finite if and only if (2) holds. Then [16, Proposition 1.4.10]
yields

(1− |z|2)α |I ts(Psϕ)(z)| ≤ C ‖ϕ‖L∞
α

(z ∈ B).

Thus Psϕ ∈ Bα and this proves the first claim on when Ps : L∞
α → Bα is bounded.

As noted earlier, (1) and (2) together imply s+t > −1; so the momentary assumption
on t above is superfluous.

Now let f ∈ Bα and s, t satisfy (2) and (1). Then I tsf ∈ L∞
α and Ps(I tsf) ∈ Bα

by the first part. Also s+ t > −1, and using (14) and (12), we see that

Ps(I tsf)(z) =
∫

B

Ks(z, w) (1− |w|2)s+tDt
sf(w) dν(w)

=
N !

(1 + s + t)N
D−t
s+tD

t
sf(z) =

N !
(1 + s+ t)N

f(z),

and this proves the second claim.
Next, let s satisfy (2). To show that Ps maps Cα into Bα0, it suffices to consider

ϕ(w) = (1 − |w|2)−αwλwµ ∈ Cα, since polynomials in w and w are dense in C0.
For t satisfying (1), we have

(1− |z|2)α I ts(Psϕ)(z) = (1− |z|2)α+t

∫
B

Ks+t(z, w) (1− |w|2)s−αwλwµ dν(w).

We use the series expansion of Ks+t in simplified form asKs+t(z, w) =
∑

τ cτ z
τ wτ .

In the integral above, the only nonzero term is the one with τ = λ − µ by the or-
thogonality in [6, Proposition 2.4]. Then that integral is finite by (2) and is

cλ−µ zλ−µ
∫

B

|wλ|2 (1− |w|2)s−α dν(w) = C zλ−µ

with |λ − µ| ≥ 0. Thus (1 − |z|2)α |I ts(Psϕ)(z)| → 0 as |z| → 0 again by (1).
Hence Psϕ ∈ Bα0 and Ps is bounded from either of Cα and Cα0 into Bα0.

If f ∈ Bα0, then by Definition 1.1, I tsf ∈ Cα0 if t satisfies (1). Now for s
satisfying (2), (3) shows that Ps(I tsf) = C f lies in Bα0. This shows that Ps is
onto Bα0 from either of the continuous function classes.
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To prove the necessity of (2), put ϕ1(w) = w1 (1− |w|2)−α [log(1− |w|2)]−1.
Clearly ϕ1 ∈ Cα0. The integral

Psϕ1(z) =
∫

B

Ks(z, w) (1− |w|2)s−α w1

log(1 − |w|2) dν(w)

diverges if (2) is violated.
This completes the proof.

Corollary 3.1. The space Bα0 is the closure of the holomorphic polynomials
in the norm ‖f‖Bα = ‖I tsf‖L∞

α
for any s, t satisfying (2) and (1), and thus is

separable and complete.

Proof. Theorem 1.3 shows that Ps maps Cα onto Bα0. Similar to its proof, if
ϕλµ(w) = (1 − |w|2)−αwλwµ ∈ Cα, then Psϕλµ(z) = C zλ−µ with |λ− µ| ≥ 0.
The space Cα is the closure of finite linear combinations of functions of the form
ϕλµ with λ, µ having rational components. Consequently, Bα0 is the closure of
finite linear combinations of functions of the form zτ .

Remark 3.2. The inseparability of Bα can also be seen using Theorem 1.3. For
α > 0, take s = α, and for other α, take s = 0. Also take ϕ(w) = (1 − |b|2)−s
for w = b and ϕ(w) = 0 otherwise, where b ∈ B is arbitrary. What Theorem
1.3 now says is that Ks(·, b) ∈ Bα for every b ∈ B. A quick estimate shows that
‖Ks(·, b1)−Ks(·, b2)‖Bα ≥ C |b1 − b2|.

Remark 3.3. The operator Ps is not always a projection on a subspace, because
Bα need not be a subspace of L∞

α . However, for t satisfying (1), Its(Bα) is an
isometric copy of Bα in L∞

α by (15), and hence a closed subspace of L∞
α by

Corollary 5.5 below. Then by (3),

V ts := I tsPs

is a true projection from L∞
α onto Its(Bα) for any s satisfying (2).

Corollary 3.4. For a given s satisfying (2), any two values of the order t of
the differential operator D t

s satisfying (1) generate the same space in Definition
1.1 for the same α.

Proof. Suppose t1, t2 satisfy (1), f ∈ H(B), and ϕ = It1s f ∈ L∞
α for a given

α, where s satisfies (2). By Theorem 1.3, PsI t1s f = C f . Apply It2s to both sides
to get V t2s ϕ = C I t2s f , where

V t2
s ϕ(z) = (1− |z|2)t2

∫
B

(1 − |w|2)s−α
(1 − 〈z, w〉)N+1+s+t2

(1 − |w|2)α ϕ(w) dν(w)



Weighted Bloch and Lipschitz Spaces 111

when written explicitly. Since ϕ(w) ∈ L∞
α , [16, Proposition 1.4.10] yields that

|V t2
s ϕ(z)| ≤ C (1 − |z|2)−α. In other words, It2s f = C V t2

s ϕ ∈ L∞
α , which is the

desired result.
The case for Bα0 is entirely similar.

Corollary 3.5. For a given t satisfying (1), any two values of the parameter s
of the differential operator D t

s satisfying (2) generate the same space in Definition
1.1 for the same α if also s > −1 for α < 0.

Proof. Given α, suppose s1, s2 satisfy (2), f ∈ H(B), and Its1f ∈ L∞
α , that

is, g = Dt
s1f ∈ L∞

α+t, where t satisfies (1). That is, there is a C such that

(19) |g(z)| ≤ C

(1− |z|2)α+t
(z ∈ B).

Using (12) and (14), we write Dt
s2f = Dt

s2D
−t
s1+t

Dt
s1f = Dt

s2D
−t
s1+t g = Eg, where

Eg(z)=Cs2Cs1+t

∫
B

(1−|v|2)s2
(1−〈z, v〉)N+1+s2+t

∫
B

(1−|w|2)s1+t
(1−〈v, w〉)N+1+s1

g(w) dν(w) dν(v).

The required condition s1 + t > −1 follows from (1) and (2). We would like to
show that also Eg = Dt

s2f ∈ L∞
α+t. Again it is not necessary to check the Bα0

spaces.
If α > 0, using (19) and [16, Proposition 1.4.10], we obtain

|Eg(z)| ≤ C

∫
B

(1 − |v|2)s2
|1 − 〈z, v〉|N+1+s2+t

∫
B

(1− |w|2)s1−α
|1− 〈v, w〉|N+1+s1

dν(w) dν(v)

∼
∫

B

(1− |v|2)s2−α
|1− 〈z, v〉|N+1+s2+t

dν(v) ∼ C

(1− |z|2)α+t
.

If α = 0, then the above computation and [16, Proposition 1.4.10] yield

|Eg(z)| ≤ C

∫
B

(1− |v|2)s2
|1− 〈z, v〉|N+1+s2+t

log
1

1 − |v|2 dν(v)

≤ C

∫
B

(1 − |v|2)s2+ε
|1− 〈z, v〉|N+1+s2+t

dν(v) ∼ C

(1 − |z|2)t−ε

for some ε > 0. We next let ε→ 0.
If α < 0, (19) can be strengthened to |g(z)| ≤ C (1 − |z|2)−t. Using this

estimate in |Eg(z)| reduces this case to the case of α = 0.
In the first two cases, from (1) and (2), s+ t > −1 and s > −1 are automatic,

but in the last case, s > −1 has to be additionally assumed.
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[26, Chapter 7] contains a collection of similar results dealing with various
ranges of the parameters with further limitations on their values.

We have one more type of the Bergman projections that has already been utilized
in [22]. Define the generalized Bergman projections Prs on suitable ϕ by

Prsϕ(z) =
∫

B

Kr(z, w)ϕ(w) dνs(w).

Theorem 3.6. Prs : L∞
α → Bα is bounded if and only if r, s satisfy (2) and

(20) r ≤ s.

Given such r, s, if t satisfies (1), then for f ∈ Bα,

(21) PrsI
t
sf =

1
Cs+t

Dr−s
s f.

Also either Prs : Cα → Bα0 or Prs : Cα0 → Bα0 is bounded if and only if (2) and
(20) hold.

Proof. Take ϕ ∈ L∞
α and t so that (1) and r + t > −(N + 1) hold. Then

(1−|z|2)α I tr(Prsϕ)(z) = (1−|z|2)α+t

∫
B

(1 − |w|2)s−α ψ(w)
(1−〈z, w〉)N+1+(α+t)+(s−α)+(r−s) dν(w)

= V ψ(z),

where ψ(z) = (1 − |z|2)α ϕ(z) ∈ L∞. By [12, Theorem 7.2], V ψ lies in L∞ if
and only if (2) and (20) hold since (1) is assumed anyway.

Equation (21) is obtained in exactly the same way as in the proof of Theorem
1.3, and so are the statements about Bα0.

Note that the only way to obtain f itself on the right side of (21) is to have
r = s. Otherwise, the right side is a primitive of order s− r > 0 of f .

4. GLEASON PROBLEM

Let X be a space of functions on B. Given a ∈ B and f ∈ X , the Gleason
problem is to find f1, . . . , fN ∈ X such that

f(z) − f(a) =
N∑
m=1

(zm − am) fm(z) (z ∈ B).

This section is for explicit solutions to the Gleason problem in the spaces Bα.
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Theorem 4.1. For a ∈ B, there are bounded linear operators G 1, . . . , GN on
Bα satisfying

(22) f(z) − f(a) =
N∑
m=1

(zm − am)Gmf(z) (f ∈ Bα, z ∈ B).

The operators G1, . . . , GN are bounded on Bα0 too.

Proof. We imitate the proof of [10, Theorem 6.1] and show little detail. Let
s > −(N + 1) be an integer satisfying (2), let t satisfy (1), and define

Gmf(z) = Cs+t

∫
B

Ks(z, w)−Ks(a, w)
〈z − a, w〉 wm I

t
sf(w) dνs(w) (f ∈ Bα)

for m = 1, . . . , N . It is easy to see that G1, . . . , GN satisfy (22).
The crucial part is to show that Gm is bounded. Proceeding as in the proof of

[10, Theorem 6.1], by the fact that s is an integer, it is possible to write each Gm

as a finite sum of operators Tj on Bα such that

(23) |Ius−j(Tjf)(z)|≤C (1−|z|2)u
∫

B

(1−|w|2)s−α (1−|w|2)α |I tsf(w)|
|1−〈z, w〉|N+1+s+u

dν(w),

where u satisfies (1) when substituted for t. Because I tsf ∈ L∞
α and s satisfies

(2), [16, Proposition 1.4.10] yields that (1−|z|2)α |Ius−j(Tjf)(z)| is bounded on B.
Hence Gm is a bounded operator on Bα.

If f ∈ Bα0, then given ε>0, there is an R<1 such that (1−|w|2)α |I tsf(w)|<ε
for |w| ≥ R. Split the integral in (23) into two parts, J1 on RB and J2 on B \RB.
Then |J1(z)|≤C and |J2(z)|≤C ε (1−|z|2)−(α+u) for z∈B. We multiply J1 and
J2 by (1− |z|2)α+u, add, and then let |z| → 1. Because u satisfies (1), we obtain

lim
|z|→1

(1− |z|2)α |Ius−j(Tjf)(z)| ≤ C ε.

Since ε > 0 is arbitrary, this shows that Tjf and hence Gmf belong to Bα0.

5. ANALYTIC PROPERTIES

In this section, we use Theorem 1.3 and in particular (4) to obtain some analytic
properties of functions in Bα spaces. Some of these properties are known, especially
for α < 0, the Lipschitz range. However the emphasis here is on how they are ob-
tained so readily from Bergman projections and the ensuing integral representations,
and on their uniformity for all real α.

But first, let’s give a result that shows the versatility of the radial differential
operators Dt

s. Given N ≥ 2, f ∈ H(B), and ζ ∈ C
N with |ζ| = 1, the holomorphic

slice functions fζ are defined by fζ(x) = f(xζ) for x ∈ D.
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Theorem 5.1. Suppose every slice function fζ of an f ∈ H(B) belongs to Bα
of the disc with uniformly bounded norms. Then f ∈ B α of the ball.

Proof. For z = xζ ∈ B, by (11) we have

Dt
sf(z) =

∞∑
k=0

dkfk(z) =
∞∑
k=0

dkfk(ζ) xk = Dt
r

∞∑
k=0

fk(ζ) xk = Dt
rfζ(x),

where r = N − 1 + s by [10, Definition 3.1]. By assumption, there is a C such
that (1 − |x|2)α+t |Dt

rfζ(x)| ≤ C for all x ∈ D and ζ ∈ ∂B, and for some r, t
satisfying (1). Then s, t satisfy (1) too, and obviously (1 − |z|2)α+t |Dt

sf(z)| ≤ C

for all z ∈ B.
The case α = 0 of Theorem 5.1 is in [19, Theorem 4.10] with a much more

roundabout proof.

Theorem 5.2. Given α, there is a C such that for all f ∈ Bα and z ∈ B,

|f(z)| ≤ C ‖f‖Bα


(1− |z|2)−α, if α > 0;

log(1 − |z|2)−1, if α = 0;

1, if α < 0;

where ‖f‖Bα = ‖I tsf‖L∞
α

with s > −(N + 1), t satisfying (2) and (1).

Proof. We use a simple estimate on (4) and obtain

|f(z)| ≤ C ‖f‖Bα

∫
B

(1 − |w|2)s−α
|1 − 〈z, w〉|N+1+s

dν(w) (z ∈ B).

We obtain all three cases by applying [16, Proposition 1.4.10].

Corollary 5.3. Under the same conditions as of Theorem 5.2 and for r, u ∈ R,
we have

|Du
r f(z)| ≤ C ‖f‖Bα


(1− |z|2)−(α+u), if α+ u > 0;

log(1− |z|2)−1, if α+ u = 0;

1, if α+ u < 0.

Proof. Just combine Theorem 5.2 with Proposition 2.1.
Theorem 5.2 says nothing new other than Definition 1.1 for α > 0, and Corollary

5.3 is reminiscent of the classical definition of Lipschitz spaces for u = −α > 0.
Now we see how the two subfamilies for positive and negative values of α are
combined in a uniform manner.
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Theorem 5.4. Λ−α ⊂ A(B) ⊂ H∞ ⊂ Bβ for α < 0 and β ≥ 0.

Proof. For α < 0, let f ∈ Λ−α, and pick s > −(N +1) and t so as to satisfy
(2) and (1). Then by (4), we have

f(z) = Cs+t

∫
B

(1 − |w|2)α+tDt
sf(w)

(1− 〈z, w〉)N+1+s
(1 − |w|2)−α+s dν(w)

and

|f(z)| ≤ C

∫
B

(1 − |w|2)−α+s

|1− 〈z, w〉|N+1+s
dν(w)

Since N + 1 + s− (N + 1)− (−α+ s) = α < 0, by the proof of [16, Proposition
1.4.10], the last integral converges uniformly for |z| ≤ 1. Thus also f ∈ C0.

The claim for β ≥ 0 is the well-known fact proved via Schwarz lemma that the
classical Bloch space contains H∞ combined with (16).

Corollary 5.5. Given α, r, u ∈ R and a compact subset E of B, there is a C
such that for all f ∈ Bα,

sup
z∈E

|Du
r f(z)| ≤ C ‖f‖Bα ,

where ‖f‖Bα = ‖I tsf‖L∞
α

with s > −(N + 1), t satisfying (2) and (1), Therefore
point evaluations on Bα are bounded linear functionals. Consequently, every B α is
a Banach space.

We now set N = 1 and look at the Taylor series coefficients of f ∈ Bα on D.

Theorem 5.6. Given α, there is a C such that for all f ∈ Bα,

|ck| ≤ C ‖f‖Bα k
α,

where ck=f (k)(0)/k! and ‖f‖Bα =‖I tsf‖L∞
α

with s>−2, t satisfying (2) and (1).

Proof. Differentiation k times puts (4) into the form

f (k)(z) = C (2 + s)k
∫

D

wk I tsf(w)
(1− 〈z, w〉)2+s+k

dνs(w) (z ∈ D).

Then
|ck| ≤ C ‖f‖Bα

Γ(2 + s+ k)
Γ(1 + k)

∫
D

|w|k (1− |w|2)s−α dν(w).

Evaluating the integral using [10, Proposition 2.1] yields

|ck| ≤ C ‖f‖Bα

Γ(2 + s+ k)
Γ(1 + k)

Γ(1 + k/2)
Γ(2 + s − α+ k/2)

∼ C ‖f‖Bα k
α,

where the final estimate follows from (8).
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Remark 5.7. The statements of most results in this section could be guessed
using the general principle stated in Remark 2.6. Theorem 5.2 and Corollary 5.3
are the p = ∞ versions of [13, Theorem 6.1 and Corollary 6.2], Theorem 5.6 is
the p = ∞ version of [13, Theorem 7.1], all after setting q = αp. Next we state
without proof another result that we guess by employing the same principle. For it,
we set q = αp first in [13, Theorem 4.2], and then replace the l p condition with
the l∞ condition as well as p by ∞. For α > −1, it is proved in [23, Theorem 1],
while our result holds for all real α.

Theorem 5.8. A Taylor series f(z) =
∑

k ck z
nk with Hadamard gaps be-

longs to Bα if and only if supk n
−α
k |ck| < ∞, and belongs to Bα0 if and only if

n−αk |ck| → 0 as k → ∞.

6. DUALITY AND INTERPOLATION

Duality results on Besov and Bloch spaces using different pairings dealing with
various ranges of the parameters appear in several places; see, for example, [26,
Sections 7.1 and 7.7]. Here we derive them for all real α using some general pairings
directly from Theorems 1.3 and 2.5, (3), and some general results on Lebesgue
classes.

Theorem 6.1. The dual space of every Bα0 can be identified with every B1
q

under each of the pairings

(24)
∫

B

I tsf I
−α−q+s
α+q+t g dνα+q ,

where s, t are chosen to satisfy (2) and (1), f ∈ Bα0, and g ∈ B1
q .

Proof. It is clear that each pairing in (24) induces a bounded linear functional
on Bα0 via Hölder inequality. Note that I−α−q+sα+q+t g ∈ L1

q by (17).
Conversely, let T be a bounded linear functional on Bα0 and M denote the

operator of multiplication by (1 − |z|2)−α. Then L = TPsM is a bounded linear
functional on C00 by Theorem 1.3. So there is a complex, hence finite, Borel
measure µ on B such that Lh =

∫
B
h dµ for all h ∈ C00. Pick h = M−1I tsf for

f ∈ Bα0. By (3), we have Lh = TPsMM−1I tsf = TPsI
t
sf = C−1

s+tTf so that
Tf = Cs+t

∫
B
I tsf(z) (1− |z|2)α dµ(z).

Let ϕ ∈ L1
q be the Radon-Nikodym derivative of µ with respect to νq . We can

also replace f by Cs+tPsI tsf by (3). Then Tf = C2
s+t

∫
B
V ts (I

t
sf)ϕdνα+q. Using

the form of the adjoint of V ts computed in the proof of [26, Theorem 2.10], we
obtain Tf = C2

s+t

∫
B
I tsf (V t

s )∗ϕdνα+q = C2
s+t

∫
B
I tsf V

−α−q+s
α+q+t ϕ dνα+q. Define

g = C2
s+tPα+q+tϕ; then g ∈ B1

q by Theorem 2.5. This yields the desired form.
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Under the conditions of the theorem, g ∈ B1
q obtained for a given T is unique.

If there were two such g’s, their difference, labeled g, would give 0 as the value of
the integral in (24) for all f ∈ Bα0. This forces I−α−q+sα+q+t g = 0. Applying Pα+q+t

to this and using (3) show that g = 0.

Theorem 6.2. The dual space of every B1
q can be identified with every Bα

under each of the pairings in (24), where now s, t are chosen to satisfy (18) and
(17) with p = 1, f ∈ B1

q , and g ∈ Bα.

Proof. The proof is almost identical to the proof of Theorem 6.1 with the
roles of Bloch and Besov spaces interchanged.

Corollary 6.3. There exist functions in every B 1
q and in every Bα0, and hence

in every Bα, whose Taylor series do not converge in norm.

Proof. See [24], where this result is obtained in certain other settings.

Our next purpose is to establish interpolation relations among the Bα family of
spaces once again using Theorem 1.3. For basic definitions and notation regarding
interpolation, we refer the reader to [26, Section 1.8]. We start with interpolation
between Lebesgue classes, where [X, Y ]θ is the complex interpolation space between
the Banach spaces X and Y .

Lemma 6.4. Suppose −∞ < α < σ < β < ∞ with σ = (1 − θ)α + θβ for
some 0 < θ < 1. Then [L∞

α , L
∞
β ]θ = L∞

σ . Similar results hold for Cσ and Cσ0.

Proof. To begin with, L∞
α ∩ L∞

β = L∞
α ⊂ L∞

β = L∞
α + L∞

β .

First suppose ϕ ∈ L∞
σ . For ζ ∈ S := { ζ : 0 ≤ Re ζ ≤ 1 } and z ∈ B, define

Fζ(z) = (1− |z|2)σ−(1−ζ)α−ζβ ϕ(z), which, as a function of ζ, is continuous on S
and holomorphic in its interior. Obviously, Fθ(z) = ϕ(z). We have

‖Fζ‖L∞
α +L∞

β
≤ ‖ϕ‖L∞

σ
sup
z∈B

(1− |z|2)(1−Re ζ)(β−α) ≤ ‖ϕ‖L∞
σ

for all ζ ∈ S. Similarly, ‖Fiy‖L∞
α

≤ ‖ϕ‖L∞
σ

and ‖F1+iy‖L∞
β

≤ ‖ϕ‖L∞
σ

for all
y ∈ R. Thus also ‖F‖ ≤ ‖ϕ‖L∞

σ
and ϕ ∈ [L∞

α , L
∞
β ]θ.

Next suppose ϕ∈[L∞
α , L

∞
β ]θ. Then there is an Fζ(z) as above with Fθ(z)=ϕ(z).

Put M0 =supy ‖Fiy‖L∞
α

, M1 =supy ‖F1+iy‖L∞
β

, and Mθ=supy ‖Fθ+iy‖L∞
σ

. Then

‖ϕ‖L∞
σ
≤ sup
y∈R,z∈B

(1 − |z|2)σ |Fθ+iy(z)| = Mθ ≤M1−θ
0 Mθ

1

by Hadamard three lines theorem, and this shows ϕ ∈ L∞
σ .
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Theorem 6.5. Suppose −∞ < α < σ < β < ∞ with σ = (1 − θ)α + θβ for
some 0 < θ < 1. Then [Bα,Bβ]θ = Bσ and [Bα0,Bβ0]θ = Bσ0.

Proof. Let s satisfy (2) and t satisfy (1) both with β in place of α.

The operator Ps maps L∞
α onto Bα, L∞

β onto Bβ , and L∞
σ onto Bσ boundedly by

Theorem 1.3. By Lemma 6.4 and interpolation theory, Ps maps L∞
σ = [L∞

α , L
∞
β ]θ

into [Bα,Bβ]θ. Thus Bσ ⊂ [Bα,Bβ]θ.
On the other hand, the operator I ts maps Bα into L∞

α , Bβ into L∞
β , and Bσ into

L∞
σ boundedly by Definition 1.1. By Lemma 6.4 and interpolation theory, Its maps

[Bα,Bβ]θ into L∞
σ = [L∞

α , L
∞
β ]θ. By Definition 1.1, the last mapping just means

that any f in [Bα,Bβ]θ also belongs to Bσ.

7. EXTREMAL PROBLEM

Point evaluations already considered in Corollary 5.5 are important in function
spaces for many reasons. Therefore it is of interest to know how large they can
be as operators in any given space. In a weighted Bloch space, their size can be
measured by the quantity Sα(b) of (5). In this section, we provide a solution of the
related extremal problem.

Lemma 7.1. Given α, pick s, t to satisfy (1). Then on Bα considered with the
norm ‖f‖Bα = ‖I tsf‖L∞

α
, the operator W α

ψ of (7) is a linear surjective isometry
with inverse (W α

ψ )−1 = D−t
s+tT

α
ψ−1D

t
s.

Proof. For f ∈ Bα, let g = Dt
sf ∈ Bα+t, note that α + t > 0, and let

w = ψ(z). By (9) and Proposition 2.1, we have

‖Wα
ψ f‖Bα = ‖I tsWα

ψ f‖L∞
α

= ‖Tα+t
ψ g‖L∞

α+t

= sup
z∈B

(1− |z|2)α+t (1− |ψ(z)|2)α+t

(1 − |z|2)α+t
|g(ψ(z))|

= sup
w∈B

(1 − |w|2)α+t |g(w)| = ‖g‖Bα+t = ‖f‖Bα .

The statement about the inverse is clear by (12) and (Jψ−1)(ψ(z)) = 1/Jψ(z).
Note that Wα

ψ is involutive when ψ is; this is so in particular with T α
b . Because

JU is constant, we see that TU commutes with all the radial differential operators
Dt
s and hence Wα

U f = TαU f . When α = 0, Lemma 7.1 reduces to the Möbius-
invariance of the classical Bloch space since then the derivaties cancel out and
W 0
ψf = f ◦ ψ.

Proof of Theorem 1.4. Finding the extremal function at b = 0 is easy. First
for α > 0 and t = 0, clearly f(0) ≤ supz∈B (1 − |z|2)α |f(z)| = ‖f‖Bα = 1, and
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equality holds if and only if f is identically 1 by the maximum modulus principle.
So the unique extremal function is f0 ≡ 1. Next for any α and t �= 0 satisfying (1),
we have

d0 f(0) = Dt
sf(0) ≤ sup

z∈B

(1− |z|2)α+t |Dt
sf(z)| = ‖f‖Bα = 1.

Now the unique extremal function is f0 ≡ d−1
0 .

To carry the result to other b ∈ B, we use Wα
b of Lemma 7.1. Finding Sα(b)

is equivalent to finding sup
{

(Wα
b f)(0) > 0 : f ∈ Bα, ‖Wα

b f‖Bα = 1
}
. The

involutive property of Wα
b shows that the unique extremal function at b is fb = Tαb 1

for α > 0 and t = 0, and it is fb = d−1
0 Wα

b 1 for any α and t �= 0 satisfying (1).
To write the detailed form of fb, we use for convenience s0 = 2α + t − (N + 1)
when t �= 0. Then by (10) and (13),

fb(z) =


(1 − |b|2)α

(1 − 〈z, b〉)2α (α > 0, t = 0);

(1 − |b|2)α+tK2α+t−(N+1)(z, b) (α+ t > 0, s = s0).

It can be checked that setting b = 0 in the second line above actually yields f0
using the explicit forms of Dt

s in [10, Definition 3.1].
We are done with Bα. However, let’s see that the extremal function lies in

Bα0 in each case using Definition 1.1. When α > 0 and t = 0 in the norm,
(1 − |z|2)α fb(z) → 0 as |z| → 1 obviously. When α ≤ 0,

(1 − |z|2)α I ts0fb(z) = (1− |z|2)α+t (1− |b|2)α+tK2(α+t)−(N+1)(z, b)

=
(1− |z|2)α+t (1− |b|2)α+t

(1 − 〈z, b〉)2(α+t)
→ 0

as |z| → 1, since (1) always holds. This completes the proof of the theorem.

Remark 7.2. As expected, Theorem 1.4 and Lemma 7.1 are the p = ∞ versions
of [21, Theorem] and [10, Theorem 8.2] after setting q = αp.

8. MAXIMALITY

The subject of this section is α-Möbius invariance and we prove Theorem 1.6
here. For each α > 0, we give a nontrivial example of an α-Möbius-invariant space
in Corollary 8.4. Similar results in the case α = 0 are presented in [26, Lemma
3.18] and in [20, Theorem 0.3]. This case is different in its lack of α which causes
its proofs to be more difficult and sometimes requiring stronger hypotheses. For
example, the equivalent of Proposition 8.1 with α = 0 requires the existence of a
nonconstant function in the space. We concentrate on α �= 0 here. On the other
hand, for any α, only diagonal unitary matrices need to be used in the proofs.
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Proposition 8.1. For α �= 0, an α-Möbius-invariant space X contains the
polynomials.

Proof. Fix b �= 0 in B. Since 1 ∈ X , also Wα
b 1 ∈ X . By Definition 1.2, (11),

and (12),

(Wα
b 1)(z) = (D−t

s+tT
α+t
b Dt

s1)(z) = d0 (D−t
s+tT

α+t
b 1)(z)

= d0D
−t
s+t

(1− |b|2)α+t

(1 − 〈z, b〉)2(α+t)
= d0 (1− |b|2)α+tD−t

s+t

∞∑
k=0

ck 〈z, b〉k

= d0 (1 − |b|2)α+t
∞∑
k=0

d−1
k ck 〈z, b〉k =

∑
λ

cλ z
λ,

where cλ �= 0 for any λ ∈ NN . Fix any multi-index µ, let U = diag(eiθ1, . . . , eiθN )
be unitary, θ = (θ1, . . . , θN), and consider

f(z) =
1

(2π)N

∫
[−π,π]N

(Wα
UW

α
b 1)(z) e−i〈µ,θ〉 dθ,

which belongs to X by the assumptions on the continuity of the Wα
U -action and the

completenesss of X . Recalling the series for Wα
b 1 and that W α

U = TαU shows that

f(z) = (detU)2α/(N+1) cµ z
µ.

Thus X contains any monomial zµ.
Definition 8.2. A nonzero bounded linear functional on a normed space X of

holomorphic functions on B is called decent if it extends to be continuous on H(B).

Proof of Theorem 1.6. First let α > 0. Let L be a decent functional on X , and
let U and θ be as in the proof of Proposition 8.1. Define another linear functional
by

LUf =
1

(2π)N

∫
[−π,π]N

L(TαUf) (detU)−2α/(N+1) dθ (f ∈ X).

If we expand TαU f into series, the decency of L shows that LUf = f(0)L(1). On
the other hand,

|f(0)| |L(1)|= |LUf | ≤ 1
(2π)N

∫
[−π,π]N

‖L‖ ‖TαUf‖X dθ ≤ C ‖L‖ ‖f‖X.

Replacing f by Tαz f gives

(1 − |z|2)α |f(z)| |L(1)| ≤ C ‖L‖ ‖Tαz f‖X ≤ C ‖L‖ ‖f‖X.
Hence if L(1) �= 0, then ‖f‖Bα ≤ C ‖L‖ |L(1)|−1 ‖f‖X < ∞, and X ⊂ Bα with
continuous inclusion.
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Now we prove that a decent functional on X that is nonzero on 1 always exists.
As in the proof of Proposition 8.1, for fixed b �= 0 in B and by the decency of L,

L(Tαb 1) =
∑
λ

cλ L(zλ)

with cλ �= 0 for any multi-indexλ. If L(Tαb 1) = 0 for all b �= 0 in B, thenL(zλ) = 0
for all multi-indices λ and L = 0 because of its decency. So L(Tαb 1) �= 0 for some
b �= 0 in B. For such a b, define the linear functional Lb = LTαb on X . Then
Lb(1) �= 0 and ‖Lb‖ ≤ ‖L‖ ‖Tαb ‖ ≤ C ‖L‖. The functional Lb is also decent,
because Tαb is continuous on H(B) since any Möbius transformation ϕb and Jϕb
take compact subsets of B to other compact subsets. This yields the desired result.

If α < 0, pick s, t to satisfy (1), and consider the space Y ={g=Dt
sf : f ∈ X}

with the norm ‖g‖Y = ‖f‖X . It is a matter of writing down the definitions and
noting that T αU commutes with all Dt

s to check that Y is (α+ t)-Möbius-invariant.
Then Y ⊂ Bα+t and X ⊂ Bα with continuous inclusions by Proposition 2.1.

Corollary 8.3. There is no α-Möbius-invariant closed subspace of H(B) other
than {0}.

Note that constants do not form an α-Möbius-invariant subspace. In the sense
of Definition 1.5, H(B) is not α-Möbius-invariant either, but this is a technicality.

Proof. Suppose Y is an invariant subspace that is properly contained in H(B).
By Hahn-Banach theorem, there is a continuous linear functional L �= 0 on H(B)
whose restriction to Y is 0. For f ∈ H(B), set χ(f) = supψ |L(Tαψ f)| and define
X as the completion of { f ∈ H(B) : χ(f) < ∞}. It is easy to see that χ is a
seminorm and that Theorem 1.6 is valid ifX is given by a seminorm. Then χ(f) = 0
for all f ∈ Y and hence Y is contained in X on which L is a decent functional.
By Theorem 1.6, X is contained in Bα continuously, that is, ‖f‖Bα ≤ C χ(f) for
all f ∈ X . So if f ∈ Y , then ‖f‖Bα = 0 and thus Y = {0}. The conclusion also
implies that χ is a true norm.

Corollary 8.4. Suppose p > 0 and q > −1, or p ≥ 2 and −(N + 1) ≤ q ≤ 1.
Suppose α > 0. Suppose further α, q, and p are related by N + 1 + q = αp. Then
Bpq is an α-Möbius-invariant space and thus B p

q ⊂ Bα with continuous inclusion.

Proof. By [2, Theorem 3.3], [10, Theorem 8.2] and the given relation among
the parameters, the Besov space Bpq is α-Möbius-invariant. Then Theorem 1.6
applies. The set of (p, q) in the right half plane satisfying N + 1 + q = αp is a ray
with slope α and q-intercept −(N + 1).

The inclusion part of this result appears in [2, Corollary 5.5] with a totally
different proof, and is in fact a Sobolev-type imbedding.
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9. METRICS AND LIPSCHITZ PROPERTY

In this section, we consider α > 0 and develop the Hermitian metrics ρα with
respect to which the weighted Bloch spaces Bα have the Lipschitz property. We start
with their infinitesimal forms. For a different point of view regarding Hermitian
metrics and Bloch spaces, see [27].

For z ∈ B, we define the matrix gα(z) by

gαij (z) =
1

(1 − |z|2)2(1+α)
((1 − |z|2) δij + zizj) (1 ≤ i, j ≤ N ),

where δij is the Kronecker delta. The only difference of gα from the infinitesimal
Bergman metric g0 is the presence of α in the power of the denominator. Clearly
gαji = gαij . Further, gα is unitarily invariant in that gα(Uz) = U gα(z)U−1 for a
unitary transformation U of C

N . We compute easily that

det gα(z) =
1

(1− |z|2)N+1+2Nα
= K2Nα(z, z) > 0 (z ∈ B),

which also shows the form of gα when N = 1. The leading principal minors of
gα(z) are just det gα(z) of all the dimensions from 1 through N , which are all
positive. Thus gα(z) is a positive definite matrix on B. By the same reason, gα(z)
is invertible with its inverse given by

gijα (z) = (1 − |z|2)1+2α (δij − zizj) (1 ≤ i, j ≤ N ).

Therefore gα is an infinitesimal Hermitian metric on B. It gives rise to a distance
on B in the usual manner. If γ = (γ1, . . . , γN) is a curve in B joining z and w in
B, its α-length is

lα(γ) =
∫ 1

0

〈
gα(γ(t))γ ′(t), γ ′(t)

〉1/2
dt.

By taking the infimum of lα(γ) over all curves joining z and w, we obtain a distance
ρα(z, w) between z and w. If there exists a curve on which the infimum is attained,
it is a geodesic of ρα.

Let z = 0 and w = (r, 0, . . . , 0) with 0 < r < 1. The unitary invariance
of gα entails that the line segment γr joining z and w is a geodesic. Using the
parametrization γr(t) = (t, 0, . . . , 0) for 0 ≤ t ≤ r, we compute

(25) lα(γr) =
∫ r

0

dt

(1 − t2)1+α
∼

∫ r

0

dt

(1 − t)1+α
=

1
α

(
1

(1 − r)α
− 1

)
.

As w → 1, lim
r→1−

lα(γr) = ∞; that is, B is unbounded in the metric ρα. This
simple result has important implications for ρα. By the Hopf-Rinow theorem (see
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[5, Theorem 7.2.8]), (B, ρα) is geodesically complete, complete as a metric space,
its closed and bounded subsets are compact, and there exists a geodesic of gα joining
any two points in B.

Associated to any Hermitian metric, there is defined a Laplace-Beltrami operator
(see [18, Section 3.1]), which in our case is

∆̃α =
2

det gα

N∑
i,j=1

[
∂

∂zj

(
(det gα) gijα

∂

∂zi

)
+

∂

∂zi

(
(det gα) gijα

∂

∂zj

)]

= 4 (1− |z|2)1+2α

[
N∑

i,j=1

(δij − zizj)
∂2

∂zi ∂zj
+ (N − 1)α

(
R+ R

)]

= 4
N∑

i,j=1

gijα (z)
∂2

∂zi ∂zj
+ 4 (N − 1)α (1 − |z|2)1+2α

(
R+R

)
,

where Rf(z) = 〈∇f(z), z〉 is the classical radial derivative of f , and ∇ de-
notes the complex gradient. The operators ∆̃α are reminiscent of the variants of
Laplace-Beltrami operators defined in a different context in [7, (1.11)], but there is
a difference. Our ∆̃α have no constant terms and annihilate constants. This can
have interesting connections; see [11, Section 4]. Here also (∆̃αf)(0) = (∆f)(0),
where ∆ is the usual Laplacian. Further, ∆̃α = (1− |z|2)2(1+α)∆ when N = 1, so
∆̃α and ∆ annihilate the same functions on D.

The infinitesimal Bergman metric is obtained as

(26) g0ij
=

1
N + 1

∂2 logK0(z, z)
∂zi ∂zj

.

The presence of the first-order terms in ∆̃α for α > 0 and N > 1 imply that
holomorphic functions are not annihilated by it, and more importantly, the corre-
sponding gα is not a Kähler metric; see [17, p. 26]. This is equivalent to the fact
that gα cannot be obtained by differentiation as in (26) for α > 0 and N > 1. For
N = 1 and small positive integer α, we can use integration by partial fractions to
find formulas similar to (26). For example, let

L1(z, w) =
1
3

(
log

1
1 − z w

+
1

1 − z w
+

1
2 (1− z w)2

)
(z, w ∈ D);

then
∂2L1(z, z)
∂z ∂z

=
1

(1− |z|2)4 = g1(z) (z ∈ D).

Each Hermitian metric additionally gives rise to a gradient field; see [18, Section
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3.4]. For f ∈ H(B) and our gα, it takes the form

|∇̃αf(z)|2 = 2
N∑

i,j=1

gijα
∂f

∂zi

∂f

∂zj
= 2 (1− |z|2)1+2α

(|∇f(z)|2 − |Rf(z)|2)
= 2 (1− |z|2)2α |∇̃f(z)|2,

where ∇̃=∇̃0/
√

2 and is called the invariant gradient since ∇̃f(z)=∇(f ◦ϕz)(0).
Before relating Bα to ρα, we find an equivalent definition of Bα much the same

way as the early definition of B0 in [19, Definition 3.1]. To this end, set

Qαf(z) = sup
w �=0

|〈∇f(z), w〉|√〈gα(z)w, w〉
(z ∈ B),

and f ∈ H(B).

Lemma 9.1. If α > 0 and f ∈ H(B), then f ∈ Bα if and only if Qαf ∈ L∞

and if and only if |∇̃αf | ∈ L∞.

Proof. The proof of [26, Theorem 3.1] with straightforward modifications for
the presence of α yields that Qαf(z) = (1−|z|2)α |∇̃f(z)| = |∇̃αf(z)|/√2. Then
[26, Theorem 7.2 (a)] gives us what we want.

When N=1, Rf(z)=zf ′(z), ∇f(z)=f ′(z), ∇̃f(z)=(1 − |z|2) f ′(−z), and
Qαf(z) = (1 − |z|2)1+α |f ′(z)|.

For f ∈ H(B), a direct computation shows that

∆̃α(|f |2)(z) = 2 |∇̃αf(z)|2 + 2 (N − 1)α Re(f(z)Rf(z)).

Thus ∆̃α(|f |2) = C |∇̃αf |2 for f ∈ H(B) if and only if α = 0 or N = 1.

Proof of Theorem 1.7. Let z, w∈B and γα be a geodesic of ρα joining them,
which we know exists. Then

|f(z)− f(w)| ≤
∫
γα

∣∣〈∇f(u), du〉∣∣ ≤ ∫
γα

Qαf(u)
√
〈gα(u)du, du〉

≤ C ‖f‖Bα

∫ 1

0

√〈
gα(γα(t))γ ′α(t), γ ′α(t)

〉
dt = C ‖f‖Bα ρα(z, w).

In the converse directionN = 1. Consider the curve γ(t) = t for 0 ≤ t ≤ r < 1
between 0 and r. Let z ∈ D and ξ(t) = ϕz(γ(t)). Then ξ(t) is a curve between z
and w = ϕz(r), ξ′(t) = ϕ′

z(t), and

lα(ξ) =
∫ r

0

|ϕ′
z(t)|

(1 − |ϕz(t)|2)1+α
dt =

∫ r

0

1
(1 − t2)1+α

|1 − zt|1+α

(1 − |z|2)α dt

≤ (1 + |z|)2α
(1 − |z|2)α

∫ r

0

dt

(1 − t)1+α
=

(1 + |z|)2α
(1− |z|2)α

1
α

(
1

(1 − r)α
− 1

)
.
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by [16, Theorem 2.2.2 (iv)] and (25). The same is true if also ϕz is composed with
rotations in obtaining ξ from γ . In all cases r = |ϕz(w)|. Then

ρα(z, w) ≤ 22α

α

1
(1− |z|2)α

(
1

(1− |ϕz(w)|)α − 1
)
.

Now let w = z + h with |h| small. Then

ϕz(w) ∼ |h|
1 − |z|2 and (1− |ϕz(w)|)α ∼ 1− α|h|

1 − |z|2 ,

and thus
ρα(z, w) ≤ C

(1− |z|2)α
|h|

1− |z|2 − α|h| .
Using the assumption,

C ≥ |f(z)− f(w)|
ρα(z, w)

≥ C
|f(z)− f(z + h)|

|h| (1− |z|2)α (1− |z|2 − α|h|).

Letting h → 0, we obtain (1 − |z|2)α+1 |f ′(z)| ≤ C for all z ∈ D. Therefore
f ∈ Bα.

The case of the classical Bloch space has some extra properties which we do not
know for α > 0. The metric ρ0 is invariant under Möbius transformations, but we do
not know of any isometries of ρα other than unitary transformations. The invariance
gives rise to the well-known explicit logarithmic formula for ρ0(z, w) which we do
not have for α > 0. This lack of explicit formula for ρα is the main obstacle to
obtaining the converse in Theorem 1.7 for N > 1. The computations involved for
the style of proof presented above for N > 1 are prohibitively complicated. For
N = 1 and small positive integer α, it is possible to obtain explicit expressions for
ρα(z, w) using integration by partial fractions and the unitary invariance of gα. For
example, with α = 1, a tedious computation yields that

ρ1(z, w) =
1
4

log
1+|ϕz(w)|
1−|ϕz(w)|+

1
2
|ϕz(w)| (1−2 Re(z ϕz(w))+|z|2)

1−|ϕz(w)|2 (z, w∈D) .

As a final note, let’s compute the holomorphic sectional curvatures (see [14,
Section 2.1]) of the new metrics. When N = 1, they are

κα(z) = −∆ log gα(z)
gα(z)

= −4 (1 + α) (1− |z|2)2α (z ∈ D).

Clearly κα(z) ≤ 0, and κα(z) → 0 as z → ∂D. This curvature is more difficult to
compute exactly for higher N , but it is clear that the factor 1−|z|2 will persist with
a positive power. So the new metrics for α > 0 have curvatures that are neither
constant nor bounded away from 0 unlike the Bergman metric.
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