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Abstract: It is shown that strictly proper neutral time delay systems having at least one
asymptotic pole chain converging to a vertical line Re(s) = ¢ > 0 cannot be stabilized by a
proper controller. A special coprime factorization can be obtained for such systems with infinitely
many unstable poles, provided they are bi-proper (i.e. proper, but not strictly proper). From this
factorization, stabilizing feedback controllers are obtained. Necessarily, all stabilizing controllers

for this type of plants are also bi-proper.
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1. INTRODUCTION

Neutral systems appear in various applications where there
is an internal delay in the highest order derivative in the
differential equation describing the dynamical behavior
of the underlying physical system, see e.g. Michiels and
Niculescu (2007). Such a delay coupling in the ODEs
(as well as PDEs) result in an infinite dimensional system
whose feedback stabilization is an interesting subject, see
e.g. Burns et al. (2013), Nguyen and Bonnet (2015),
Rabah et al. (2008) and their references. In particular,
Byrnes et al. (1984), Burns et al. (2013), and Rabah et al.
(2008) investigate linear systems represented by state-
space models and propose methods for stabilization by
state feedback. In the present work, we consider single-
input-single-output (SISO) linear time invariant neutral
time delay systems represented by their transfer functions,
i.e., an input-output approach is adopted.

One of the main difficulties associated with this class of
systems is that they may have infinitely many unstable
poles. There are many works where pole locations are
examined. For example, Rabah et al. (2005) performs a
spectrum analysis for a neutral system given in state-
space, that gives estimates of the pole locations. Recently,
Nguyen et al. (2016) gives a condition for the H.-stability
of a class of neutral fractional delay systems, where all
poles are in the open left half plane but there is at least
one asymptotic chain of poles approaching the imaginary
axis, denoted by I = {s € C Re(s) = 0}. As briefly
summarized in the next section, for neutral systems with
commensurate delays, there exist simple tests to check if
there is a chain of poles asymptotic to a vertical axis in
the open right half plane, see e.g. Loiseau et al. (2002),
Gumussoy (2012) and their references.

Earlier in Gumussoy and Ozbay (2004) stabilizing feed-
back controllers are obtained for a class of neutral systems
having infinitely many unstable poles. On the other hand,
in Loiseau et al. (2002) it has been shown that having
finitely many unstable poles is a necessary condition for
the existence of a stabilizing feedback controller for many
interesting neutral delay systems. At this point we would

like to quote the following relevant discussion from Loiseau
et al. (2002):

“According to Byrnes et al. (1984), O’Connor
& Tarn (1983), and Pandolfi (1976) if a system
is not formally stable, then the stabilizing
compensator should include some derivative
action.”

“Byrnes et al. (1984), ...notice that find-
ing general necessary and sufficient conditions
for the stabilization of neutral-type time-delay
systems is an open question.”

“We establish that a time-delay system of
neutral-type that is not formally stable cannot
be stabilized by any state feedback ...”

Note that in the above discussion “formally stable” is
equivalent to having finitely many unstable poles, see
Loiseau et al. (2002) and their reference to Pontryagin.

An implicit assumption in Gumussoy and Ozbay (2004)
was that the plant is bi-proper (i.e. proper, but not strictly
proper). Moreover, the necessary condition established in
Loiseau et al. (2002) is valid for the state-space models
(their transfer functions are strictly proper). Requiring a
derivative action to stabilize such systems with infinitely
many unstable poles is equivalent to imposing an improper
controller. Therefore, it seems that, for a SISO neutral
time delay system which has infinitely many unstable
poles, having a bi-proper transfer function is a necessary
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condition for the existence of a proper stabilizing con-
troller. Yet, we could not find this result explicitly stated
in the literature (there are some relevant results in Nguyen
and Bonnet (2014) and Partington and Bonnet (2004),
where some special cases are considered, we will discuss
these below). In Section 2 we prove this fact. In Section 3
we recall stabilizing controller design using special factor-
izations. Concluding remarks are made in Section 4.

2. MAIN RESULT
2.1 Problem Definition

In this paper we consider plants of the form

r(s)
P(s) = —= 1
-2 (1)
where r(s) and ¢(s) are quasi-polynomials defined by
polynomials r;(s), i = 1,...,n, q(s), k = 1,...,m, and
delays 0 <1 < <7, 0< hy < -+ < hyp,

r(s) =3y ri(s)e™ ™,

q(s) = 24l ax(s)e ™

Assumptions. The following assumptions on the plant will
be in effect:

A1 Time delays are commensurate: there exists 7, > 0
and h, > 0 such that 7, = (1 — 1)75, i = 1,...,n, and
hy=(k—1Dho, k=1,...,m.

A2 q(s) is a neutral quasi-polynomial: deg ¢; > deg gy,
k = 1,...,m and there exists at least one k €
{2,...,m} such that deg ¢; = deg ¢

A3 q(s) has infinitely many roots in a half plane C,
defined as C, = {s : Re(s) > o}, with ¢ > 0; and
there exists € > 0 such that ¢(s) has finitely many
roots in the strip C_. \ C, (i.e. e-neighborhood of I).

A/ r(s) can be a retarded or neutral type: deg r1 > deg r;
for all ¢ = 1,...n; but if r(s) is a neutral quasi-
polynomial, then it has finitely many roots in C_,
for some € > 0.

A5 None of the roots of r(s) in C_. coincide with the
roots of ¢(s).

A6 P(s) is a proper transfer function: deg ¢; > deg r;.

Note that, the first assumption implies 71 = 0, which rules
out feedforward input-output delay in the plant transfer
function. Then, for causality (to avoid time advance) we
also need h; = 0.

Under the above definitions and assumptions A1—AG6, a
factorization P = N/D can be obtained by setting
N(s):=r(s)/(s +a), D(s) = q(s)/(s +b)"

where a,b > 0 are arbitrary and ¢, = deg 7, {; = deg q1.
Note that both N and D are in H,,. The main question
is this: are N and D strongly coprime in Ho? If so, how
can we find X,Y € H, such that NX + DY = 17 When
the answers are positive, the plant is H.-stabilizable, and
all stabilizing controllers are obtained from Smith (1989).
Below, we will see that such a stabilizing controller exists
only if £, = {4, i.e., a necessary condition is to have a
plant transfer function which is bi-proper (proper, but not
strictly proper). Moreover when this necessary condition is
satisfied we will show that it is possible to find the required
X,Y and obtain stabilizing controllers.

In passing, we want to mention that the plants of the form
(1) can be obtained from “state-space” dynamical models,
such as

x(t) — BEx(t — h) = Apx(t) + Ar1x(t — h) + Bu(t) (2)
y(t) = Cox(t) + Crz(t — 7) + Du(t) (3)
where z(t) € R" h > 0, 7 > 0, D scalar, and the
matrices E, Ag, A1 are ng X ng, Cy,C1 are 1 X n,, and
B is n, x 1. Taking the Laplace transforms of (2) and (3)
and eliminating X (s) we obtain P(s) = Y (s)/U(s) which
is of the form (1). Of course, it is possible to add extra
commensurate delay terms to the above model and have a
transfer function similar to P(s).

Definition 1. Let g(s) be as above. The function

m
al(z) = Z apzF1
k=1

is called the asymptotic polynomial of q(s) where
4k (s)
q1(s)

ar = limg_, oo ,fork=1,...,m.

We recall the following test from Gumussoy (2012).

Lemma 2. The quasi-polynomial ¢(s) as defined above has
finitely many roots in C. if and only if its asymptotic
polynomial a?(z) has all its roots outside the unit circle.

For example, when m = 2 the asymptotic polynomial
of ¢(s) is of the form a?(z) = (1 + azz) where ay =

i 5

deg g2 = deg ¢; and hence as # 0. According to Lemma 2,
¢ has has finitely many roots in C if and only if |ag| < 1,
which is consistent with Proposition 2.1 of Partington and
Bonnet (2004), where the notation o = a; ! is used. Also,
we should mention that for systems represented by (2)
having finitely many unstable poles is equivalent to having

|zi| > 1V k, where 2z, € C is a root of det(I — zE) = 0.
This property is the special case of the “formal stability”,
see Proposition 2.1.4 of Byrnes et al. (1984). It is an
interesting exercise to show that when

(Co+ Cre™™) (s(I — BEe=m%) — Ag — Aje™*) ' B+ D
=r(s)/a(s)
we have ¢(s) = det (s(I — Ee™"*) — Ag — Aje™"*) and its
asymptotic polynomial is a4(z) = det(I — zFE).

Since q is assumed to be neutral, we have

Many prior works, for systems described by (2), have dealt
with the question of finding stabilizing feedback laws of the
form

u(t) = =Y Fya(t — kh) (4)
k=0

where Fp,...,F,, are appropriate size matrices. It was
shown by Loiseau et al. (2002) that systems of the form
(2) are not BIBO stabilizable by any state feedback (4)
if they are not “formally stable”. See the discussion in
Loiseau et al. (2002) for earlier related results.

For plants in the form (1), with the special case n = 1 and
m = 2 a similar result has been obtained in Partington and
Bonnet (2004): if |a] < 1 and deg 1 = deg ¢1 — 1 then
P is not BIBO stabilizable, nor H..-stabilizable by finite
dimensional controllers. We should also point out that for
the case r(s) = 1 and ¢x’s are polynomials in a fractional
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power of s, Nguyen and Bonnet (2014) has proven that
if the plant has infinitely many unstable poles then it
cannot be stabilized by the class of rational fractional
controllers of commensurate order. Another earlier related
result appears in Yamamoto and Hara (1988), where it has
been proven that when a repetitive controller (1—e~%%)~1,
L > 0, appears in the open loop transfer function, then it
is necessary to have a bi-proper open loop transfer function
for stability of the feedback system. Such a system does not
satisfy our assumptions A1-A6, because it has infinitely
many poles on I. But for stabilization purposes one can
do an axis shift and try to stabilize the feedback system
whose open loop transfer function contains a factor in the
form (1 — e L=9)=1 ¢ > 0, which fits our framework.
This approach is useful in placing the closed loop system
poles to the left of the line Re(s) = —e.

All the papers mentioned in the above discussion (and
many other earlier papers in their references) show that
it is impossible to move infinitely many unstable poles to
the left half plane by a proper controller when the plant
bandwidth is finite. We will formally generalize this fact
in the next section.

2.2 A necessary condition for feedback stabilization

Let (C,P) be a feedback system formed by a proper
controller C(s) and a proper plant P(s). Then, the closed
loop system is stable if S = (1 + PC)™!,CS, PS € Hoo.
This implies that the feedback system is unstable if the
characteristic function, 1+ G(s), has a zero in C,, where

G(s) = P(s)C(s).

Proposition 3. Let C(s) be a proper controller for a proper
plant P(s). Assume that there is no unstable pole-zero
cancellation in the product G(s) = P(s)C(s), and that
G does not have any poles on I; moreover, there exists
a sufficiently small € > 0 such that G has finitely many
poles in the e-neighborhood of I. Further assume that, for
any finite p > 0, G has finitely many poles in the closed
semi-disk
Tow

]D)p;:{s:peje : |S|§p59€[_§’ 5]}

If the following two conditions hold, then the feedback
system is unstable:

(i) there exists w, > 0 such that |G(jw)| < 1 for all w >
wy and there exists p. > 0 and a strictly increasing
sequence pp, > px, n=1,2,..., with (ppt1 — pn) >0
for some § > 0 such that |G(p,e’?)] < 1 for all
n=1,2,...andallf c [-F, T],

(ii) the number of poles of G inside D, increases without
a bound as n — oo.

Proof. Given p = p,, > ps, let us define a positive contour

p encircling D,, by going over the path s = jw, w
increasing from —p to 4p, and then s = pe??, § decreasing
from Z to —%. The condition (i) implies that for p = p,
the transfer function G = PC does not have any poles on

p- According to Cauchy’s argument principle, see e.g.
Ablowitz and Fokas (2003), the number of zeros, n,, of
the function 1 + G(s) inside ?p is equal toénp + ng),
where n,, is the number of poles of G inside I' , and n3
is the number of clockwise encirclements of —1 by the

closed path ?G = G(?p). Clearly, a necessary condition
for feedback system stability is to have n, = 0 for any

given p = p,. That means the curve I' ¢ must encircle —1
exactly n, times in the counter clockwise direction. On
the other hand, since G satisfies (i), for any given small
number £ € (0, 1), there exists N, such that p, > w.,
and |G(p,e??)| < (1 —¢) foralln > N, and 0 € [-% , Z].
Therefore, n is invariant for all n larger than N, for any
e € (0, 1). By condition (ii), the number n, increases
without a bound as p, — oo. Thus, there is a sufficiently
large p = p, with n > N, with 0 < e < 1 for which n,, is
strictly greater than —n—, which means that 1+ G(s) has
at least one zero inside D,, hence the feedback system is
unstable. o

For neutral time delay systems, the condition (i) is satisfied
when the plant is strictly proper; the condition (ii) holds
when the system has infinitely many poles in C, for some
o> 0.

Corollary 4. Let P be a neutral system satisfying A1-A6.
If P is strictly proper, then it cannot be stabilized by a
proper controller.

An important point to note is that Proposition 3 is valid
for a large class of infinite dimensional systems, beyond
the ones captured by (1) with A7-A6. The condition on
the imaginary axis poles was to simplify the notation in
the proof; if G(s) has finitely many poles on I, then by a

slight change in the contour I ,, we can arrive at the same
conclusion. We have proven that under conditions (i) and
(ii) the feedback system has at least one unstable pole.
The arguments of the proof further suggests that when
a strictly proper G satisfies condition (ii), the feedback
system will have infinitely many unstable poles. In other
words, it is impossible to move infinitely many unstable
poles of P to C_, by a proper C when P is strictly proper.

Another important point to note is that we have not used
the assumption that 71 = 0. In fact, the above result is
valid for all plants of the form e~ P(s) where 7, > 0 and
P satisfies A1-A6; we should mention that the same re-
mark appears in Partington and Bonnet (2004). However,
for numerical computation of all stabilizing controllers we
will need 71 = 0 in the next section.

3. STABILIZING CONTROLLERS FOR NEUTRAL
SYSTEMS WITH INFINITELY MANY UNSTABLE
POLES

In the light of Proposition 3, in order to find stabilizing
controllers the assumption A6 must be strengthened to

A6’ P(s) is bi-proper, i.e., deg g1 = deg ry.
Also, for simplicity of the plant factorizations we modify

A3 as follows:

A3’ q(s) has infinitely many roots in C,, for some o > 0,
and has finitely many roots in C\ C,, none on L.

In particular, this implies that ¢ has finitely many roots
in C_. The added restriction, (no imaginary axis poles),
is not entirely necessary, it can be avoided by an axis shift
in the form § = s + ¢, as long as ¢ has finitely many roots
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to the left of Re(s) = —e, for some ¢ > 0. We do not go
into such technical details here.

Definition 5. Let ¢(s) be as above. The quasi-polynomial

q(s) = —q(=s)e”"m* (5)
is called the conjugate quasi-polynomial of q(s).

Clearly, by A8’ the conjugate quasi-polynomial g(s) has
infinitely many roots to the left of Re(s) = —o, finitely
many roots in C,, and none of the roots are on L

We now recall the following factorization from Gumussoy
(2012). First write P(s) as

play = T )
s) q(s)
Then note that by assumption A3’ it is possible to find a
finite Blaschke function Bgz(s) such that

D(s) = ﬁB— s I
(5) 1= Z8 (o) € ©)
is inner. The zeros of Bj are the roots of g(s) in C4, having
the same multiplicities. Similarly, by assumption A4, we
can find a finite Blaschke product B,.(s) such that

N, = T(—S) Ba(s) .

0(8) (?(S) BT(S) Heo (7)
is outer. Moreover, by the assumption A6’ we have that
N, 1 € Hoo. Now we define N(s) := B,(s)N,(s), which is
an inner-outer factorization for N € Hoo. Then, P = N/D
is a strongly coprime factorization for which it is possible
to find X, Y € H satisfying the Bezout equation

N(s)X(s)+D(s)Y(s)=1.
The computations for X and Y are done as outlined in
Ozbay et al. (1990): let X = XN, !, then X, € Ho, must
satisfy

X, (s) = 1-— D(S)Y(S).

(8)
Since B, is finite dimensional, it is always possible to
find a rational Y € H., which makes X, € H,. Just
to illustrate this point assume that the zeros of B,(s) are
distinct and denoted by B1,...,8; € C.. Then Y € H,
must satisfy interpolation conditions Y (5;) = 1/D(;). It
is possible to construct an (¢ —1) order Y € H satisfying
these conditions. Then, by Smith (1989) all stabilizing
controllers for P are given by

-1
X, N, +DQ _ (X +DQO> N )
Y - B’I'NOQ Y B QO
where Q = N,Q, with the free parameter QQ, € Hoo,
subject to the restriction that Q,(cc) # Y (c0)B,(c0)™!
(the added restriction is needed because the controller
must be proper). Obviously, the invertible outer part of
the plant does not play a major role in the stabilization
Rroblern: we  just need to find a stgbilizing controller
C = X,/Y for P = B,/D, then C = CN, ! is stabilizing
P = PN,. Under the controller (9) the closed loop transfer
functions are

C =

S=D(Y - B,Q,) ,
CS=D(X,+DQ,)N; !,

o

PS=B,(Y — B,Q,)N,.

Ezxample 1. The following plant satisfies all the assump-
tions: P(s) =r(s)/q(s) with

r(s) =3 (s —2e7%1) | q(s) = (s +3+2(s — 1)e”049).

The quasi-polynomial r is a retarded-type and has only one
unstable pole, at s = 8 ~ 1.68916. The quasi-polynomial
q(s) is neutral-type; the root of its asymptotic polynomial
a?(z) = 1+ 2z is inside the unit circle. Hence ¢(s) has
infinitely many roots in C,. Using available numerical
methods, such as QPmR.m of Vyhlidal and Zitek (2009,
2014), and YALTA of Avanessoff et al. (2013, 2015) we can
check that the conjugate quasi-polynomial g(s) = 2(s+1)+
(s — 3)e=94% has only one pole in C, at s = g ~ 0.247.
Then, the factorization is in the form P = B,.N,/D where

_5-8
B.(s)= e

(s +3+2(s— 1)e=%4) (s — o)
D(5> = (2(S+ 1) + (S _3)6—0.45) (S+ Q)
Ny 3525 4 s~ o

(2(s +1) + (s =3)e=0%)(s = B)(s + o)

Note that D € H is inner with infinitely many zeros in
C4. The outer factor N, is invertible in H, in particular,
it is bi-proper and it does not have a zero at ¢ and does
not have a pole at 3. The above representations of D and
N, seem to be very sensitive to errors in the computation
of the roots 8 and p. On the other hand, these transfer
functions can be implemented in a reliable manner, using
stable “finite-impulse-response (FIR)” terms as illustrated
in Gumussoy (2012) for certain factors of Ho, optimal
controllers. Returning back to the stabilization problem,
we need to find Y € Hoo such that Y(5) = 1/D(f). The
simplest solution is the constant function, Y (s) = 1/D(5).

Then, b e
%= (1-53) (355) <

and hence all stabilizing controllers are obtained from the
parameterization

o (X +DQO) N1

Y — BrQo
(D(8) - <»(”ﬂ D)\
= NO

- (555) @
(s

where Q1(s) = D(S)Qo(s) € Hoo is the free parameter,
subject to Q1(c0) # 1. A partlcular stabilizing controller
is obtained by putting Q1 =
s+ 0 1
Co(s) = DB) = D) | | S5 ) No (s

Ezxample 2. The purpose of this example is to illus-
trate that the approach taken here extends to a certain
advanced-type time delay systems. Consider the bi-proper
transfer function
P(s) = (s—1)(s+1)
q(s)

where ¢(s) is an advanced-type quasi-polynomial in the
form

—2hs

q(s) = cos + (coc1 — s2)e " — ¢y se
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with o > 0 and cp,c1 € [0,5;). In this case g(s) has
infinitely many roots in C; and infinitely many roots in
C_ (the assumption A3’is violated). To see this, note that

q(s) can be factored as

q(s) = (co — se™ %) (s + c1e™ ")
the first term has all its infinitely many roots in C; and
the second term has all its infinitely many roots in C_,
as long as ¢y and ¢; are sufficiently small. In the light of

this observation, using the conjugate of the first term, a
factorization in the form P = B, N,D~! is obtained as

- 1)
Br(s)=1)
B (s+1)2
No(s) = (s 4 coe="5) (s + cre=hs)
—hs
o —se
D(s) = s+ cope~hs

Transfer functions of the form D(s), where the numerator
is advanced type quasi-polynomial, appear in the class of
pseudo-rational input-output maps, see Yamamoto (1988).
Once we have the factorization P = B,N,D~!, the
stabilizing controllers can be obtained as in (9). Note
that, compared to the plant given in Example 1, this
system does not require any root computation for quasi-
polynomials.

4. CONCLUSION

We have seen that if the plant contains infinitely many
unstable poles in a positive half plane Re(s) > o > 0,
then for feedback system stability the open loop transfer
function G(s) = P(s)C(s) cannot be strictly proper. In
particular, this means that a proper (respectively strictly
proper) controller cannot stabilize such a strictly proper
(respectively proper) plant. From the discussion of Sec-
tion IT it is clear that the main result is applicable to wide
range of plants beyond the most natural case, neutral time
delay systems having infinitely many unstable poles.

For a certain subclass of bi-proper plants having infinitely
many unstable poles we have given coprime factorizations,
and a method to compute stabilizing controllers. This
method relies on the assumption that the inner part of
the numerator B,.(s) is a finite Blaschke product. Finding
numerically reliable methods for computing stabilizing
controllers when 71 > 0, or r(s) is a neutral system having
infinitely many roots in C,, is still an open question.
Because in this case both X and Y in the Bezout equation
need to be infinite dimensional.

In the above approach we need to find the roots of r(s)
in C4 and the roots of ¢(s) in C_ (these are assumed to
be finitely many). At this point, establishing conditions
for stability robustness of the feedback system, under
numerical computation errors for these roots, is another
open issue. However, this should not be difficult once the
plant and controller coprime factors are expressed as Hoo
functions with bounded H., perturbations (e.g. using FIR
representations), there is a well known robust stability
test for such uncertain systems, see Georgiou and Smith
(1990).
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