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Abstract 
Recent work on fractionally spaced blind equalizers have 

communication systems [ lo]  for which this assumption is 
not valid for any over-sampling factor M’. 

. -  

shown that it is possible to exactly identify the channel and 
its input sequence from the noise-free channel outputs. How- 
ever, the obtained results are based on a set of over-restrictive 

4, The assumption that the number of sub-channels is the 
same as the over-sampling factor. 

constraints on the channel. In this paper it is shown that 
the exact identification can be achieved in a broader class of 
channels. 

1 Introduction 
Since the invention of digital communication, blind channel 
equalization has been an active area of research. Here, we 
present theoretical reiwlts on the exact identification of the 
channel response and input sequence based on the noise-free 
observation of the channel output sequence. Our purpose is 
to fully characterize what can be done with the least set of 
assumptions on the channel model. 

Over-sampling the output of an FIR continuous-time 
channel a t  a rate M’ times faster than the symbol rate 1/T 
provides channel diversity which can be equivalently rep- 
resented as a single-input M-output discrete-time multi- 
channel FIR filter [l] Without loss of generality, assuming 
that first M 5 M’ of these sub-channels are to  be identified, 
the corresponding multi-channel model is shown in Fig. 1 
where the outputs of the multi-channel filter are the samples 
of the received signal y ( t ) :  

T 
M y i[n]  = y(nT+ ( i G 1 ) T )  , 15 i I M . ( 1 )  

In this model {a[n]}E=O is the input symbol sequence chosen 
from a finite alphabet and D represents the transmission de- 
lay. The FIR filter h,[n] in Fig. l corresponds to the common 
zeros of the sub-channels. In order to clearly differentiate the 
present work from the previous ones, we state below some of 
the assumDtions and/or constraints that are avoided here: 

If the sub-channels do not share any common zeros then 
h,[n] = &[n]. It will be shown that in this latter case, an 
efficient tree-structured algorithm can be used to identify 
the exact channel and the input sequence. Also, the least 
number of channel output samples required in the identifica- 
tion is found. In the case of common zeros, it is shown that 
the tree-structured algorithm can still be used to identify 
the channels hl [n], . . . , h ~ [ n ]  and their common input zc[n].  
Then, the blind identification of h,[n] and the input sequence 
can be carried out by using a pruning algorithm which con- 
verges almost surely under very mild set of assumptions on 
the probability distribution of the channel coefficients. 

2 Exact Identification of hl[n,], . . . , hM[n] 

As shown in Fig. 1,  the output signals y l [ n ] ,  . . . , Y M [ ~ ]  are the 
responses of the channels hl[n],  . . . , h ~ [ n ]  to the same input 
zc[n]. Thus it can be conjectured that the input-output re- 
lationship between pairs of channels might produce sufficient 
information [6] ,  [ I l l  to estimate the channels hl [n], . . . , h~ [ y ]  
without any prior knowledge about their input zc[n] .  In this 
and the next section we will show that indeed this is the case. 

For 1 5 i 5 M ,  let g2[n]  be an estimate of h,[n] .  Here we 
assume that the assumed order ,f~ of the channel estimates 
is larger than or equal to L2 which is the largest order of the 
channels h,[n]. We will base the optimality of a set of channel 
estimates at the sampling index N of the received data y 2 [ n ] ,  
1 5 i 5 A4, to the following cost function: 

1. The inowledge bf the exact channel order as in [2], [3] ,  M M  

[41, [51, PI. 
2=13=,++1 2. The constraints on the length of the channels and the 

number of the channels as in [7].  
where J,, ( g  z, g ; N ) ,  the cost function associated witlh chan- 
nels i and j ,  is defined as: 3. The assumption t hat the sub-channels do not share any 

common zeros (i.e., h,[n] = &[n]) as in almost every 
second-order statistics based algorithm [2],  [6] ,  [7], [8].  It 
has been shown that these algorithms lose their robust- 
ness when this assumption is not true [9]. This is a se- 
vere limitation because there exists classes of multi-path 

N 
1 

J , , ( g , , g , ; N )  = G ~ W N - ~  1 g T ~ ~ [ k ] @ g T y , [ k ] / ’  , 
b = O  

( 3 )  
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where g , and y ,[k] are defined as: 

Q z  = [ gt[o] 9 ~ [ 1 ]  3 . .  gzrLz1 1’ (4) 

Y a [ k ]  yz[k] Yz[k*11 ... y t [ k * ~ l  I‘ . ( 5 )  

C w , ~  in (3) is a normalization constant defined as C w , ~  = 
N 

W N - k  and W k  is a weighting sequence that satisfies 

o < W k < l  , O < k F N .  (6) 

By using (4) a more compact representation for the cost 
J i z  ( g  ; N )  is given as: 

J i z ( 9 ; N )  = g H R , ,  [NI 9 7 (7) 

where g = [gT g f  . . .  g L I T  is the concatenated channel 
vector estimates and R,, [NI is the hermitian nonnegative 
definite matrix with ith diagonal entry x3+z R,,,, [NI and 
( i , ~ ) ~ ~  off-diagonal entry MY3,, [NI, where R,,,, [NI is the 
weighted cross-correlation matrix of the multi-channel filter 
outputs y and y z :  

The minimizers of the cost function given by (7) are fully 
characterized by the following Theorem: 
Theorem 1. 

To complete the proof of the theorem we will make use of 
several lemmas whose proofs are given in [12]. 

This lemma can be used in (10) to conclude the equality of 
gi [n] * hj [n] = gj [n] *hi [TI] for all n. Hence, in the z-transform 
domain: 

Since for i # j, Hi(z)  and H j ( z )  may have common zeros, let 
monic polynomial Hij (2) be the greatest common divisor of 
H i ( z )  and H j ( z ) .  Hence, H i ( z )  can be decomposed as: 

G i ( z ) H j ( z )  = G j ( z ) H i ( z )  . (11)  

Hi(z) = H i j ( z ) Q i / j ( z )  (12)  
where the quotient polynomial Q i / j ( z )  is equal to 
H i ( z ) / H i j ( z ) .  Then, (11)  can be written as: 

(13) 

(14) 

Q i / j ( z ) l G i ( z )  , vi,j . (15)  

Gi ( z )Hi j  ( z )Qj / i  ( z )  G j  (z)Hij  ( z ) Q i / j  ( z )  . 
After cancellation of the H i j ( z )  we get; 

Gi(z)Qj/i(z) = Gj ( z ) Q i / j ( z )  . 
Since, Q j / i ( z )  and Q i / j ( z )  have no common zeros; 

At this stage we use the following lemma: 

Lemma 2. I f Q i / j ( z ) l G i ( z )  f o r  all i , j  then Hi(z)lGi(z) f o r  
all i. 

Lemma 2 implies that G i ( z )  can be factored as: 

G i ( z )  = Fi(z)Hi(z) . (16) 
We complete the proof of Theorem 1 using the following 
lemma: 

Lemma 3. Fi(z)  = F’ ( z )  f o r  1 < i ,  j < M .  

This completes the proof of G i ( z )  = F ( z ) H i ( z )  for all i. Cl 

Theorem 2. T h e  set of vectors [ g T  g f  ... gEf  I’ 
that satisfies (9)  constitutes a n  L, + 1 dimensional vector 
space, where i, = Lz #Lz. 
Proof. Theorem can be proved, by expressing the minimizers 
of (7) as g i  = H i f ,  1 5 i 5 M ,  where H i  is the non- 
singular convolution matrix corresponding to the ith channel. 
Since these relations can be compactly written as g = H f , 
where W = [H T . . . H L]’ is a non-singular channel matrix 
it follows that the dimension of the solution space is equal to 
the dimension of the arbitrary vector f . 0 

An important implication of this theorem is stated as: 

Corollary 1. T h e  matrix  R,, [NI has a n  Lc+l dimensional 
null-space. 

By starting with L2 which is larger than Lz, one can form 
R,, [NI in (7) . Then by using Corollary 1,  LZ can be ob- 
tained as LZ = LZ *q + 1, where q is the dimension of 
the null-space of R,, [NI. Once the actual order LZ is ob- 
tained, the minimization of (7) is solved with i~ = L2. Since 
L, = L 2  u L ~  = 0, Theorem 1 states that any minimizer of 
J L , ( ~ ;  N )  would be in the form 

gi[n] = f[O]hi[n] , for i = 1 , .  . . , M (17)  
where f[O] is an arbitrary constant. To avoid the unde- 
sired trivial solution f[O] = 0, we have to introduce some 
constraints into the minimization problem. The constraints 
should be imposed in a way that a non-zero multiple of the 
actual channels hl [n], . . . , h ~ [ n ]  should be in the feasible set. 
As it can be shown easily, the constraint 119 11’ = pz meets 
this requirement [12]. 
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3 A Tree Algorithm 

As pointed in the previous section, true channel coefficients 
can be obtained as the constrained minimizer of (7). For 
J!Q = Lz, the direct implementation of the corresponding 
closed form solution requires O ( M 3 L ;  + M 2 L i N )  operations 
for estimation of all the sub-channels hl[n] ,  . . . , h ~ [ n ]  us- 
ing N consecutive channel outputs [12]. In this section we 
propose to use a binary-tree a1 orithm to reduce the compu- 
tational load to O(M15; + M L z N ) .  

The basic idea of the binary-tree algorithm will be illus- 
trated for M = 4 using the re-arranged multi-channel filter 
model in Fig. 2. In this figure D represents the overall de- 
lay of the communication system, H,(z) denotes the common 
finite zeros to the 4 channels, Ifz3 ( z ) ,  i # j ,  denotes the ze- 
ros common to the ith and jth channels apart from those in 
z P D H c ( z )  and finally QZ/,(z) A H,(z) /H, , (z) ,  i # j ,  denotes 
the zeros of the ith channel which are not also zeros of the jth 
channel. With this arrangement, we note that, all the filters 
in the dashed Boxes 1, 2 and 3 are coprime. 

Below we give a two stage algorithm which is used to com- 
pute the FIR filters in Box 1 and their common input u12[n]: 

1 )  Since Q1/2(z) and Q2/1(z) are coprime, identify them 

8 

using the procedure outlined in Section . 
2 )  Identify their common input ulz [n]  using the Bezout 

identity [12], [13]. 

The same algorithm is also used to compute filters in Box 2 
and their common input u34[n]. Since the outputs of the fil- 
ters in Box 3 have been identified, these filters and their com- 
mon input x,[n] can be identified again using the same algo- 
rithm. This completes the identification of the sub-channels 
hi[n] ,  . . . , h4[n]. 

4 Identification of the Common Zeros 

In the previous section we have presented a method for blind 
identification of the sub-channels hl[n] ,  . . . , h ~ [ n ]  in Fig. 1 
and their common input x,[n]. Thus the overall problem is 
reduced to the blind identification of the filter h,[n] in Fig. 1. 
In this section we give a solution to this problem. 

We write the input-output relation of the filter h,[n] using 
the vector/matrix notation': 

is one of the possible A L ~  matrices then the correspond- 
ing channel estimate hLk) is obtained by solving (18) using 
the forward-substitution. Since the sequence x,[n] can be 
computed exactly in the noise-free case one of the computed 
channel estimates, hLk), should be the actual channel. The 
pruning algorithm given in Page 4 can be used to identify the 
actual channel among all those possible channel estimates. 
Basically at  each sample index n, the algorithm discards the 
channel estimates which cannot produce the most recent out- 
put sample xc[n]. The algorithm terminates when there re- 
mains only one channel estimate. Also it should be noted 
that when the correct channel is identified using the pruning 
algorithm, the configuration in Fig. 3 provides a solution for 
the input sequence a[.]. 

There exist some pathological cases [12], where two or more 
more input sequence-channel pairs produce the same output 
xc[n]. Now we show that for a given output the set of these 
pathological cases is discrete. Thus, under the assumption 
that the channel coefficients are realization of continuous ran- 
dom variables the total probability of this set of pathological 
cases is zero. Therefore in practice the pruning algorithm 
almost surely identifies h, [n]. 
Theorem 3. For a given output sequence xc[n] which is 
not identically zero, the set of input and channel pairs 
(a [n] ,h , [n ] )  which accepts zc[n] as a valid output is a dis- 
crete set. 

Proof. Since the allowed input sequences are all discrete, we 
have to show that the corresponding channel pairs are iso- 
lated points in the set of all possible channels. This can be 
shown by contradiction. Let E > 0 be given. Then there 
exists pairs (a l[n] ,  h,, [n]) and (az[n], hcz[n]) such that 

L1 

0 < Ihc, [.I Hhc2[nIl2 < E , (19) 
n = O  

which satisfy the following transform domain identity: 

X C ( z )  = ~-"Ai(z)H,,(z) = z -"Az(z )H, , (~)  . (20) 

Let H,,(z) = H,,(z) +6H,(z) ,  A ~ ( z )  = A l ( z )  + b A ( z ) .  Sub- 
stituting these into (20) yields: 

H,, (2) 6 A ( z )  + 6HC(z) Ai(z) + 6Hc(z )  6 A ( z )  = 0 . (21) 

by (19) the total energy i n  the coefficients of 6H,(z) is less 
. (I8) than E .  Hence, when E + 0, (21) implies that H,, (2) 6 A ( z )  = 

0. Since 6A(z)  # 0 (because Hc1(z) # H,,(z) in (20)), the 
above condition can be satisfied only if H,, ( z )  = 0 which 

In the above equation the vector X , , L ~  has been computed 
as explained in the previous section. Since the information 
symbols {a[O], . . . , a[L1]} are chosen from a finite alphabet 
with size N ,  there are only NL1+' distinct and possible A L~ 
matrices. The algorithm that we propose in this section first 
computes all possible channel estimates that can lead to the 
output sequence xc[D], . . . , xc[D + L l ] .  For example, if A 2";' 

- 
'Using an over-estimate of L1 does not change the results in 

this section. It only increases the computational load. 

In this equation, 6 A ( z )  is the z-transform of a sequence whose 
samples can take values only in a discrete set, and as implied 

_ .  . 
implies X c ( z )  = 0, hence a contradiction. 0 

5 Conclusions 

A theoretical investigation on the blind identification of the 
channel and input sequence from the noise free observation of 
the fractionally spaced channel outputs is presented. In the 
case of no common zeros between the channels, the channel 
identification problem is posed as a constrained minimization 
problem involving channel outputs and the channel estimates 
such that only at a constant multiple of the actual channel 
the global minima is reached. A novel binary-tree algorithm is 
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proposed for the computationally efficient identification of the 
channel and the input sequence. Also, the minimum number 
of channel output samples required by the algorithm is found. 
In the case of common zeros between the parallel branches 
of the fractionally spaced channel model, a second stage of 
processing is proposed for the almost sure identification of 
the channel and the input sequence. 
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Figure 3: Identification of the common zeros. 

Algori thm 1 The pruning algorithm 
Initialization: 

Define the current sample index n and the set of remaining 
channel estimates S”-l at the previous sample index: 

72 = D + L i + l  

s n - 1  = {h~O),h~),...,h~L1+l} 

Pruning  loop: 
while size(S(”-’)) > 1 do 

Set SC”) := $“--I) . 
Compute s:,[n] using the results in Section . 
for each channel estimate {h L”} E S(”-l) do 

Compute 0 ( ~ ) [ 7 2 ]  and iL(k)[n eD] as in Fig. 3. 
if the residual error 

le(”[n]l 2 ~o(~)[n] eiL(k)[n e011 (22) 

exceeds a threshold then 

end if 
Set S“ := S” w @ik’) . 

end for 
S e t n : = n + l  . 

end while 
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