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ABSTRACT

FACIAL ANALYSIS OF DYADIC INTERACTIONS
USING MULTIPLE INSTANCE LEARNING

Dersu Giritlioğlu

M.S. in Computer Engineering

Advisor: Hamdi Dibeklioğlu

September 2021

Interpretation of nonverbal behavior is vital for a reliable analysis of social

interactions. To this end, we automatically analyze facial expressions of romantic

couples during their dyadic interactions, for the first time in the literature. We use

a recently collected romantic relationship dataset, including videos of 167 couples

while talking on a conflicting case and a positive experience they share. To distin-

guish between interactions during positive experience and conflicting discussions,

we model facial expressions employing a deep multiple instance learning (MIL)

framework, adapted from the anomaly detection literature. Spatio-temporal rep-

resentation of facial behavior is obtained from short video segments through a 3D

residual network and used as the instances in MIL bag formations. The goal is to

detect conflicting sessions by revealing distinctive facial cues that are displayed

in short periods. To this end, instance representations of positive experience and

conflict sessions are further optimized, so as to be more separable using deep met-

ric learning. In addition, for a more reliable analysis of dyadic interaction, facial

expressions of both subjects in the interaction are analyzed in a joint manner.

Our experiments show that the proposed approach reaches an accuracy of 71%.

In addition to providing comparisons to several baseline models, we have also

conducted a human evaluation study for the same task, employing 6 participants.

The proposed approach performs 5% more accurately than humans as well as

outperforming all baseline models. As suggested by the experimental results,

reliable modeling of facial behavior can greatly contribute to the analysis of dyadic

interactions, yielding a better performance than that of humans.

Keywords: Dyadic Interaction, Behavior Analysis, Facial Expression, Multiple

Instance Learning, Metric Learning, Deep Learning.
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ÖZET

İKİLİ ETKİLEŞİMLERDE ÇOKLU ÖRNEKLE
ÖĞRENME KULLANILARAK YÜZ İNCELEMESİ

Dersu Giritlioğlu

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Hamdi Dibeklioğlu

Eylül 2021

Sözsüz davranışların yorumlanması, sosyal etkileşimlerin güvenilir şekilde in-

celenmesinde büyük önem taşımaktadır. Bu amaçla, literatürde ilk kez, ro-

mantik çiftlerin ikili etkileşimlerinde yüz ifadelerini otomatik olarak incelemek-

teyiz. Çalışmamızda, 167 çiftin bir anlaşmazlıklarını ve paylaştıkları olumlu bir

deneyimi konuştukları videoları içeren, yakın zamanda toplanmış romantik ilişki

veri kümesi kullanılmaktadır. Olumlu deneyim ve anlaşmazlıklar sırasındaki

etkileşimleri ayırt etmek için, anomali tespiti literatüründen uyarlanmış, Derin

Çoklu Örnekle Öğrenme (MIL) çatısı kullanılarak yüz ifadeleri modellenmekte-

dir. Yüz davranışlarının zaman-uzamsal gösterimi, kısa video parçalarından üç

boyutlu artık ağ aracılığıyla elde edilmekte ve MIL torbalarındaki örnek olarak

kullanılmaktadır. Hedefimiz, kısa sürelerde gösterilen ayırt edici yüz özelliklerini

ortaya çıkararak anlaşmazlıkları tespit edebilmektir. Bu amaçla, olumlu deneyim

ve anlaşmazlık oturumlarındaki örneklerin gösterimleri, derin metrik öğrenme ile

daha ayrılabilir olacak şekilde eniyilenmiştir. Ayrıca, daha güvenilir bir ikili etk-

ileşim analizi için etkileşimdeki bireylerin yüz ifadeleri birlikte incelenmiştir.

Deneylerimiz, yaklaşımımızın %71’lik bir başarıma ulaştığını göstermektedir.

Birçok dayanak modelle karşılaştırmanın yanı sıra, aynı sınıflandırma problemi

için altı katılımcıyla bir insan değerlendirme çalışması da gerçekleştirilmiştir.

Yaklaşımımız, insanlardan %5 daha doğru tahminler sergilemekle birlikte tüm

dayanak modellerden de iyi çalışmaktadır. Deneysel sonuçların önerdiği gibi, yüz

davranışlarının güvenilir şekilde modellenmesi, ikili etkileşimlerin incelenmesine

büyük bir katkıda bulunarak insanlardan daha iyi bir başarım sağlayabilmektedir.

Anahtar sözcükler : İkili Etkileşim, Davranış Analizi, Yüz İfadeleri, Çoklu Örnekle

Öğrenme, Metrik Öğrenme, Derin Öğrenme.
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Chapter 1

Introduction

Communication is a complex phenomenon which is being researched for a long

time in different -both social and biological- domains like psychology [1], psychi-

atry [2], medicine [3], physiology [4] and many more [5]. With its remarkable

evolution, computer science became one of the most critical areas that scientists

from various domains get help from. In the earlier stages, it was mostly in the

form of signal processing, but with emerging deep learning techniques, now we

observe audio or visual analysis of verbal, nonverbal communications in dyadic

or crowd environments. Dyadic communications emerge in various cases, too.

Doctor-patient, infant-mother, teacher-student, people who just met, or people

in a romantic relationship; different kinds of communications have attracted the

attention of researchers. By investigating those communications, we also aim to

obtain various outcomes that we can benefit from. Understanding how we com-

municate and how we can improve our general approach to other people, what we

look first at the other side of the communication or what kinds of reactions we

give when feeling a particular emotion would open paths to brand new questions

in the communication domain. Each step forward in this research domain and its

applications in the real world would lead to a more effective civilization with bet-

ter information flows, more empathetic people and hence, a happier environment,

thanks to the well constructed communicative channels.
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In order to contribute to the enhancements in this area, with this thesis, we

consider dyadic interactions happening between romantic couples in a controlled

environment. People would probably behave differently while they are commu-

nicating with their romantic partner, compared to the situations they are inter-

acting with acquaintances, friends or family. Although we infer some general

outcomes about dyadic communications from this thesis, as a historically inter-

esting topic, we believe that obtaining clues about interactions in a romantic

relationship would motivate other researchers that might be interested in these

kinds of domains to further develop models like ours and increase the interest on

the intersection of computer science and romantic relationships.

In the technical side, this is a video processing task with a major concentration

on computer vision applied on human faces, utilizing several deep learning meth-

ods to predict the type of communication topic between couples as being positive

or conflict, as they are told to speak on by the researchers from the Bilkent Uni-

versity Psychology Department where a unique dataset is collected. Since this

dataset is used in a computational setting for the first time, there are no previous

results to compare with. However, we have collected predictions from a group

of human evaluators which might provide valuable information for comparison,

along with the baseline results we report.

1.1 Research Question and the Challenge

In machine learning, there is a huge variety of data; text in natural language

processing, voice, image, video, time-series like financial data or telecommuni-

cation signals, different forms of biomedical data are some of the popular ones.

Likewise, labeling is not done only in one direction. Supervised, unsupervised,

semi-supervised, one-shot, zero-shot, classification, regression... there are many

different challenges to solve in the wild, and hence, many different appropriate

ways to label the corresponding data. There are also many different sources of

labels to be used for the dataset we use such as self report scores for different
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sessions, expert and non-expert annotations, session labels as positive or con-

flict etc., which will be explained in Section 3.1 in detail. However, when we

introduce subjectivity into the labeling, sometimes we can experience confusions.

Let’s take the trivial example of cat-dog classification into consideration. For an

annotator, it is certain that whether the subject is a cat or dog. Or in a financial

exchange data, it is for sure that the price was that specific value at that moment.

This is generally not the case in most of the psychological data. 10 professional

independent-coders working on the annotation of the dataset sometimes had such

different opinions on the participants so that in one specific case, we have one

annotator rating a person 7/7/6 (out of 7) for understanding, appreciation and

care aspects, respectively, watching the participant’s video, where one another

rated the exact same person as 1/1/1 watching the exact same footage. They

thought nearly the perfect opposites of each other, and this is only one example,

there are many others like this one. So, in general, we can say that there is a

considerable amount of variation between the annotations.

One other labeling that we have in our hands is self-reported values for the

same questions (details in Section 3.1). This part could be even more problematic

for some applications, since the participants do not follow a specific plan while

giving the scores. At least we can assume that the professional annotators have

a consistency within themselves personally, if not as a group. Some participants

might give much lower scores than the others, for arguably much more positive

sessions. Hence, we might think of these labels as supportive labels, rather than

absolute truths. When we continue with these labels, we will introduce an un-

avoidable uncertainty coming from subjectivity. Our models will learn assuming

these are absolute truths, and they will try to optimize itself themselves according

to the possibly fluctuating labels, which might decrease the performance of the

models.

We decide to define our task and labels as independent and objective as pos-

sible, in order to obtain results while avoiding the confusions stemming from

subjectivity of the participants and the expert annotation. It is not that these

labels are useless, but we want to keep the purity and simplicity at the maximum

level. To this end, we mainly go with the binary classification of positive and
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conflict sessions. Even if the participants may act more positive in their conflict

sessions than some other couple’s positive sessions; this way, we would guarantee

that we have the exact truth of what they are told to be talking about, decreasing

the effect of possible mislabeling.

Therefore, we can set our primary research question: “Can we differentiate a

dyadic communication which belongs to a positive interaction from another one

that is based on a conflict happened between the pair, just by investigating their

facial expressions?”. In real life, we believe that there may be many use cases

related to this question:

• This might be used in the security area in crowded places. In a setup

close to this (two or more people are talking to each other face to face, not

necessarily sitting at a table), with necessary improvements, a real-time

argument detector can be made using the proposed classification technique.

With “conflict” prediction, some departments might be alarmed if they

would like to. In this setup, voice features might not be available in loud

places like malls, casinos, concerts etc. and all we can reach may be the

visual features.

• Other than already-romantic couples, this model can be useful when deter-

mining whether a date is going successfully or not. The trained models may

still be a bit successful, but in these kinds of more-than-subtle changes in

the topic of the dataset, the model would benefit from some more examples

from the specific topic and a finetuning for those examples.

• Sometimes we might want to learn whether a meeting has been successful

or not. If it is necessary, changing the labels to “success - not success”, we

can use the same approach and get the results. The possible use cases can

include job interviews or business negotiations.

• People that do not speak the same language would be communicating at

some places, with nonverbal interactions probably. In a scenario where we

would like gain an insight about their communication, facial cues would

play a great role.

4



• Parents might want to see whether the babysitter and their children get

along well. Using an in-house camera system like modern babycams, the

model can provide the information of the environment warmth. A multi-

class (boredom, fun, anger, sadness etc.) classification with likelihood out-

puts can be produced as further improvements. The use cases can be further

expanded where a nonverbal social interaction is present.

Even if we set our labels to be “positive” and “conflict” in a binary classification

setup, there are still some challenges with the current labels. In some cases,

participants have many much joyful moments together, laughing and joking, even

during their conflict session; whereas some participants tend to be more calm

and unexcited during their positive sessions, which makes them look like they

are conflicting on a topic. We do not concentrate on comparing the two sessions

and decide which one is positive and which one is conflict; rather, we consider

each session (as pairs or as individuals) to be stand-alone data instances and

try to decide whether this specific instance is coming from a conflict session or

positive session. This way, predicting both sessions as conflict or both as positive

is theoretically possible, rather than one positive and one conflict predictions.

This increases the difficulty level of our task, since the question “which session

is more positive?” is easier to answer, because it includes a comparison. In that

case, even if the couple is more positive or negative than average, the model would

now know exactly one of the footages would be negative, and evaluate the videos

in this direction.

1.2 Related Work

In this section, we overview past studies related to dyadic interactions and the

techniques used to investigate them. However, to the best of our knowledge,

we are the first ones to work on automated facial analysis of dyadic interactions
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between couples in romantic relationships. For that reason, we also provide in-

formation from studies, which concentrates on slightly different types of commu-

nications. Furthermore, our designed approach utilizes deep multiple instances

learning, using frames from video segments. We included techniques similar to

ours, along with an overview of the literature in the intersection of communica-

tions and interactions domains with computer science, including signal processing

solutions, head and body postures, motion analyses and many more. We both

focus on the psychological aspects and the technical solutions of several problems

from this area.

Multiple instance learning, which is the main ingredient of our proposed model,

is widely used in the computer vision domain. Applications on images include the

study from Wu et al. [6], in which they use Joint Deep MIL to classify images,

where the instances are both selected from the keywords for the images to be

fed to a deep neural networks and the object proposals which are essentially the

building blocks of the object of interest. Cinbis et al. [7] use multi-fold MIL where

they iteratively train the object detector to infer the object locations.

In the video analysis domain, [8] classifies videos as anomalous or normal, by

dividing the videos into fixed number of segments. 3D convolution features ex-

tracted by each of these segments would be the instances obtained in the bag

formations in the beginning. Afterwards they use metric learning to separate the

positive and negative instances. They reach 75.41% AUC in binary classification

results. Our study is based on their research, with additional components like the

use of two different views, employing a different representation, and adaptation

to dyadic interaction. In another study, Phan et al. [9], divide the video into seg-

ments which becomes become the instances of MIL and look for specific actions

in each segment. They quantize the instance-event similarity in a multi-class

classification task and using this method they outperform 4 other baselines on a

dataset with multiple complex event videos. Medical image and video analysis

(MIVA) tasks represent another domain in which multiple instance learning is

used. As explained in the survey from Quellec et al. [10], in this domain, re-

searchers set their bags as a video or image. If videos are used, they extract

features from a segment and using the globally assigned diagnosis labels, many
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of them conduct classifications. As we can see, multiple instance learning can

be widely used where we have a label for a whole (e.g., video), but the clues are

hidden in its sub-parts (e.g., video segments).

We use multiple instance learning to extract information from videos of dyadic

interactions. These interactions are widely studied by the researchers both from

the computer science and psychology domains. We can infer a lot about the

relations of interactants from the intersection of these domains.

There are important concepts worth mentioning when investigating the litera-

ture on dyadic interaction. The action of imitating someone, or mimicry, is one of

them. Wu et al. [11] find connections between the nonverbal mimicry and person’s

communication skills, where they automatically detect mimicry between medical

students and volunteers who act as their patients. Cheung et al. [12] present

support for facial mimicry serving to promote interpersonal rapport, which can

be defined as understanding the others’ feelings or ideas of other parties of a

communication. [13] concentrates on the relationship of mimicry and cognitive

and emotional empathy, where they exhibit findings showing that emotional and

cognitive empathy differences among different individuals are associated with the

level of facial mimicry. Emotional contagion (primitive) is another important

concept, which is defined as the tendency of people to mimic and synchronize

their multimodal behavior during interactions and, consequently, to emotionally

converge to each other. Varni et al. [14] investigate both facial expressions and

conduct sentimental analysis to capture emotional contagion in unimodal, multi-

modal and cross-modal levels at the same time.

There is a well-known concept called chameleon effect in psychology [15], which

refers to unconscious mirroring of expressions, postures, and other physical and

verbal behaviors of participants that get along well with each other in a dyadic

conversation. The importance of chameleon effect in a dyadic relation is that it

facilitates creating rapport with the one who is being mirrored, as it is found

that people feel more connected with others that behave alike [16, 17, 18]. For

instance, several studies show that synchronous nonverbal behaviors between

teacher/student dyads not only create rapport between the interactants, but also
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boost the learning performances of students [19, 20, 21].

The verbal or nonverbal interactions of 2 or more people is being researched in

the computer science area as well as their implications on the psychology domain.

Psychological researchers consult computer vision techniques in many cases while

studying dyadic interactions. In general, according to authors’ findings in [22],

while making judgments, the nonverbal cues can provide rich information about

the person of interest. This factor led many researchers to obtain information

from nonverbal communicative channels and to use them in their studies to reach

various goals.

The important concept of social signal is explicitly defined as any action or

overt behavior, regardless of its form, intent, or the performer’s awareness, that

is carried out in the presence of another person [23, 24]. Social signals extracted

from different modalities, such as mutual gaze, body posture, interpersonal dis-

tance, vocal behavior, and hand gestures, are employed in the analysis of non-

verbal interactions. Social signal processing, i.e., the computational analysis of

nonverbal behavior aiming at bringing social intelligence in computers [25, 26], in-

creasingly attracts attention of interdisciplinary researchers. Vinciarelli et al. [27]

argue that machines should be more aware of these signals and obtain social in-

telligence to be more efficient in socially aware computing domain.

Dyadic or group interactions and their computational analyses can be seen in

a wide variety of applications [28]. In [29], authors investigate the interactions in

collaborative learning environments, integrating techniques from computational

psychometrics and deep models like CNNs. By investigating human behavior

in such environments, they identify evidence about teamwork skills. In another

study, authors collect a dataset, where they investigate the group interactions in

a board game playing scenario [30]. Patient-doctor interactions is another appli-

cation area. In [31], the authors show that the patient’s affect can be estimated

by taking the doctor’s affective cues into account during their interaction. In-

terestingly, their linguistic results outperformed facial analysis for most of the

affects.
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There are many different approaches investigating dyadic interactions, includ-

ing the use of wearable sensors [32, 33], ECG [34] and EEG signals [4]. Pose re-

lated visual features like head movement [35], head posture (e.g., facing straight,

facing down), arm posture (e.g., far from the body, touching the head or face) [36],

and full body pose [37] are also employed in the analysis. In addition, verbal in-

teractions are examined using language models [38].

To find the effects of synchrony in dyadic interactions like psychotherapies, and

its influence on perceived empathy and rapport, authors utilize Motion Energy

Images (MEI) analyzing the motion in the regions of interest (ROI) [39]. They

choose ROIs as the interacting people and create two continuous time series for

further processing. In a follow-up study [40], Tschacher et al. find strong effect

sizes for synchrony to occur, applying automated motion energy analysis.

Cerekovic et al. [41] analyze human-agent interactions looking at the personal-

ity of the subject as well as the nonverbal behaviors observed during the interac-

tion with the agent. They concentrate on body and head pose, hand activity, and

visual appearance of the subject, as well as modeling vocal cues. In [42], authors

concentrate on head movement patterns like angular displacement and angular

velocity between the infants and their mothers. They find out that investigating

head movement can give important clues on understanding the apparent emo-

tion and interpersonal coordination, as the head movement is strongly correlated

with the interactive context between the infant and the mother according to the

results.

Hagad et al. [36] design a model to predict rapport of dyadic interactions au-

tomatically, using the head and arm related postures and congruence. In their

model, Histogram of Oriented Gradient (HOG) features are employed to classify

postures using Support Vector Machines (SVM). To predict if there is a rapport,

posture congruence is determined depending on the similarity of the participants’

postures, i.e., postures are said to be congruent when participants hold their bod-

ies in the same position as each other. Terven et al. [33] use smart glasses that

contain high-definition cameras in the bridge connecting the two lenses to de-

tect nodding and therefore mirroring noddings between the dyads. They extract
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facial features using Active Appearance Models [43] and apply stabilization on

the extracted features which are later used for head gesture modeling via Hid-

den Markov Models (HMMs). In another study concentrating on facial expres-

sions [44], authors present a database where a group of people are interacting with

each other. They use deep models processing facial action units while providing

baseline results for their database. These studies suggest that concentrating on

head and face features in particular, is found to be beneficial while investigating

different aspects of social interactions. In [45], authors investigate the relation

between facial expressions and rapport establishment using an automatic facial

expression coding tool called CERT. They employ facial action units analyzing

dyadic interactions in different setups.

Facial expressions in dyadic interactions have also been a topic in the research

on Generative Adversarial Networks (GANs). In [46], Huang and Khan propose

DyadGAN, which models the effect of one party of a dyad on the other, concen-

trating on facial expressions. They use Emotient’s Facet SDK [47], which extracts

8D facial expression descriptor vectors, representing the likelihoods of emotions

such as joy, anger, surprise, fear, contempt, disgust, sadness and neutrality. [48]

proposes another GAN model that would learn semantically meaningful facial

expressions employing Conditional LSTMs.

Two class classification is a common task when investigating dyadic or mul-

tiple participant interactions. The classes are generally selected as positive and

negative, which we can map to the positive experience and conflict cases in this

thesis, respectively. In [32], by using the individual behavior features such as

movement, location, audio and being face-to-face (using infrared sensors) ob-

tained from wearable social sensors as well as examining the social interactions in

a team with questionnaires, authors aim to classify the participants’ affect states

and group cohesiveness as positive and negative. In [35], authors try to classify

behavior codes such as Acceptance, Blame, Positive and Negative with classes

“high” and “low”, indicating the codes’ presence levels by utilizing head motion

patterns. [38] is another study that classifies the behavior codes (e.g., anger)

as “high” and “low” using language models. The dataset they use resembles

the employed dataset in this thesis, as there are 134 real life couples attending
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marital therapy, who are talking over 10 minutes in different sessions. Authors

use the top 20% positive and the top 20% negative instances for modeling and

classification, focusing only on the extreme cases.

Most of the video datasets, especially the ones that are collected in a controlled

setup, do not contain large amount of data. For instance, both of the Group

Formation Task dataset [44] and the personality analysis dataset collected in a

recent study of ours [49], include only 60 participants. Datasets like Kinetics-700

[50] or First Impressions [51] include video clips that are obtained from differ-

ent YouTube videos and this makes it easier to create a large-scale dataset. In

this study, we use a recently collected romantic relationship dataset [52] (will be

referred to as Romantic Relationship Dataset in the remainder of this thesis),

which includes 167 couples (334 subjects).

Due to the limited number of data samples in the dataset, we use cross valida-

tion for optimization in order to benefit from the whole dataset. Cross validation

can be defined as subject independent, or subject dependent. It can be observed

that the utilization of subject independent cross validation might reduce the suc-

cess rates compared to subject dependent case, since in the subject dependent

cross validation case, models explicitly learn the behavior of a test subject. Many

studies including [4], [53] and [54], report lower accuracy in the case of using

subject independent cross validation (compared to the subject dependent one).

Hence, we can conclude that subject independent cross validation is a harder and

more realistic approach in general.
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Chapter 2

Classification of Dyadic

Interactions

In this chapter, we describe the proposed architectures and models and the gen-

eral workflow of the classification of dyadic interactions between romantic couples.

The dataset will be explained in detail in Section 3.1, but it is worth mention-

ing that we have 3 cameras (2 frontal and 1 side views) recording 2 different

10 minute sessions, namely the positive and conflict sessions which we conduct

binary classification on. In conflict session, couples are discussing on a topic they

have conflicts on, whereas in positive session, they talk about positive past ex-

periences they share. While studying the visual domain which we try to extract

information from, first, we process frontal view video frames to extract some vi-

sual features like facial landmarks and action units. Using those 2D landmarks,

we normalize and warp the faces such that we obtain normalized frames which

includes only the faces of the participants standing as straight as possible. Then,

in order to strengthen the connections between the frames and not being lost in

a huge video, we divide each video into shorter periods. No matter what type of

model we use, we have to get the best out of an approximately 10-minute-long

video. This led us to use videos in segments in many different experiments. We

propose a solution adapted by the anomaly study of Sultani et al. [8] to our dyadic

interaction case, where we feed these shorter videos to a network which combines
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Multiple Instance Learning and Metric Learning. The details of the techniques

used and the process are explained in the following sections of this chapter.

2.1 Face Alignment

Using normalization is a crucial step when dealing with faces, as in nearly all

other types of data in machine learning. The trivial approach would be detecting

the face and cropping a sub-image around it for further usage. However, with

this basic technique, the faces would not be aligned due to head shape and pose

changes and the models might have trouble detecting subtle changes in mimics.

In order to eliminate this problem, we warp the faces using some critical points

in the faces, namely the 2D landmarks, in order to normalize each frame in terms

of translation, rotation and scale. Figure 2.1 showing the OpenFace features

including those 2D landmarks is directly taken from OpenFace 2.0 study [55],

since we cannot disclose the participants from our database with features applied

on their faces.

We obtain the frames from the videos using the ffmpeg package. The frequency

of frame extraction is set to 13.6 after investigating the average fps values of

the videos, which are varying (explained in more details in Section 3.1). We

select the frontal views to process, since we have a much more clear vision of the

faces and in a physically less active setup like this, we might extract most of the

information from the participants’ faces and mimics. If we were to concentrate on

the body pose and movements, side view might have been a better option. Feeding

those frames to OpenFace models, we extract many facial features including the

action units (we use 17 dimensional action unit intensity model only) and 2D

landmarks. After removing the global rigid transformations such as translation,

rotation and scale from the 2D landmarks, we pass to the face warping stage.

In order to do that, we use piecewise linear warping in which we transfer the

landmark coordinates onto their original normalized locations. The output is

scaled and cropped such that only the face with a black background is left, where

landmarks of all faces among the database are residing in the exact same location.
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The resulting images might seem less informing to human eye, but since they are

pixel-to-pixel comparable across the database it would be much more easier for

our models to detect even the most subtle clues happening in our faces. The

resulting normalized faces has a resolution of 512× 512× 3.

Figure 2.1: Some features obtained from OpenFace such as head pose, gaze, eye

landmarks, 2D face landmarks, 3D bounding box

If the normalization step is somehow problematic, since it is generally the very

first step of all the calculations, this error might affect the whole process expo-

nentially. After all, not having clean data can be a real problem in today’s deep

learning challenges. Although this step is straightforward for many tasks, in a

setup like this, there happens to be many difficulties with the subject. Since

the participants are not totally concentrated on being recorded at the moment

of their speech, they do not look directly in the camera or stay still with their

heads and bodies. Due to the camera angles and the participants’ head direc-

tions, sometimes we do not have the access to the whole face. OpenFace models

also struggle with these kinds of frames and 2D facial landmarks may not be per-

fectly accurate at times, which affects the face warping procedure. In addition

to head pose and angle imperfections, we observe occlusions like eyewear, beard,

accessories or participant’s hands or arms sometimes, which causes distortions in

the landmark detection. There are some different cases when participants’ faces

are completely lost on the frame and we are left with -expectedly- random nor-

malized face images which does not include any face at all. In order to capture

the full motions, bodies and the faces, the cameras are not placed perpendicular
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to the participants, but rather they are placed at a (small) angle. So, most of

the times, the distortions in the normalized faces are stemming from unseen right

part of the faces, especially if the participants tend to tilt their heads that way.

Consequently, although the OpenFace model gives nearly perfect landmark loca-

tions and the warping algorithm works completely fine, we are obliged to face a

non-perfect normalization in data, which makes the task harder to solve.

2.2 Spatio-temporal Representation

In order to extract spatio-temporal representations as feature maps from the

video sequences, we use the 18 layer ResNet-3D architecture in [56]. Although

the authors in [56] proposed a model with slight improvements in accuracies,

ResNet(2+1)D, which divides 3D convolutions into two separate and successive

operations (a 2D spatial convolution and a 1D temporal convolution); we se-

lect ResNet-3D architecture to benefit from its memory advantages. Actually,

these models are created and tested for action recognition tasks on datasets like

Kinetics-400 [57] and Sports-1M [58], whereas our task is not directly an action

recognition task. Our dyadic interaction and action recognition tasks resemble

each other in many ways, as there is an effective motion in the video that needs to

be analyzed in a spatio-temporal way; but in our case we do not want to under-

stand what is the action -since we know that it is someone speaking-, we actually

want to understand what is the context of that repetitive action throughout the

whole dataset. So, we do not need to go into details of action recognition by

using the much more complex models and their last layers which are specified to

find the action classes. We rather need to grasp the idea of how to investigate

the action, which is well provided with the low/middle levels of the architecture.

Hence, ResNet-3D model with the original 3D convolutions might even be more

suitable for our case. This way, we would eliminate the overspecification problem

and get more generalizable, well representative feature vectors as well as coping

with the memory restrictions.
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In Resnet3D-18, only vanilla residual blocks are used without the bottlenecks.

The video clip of any size is passed through several 3D-convolutional layers. In

the layer represented with green in Figure 2.2, there is a Conv3D with kernel size

of (3, 7, 7), followed by a 3D batch normalization layer and a ReLU activation.

The red layers are consisting of the same schema, but they have a kernel size of (3,

3, 3) this time. The purple layer which represents the downsampling, is another

Conv3D with (1, 1, 1) shaped kernels. ReLU activation does not exist after

downsampling layers. After all Conv3D layers, there exists an adaptive average

pooling layer, which practically compresses the 3D video representation into a

1D vector by taking the average over the entire spatio-temporal volume. In the

original model, there exists a fully connected layer with 400 output dimensions,

representing the number of classes in Kinetics-400 dataset.

We use transfer learning in the feature extraction process. The ResNet-3D

model we use is the one pretrained on Kinetics-400 [57] dataset. We take that

pretrained model, freeze the weights, and extract the 512D feature vector which is

the penultimate layer. Instead of extracting frozen features from it, we could have

finetuned ResNet-3D as an end-to-end model in the architectures in which we use

the features. However, even the feature extraction process is extremely heavy

in terms of time and trying to finetune the networks to extract features more

specified for our dyadic interaction classification task would be a real burden for

our network. Considering that we have so many folds and hyperparameter sets

which we talk in detail in Chapter 3, and the fact that these are all independent

variables and increase the experiment count exponentially, we keep the ResNet-

3D weights frozen and separated the feature extraction and training stages. In

the end, we have multiple 512D feature vectors in our hands for a single video clip,

with the number of feature vectors changing according to the technique we use

(fixed period or fixed partitions, which will be explained in the next paragraphs).
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Figure 2.2: ResNet-3D-18 architecture

With an approximate length of 10 minutes, the average video is consisting

of 9000 frames. Each frame has 1080×1920 pixels for RGB channels. In some

setups, we consider multiple videos as the input, for one pass in our network. This

makes our input significantly large in size, so we need to find a way to efficiently

use the video clips.

To be used in many of our experiments, we extract 1D vectorial features from
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the videos as their smaller-in-size representations. Only one vector, even possibly

with a huge size, might not be very informative of the whole video, just because

of the reason we have stated in the previous paragraph - videos contain too much

information. Furthermore, in a wild-case scenario there might be an instance of

the same kind of video for only 15 seconds, whereas we might want to investigate

a 1 hour version of the same video, too. The same-length vector might not

be the best way to represent these two instances at the same time, because of

the varying information depth. In order to handle this issue, while extracting

the feature maps, we divide videos in particular ways and consider those much

smaller video portions as individual clips to be fed to the networks.

There are mainly two techniques that we use: fixed partitions and fixed peri-

ods. In the fixed partitions method, we select the number of partitions we want,

divide the total frame count with that number and use that many frames for one

partition. In the end, we are left with the same amount of sub-video representa-

tions for all of the videos. The other method, fixed period, is fixing the period as

its name suggests. There are two parameters for this feature extraction method:

window size and step size. Window size determines how many frames (hence,

seconds) we are investigating and the step size tunes the overlap between the

windows. For example, if we take 100 as our window size and 40 as the step size,

the first feature vector will be extracted from the frames [0, 100] and the next

vector will be from [40, 140], resulting in 60% overlap between each partition.

One benefit of using overlapping windows can be saving ourselves from leaving

an important part of the conversation in two different partitions. However, us-

ing overlaps would significantly increase the need for resources like training time

and memory. In [53], authors conclude that although using overlapping-sliding-

window technique is beneficial for subject dependent cross validation, when sub-

ject independent cross validation is used, this technique does not improve the

results. It only introduces the resource requirement increase.

We explain forming train-validation-test splits and folds further in Chapter 3,

but we continue with subject independent cross validation, hence the data-subsets

and folds are created such that one data sample (a participant dual with both

conflict and positive videos) is only appearing in the test set once, without any
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overlaps. So, the model trained for that specific fold does not see any data from

that participant dual in either train or validation sets. In this way we eliminate

the chance to overfit at some individuals that are seen in the train set. Since

we have only 167 participants but in total 60 minute of videos the process for

each one, the chances are arguably high that the model would perfectly predict

the ones that it has seen in the train set. As we choose to continue with subject

independent cross validation, not using overlapping sliding windows would be our

first choice.

As mentioned earlier in this section, there are two main video dividing tech-

niques. Since we decide not to use overlapping sliding windows as our main

approach, we are left with the non-overlapping fixed partitions and fixed periods

techniques. If the video lengths are greatly different than each other, using fixed

partitions method would result in feature vectors, coming from a high variety

length of videos. This would not be that desirable, since we would like to have

similar representations for each video part. If the videos are different in lengths,

one feature can represent, let’s say, 1 second, and another one can represent 1

minute, in which our pretrained model might concentrate on different aspects.

We would need signs from a video partition to tell us that it is a video from a

conflict or positive session, where the duration of the action of interest would

probably matters. Hence, it would be better to extract features from similar

length videos, if not equal. For our case, since all of the videos are captured in

a supervised environment and the experiment duration is fixed, all videos have

similar numbers of frames. So, fixed period and fixed partitions would not change

things a lot. When we use fixed period approach, since the videos are not ex-

actly equal in duration to each other, there may be 2 to 3 more features extract

for some video clips. This makes the amount of conflict features and the pos-

itive features unequal and this is the downside of using fixed period technique.

The disadvantage of the other technique, fixed partitions, is that the features are

coming from different length videos, but the length differences are less than 1

second. In comparison, having 50% conflict and 50% positive features seems to

be a slightly better advantage, since the duration difference in fixed partitions

method is more negligible.
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2.3 Multiple Instance Learning

In most of the classification tasks, the instances are directly correlated with its

assigned label. For example, in a classical cat-dog classifier, if the image is a

“dog”, it means that the contribution from every pixel makes that image a dog.

However, in some cases like ours, the data instances might be comprised of several

pieces that might not be assigned to the same label. If we restrict the case into

the video domain, this generally happens when the video is weakly labeled, that

is, there are video-level labels which are annotated due to some smaller part or

parts in the video. This is also the case in [8], where they are trying to detect

anomalies in surveillance videos. In a surveillance video, the anomalies do not

always happen, but if it exists even for a short period, the whole video would be

labeled as an anomalous video. Since they do not have access to the exact period

of the anomalous event due to the weakly labeled videos, they apply Multiple

Instance Learning (MIL) rather than obtaining accurate segment-level labels.

Our case is not exactly the same as theirs, but both tasks have a lot in common.

The main similarity is probably the fact that a human annotator would consider

a short instance that would convince him or her that if there exists a anomaly or

a sign of conflict, while annotating the whole video. Not all of the frames would

have equal contribution during the annotation, the annotator would look for a

“moment of interest”. So, the main similarity would be that we both are trying

to catch an interesting part of the input in order to predict that it is conflict

or anomalous. However, one strong difference would be that the participants

are expected to be talking on a conflicting case throughout the session, while

the anomalous event would not exist at all for most of the times. If we were to

distinguish a severe fight between the couples and a totally positive session, our

case might not have needed this kind of setup. By utilizing MIL with dividing

videos in smaller parts, our main assumptions can be summarized as follows:

• In positive videos, whole session would probably be in a good mood, without

drastic changes in the actions of the participants.

• In conflict videos, we observe that many couples do not fight on a topic all
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the time. They rather laugh, smile and seem happy at times. This might

be due to the fact that they are told to talk on a topic they have conflicts

on, but the disagreement might not be so strong or recent that it would not

be effective to change their mood.

• Therefore, the arguments might happen occasionally, which we can correlate

to the “actions of interest”.

• The short sequences of videos from both positive and conflict sessions, might

be more positive or more conflicting individually. That is, a subsequence of

a conflict video might be more positive than the actual positive video, since

the participants change attitude during the videos. The best we can do is

to assume that most of the conflict subsequences are conflicting videos, and

the others are positive videos, since we do not have frame or sequence level

annotation.

• If we detect a sequence of strong conflict anywhere in the video, we might

succeed by predicting that this is a conflict session.

This is the point where we benefit from MIL. We represent the positive and

conflict videos as “bags”, and the instances in those bags would be the video

segments that we form. In the positive bag, we would assume that the most

conflicting video segment is not enough for us to call that video a conflict case,

whereas there will be at least one instance in the conflict bag, that would indicate

the whole bag belongs to the conflict class. In simpler words, when comparing

two bags, if the maximum value in a bag, is larger than another bag’s maximum

value, then we will call the bag with larger value a more conflict bag, i.e. video.

Hinge loss in the form of Eqn 2.1 can be used to optimize the MIL objective

function, where BI represents bag instances.

max(0, 1−max(BI)) (2.1)

While using this formula, we want the instances of positive and conflict classes

to be as far as possible, and we use MIL Ranking model with metric learning,
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adapted from [8], in order to do that. Metric learning in general, tries to dis-

criminate the inputs by their similarities according to a distance metric. Deep

metric learning, which uses neural networks to learn how to discriminate the

input features according to its distance metric, is used in various computer vi-

sion tasks such as face recognition, face verification, anomaly detection and 3D

modelling. For example in face verification task, a “correct” person might have

different poses, different facial expressions, occlusions, accessories etc. but the

model needs to verify that he or she is the correct person most of the times, if not

always. Here, the metric learner model would aim to decrease the distance be-

tween the images of the same person, while increasing the distance with the other

people. As this example shows, this technique is well applicable in areas where

we want to discriminate any type of input, that would probably have different

variations of its own, but still belongs to the same class.

In our case, we have 512D features extracted from the subsections of a video,

which would be the instances in the bags. If we can discriminate the positive and

conflict bag instances by increasing the distance between their representations,

we can classify the videos by looking at those sub-video separations. In our

approach, where we combine multiple instance learning with metric learning, we

are trying to discriminate the instances in the bag that is formed in the MIL part.

We use the modified version of Eqn 2.1 in order to complete the positive-conflict

discrimination as follows:

LD = max(0, 1−max(BIconf ) + max(BIpos)) (2.2)

In this equation, we can clearly see that as the maximum valued conflict in-

stance gets larger and the positive get smaller, the loss decreases. Then, as

they also do in [8], adding a temporal smoothness factor to this equation would

be meaningful, in order to prevent extreme changes in scores between adjacent

video segments. The conflict behavior would not change instantaneously, but

it would rather show itself and disappear in a period. There is also a sparsity

constraint as a regulator to the scores. In the end, the total equation would be

like Eqn 2.3, where t represents time as in the video segments:
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L = LD + λ1

∑
t

((BI tconf −BI t+1
conf )2) + λ2

∑
t

(BI tconf ) (2.3)

2.4 Loss

Other than the loss that we define for the MIL case, we try several other loss

functions in different experiments. Our main challenge is a binary classification

task and there are multiple options to use, when it comes that. Some binary clas-

sification tasks are discrete, that is, the classes have no amount of belonging to

that class. They are either in or out of the class. Although what the participants

are told is as discrete as it gets (positive-conflict), the positivity of the discussion

might fit into the continuous domain better. Although the most common evalu-

ation metric is accuracy as in any classification task, they are all trained using

some kind of continuous function as the loss metric.

The binary cross entropy loss (BCE) or its combination with sigmoid layer,

called “BCE with Logits Loss”, are widely used in binary classification tasks.

Hinge loss is another option in this task and it is the piecewise linear version of

BCE in terms of graph similarity. We train some of our models using both of

these losses while experimenting.

Margin Ranking Loss, as shown in Eqn. 2.4, is one other suitable loss function

for this task. Originally, the objective of ranking losses is to predict relative

distances between inputs, just as in metric learning.

LMR(ypred, ytrue, α) = max(0, ‖α− ypred‖2 − ‖α− ytrue‖2 +margin) (2.4)

Although it is essentially a ranking loss with multiple classes, it is perfectly

fit for our case with little alterations. Here, the variable α represents the anchor

value, which we will take 0, since our labels are selected in the set {-1, 1} for

conflict and positive cases, respectively, and zero centered. We would also consider
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the L1 distance between the label and the prediction. The altered form can be

found in Eqn. 2.5.

LMR(ypred, ytrue) = max(0, ‖ypred − ytrue‖ −margin) (2.5)

Here in Eqn. 2.5, we are looking for the distance between the prediction and

the true label. If the distance is less than the margin that we have defined earlier,

the loss would be 0. After the distance surpasses the margin value, the loss starts

the increase linearly. Here, the selection of the margin value can be critical. For

the label set {-1, 1}, let us assume that we use 1 as the margin. If the model

predicts 0 for all of the instances in the dataset, it would always get 0 as the

loss, without learning anything at all. The same applies for the margin values

even larger than 1. In the range (0.5, 1), if the model fails to learn again, it

would be much more logical for it to predict 0, since the punishment from the

loss function, would not be that harsh in comparison with the case it randomly

predicts a number in the range [-1, 1] and fails with a probability of 50% (fail

here means being closer to the wrong label). Hence, we select our margin value

to be 0.5 as a reasonable value for our label selection. Here, our main aim is to

push our model to be as confident as possible, by surpassing the margin if it can.

Of course, being “more” sure and predicting incorrectly will be punished more.

While evaluating the models optimized using margin ranking loss, we only look

at the sign of the output. If the output is positive, we predict positive; if negative,

we predict conflict. The same loss cannot be used while evaluating, because even

if the model is unsure (for example predicting 0.01), it selects a class anyway and

it is either correct or not. So 0-1 Loss is used for the evaluation, when margin

ranking loss is applied during training.
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Chapter 3

Experiments and Results

In this section, we share the experimental setup, the results from our experiments

and discuss possible outcomes and reasons that we can infer from those. We also

present a human evaluation study and compare the baseline results with the

proposed method.

3.1 Romantic Relationship Dataset

The main dataset that we conduct our research on is collected by the researchers

in Bilkent University Psychology department, under supervision of Dr. Gul Gu-

naydin. This dataset, which we will call Romantic Relationship Dataset [52], is

consisting of 167 dyads (couples who already know each other and in a heterosex-

ual romantic relationship). The experiment is consisting of two different stages,

namely the “positive” and “conflict” sessions. As the names might suggest, in

the positive session, the participants are requested to decide and talk about a

good memory they share, an event that made them happy or anything “positive”

that they would like to talk about them and enjoy. Contrarily, in the conflict

session they are asked to decide and talk on a topic that they have argued about,

25



possibly an unsolved argument, or in general, a topic in which they have conflict-

ing thoughts on. Before each session, the researcher who told what they expect

from the participants explicitly indicated that they are expected to be talking

naturally and relaxed as if they were talking in the outside world regularly, which

is also recorded at the beginning of all the videos (the parts where the researcher

speaks does not intersect the participants’ talking). Here, the researchers from

the psychology department aimed to record the enjoyable and conflicting discus-

sions happening between romantic couples, noticing the differences between them,

and also get the participants’ ideas on these sessions along with the professional

analysis from the psychologists’ side.

In all experiments, participants started with a self report questionnaire about

their partners, followed by the conflict session. They filled the questionnaire

again, right after they finished with the conflict session. After that, they con-

tinued with the positive session and filled the same questionnaire, this time in-

dicating their thoughts on the positive session instead. The results of the ques-

tionnaires contains perceived partner responsiveness (PPR) scores for each par-

ticipant. PPR refers to the extent to which the participant feels their interaction

partner cares for, understands, and appreciates them. So for each dyad, both the

perceiver’s (the person providing the PPR rating) and the partner’s (the person

whose PPR is rated by the perceiver) behaviors might be related to the per-

ceiver’s PPR scores (although it is expected that partner’s behaviors would be

more relevant). To measure PPR, the researchers asked participants to indicate

their agreement with each statement below on a 7-point scale, where 1 indicated

“Strongly Disagree” and 7 indicated “Strongly Agree”:

• During the interaction I felt that my partner understood me.

• During the interaction I felt that my partner appreciated me

• During the interaction I felt that my partner cared about me

A team of independent coders consisting of 10 professionals, later on, evalu-

ated these videos according to the same measures: understanding, appreciation
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and care. For further utilization of this dataset, researchers will have individual

scores on all 3 aspects in their hands, again on the same 7-point scale that the

participants have filled beforehand.

There are 3 different cameras recording the sessions, all synchronized before-

hand mechanically in order to be able to use the videos from different angles at

the same time when needed, and be sure that the captures are from the exact

same time point. As it can be seen in Figure 3.1, 2 cameras are facing the par-

ticipants, and the third camera is located as it would record them from the side

view, able to see both participants at the same time. For confidentiality reasons,

we cannot share the exact images of participants in order not to disclose their

identities. Here, the gray color represents the male, and black represents female.

In order to be consistent along the dataset, women are always facing one camera,

while the men are also doing the same. It would be beneficial to mention that the

cameras facing the participants are not located in a 90 degrees direct position to

the faces, but instead both nearly have 60 degrees angle with the faces, trying to

prevent any occlusions stemming from one participant over the other. Although

this angle makes one side of each participants’ face a little bit unseen at some of

the moments, this feature might have made the dataset much more alike the real

life situations where we don’t always have a direct look on the faces. However,

the spot in which the participants sit, and the camera positions do not change

along the dataset ever.

The videos are around 10 minutes for each session, with 3 cameras recording

and 2 different sessions, it makes approximately 1 hour video to analyze per dyad,

excluding the parts where the researcher tells the participants to start and finish,

which lasts around 20 seconds in total per session. Each of these videos has

44100 samples per rate and 2 (stereo) channels as usual. Frame width and height

are 1920 and 1080, respectively, resulting in a resolution of 1080p. However, fps

(frame per second) values are not consistent among the whole dataset. There was

a technical problem with the recording setup, while trying to record three 1080p

synchronized videos, the fps could not be produced at the desired rates and it

has dropped in between 13.5 - 14 for all videos. After sufficient investigation on

several samples, we observed that the decrease in fps, is not due to some frame
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(a)

(b)

(c)

Figure 3.1: Frontal views (a) and (b), showing female and male, respectively, and
the side view (c)
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drops at specific periods, but it is more like spread around the whole video. That

is, if a video has 13.8 fps for example, it has 13.8 and alike values for each second

in the video, with a low standard deviation (instead of 25 fps for most of the

seconds and huge frame drops for some instances). While getting the frames out

of the videos, we should be using a fixed fps value, since the same amount of

frames should mean the exact same amount of seconds. We have fixed this fps

value to 13.6 for all videos. There have been some missing frames for the videos

with higher fps values, and some repetitive frames for the ones with lower fps

values.

3.2 Experimental Setup

3.2.1 Model Training and Implementation Details

Before starting our experiments, we select which input feature technique we

should use in our multiple instance learning model. Since we are using bags

of video segments while implementing the proposed architecture, in order to have

equal number of samples from each participant, we start off our experiments with

the “fixed partitions” method here. The duration change for those partitions are

not expected to have that much of an effect.

When we look at the number of video segments for the best hyperparamater

combinations, we see that all 4 fixed partition counts occur as the best option

in at least one fold. Although there is no number that we can directly select,

we observe that the higher number of divisions are working slightly better, as

they are more commonly found in the best performing model hyperparameter

sets. That is, having 3-5 second long video clips are more likely to give better

results than the clips that last for 7-8,5 seconds. Among those models which are

fed with features that has more partitions, 120-partition option is very slightly

better than the 210 one, but we cannot say that it is by far the best for all setups.

Overall, we can conclude that approximately 5-second-long video clips seem to
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be working fine for our task.

In Table 3.1, we show the considered intervals and best choices for the hyperpa-

rameters that we use during the MIL experiments. Here, warm-up epoch means

that the amount of epochs need to pass until we start finetuning the ResNet-3D, if

we apply finetuning. The initial epochs are for the hidden layer’s “warm-up” and

creating a better weight set than the initial weights. Skipped epoch is also used

in some cases where the best model is chosen directly as the initial model. We

prohibit early-stopping in the first N epochs in this setting, but the best models

are the ones that do not utilize these functions anyway.

Table 3.1: List of Considered Hyperparameters of MLP for MIL

Hyperparameter Considered Interval

Number of units in the 1st hidden layer [64, 2048]

Number of units in the 2nd hidden layer [16, 1024]

Number of units in the 3rd hidden layer [4, 256]

Number of hidden layers {1, 2, 3}

Initial Learning Rate [1e-6, 1e-1]

Weight Decay [1e-4, 1e-1]

Batch Size [32, 64]

Dropout Rate [0, 0.8]

Optimizer {Adagrad, Adam}

Weight Initialization Xavier Normal

Early Stop Epoch {50, 100, 500}

Max Epoch {5000, 30000}

Skipped Epochs {0, 10, 35, 50, 100}

Warm-up Epochs* [0,500]

Number of partitions {75, 90, 120, 210}

Window size {30, 40, 60, 100}

Step size {20, 30, 40, 50}

*: Where ResNet-3D is finetuned.
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3.2.2 Cross Validation

Since we do not have explicit train, validation and test sets, we use k-fold cross

validation, in order to be able to evaluate every sample in the dataset as a test

sample, while obtaining a good enough model with training samples as much as

possible. To this end, we form 9 folds from the dataset with 167 instances with

no subject overlaps, where instance means all the conflict and positive videos of

a couple, resulting in 4 videos in total. We made sure that an instance is always

found in only one fold and not any others. 5 of these folds have 19, whereas the

other 4 have 18 instances. Due to the fact that 167 is a prime number, it was

impossible to have folds that are consisting of the same number of data instances.

The number of folds is chosen as 9 to provide much similar number of pairs in each

fold. All the folds are fixed, and the same ones are used in the entire experiments.

For all of the experiments, we have selected 7-1-1 train-validation-test split, as

shown in Figure 3.2. Split-n has nth fold as its validation set and (n+ 1)th as the

test set. For example, for Split-8, if folds [1-7] are used for the train set, {8} is the

validation set and {0} is the test set. The cross validation was for one level rather

than two, which means we do not loop the validation set inside the train set. For

one train-validation set combination, the hyperparameter set which gives the best

validation scores is selected to be the optimal set for that specific split. Looping

the validation set inside the train set would multiply every experiment we do by 8,

which would be computationally very expensive. Different models generated from

the same architecture for each 9 splits do have different optimal hyperparameter

sets. With the model resulting in the best validation score, the test scores are

obtained and reported in the further tables in this section. Furthermore, we will

touch upon the indifference between test and validation results of individual folds

coming from models trained with different splits while sharing Table 3.3 in the

following pages.
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Figure 3.2: 9-fold cross validation and corresponding train, validation, test set

formations. White, blue and red represents train, validation, test sets, respec-

tively

3.2.3 Evaluation Metric

Using the proposed model, we obtain scores for each video segment that indicates

its conflict level, and the maximum scored segment represents the video-level

prediction. Different from usual classification tasks, these scores are not the

likelihood probabilities. If that was the case, we would use Softmax to map

logits scores into the probability domain and select the class with the highest

probability. However, in our case we have multiple values in our hands, which

needs to be predicted as conflict and positive. In the most basic approach, if we

had to select half of them conflict and half positive, the straightforward operation

would be finding the median value and split the instances choosing that value as

the threshold following the prediction. The higher scores would be predicted as

conflicts and the others would be positives. Since we do not force the model

to select a specific number of conflict samples, we should determine a threshold

level to split the instances. If we would like to punish missing conflict cases more

severe, our threshold would be lower in order not to miss many conflict instances,

but this would increase false negatives (if conflict counts as the negative). In

another case, while trying to decrease the false negatives, this time false positives

would increase. In this kind of cases where we do not specify our precedences, it

is pretty common to use AUC (Area Under the Curve) metric instead of accuracy.
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Not being able to use accuracy directly, is not the only reason why we use AUC

while evaluating our performance. In [59], authors assert many different reasons

why AUC could be a better evaluation measure than accuracy while comparing

classifiers.

The “curve” in AUC is Receiver Operating Characteristic (ROC) curve, which

is simply the plot of the True Positive Rate (TPR) to False Positive Rate (FPR).

The point (0, 0) is where we do not predict any positives, and (1, 1) is where we

predict positive for every sample. A successful model would have a curve closer

to the upper left corner, which increases the area under the curve, so does our

AUC score. It means the model outputs True Positives without giving so many

False Positives, as desired.

It should be noted that our proposed model is optimized according to the AUC

measure, where the rest of the experiments are optimized with accuracy. We

cannot directly compare those two different measures numerically, but as stated

in [60], AUC is a summary measure that essentially averages the accuracy across

the spectrum of testing values. Also, 0.5 and 1 values correspond to the same

results, as “random choice” and “perfect classification” extremes, respectively.

Therefore, assuming the values reported as AUC or accuracy would be highly

correlated could be accurate. However, in order to be able to compare the results

fairly and be as precise as possible, we provide proposed model results both in

AUC and accuracy measures. The accuracy values of the proposed model are

obtained using Equal Error Rate (EER). The False Positive Rate (FPR) and

False Negative Rate (FNR) versus threshold plots intersect at one point, since

one is monotonically increasing, where the other is decreasing. For finding the

intersection, we interpolate the FPR and FNR values. When these rates are equal

(intersection), this common value is referred to as the Equal Error Rate, which

corresponds to the optimal threshold found with this method, since we penalize

missing positive and conflict cases equally. Then, we calculate the accuracy values

for our proposed models by subtracting this value from 1, which are compared

with the baseline scores in Sections 3.3.3 and 3.3.4.

33



In tables where we do not share fold specific results, we report the overall

results from the whole dataset. Since our splits has different number of instances

in them, we do not directly take the average of folds while reporting the final

results, but they are very similar with the averages since the instance count

difference is very small. The first 4 folds contain 18 instances and the rest contains

19 instances per folds, so, a weighted average would work fine.

3.3 Results

In this section, we share experimental results on different analyses such as the

outcomes and techniques of processing stand alone individuals or couples in pairs

and the fusion techniques when pairs are used, the model reliability according

to different fold results, comparison of proposed method with baseline results we

provide along with the human evaluation studies.

3.3.1 Individual Subject versus Pair Analysis

The proposed network predicts a score for each of the partitions. This score in-

dicates how likely the video partition is from a conflict session. That is, as the

scores increase, the probability that we predict this video sequence as conflict

also increases. In Figure 3.3, we present an example score distribution in order

to show segment scores in more detail. It can be seen that the positive session

is mostly differentiated from the conflict session. When we check the maximum

score of each session, we see that conflict has a higher one, which indicates the

classification is successful. After generating the ROC curve, if we draw the sepa-

rating threshold somewhere between [0.48, 0.50], then both of these values would

be counted as true positives (100% success). When the threshold is above the

conflict maximum, true positives would be one less and when it is below the pos-

itive maximum value, there will be one more false positive (50% success in each

case). If the model wrongly predicts the conflict-positive separation, then the

corresponding success values would be 0% and 50%, respectively.
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The scores in Figure 3.3 are assigned to each video segment in the bag, which

indicates the segment’s conflict level. We look for the maximum valued segment

in order to predict the label for the whole video, as explained in Section 2.3. A

simple but effective approach to gather two views showing both faces of a session

is, not to predict video-level labels, but instead predicting session-level labels, by

taking the maximum of the whole session. Previously, our bag was involving the

instances from one video where we would look at a single participant. Now, the

experiments in the third and fourth rows in Table 3.2, we train the same way,

but while making our predictions, we look at the maximum of all instances in

both person’s bags. Here, our motivation is that, in conflict sessions, while a

participant may stay calm during the video and does not reveal easily that the

session label is conflict, the other might give stronger clues that it is indeed a

conflict session. So, we simply predict “conflict” for the session, if one of the

participants is predicted as “conflict”.

Figure 3.3: Example positive experience and conflict session scores, where the

video is divided into 90 segments
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Model in second row of Table 3.2 applies the early fusion, meaning that con-

catenating the 512D feature vectors before feeding them to the proposed model,

by making 1024D vectors. Some of the models that apply late fusion are not

optimized to this technique, meaning that the training procedure is the same as

the individual subject case, but while evaluating the validation and test sets, we

look at the scores as explained in the previous paragraph. The models optimized

with this technique have their training sets evaluated and gradients calculated

accordingly. Surprisingly, early fusion technique and Max of Session optimized

models perform poorly in test sets, whereas their validation scores are really close

to those of our best model. The early fusion might not represent the participants

as well as the original features, and the late fusion with optimization might be

harmful to the backpropagation process. However, the late fusion without the op-

timization reaches 74.48% in AUC, which is the best result we obtain. Although

taking the maximum of both sessions might seem simple, it is very effective ben-

efiting from the connections between each participant and it increases the best

individual MIL result by 11.65% with respect to the individual test AUC. From

now on in this thesis, this model would be referred as the “proposed model”.

Table 3.2: Results of the MIL Model

Subject of Interest Fusion Technique Validation AUC Test AUC

Individual - Max of Bag 67.12 66.71

Pair Early Max of Bag 73.77 56.72

Pair Late - With optim. Max of Session 73.35 56.04

Pair Late - No optim. Max of Session 74.02 74.54

In order to visualize the ROC curves and to understand which AUC values

we obtain, the best and worst performing folds’ ROC curves and corresponding

AUC values from the proposed model are shown in Figure 3.4.
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Figure 3.4: ROC curves and corresponding AUC results generated from the pro-

posed model results in Table 3.2. Results of the split that yields the lowest AUC

score (3th), the highest AUC score (7th) and average ROC curve of all splits are

shown with blue, green and red, respectively

We could have used ResNet-3D and proposed architecture without using the

extracted representations, as an end-to-end architecture with finetuning the pa-

rameters of ResNet-3D to enhance our results. However, even the feature ex-

traction process is extremely heavy in terms of time and trying to finetune the

network to extract features more specified for our task would be a real burden for

our network. Considering that we have so many folds and hyperparameter sets,

and the fact that these are all independent variables and increase the experiment

count exponentially, we choose using the ResNet-3D architecture as frozen and

separated the feature extraction and training stages.
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3.3.2 Effect of Behavioral Data Differences on Model Re-

liability

Table 3.3: Effect of Behavioral Data Differences on Model Reliability

Fold Number Validation AUC Test AUC Relative Difference %

0 m0 - 78.40 m8 - 77.78 0.77

1 m1 - 71.30 m0 - 71.60 0.42

2 m2 - 75.62 m1 - 75.31 0.40

3 m3 - 72.22 m2 - 71.91 0.42

4 m4 - 68.42 m3 - 68.42 0.00

5 m5 - 71.47 m4 - 70.36 1.54

6 m6 - 73.13 m5 - 73.96 1.23

7 m7 - 72.58 m6 - 77.56 6.89

8 m8 - 83.10 m7 - 83.38 0.36

Combined 74.02 74.54 1.34

In Table 3.3, we can observe the best validation and test results for each fold (not

split). One might think that each row belongs to a model and the test results are

coming from the same model that gives the corresponding validation results, but

it would be wrong. In order to prevent this possible confusion, we write the model

numbers next to the AUC scores, where mn indicates the nth model trained with

split-n. It can be observed that regardless the split, the obtained AUC scores are

very similar for each specific fold. The absolute difference percentage showing

the proximity of test and validation scores of a fold, obtained from different

splits, is calculated by dividing the absolute difference by the validation results.

As referenced in Section 3.2.2 as the “following pages”, it can be seen that the

absolute difference percentage between test and validation results is 1.34% when

combined, which is very low. Therefore, we can deduce that although the model

neither underfits nor overfits the data, independent from whichever folds form

the train set, it fits to a very close state. The reason why there are differences in

AUC scores is not only related with the model performance, but also about the

randomly generated folds’ prediction difficulty differences.
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3.3.3 Comparison to other Methods

Since there is no previous work done on this dataset, we implement several other

methods to provide baselines for our challenge. These baselines include end-to-

end spatio-temporal modelings, temporal models with frozen features and support

vector classifiers.

We use several spatio-temporal architectures, where we can simultaneously

create connections between pixels and their changes over time. There are three

main networks with variations we use:

• CNN - RNN architecture with vanilla RNN, GRU and LSTM networks as

in Figure 3.5 (a) fed with warped faces and raw frames, in order to observe

whether the face normalization is necessary or not for this architecture.

• ResNet-3D [56] fed with warped faces, having single or multiple passes

through the network

• Bidirectional LSTM (BiLSTM) network fed with frozen ResNet-3D features

CNN-RNN architecture is shown in Figure 3.5 (a). We use AlexNet [61] as

our CNN architecture, removing its last layer. Variations in the CNN-RNN ex-

periments include the weights being trained from scratch, as well as using the

weights pretrained on ImageNet, as indicated in [61]. The pretrained weights are

finetuned or used frozen in different experiments. Vanilla RNN, GRU and LSTM

are used as the recurrent network and in order to get video-level predictions, we

use many-to-one strategy. In a similar method, we use BiLSTMs, with frozen

ResNet-3D features being the input, instead of the images used in CNN-RNNs.

Single-pass and multi-pass architectures adapted from ResNet-3D are shown in

Figure 3.5 (b) and (c), respectively, where modified ResNet-3D is the architecture

shown in Figure 2.2. The last fully connected layer is dropped out since we do

not want to use that overly specified weights in our network, and the penultimate

512D feature is being used. In single-pass architecture, we directly finetune the
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pretrained model giving all normalized faces from a single subject of interest.

In multi-pass architecture, we introduce two hyperparameters; the number of

“passes” (N ) and the intermediate embedding size (k). As we can see in Figure 3.5

(b), this architecture is consisting of multiple single-pass ResNet-3D’s, with a

slight variation of concatenation of the output vectors from video segments. Our

goal is to divide the video in smaller segments and get specific feature vectors

from each of them. All these features are concatenated in the early fusion layer

and fed to a Fully Connected (FC) layer again. This way, the model can learn

the connections between different video segments and their corresponding feature

vectors. The prediction layer is 1D output layer in each architecture, where we

use Binary Cross Entropy loss to conduct binary classification.

During the SVM experiments, we preprocess the features in 3 different ways.

For fixed partitions methods with partition count 120 and ResNet-3D features

with 512 dimensions, one video instance would have a shape of (120, 512). In flat-

ten feature feeding type, which is the best performing, hence reported technique,

we directly obtain (1, 120×512) shaped features to be fed to SVM’s. Time-

wise and dimensionwise are the other techniques which are self-explanatory; in

timewise processing we have (1, 512) shaped features, whereas in dimensionwise

processing case the shape becomes (1, 120). We also concatenate a set of the

minimum, maximum and standard deviation features while conducting hyperpa-

rameter search using each technique. For example, if we are using all 4 mathe-

matical operations in timewise processing, we would have (1, 4×512) features in

our hands.
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(a) (b)

(c)

Figure 3.5: CNN-RNN (a), ResNet-3D Single-pass (b) and ResNet-3D Multi-pass
(c) architectures
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Table 3.4: Accuracy Comparison to Different Models

Architecture Input Subject of Interest Test Accuracy

Proposed

Frozen ResNet-3D FPa

Pair 71.01

Individual 63.02

SVM
Individual 67.22

Pair 63.25

BiLSTM Frozen ResNet-3D FPe

Individual

56.44

ResNet-3D MP
Norm. Frames

53.89

ResNet-3D SP 51.50

LST-Net AU Intensities 51.13

CNN-LSTM
Norm. Frames /

Raw Frames
50.00

FPe: Fixed Period, FPa: Fixed Partitions, AU: Action Units,

MP: Multi-pass, SP: Single-pass

We report the proposed model and baseline test accuracies for both pair and

individual subject of interests in Table 3.4. The reported values are the best

results within their method, that is, none of the other variations of these archi-

tectures we try can get better scores than these ones. In Table 3.4, the proposed

model result is given in accuracy rather than AUC value reported in Table 3.2, in

order to be able to compare with the other methods, whose scores are optimized

for higher accuracies. Although we state that the AUC metric is nearly compara-

ble with accuracy results, due to unavailability of selecting a perfect threshold for

separation, our proposed model gives 71.01% in accuracy, with a drop of 4.73%

with respect to its AUC score. One reason why proposed model’s accuracy is

lower than its AUC value is that while we optimize our proposed models and

selecting the best performing model, we try to maximize the AUC value instead

of accuracy. If the whole process is designed to optimize accuracy the chances

are high that we obtain a better result. However, we believe that reporting AUC

results is much better for our proposed model, since we can adjust the thresholds

according to our desire of favoring true positive rates over true negative rates or

vice versa. In any way, although the results drop a bit due to this imperfection,
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our proposed model still outperforms any of the other methods.

When we check the other methods and the differences between their variations,

we see that the SVM experiment that takes subjects as pairs has a lower test accu-

racy than its individual counterpart. The concatenation doubles the dimension,

which might have resulted in a worse model due to the curse of dimensionality

when using ResNet-3D features. The pair model might also experience overfit-

ting, compared to its individual counterpart. In any case, SVM baseline results

show that we can obtain valuable information from facial cues about the session’s

state.

One can observe that the individual subject SVM accuracy is just 0.51% bet-

ter than the individual subject proposed architecture AUC result (shown in Ta-

ble 3.2). With the drop in accuracies with respect to AUC values for proposed

individual model, this difference increases to 6.25%. Although reported SVM

results are better for individuals, while it cannot improve the results any better

by using pairs as subject, our proposed model benefits the availability of pairs.

Only concatenating the features in SVM seems to be not enough for improve-

ments, whereas the proposed model is more successful in our main task, which

is classifying dyadic interactions. Here, the utilization of multiple instance learn-

ing outperforms the direct concatenation and benefit from using multiple views

of pairs more efficiently, since proposed model using pairs improved the model

using individuals by 12.68% with respect to the individual accuracy.

While using CNN-RNN structure, the main problem we face was the vanishing

gradients. Since the videos are so long, direct classification using the whole video

mostly underfit the data. We observe that the gradients die even in the first

epoch and all the instances, regardless of their labels, are predicted as the same

score. The scores are changing between the epochs, but still the same for all

instances. In Table 3.4, we can observe that the CNN-RNN models (either used

with Vanilla RNN, GRU or LSTM) cannot learn the weights necessary for this

binary classification, as they all have 50% test accuracies. Intuitively, we know

that random choice in binary classification would give 50% accuracy, which would

not be enough. We try raw frames instead of normalized faces as inputs, since

43



we would we the scene at the same time, like body and head movements. Using

several different hyperparameter settings, activating and deactivating bias are

among the experiments we try, but none of these alterations change the results.

The nature of this architecture might not be matching with the needs of our task.

LST-Net [62], which is a time-series model, gives slight improvement when

fed only with action units, compared to adding head pose and gaze features,

which does not support the action units by resulting in 50% accuracy. The

reason of this might be that action units and gaze-head pose are not directly

correlated and while inferring the positivity of a session from head pose and gaze,

those features probably introduce irrelevant information that would cancel out

the slight success of action units. Although action units can perform well in many

cases, our proposed model got way better results in this classification task.

We can observe slight improvements in ResNet-3D model, especially when used

with multi-pass technique. Here, the N value which denotes the number of passes,

is selected as 90 and the embedding size is 64. Although the results are still way

lower than those obtained from SVM’s, the fact that multi-pass technique gave

better results than single-pass is promising for the MIL method that we use. The

main weakness of multi-pass technique compared to our proposed model is that

it uses neural networks (MLP) to predict the label, where we cannot know the

exact moment of interest. By the concatenation of intermediate embeddings, the

model gives importance to the order in which it sees the input, due to the nature

of neural networks and weight matrices. However, in our proposed model, by

using the bags, we do not concentrate on the moment of actions, we rather want

to obtain the information whether is exists or not throughout the video. This

flexibility in time, while also processing the shorter-term temporal information

through the input features is probably one of the reasons why our proposed model

outperforms the multi-pass ResNet-3D model.
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3.3.4 Human Evaluation

As this dataset is used for the first time in the literature, there is not any state

of the art (SOTA) results for the same task. We provide the baseline and our

own SOTA in Section 3.3.3, but we also think that providing some numerical

results obtained in a different way would support the discussion of our success

of classification. Since there is no other computational competitor, it might be

beneficial to observe how real humans succeed in a task very similar to ours, in

this dataset. To this end, we have found volunteers to classify videos as conflict

or positive, the same way our model does, following a specific procedure. Our

initial motivation was not surpassing human prediction, even getting close to it

and having comparable scores with humans would be very meaningful.

Showing all the videos to each evaluator would take so much time, so we de-

cided to select a representative subset of videos to show to the human evaluators.

While selecting those videos, in order to avoid easiest and hardest samples in the

dataset, we eliminate the 3 folds with the highest scores and the 3 folds with

the lowest scores in validation results of our proposed model. The 3 folds with

medium successes are seen to be the fold numbers 3, 6 and 7 as observable in

Table 3.3.

We have shown all of the instances in these 3 folds, to the completely new

participants who are involved in human evaluation part. That is, these are not the

10 professional annotators described in Section 3.1, who labeled the data. There

were in total 6 evaluators, 3 male and 3 female, aged in between 18-58 and these

people are not trained for this kind of prediction, like the annotators. However,

the set of participants included psychologists and medical doctors, which might

affect their predictions in a supportive way because of their professions.

The procedure of human video evaluation is as follows: The video clip to be

shown is selected randomly among the predefined 3 folds. At first, a video that

involves only one person is selected (either a male or a female). Being female or

male, coming from a positive or a conflict video is also selected in random order,

in order to prevent any possible side effects stemming from the order we show the
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videos. We use the video clips as they are recorded, that is, no further processing

like face-cropping is applied to the videos. So, it should be noted that human

evaluators are able to see the body language and the environment as they see the

full frame, whereas in most of our models we only work with the normalized faces

and their representations. Although we have voices in the videos, in order to force

evaluators to concentrate on the visual effects, we mute the videos. Otherwise, as

the evaluators are all Turkish speakers and in the videos people are speaking in

Turkish, they would listen to the meaning of the speech and probably get as high

results as 100%. Since we do not apply any NLP or audio models in this thesis

and our concentration is on computer vision, we gathered the human results only

with the visual aspects.

Since the recordings are approximately 10 minutes and there are 56 couples

that we are showing to the evaluators, we cannot ask them to watch the full videos

and evaluate them accordingly. Therefore, we use a technique that is effectively

utilized in psychology domain, which is called “thin slices” [22]. In their research,

Ambady and Rosenthal showed that while having judgments assessing nonverbal

behavior of a person, a complete stranger can reach accuracies as high as the

people who had substantial interactions with that specific person in real life, just

by watching video clips from 2 seconds to 10 seconds (thin slice). Furthermore,

watching 3×10 seconds of videos does not significantly increase the accuracy, in

comparison with 3×2 seconds. In 2017, Gunaydin et al. [63] uses this technique

to show the videos to 8 independent coders, without any audio again, and ask

them to evaluate the warmth, partner interaction and engagement of a person.

Hence, we show the videos to our independent evaluators in three sessions, all

of which are at least 2 seconds (in total at least 6 seconds), but in confusing

cases, the evaluator can prolong this duration as much as he or she wants. Since

the conversations are unsupervised, that is, the couples are talking in whatever

direction they would like to continue, we pick the starting times of those 2 or

more seconds randomly, but avoided the first and last 1 minute to ensure we are

not interrupted by the researcher which appears in the end and the beginning of

the videos. With this random selection, at times, evaluator watches the person

listening to the other one, or actively speaking; which is what our model sees
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in general. At this point it is worth reminding that our models see the video

partitions of 3-8,5 seconds approximately, so we can relate this human prediction

of seeing 3 partitions consisting of at least 2 seconds to our model selection where

we process many more partitions, but with similar lengths.

Our models are not evaluating the comparison of “which one of the two ses-

sions of a couple is more positive”, but rather they are evaluating the videos

individually on being positive or conflict. However, if we have shown both of

the sessions to a human evaluator, most probably he or she would immediately

compare the two videos in his or her mind. To avoid this issue, if the evaluator

sees a dyad’s conflict session, we did not show him or her the positive session of

the same dyad. Therefore, every session of the couples are evaluated by half of

the independent evaluators.

The evaluators start investigating a dyad by watching either the male or the

female participant. After making all the predictions watching these single par-

ticipants, we show, again in a random order, the other participant of the same

couples, same session and same minutes along with the initial participant, and

make them re-predict for these sessions where they are evaluating both parties

in pairs this time. We also run our models with individuals or pairs being the

subject of interests. To study the effect of being able to see both participants

at the same time and compare it with our results, this re-prediction can be very

beneficial.

Table 3.5: Human Evaluation Accuracies

Accuracy

Subject of Interest Mean Min Max Std

Individual 65.18 60.71 78.57 6.84

Pair 64.58 55.36 69.64 5.35

Looking at the results in Table 3.5, we observe that our independent evaluators’

success rate decreases slightly when they saw both of the couples. While showing

the videos, it was noted that they have spent less time investigating the videos
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that they saw in the later stages. In the first videos, they looked at the video

longer than 6 seconds so many times, but this number get less and less in the last

videos. So, this might be one reason why investigating both participants at the

same time causes a drop in their prediction accuracies.

Table 3.6: Human Evaluation Prediction Transitions Between Individual and Pair

Sessions

Transition % To Correct To Incorrect

From Correct 71.69 28.31

From Incorrect 51.28 48.72

In Table 3.6, we list the percentages of transitions between individual and pair

sessions of accuracies. For example, if the evaluator correctly predicted the session

after watching one individual’s video and changed his or her idea after watching

both of the couples’ videos in pair, it is counted to be in the top-right cell.

Here, we can see that after seeing both participants, many evaluators predicted

differently, both correctly and incorrectly at the same time. The correct-to-

incorrect transition is a bit higher than our expectations, which might imply that

humans may not be so successful concentrating on two faces at the same time and

they can miss the clues that are caught by them beforehand. Since the correct

predictions are more than the incorrect predictions, 28.31% change in correct

ones had more effect than the 51.28% change in the incorrect ones, resulting in a

poorer performance in watching pairs.

Table 3.7: Comparison of Proposed Models and Human Evaluation

Evaluator Subject of Interest Metric Test Result

Human
Individual

Accuracy
65.18

Pair 64.58

Proposed Model

Individual
AUC 66.00

Accuracy 63.51

Pair
AUC 74.52

Accuracy 69.64

48



Overall, we observe that individual human results have slightly better accu-

racy values than proposed individual accuracies, even though the AUC result is

higher for the proposed method, which might suggest when the optimization for

AUC value and not accuracy imperfection described in Section 3.3.3 issues are

overcome, the individual accuracies can also beat humans. Switching to pairs, our

model clearly outperform human performance when we use both of the couples.

Our best model probably created better connections between each participant

and benefiting from the action-reaction mechanism of these dyadic communica-

tions, it was able to enhance its results. It should be noted that, this table shows

the results only for folds 3, 6 and 7. That is the reason of the change in results.

Proposed model AUC result does not change much, which is expected since we

select the medium performing 3 folds.

3.4 Failure Cases and Discussion

Our proposed model produces arguably good results for the classification of ro-

mantic relationship interactions. The Romantic Relationship Dataset used in this

study, includes equal number of positive experience and conflict samples. In other

words, there is no class imbalance in the dataset. In a real life scenario, on the

other hand, this may not be the case. It is possible to observe much more positive

experience samples than the conflict ones. In case of training with such a dataset,

penalty for conflict misclassification should be increased. Consequently, modified

models would be able to produce more conflict predictions, in order to increase

the prediction reliability for conflict cases. If we train a basic statistical model on

a balanced dataset, and test it on an imbalanced one where we have much more

negative samples, then the predictions for many negative samples would tend to

be positive. Due to such issues, in imbalanced scenarios, precision/recall analysis

would be a better choice for optimization.

To comprehend the visual patterns that shape the classification results, we

have analyzed the instances (MIL instances) with highest scores since the max-

imum scored instance determines the final prediction in our model. In many
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misprediction cases of positive experience samples, we observe that the partici-

pant stays still, and displays very slight or no facial expressions. In these instances

of the videos, the target participant is actually listening to the other participant,

but the stable appearance of his/her face convinces the model that this is not a

positive instance. In the opposite case, we observe that the instances where the

participants slightly smile/laugh or display more expressions, result in positive

predictions for the conflict sessions. These findings can be expected due to the

nature of MIL model that focuses only on the instance with the highest score,

where the corresponding instance may not effectively represent the whole session.

The comparably low human evaluation results support these findings as humans

can also be deceived when they observe such facial behavior in the analyzed video

segments. Sample frames cannot be presented due to copyright issues.

A smile, laughter or similar positive expressions that appear for a short period

in the beginning or at the end of a video segment coming from a conflict case

may decrease its predicted conflict score, deceiving the model that this instance

may be coming from a positive instance.By dividing the video into segments, we

may increase the individual effects of those expressions on the prediction of those

segments, since the period we investigate is much shorter now and their influence

is hence increased. However, since we only use the maximum scored instance

in Multiple Instance Learning bags, these deceptions would have a minor effect.

Even if we observe such deceiving instances and mispredict the conflict instance

as positive, since the nature of Romantic Relationship Dataset does not generally

include only one conflicting moment throughout the session, there would probably

be another instance that our model would catch as a conflicting segment. This

would totally eliminate the misprediction effect of that instance. For example in

Figure 3.3, if we had missed the maximum valued instance due to this kind of

an error, still we would predict the whole video as conflict since there are some

other highly rated segments in that video.

As described earlier, based on the use of multiple instance learning, we select

the maximum scored instance as the representative segment of the whole video.

Consequently, other video segments do not affect the learning process. Yet, due

to several reasons such as noise and confusing behavior, relying solely on the
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maximum scored instance may be problematic in some samples. Such issues

may be reduced by selecting not one, but more high scored instances, and using

their average as the representative score. On the other hand, by doing so we

would contradict with our assumption that the conflict behavior may happen very

occasionally, even only in one segment of a conflict case sample. Consequently, we

may face other issues while minimizing the effect of noise and confusing patterns

with the use of average scores.

While the proposed approach may be used for several applications in human

behavior analysis, reaching high-stake decisions solely based on automated anal-

ysis would not be acceptable from an ethical point of view. In addition, the

accuracy of an automated system on a sample population may not represent its

actual reliability. Therefore, all ethical aspects should be carefully considered

before employing such intelligent systems in real life scenarios. Furthermore, re-

searchers have to be cautious with their claims on the potential use cases of their

proposed models.
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Chapter 4

Conclusion

In this thesis, we have designed and implemented a dyadic interaction classifica-

tion framework that uses the videos of romantic couples who are talking on topics

they have conflicts on in one setting, and positive experiences they share in the

other. To this end, we model facial cues to classify these sessions, where we com-

bine deep multiple instance learning with deep metric learning. The instances in

the bags formed for the multiple instance learning, are selected as the feature vec-

tors that we extract from the video segments using ResNet-3D pretrained model.

In this model, our aim is to increase the vectorial distance between the visual

representations of video segments belonging to different classes. The maximum

value in the bag of video segments would represent the overall conflict level of

the video, and it is expected to be higher for many of the conflict videos if the

separation is successful.

We have evaluated different variations of the proposed model, such as using

the facial expressions of individuals or those of the pairs jointly as the subjects

of interest. For analyzing pairs jointly, we employ early and late fusion where we

optimize the network for the fused representation or directly fuse the prediction

scores. The best approach has been found to be the not-optimized late fusion

with pair inputs, reaching an AUC of 74.54%. To the best of our knowledge,

this is the first attempt to the automated classification of dyadic interactions of
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romantic couples. Therefore, there is no available competitor methods for this

task. Hence, we have implemented several baseline models such as employing

3D Residual Networks, Support Vector Machines, Long Short-Term Memory and

Convolutional Neural Networks, and provided comparisons. In our experiments,

the best performing baseline reaches an accuracy of 67.22%, where that of the

proposed approach is 71.01%.

When analyzing the baseline results, we observe that SVM has reached the

most accurate results, outperforming the spatio-temporal baseline models. This

finding may suggest that the spatio-temporal models have issues to form strong

temporal connections, possibly due to the very long duration of the input videos

(e.g. about 10 minutes).

After investigating the fold specific results, we observe that the best performing

models have performed similarly on average for the same folds. Yet, there is

a clear difference in the prediction accuracy for different folds. This can be

explained by the fact that the facial behavior differ significantly between different

subjects during dyadic interactions.

We have also conducted a human study, where six participants conducts the

classification task and obtains an accuracy of 65.18%. Interestingly, humans

could not perform better when they analyze the videos of both of the couples,

compared to the analysis of one individual’s video. Joint analysis of subjects

even decreases human accuracy by 0.93%. This may be due to the fact that the

video short segments analyzed by participants are randomly chosen. On the other

hand, the use of videos of both of couples in the automated analysis, improves

the classification performance by 9.65%.

We can conclude that, using facial expressions can indeed be used to infer the

state of a dyadic interaction and our proposed model is performing in a reliable

manner, providing even better results than humans. It is important to note that

in such a complex and abstract domain like human behavior analysis, human

predictions mostly rely on intuitions and experiences that are obtained through

life and this is arguably a harder problem for a computational model to solve just

53



based on limited amount of training data.

As a future work, the task can be approached in a multimodal manner, where

different modalities such as voice and speech (language) can provide additional

information. In addition, in case of an accurate tracking, side view of body pose

can also be employed in the analysis. Furthermore, increasing the number of

participants in the human evaluation and providing them longer sequences of

couple’s behavior may also yield a better human accuracy.
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