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ABSTRACT 

INTEGRATED MACHINE-SCHEDULING AND INVENTORY PLANNING OF 

DOOR MANUFACTURING OPERATIONS AT OYAK RENAULT FACTORY 

 

Nurcan Bozkaya 

M.S. in Industrial Engineering 

Advisor: Assist. Prof Alper Şen 

Co-Advisor: Assoc. Prof. Osman Alp 

Co-Advisor: Assoc. Prof. Mehmet R. Taner 

July, 2012 

 

A car passes through press, body shell, painting and assembly stages during its 

manufacturing process. Due to the increased competition among car manufacturers, they 

aim to continuously advance and improve their processes. In this study, we analyze 

planning operations for the production of front/back and left/right doors in body shell 

department of Bursa Oyak-Renault factory and propose heuristic algorithms to improve 

their planning processes. In this study, we present four different mathematical models 

and two heuristics approaches which decrease the current costs of the company 

particularly with respect to inventory carrying  and setup perspectives. In the body shell 

department of the company, there are two parallel manufacturing cells which produces 

doors to be assembled on the consumption line. The effective planning and scheduling 

of the jobs on these lines requires solving the problem of integrated machine-scheduling 

and inventory planning subject to inclusive eligibility constraints and sequence 

independent setup times with job availability in flexible manufacturing cells of the body 

shell department. The novelty in the models lie in the integration of inventory planning 

and production scheduling decisions with the aim of streamlining operations of the door 

manufacturing cells with the consumption line. One of the proposed heuristic 
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approaches is Rolling Horizon Algorithm (RHA) which divides the planning horizon 

into sub-intervals and solves the problem by rolling the solutions through sub-intervals. 

The other proposed algorithm is Two-Pass Algorithm which divides the planning 

horizon into sub-intervals and solves each sub-problem in each sub-interval to optimality 

for two times by maintaining the starting and ending inventory levels feasible. These 

approaches are implemented with Gurobi optimization software and Java programming 

language and applied within a decision support system that supports daily planning 

activities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Decision Support System, Integrated Manufacturing System, production 

planning  and scheduling, car manufacturing.  
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ÖZET 

OYAK RENAULT FABRİKASI KAPI ÜRETİM HATLARINDA ENTEGRE 

ENVANTER PLANLAMA VE MAKİNE ÇİZELGELEME OPERASYONLARI 

 

Nurcan Bozkaya 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Alper Şen 

Yardımcı Danışman: Doç. Dr. Osman Alp 

Yardımcı Danışman: Doç. Dr. Mehmet R. Taner 

Temmuz, 2012 

 

Bir otomobil, üretimi sırasında, özetle pres, kaporta, boya ve montaj aşamalarından 

geçmektedir. Otomotiv üreticileri arasındaki artan rekabet koşullarında firma, süreçlerini 

sürekli olarak geliştirmek ve iyileştirmek istemektedir. Bu çalışma kapsamında, Bursa 

Oyak-Renault fabrikasının kaporta atölyesindeki ön/arka ve sağ/sol kapı üretiminin 

planlama operasyonları analiz edilmiş ve planlama süreçlerini iyileştirmek için kesin ve 

sezgisel algoritmalar önerilmiştir. Bu çalışmada dört farklı matematiksel model ve 

firmanın özellikle envanter taşıma ve kurulum maliyetleri açısından maliyetlerini 

düşüren iki sezgisel yaklaşım önerilmiştir. Firmanın kaporta atölyesinde tüketim 

hattında araç gövdesine monte edilen kapıların üretimini yapan iki paralel üretim hücresi 

bulunmaktadır. Bu hücrelerdeki işlerin etkin bir şekilde planlanması ve çizelgelenmesi, 

kaporta atölyesindeki esnek üretim hücrelerinde kapsayan makine atama kısıtlarını, iş 

elverişliliği ve sıra-bağımsız kurulum zamanlarını gözönünde bulunduran entegre 

makine çizelgeleme ve envanter planlama probleminin çözülmesini gerektirmektedir. 

Modellerdeki yenilik, tüketim hattı ile kapı üretim hücrelerindeki operasyonların uygun 

hale getirilmesi amacı ile envanter planlama ve üretim çizelgeleme kararlarını entegre 

olarak alabilmesinde yatmaktadır.  
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Önerilen sezgisel yaklaşımlardan biri planlama ufkunu alt-aralıklara bölen ve her bir alt-

aralığı yuvarlayarak çözen “Yuvarlanan Planlama Ufku”dur. Diğer bir yaklaşım ise, 

planlama ufkunu alt-aralıklara bölerek her bir alt problemi başlangıç ve bitiş envanter 

seviyelerini koruyarak iki kere çözen “İki-Aşamalı Algoritma”dır. Geliştirdiğimiz bu 

yaklaşımlar bilgisayar ortamında Gurobi optimizasyon yazılımı ve Java programlama 

dili kullanılarak çözüm üretmek üzere işlenmiş,  günlük kullanıma elverişli şekilde bir 

karar destek sistemi çerçevesinde uygulanmıştır. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: Karar Destek Sistemi, Bütünleşik Üretim Sistemi, üretim planlama 

ve çizelgeleme, araç imalatı. 
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Chapter 1  

 

Introduction 

 

Car manufacturing sector is a highly competitive environment in which every company 

has to adapt and increase productivity while reducing their expenses. To this end, 

planning takes an important role.  

In this study, we focus on the scheduling and planning operations of the manufacturing 

cells in Oyak-Renault factory in Bursa. This study focuses on the planning operations of 

the body shell department. Due to increased competition, Renault aims to continuously 

improve its production processes. As a step in this direction, it wishes to apply the 

RIMS-Renault Integrated Manufacturing System and achieve high production flexibility 

in all facilities. RIMS application is considered particularly crucial when integrating new 

models to existing manufacturing cells. In line with the RIMS approach, Renault aims to 

install flexible door manufacturing cells in the body shell department of the plant. In this 

new system, each manufacturing cell can produce the specified models which may result 

in machine eligibility restrictions. Setup operations are expensive in time and cost, hence 

there is a trade-off between inventory holding and setup costs. In addition, it is necessary 

to streamline the production schedules with the pace of the downstream consumption 
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line so that the continuing operations do not experience unwanted disruption due to lack 

of part availability. Currently, the company holds excessively high levels of inventory 

for body parts of different models of cars to ensure sufficient availability of parts to 

continuously feed the consumption lines in accordance with the demand schedule. 

Accordingly, we develop an integrated optimization of the planning and scheduling 

methods of these flexible cells with a special consideration for the integration of new 

models. The novelty in the models lies in the integration of inventory planning and 

production scheduling decisions with the aim of streamlining operations of the door 

manufacturing cells with the consumption line. With this streamlined approach, it is 

desired to satisfy downstream demand in a just-in-time manner to the extent possible and 

in turn, reduce inventory levels to a possible minimum. 

This thesis is structured as follows. In Chapter 2, we first introduce the problem 

environment and then provide the definition of the problem. In Chapter 3, we present the 

review of the literature. It consists of the studies related to parallel machine scheduling 

with eligibility restrictions and scheduling under the sequence independent setup times. 

In Chapter 4, we present the mathematical models that we formulated to solve the 

problem. In Chapter 5, the details of the proposed solution methods are explained. In 

Chapter 6, we explain the data set, the test environment, and the comparison methods. 

Then, we report the test results and give a discussion of the results. Finally in Chapter 7, 

we conclude with final remarks and the future search directions. 
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Chapter 2  

 

Problem Definition 

 

 

A car typically passes through press, body shell, painting, and assembly stages during its 

manufacturing process as seen in Figure 2.1. These stages are highly interdependent and 

therefore planning and scheduling of the jobs in each stage are important for an effective 

production. In this thesis, planning operations of the body shell department at Oyak-

Renault’s Bursa plant are examined. In particular, we investigate the door manufacturing 

environment at the body shell department and tackle with the problem of integrated 

machine-scheduling and inventory planning subject to inclusive eligibility constraints 

and sequence independent setup times with job availability in flexible manufacturing 

cells of the body shell department.  

 

The general stages of the manufacturing process can be explained as follows. Firstly, 

body parts are formed in the press department and sent to the body shell department, 

where they are welded together to produce the body shell of a car. The body shell is then 

subjected to the painting operation, after which car doors are removed from the body to 

be assembled later again. The unassembled door interiors are subjected to the trim 
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operations, after which they are assembled back on the body. The next stage is the 

assembly, during which the electronic and mechanic components are assembled on the 

body.  

 

 

Figure  2.1 The main stages of car manufacturing environment 

 

As for the car door manufacturing environment at Oyak-Renault’s Bursa plant, there are 

two cells producing car doors. The first cell produces front doors while the other one 

produces rear doors. There are also manufacturing cells for bonnet and trunk doors. 

Manufacturing cells of bonnet and trunk doors are out of the scope of our study. The 

manufacturing operations are determined based on whether a door belongs to the front or 

the rear. The operations for left and right doors of either the front or the rear are very 

similar. Thus, the right and left car door operations are run in a symmetric and 

simultaneous manner. Incidentally, it may be sufficient to explain one of these cells to 

present the general structure of car door manufacturing. Since the manufacturing cells 

for left and right doors of either the front or the rear are located in parallel and consist of 

identical sequence of operations, the schedule obtained for one of the doors can be 

implemented for the others as well. Figure 2.2 illustrates operations and the general 

structure of these cells in the existing situation. 
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Figure 2.2 The schematic illustration of the car door manufacturing cell at Oyak-Renault 

The operations numbered as 1-6 in Figure 2.2 in a car door manufacturing cell can be 

stated as follows: 

1. Initial unification of the interior frame.  

2. Final unification of the interior frame.  

3. Riveting of the interior frame.  

4. Gluing the exterior cover.  

5. Assembly of the interior and exterior frames to each other.  

6. Robotic curling of the interior and exterior frames to each other.  

 

In the car door manufacturing cells, the bottleneck operation is the robotic operation, 

which is the curling of the interior and exterior pressed door parts to each other, shown 

as operation 6 in Figure 2.2. The other operations can be paced in accordance with this 

operation. The robot has two heads in the current situation. Each head has the die of 

certain type of a car model door’s production. The heads are represented as colored 

boxes in Figure 2.2 which represents one of the current manufacturing cells in Renault 

plant. As shown in this figure, two types of car doors can be produced with the colored 

heads and the other two heads are not installed in the current situation. The empty slots 

are reserved for the new models’ dies that will be produced in the future. Setup 

operations include the head turns of these robots.  

Additionally, the storage area allocated for keeping inventories is an important issue for 

the company because of the need for extra space in the facility. To this end, it is desired 
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to decline the inventory levels. In the body shell department, the produced car doors are 

stored in special unitizing vessels, each of which consist of eight door parts, in a storage 

area. They are stored in the storage area to be transferred into the consumption line 

which can be seen on Figure 2.3. The ‘consumption line’ (referred to as the “ferage” line 

in Oyak-Renault) is the line where the body of the cars flow with a specified pattern. 

During this flow, the doors are assembled to the body of the cars. Currently, doors are 

assembled to seven different car models in the consumption line. Two of these seven 

different car models’ doors are produced in the body shell department. In the existing 

condition, the other models’ doors are produced in the same plant, but in different 

buildings and they are transferred to the same consumption line. This causes an 

unnecessary cost to the company. For that reason, company wants to produce all types of 

doors in the body shell department. 

 

Figure 2.3 The existing system of the car door manufacturing cells 

 

Oyak-Renault is willing to make the car door manufacturing cells more flexible and 

efficiently planned and scheduled. To this end, their goal is to apply the RIMS-Renault 
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Integrated Manufacturing System which makes the manufacturing cells flexible and the 

production efficient for achieving high production flexibility in all facilities. RIMS 

application is considered particularly crucial when integrating new models to existing 

manufacturing cells. In line with the RIMS approach, Oyak-Renault plans to convert the 

current car door manufacturing cells to flexible cells. Additionally, they also plan to 

install one additional flexible cell which can produce four different types of doors. Thus, 

they will have two flexible door manufacturing cells in the body shell department of the 

plant which is able to produce four different types of doors, and in the future, cells in the 

body shell department may produce up to eight different types. As mentioned above, in 

the new system there will be two cells (Cell 1 and Cell 2). Cell 1 is the currently existing 

cell and Cell 2 is the cell that will be installed in the future. In the new system, each 

manufacturing cell may produce only the specified car types resulting in an inclusive 

kind of machine eligibility restrictions. In inclusive kind of eligibility restrictions, both 

cells are able to produce some specified types of doors. To explain the inclusive kind 

eligibility property in our problem, we present the four different car door types as 0, 1, 2, 

and 3. Cell 1 can process four different types (0, 1, 2, and 3) of car doors while the other 

cell can process only two (types 2 and 3), which results in an inclusive eligibility 

restriction property. 

 

In our thesis, we consider the problem of scheduling and planning of the door 

manufacturing cells which arises from the integration of the new system in the car door 

manufacturing cells. As we stated earlier, the cells have several operations and the 

bottleneck operation is the robotic operation in each cell. Since the other operations can 

be paced in accordance with the robotic operation, robots can be considered in the form 

of two parallel machines. The problem in the car door manufacturing environment can 

be stated as follows:  
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There are two parallel machines with the same speeds but each machine can process jobs 

belonging to a certain subset of car models which means that machines have eligibility 

restrictions. These machines produce door parts for the downstream operation. The jobs 

are carried with special unitizing vessels from the storage area of the door manufacturing 

cells to the consumption line. Thus, a number of door frames are transferred together to 

the consumption line in the form of a single transit batch. A full transit batch carries 

eight doors of a given type. Due to the limited number of unitizing vessels (transit 

batches), only fully loaded vessels are authorized for transfer. Therefore, we model eight 

of the same type of doors as a single job in our problem. The jobs are arranged into 

families based on the door types. Doors in the same family are identical in the sense that 

a due date for a given job can be satisfied from the inventory of jobs belonging to the 

same family. A batch can be defined as a set of jobs between two consecutive setups. 

The problem has the job availability property due to the fact that a job’s start and 

completion times are different from other jobs in the same batch (Allahverdi, 2008). A 

sequence-independent setup time is required when switching between jobs belonging to 

different families because of the need of changing the robot’s head. Since setup 

operations are expensive in time and cost, there is a trade-off between inventory holding 

and setup costs. Thus, we consider both the inventory holding and setup costs while 

modeling the problem. Jobs need to be finished before their due dates imposed by the 

consumption line. The time instant that a car body requiring a certain type of a door 

arrives the door assembly station sets the demand time of that particular door type. Since 

a job consisted of eight of the same type of doors, due date of a job is set to the earliest 

demand time at the consumption line of a door in the corresponding transit batch. We do 

not allow for late jobs since it is highly crucial not to stop the consumption line in our 

problem context. Ultimate aim is to satisfy the consumption line just-in-time without 

keeping any inventories however operating with zero inventory may not be possible due 

to the setup time on the robot operation. Therefore, a “contingency stock” level for the 

body parts of the different types of cars must be kept in the buffer space in order to 
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ensure sufficient availability of parts to continuously feed the consumption line in 

accordance with the demand schedule. However, the company has a limited buffer 

space. This causes a high unit storage area cost. Hence, the company is willing to reduce 

inventory levels in the buffer space. Therefore, it is justified to seek academic solutions 

to handle an integrated optimization of the planning and scheduling operations of these 

flexible cells with a special consideration for the integration of new models.  

 

For practical reasons, the company desires to have no idle time between successive 

operations in the body shell department. This leads us to consider two scenarios. The 

first scenario allows idle time between successive jobs where the second forces 

consecutive jobs to be processed immediately one after another. Additionally, the 

demand of the consumption line is known six days before and last minute changes are 

negligible, therefore the problem is solved with deterministic perspective. 

To sum up, we can briefly state the following factors that should be considered while 

planning the production in these flexible cells: 

• Setup times/costs, 

• Storage area restrictions, 

• Inventory and storage area costs, 

• Unitizing vessels costs, 

• Demand rate of the downstream operations. 

In the next chapter, we provide a literature review of the studies in the current literature. 
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Chapter 3  

 

 

Literature Review 

 

In this chapter, we provide a brief literature review of the studies which are closely 

related to both parallel machine scheduling problems under sequence independent setup 

times and eligibility restrictions. In the following sections, Lawler et al.’s (1993) 

standard three-field notation is used for describing the scheduling problem.  

2.1. Parallel Machine Scheduling with Eligibility Restrictions 

Scheduling with eligibility constraints have been studied in the context of computer 

science and operation research under different names. Two of these names are 

scheduling with processing set restrictions and scheduling with eligibility constraints. 

We call this problem as the scheduling problem with eligibility restrictions.   

Leung and Li (2008) provide a comprehensive survey on scheduling with processing set 

restrictions. They covered offline and online algorithms for both non preemptive and 

preemptive scheduling environments with different performance criteria such as 

makespan, maximum lateness, total (weighted) completion time, total (weighted) 
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number of tardy jobs, as well as total (weighted) tardiness. Lee et al. (2010a) also 

provided a survey in online scheduling in parallel machine scheduling subject to 

eligibility constraints while minimizing the makespan. Two basic online scheduling 

paradigms (online over list and online over time) are considered by Lee et al. (2010a). 

They reviewed all the results in the literature related with eligibility constraints for these 

two paradigms and provided extensions. Furthermore they pointed out the open 

problems in this area.  

In the problem of parallel machine scheduling with eligibility restrictions, the machines 

can process specified groups of jobs. There are two special cases of parallel machine 

scheduling with eligibility restrictions. These cases are nested and inclusive eligibility 

set restrictions.  

Let                be the arbitrary subsets of machine set M and               be the 

subsets of jobs where    . In the case of nested eligibility restrictions,     and    are 

either disjoint sets,        or       . The inclusive eligibility set restriction is a 

special case of the nested eligibility set restrictions where for every pair of     and   , 

either        or       . 

Pinedo (1995) showed for the parallel machine scheduling problem with equal 

processing time and nested machine eligibility restrictions subject to the objective of 

minimizing makespan, the least flexible first (LPT) dispatching rule gives optimal 

solution. 

Centeno and Armacost (1997) considered the problem of parallel machine scheduling 

under machine eligibility restrictions with equal due dates and release dates plus a 

constant. Their objective is to minimize the maximum lateness. They present an efficient 

algorithm for the problem and use a real data set from a semiconductor manufacturing 

firm.  
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Centeno and Armacost (2004) consider the parallel machine scheduling problem with 

machine eligibility restrictions and release time under the objective of minimizing 

makespan. They propose online algorithms to solve the problem and show that the 

longest processing time (LPT) rule outperforms the least flexible job (LFJ) rule in the 

absence or presence of job release times. 

Lee et al. (2011) studied the parallel machine scheduling where jobs have different 

release times and equal processing times under the machine eligibility restrictions. Their 

objective is to minimize makespan. They presented algorithms for both online and 

offline scheduling problem.  

 

Lin and Li (2004) consider both identical and uniform parallel machine scheduling 

problem with unit processing time under the objective of minimizing makespan. They 

develop           and           time algorithms, respectively for the above 

mentioned problems. Li (2006) extends their work and provides extensions of their 

models with respect to other objective criterion. The author improves the computational 

complexities of Lin and Li’s (2004) algorithms.  

Ou et al. (2008) consider the problem of loading and unloading cargoes of a vessel. 

Their problem is assigning a set of jobs to the identical parallel machines with inclusive 

machine eligibility restrictions subject to minimizing the makespan of the schedule. 

They provide an efficient approximation algorithm and a polynomial time       - 

approximation scheme (PTAS) to solve the problem. They present that the proposed 

approximation algorithm has a worst-case bound of 4/3. However, the polynomial time 

       - approximation scheme (PTAS) is not computationally efficient when   is 

close to zero. 
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Glass and Mill (2006) provides efficient algorithms for the parallel machine scheduling 

problem with identical processing times under nested eligibility restrictions on a food 

processing plant. Their algorithms are provided for standard regular objective functions.  

 

Li (2006) studies the problem of parallel machine scheduling with unit-length jobs under 

machine eligibility restrictions. He provides efficient algorithms for various objectives.  

 

Huo and Leung (2010a) study the parallel machine scheduling problem with nested 

eligibility restrictions under the minimizing makespan objective. They improve a given 

approximation algorithm for the nested eligibility restriction problem with a worst case 

bound of 7/4. They propose an algorithm that gives a better worst case bound of 5/4 for 

two machines and 3/2 for three machines. Huo and Leung (2010b) study the same 

problem and provided a worst-case bound of 5/3 which is better than the best known 

algorithm whose worst-case bound is 7/4.  

 

Biró and McDermid (2011) study the matching problems on bipartite graphs and they 

survey the relationship of this problem and parallel machine scheduling problem under 

the machine eligibility restrictions with the objective of minimizing makespan. They 

provide approximation algorithms for those problems’ variations where the sizes of the 

jobs are restricted. They also showed that under the nested processing set restrictions 

case the two problems become polynomial-time solvable.  

 

Epstein and Levin (2011) study one of the open problems that are proposed by Leung 

and Li (2008). They provide three polynomial time approximation schemes for the 

parallel machine scheduling problem with eligibility restrictions under the objective of 

makespan minimization. 
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2.2. Scheduling under Sequence Independent Setup Times 

Allahverdi et al. (1999, 2008) and Potts and Kovalyov (2000) provide an extensive 

literature review related to scheduling problems involving setup considerations with 

batching decisions. There are generally two problem types about the problems with 

setup considerations which can be classified as sequence independent setup times and 

sequence dependent-setup times. Setups can also be classified as batch setup times or 

non-batch setup times. Moreover, setup times can be classified as minor or major setup 

times. When different types of jobs belong to the same family, a minor setup time is 

required. A major setup time is required between different job families. We are dealing 

with the parallel machine scheduling problem under sequence independent setup times 

with batching decisions. Thus, we focus on the studies that consider the setup operations 

with batch setup times.  

 

So (1990) study the identical parallel machine scheduling problem with minor or major 

setup times between types. The problem is finding a feasible schedule which maximizes 

the total reward under the fixed machine capacity. They assume that the rewards has 

inverse ratio with processing times, i.e. the rewards are decreased while the processing 

times are increased.  They propose three heuristics and compare their performances. 

Wittrock (1990) also study the identical parallel machine scheduling problem with minor 

or major setup times under the objective of minimizing makespan. They develop a 

heuristic that uses the binary search approach of the MULTIFIT heuristics and compare 

the results with an earlier approach described by Tang and Wittrock (1985) and Tang 

(1990).  

 

Monma and Potts (1989) consider the two identical parallel machine scheduling problem 

with batch setup times. They propose pseudo-polynomial algorithms for the maximum 

completion time, maximum lateness, total weighted completion time and weighted 

number of late jobs for a fixed number of batches on a specified number of machines. 
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They show that when the batch size is arbitrary, two identical parallel machine problems 

are NP-hard for both preemptive and non-preemptive cases under the objective of 

maximum completion time, number of late jobs, total weighted completion time 

problems. Cheng and Chen (1994) also study the problem of scheduling several batches 

of jobs on identical two parallel machines with minimizing the total completion time of 

jobs. They show that even for the case of the sequence independent setup times and 

equal processing times, the problem is NP-hard. Monma and Potts (1993) extend their 

earlier studies for the problem of preemptive scheduling with batch setup times on m 

identical parallel machines with minimizing the maximum completion time. They 

propose two heuristics.  

 

Schutten and Leussink (1996) consider the problem of m identical parallel machine 

scheduling of n independent jobs with release dates, due dates, and batch setups under 

the objective of minimizing maximum lateness. They provided a branch and bound 

algorithm to solve the problem. 

 

Brucker et al. (1998) study the parallel machine batch scheduling problem with 

deadlines. They showed that the problem of two identical machines is NP-hard even 

with the case of common deadline, unit processing times and setup times. 

 

Liaee and Emmons (1997) review the scheduling problem of several families of the jobs 

on single or parallel machines with setup time under the group technology assumption. 

They prove that unless all the families contain the same number, the problem of 

minimizing the total completion time on parallel machines with sequence independent 

setup times under the group technology assumption is NP-hard. Liu et al. (1999) study 

the group sub-lotting problem on two identical parallel machines with common setup 

times and unit processing times. They establish that the problem is NP-hard in the 

ordinary sense, and propose a pseudo polynomial-time algorithm for the problem of 
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minimizing the total completion time on two identical parallel machines with batch 

sequence independent common setup times and equal processing times. 

 

Leung et al. (2008) study the batch scheduling problem on m parallel machines where 

the processing time of each job is used as a step function of its waiting time. For each 

job i, if its waiting time is less than a specified threshold D, then it requires a basic 

processing time      ; otherwise, it requires an extended processing time         . 

The objective is to minimize the total completion time. They showed that even if there is 

a single machine and      for all       , the problem is NP-hard in the strong sense. 

They also provide an approximation algorithm for the case of      for all         

with a performance guarantee of 2.  

 

Yi and Wang (2003) address a parallel machine scheduling problem, which involves 

both batch setup times and earliness-tardiness penalties for the jobs, have a common due 

date. They present a fuzzy logic embedded genetic algorithm to solve the problem. Yi et 

al. (2004) present also a fuzzy logic embedded genetic algorithm for solving the problem 

of parallel machine scheduling with setup times. The objective of their problem is to 

minimize the total flow time of grouped jobs. Webster and Azizoglu (2001) and 

Azizoglu and Webster (2003), study the same problem with the objective of minimizing 

total weighted flow time. Webster and Azizoglu (2001) present backward and forward 

dynamic programming algorithms and derived two properties to improve the 

computational performance of the algorithms. Azizoglu and Webster (2003) design 

branch-and-bound algorithms to solve the problem. Since the problem is unary NP-hard, 

there are difficulties with solving the problem optimally with large sized problems. Their 

algorithms are solving the problem with 25 jobs on two or three machines and 15 jobs 

on five machines in a reasonable amount of time. Dunstall and Wirth (2005a) provided 

branch-and-bound algorithms which use a least loaded-processor (LLP) branching 

scheme for the same problem of parallel machine scheduling with family setup times. 
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Dunstall and Wirth (2005b) also study the same problem. Heuristics based on a 

combination of list-scheduling, improvement phases and the solution of single machine 

sub-problems are presented.  

 

Chen and Powell (2003) provide a column generation based branch-and-bound exact 

solution algorithms for the parallel machine scheduling problem with sequence 

independent batch setup times under the objective of minimizing the weighted number 

of tardy jobs. Their algorithms found optimal solutions for problems up to 40 jobs, 4 

machines, and 6 job families. 

 

Chen and Wu (2006) study the unrelated parallel machine scheduling problem with 

auxiliary equipment constraints under the objective of minimizing the total tardiness. 

They proposed a heuristic based on threshold accepting methods, tabu lists and 

improvement procedures. According to the computational results of their heuristic, it 

outperforms the basic simulated annealing heuristic with respect to the solution quality 

and run time.  

 

Gambosi and Nicosia (2000) study a parallel machine scheduling problem with sequence 

independent batch setup times where the objective is to minimize the maximum 

completion time. They analyze a suitable version of the classical list scheduling 

algorithm and propose an on-line algorithm for the problem.  

 

Lin and Jeng (2004) study the parallel machine batch scheduling problem to minimize 

the maximum lateness and the number of tardy jobs. They propose two dynamic 

programming algorithms to solve the problems optimally. The algorithms need 

exponential computational times for optimal solutions. For a fixed number of machines 

the computational complexities become pseudo polynomial. 
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Wilson et al. (2004) address the problem of parallel machine scheduling with sequence 

independent setup times and job release times under the objective of makespan 

minimization for cut and sew operations of upholstered furniture manufacturing.  

 

Yang (2004) considers the parallel machine scheduling problem of component 

fabrication for N two-component products under the objective of minimizing the total 

completion time. Yang (2004) presents two heuristics to solve the problem near-optimal.  

 

The most recent study on identical parallel machine scheduling with family setup times 

is conducted by Liao et al. (2012). The objective of their study is to minimize the total 

weighted completion time. They extend the work of Dunstall and Wirth (2005b) and 

improve their heuristics. Liao et al. (2012) show that their heuristics outperforms 

Dunstall and Wirth’s heuristics in terms of both computationally efficiency and solution 

quality.  A brief summary of the related literature on parallel machine scheduling 

problems with sequence independent setup times is given in the Table 3.1.  

 

To the best of our knowledge, there is no paper that covers both machine eligibility 

constraints and sequence independent batch setup times on parallel machine scheduling 

problems.  In this thesis, we are dealing with both sequence independent batch setup 

times under the job availability property and machine eligibility restrictions in this study 

in an automotive firm’s door manufacturing cells.  
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Table 3.1 A Summary of the problems on parallel machine scheduling with sequence 

independent setup times 

References Criterion 

Tang and Wittrock (1985)      

Monma and Potts (1989)     ,     , NLJ, WTCT (two-machine, prmp and 

non-prmp) 

So (1990) Total reward (minor and major setups, fixed processing 

capacity) 

Tang (1990)      (minor and major setups) 

Wittrock (1990)      (minor and major setups) 

Monma and Potts (1993)      

Cheng and Chen (1994) TCT (two machines) 

Schutten and Leussink (1996)      (  ) 

Liaee and Emmons (1997)     (group technology) 

Brucker et al. (1998)      (  ,  deadlines) 

Liu et al. (1999)     (      , common setup time) 

Gambosi and Nicosia (2000)        (online scheduling) 

Webster and Azizoglu (2001)        

Azizoglu and Webster (2003)        

Chen and Powell (2003)              

Yi and Wang (2003)              

Wilson et al. (2004)       (  , common setup time) 

Yi et al. (2004)      

Lin and Jeng (2004)           

Chen and Wu (2006)     (R, jobs restricted to be processed on certain 

machines) 

Dunstall and Wirth (2005a)        

Dunstall and Wirth (2005b)        

Liao et al. (2012)       ,       
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Chapter 4  

 

Model Development 

 

 

In this chapter, we present our mathematical model which is developed to solve the 

integrated scheduling and inventory planning problem under sequence independent 

setup times and eligibility restrictions. After describing problem characteristics, we 

provide models for two different versions of the problem. 

 

As explained in details in the previous chapter, we consider the problem of scheduling 

K independent jobs belonging to f different families on m parallel machines with 

eligibility constraints. The eligibility constraints indicate that a subset of machines can 

process a specified subset of job families and a subset of job families can be processed 

by a specified subset of machines. The objective is to minimize the total setup and 

inventory carrying costs while respecting the storage area availability constraints and 

the pull rate of the downstream operation. 

While modeling the problem, the following system characteristics are observed: 
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1. Each job is available at time zero. 

2. The processing times are equal for all families of jobs.  

3. Each job is required to be processed on one of the m identical machines in 

parallel according to the machine eligibility restrictions based on families.  

4. Each machine can process only one task at any time and also each job can be 

processed by one machine at any time.  

5. Preemption is not allowed.  

6. Jobs have the job availability property which means a job’s start and completion 

times are different from other jobs in the same batch.  

7. Setup times are independent of the job sequences and are equal for all job 

families.  

 

In this part, we explain how the system works at the door manufacturing cells. Suppose 

that different families of jobs are demanded from the consumption line in a specified 

planning horizon. These demanded jobs have due dates imposed by the consumption 

line. We plan to produce the total requirement of a given planning horizon while 

guaranteeing the fulfillment of the consumption line on time so that all jobs are 

delivered exactly when demanded on their respective due dates. The planning horizon 

starts with a pre-specified contingency stock level for each family. We also wish this 

plan to retain the stability of the contingency stock levels at the start and at the end of 

the planning horizon.  The objective is to minimize the total setup and inventory holding 

costs. 

 

We illustrate the dynamics of the system by using the following simple example. 

Suppose that there are two families of jobs, red and blue, where one job of each family 

is demanded within a specified planning horizon. Suppose that the planning horizon 

ends at time 60 and the job of family blue at time 21 while the job of family red is 
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demanded at time 30 (see Figure 4.1). Moreover, contingency stock is two for red (R1, 

R2) and zero for blue. Since the system dynamics encourage maintaining the 

contingency stock, two red family inventories should be maintained at the end. First, a 

blue family job is produced so that the demand at 21 is satisfied right on time (see 

Figure 4.1). Job R1 has a due date at time 30 from the consumption line. As there is an 

available red job, this demand is satisfied from contingency stock, but a red family 

production is scheduled to start at time 39 so that the contingency stock is maintained at 

the end of the horizon. Note that, this schedule is the optimal one when the objective is 

to meet the demand on time with minimum setup and inventory carrying costs. The 

unused contingency stock is carried until the end of the horizon.  

 

 

Figure 4.1 The first part of a small example of the problem 

In the following sections, we provide mathematical models for the two different cases of 

our problem. The first case allows idle time between successive jobs. We refer to this 

case as IT which is short for Idle Time. Due to the operational restrictions (such as the 

workers’ tendency to finish the on hand job as possible as they can, the company’s 

efficiency concerns etc.) the company does not prefer to ask their workers to wait idle 

between successive jobs. Therefore, we also develop another version of the model 
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where insertion of idle times is not allowed between successive jobs. We denote this 

latter case by NIT which is short for No Idle Time. The example of Figure 4.1 exhibits 

IT case. If we were to solve this example as a NIT problem, then the setup for the red 

item would start at 29 and the production would stop at time 45. 

 

In Sections 4.1 and 4.2 we present the IT and NIT models, respectively. In these 

models, we enforce the stability of the contingent stock as explained above. In Sections 

4.1 and 4.2, we also provide the relaxed versions of these models (denoted by IT-R and 

NIT-R) where this requirement is relaxed. The relaxed models are utilized in the 

heuristic solution algorithms presented in Chapter 5. 

4.1. Case with Idle Times 

 

In this subsection, we explain our base model which is the case where we allow idle 

time between successive jobs. First, we present indices, parameters and decision 

variables of the model. Then, model formulations and explanations are provided. 

4.1.1. Model IT 

The following notation is used in our models. 

Indices and Parameters:  

Sets: 

J: number of jobs in the planning horizon 

K: |  | 

L: number of door type  

Indices: 

k: position index, k = 1…K 

j: job index, j = 1…J 

m: machine index, m = 1,2 

l: family index, l = 1…L 
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Parameters: 

c: setup cost  

h: inventory holding cost per unit per unit time 

S: setup time 

  : due date of job j 

  : processing time of job j 

  : family of job j 

  : set of jobs that can be processed on machine m 

  : contingency stock of type l 

H: length of the planning horizon 

   a large positive number 

Decision Variables 

      
                                                                                                
                                                                                                                                

  

      
                                                                          
                                                                                                                                

  

      
                                                     
                                                                                      

  

    : starting time of the job in position k on machine m 

      : waiting time of the job in position k on machine m 

 

We propose to model the problem as follows. 

IT: 
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Subject to 

      
 
                    

 
           (1) 

                                             (2) 

           
                                         (3) 

                                                                  

                             (4) 

                                                                   

               (5) 

                                                                 

                   (6) 

                                                        

                           (7) 

    
                      

 
                     (8) 

                                              (9) 

               
 
   

 
                      (10) 

                                   (11) 

                      (12) 

                    (13) 

                     (14) 

                (15) 

                (16) 

 

The objective of our problem is to minimize the total holding cost of the inventory, setup 

costs, and unitizing vessel costs. Constraint set (1) ensures that each job is assigned to 

exactly one position and one machine. Constraint set (2) restricts the maximum number 

of jobs that can be processed in a given position on each machine to one. Constraint set 
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(3) indicates that if no job is assigned to a given position on a machine, other jobs cannot 

be assigned to the following positions on the same machine. Constraint set (4) ensures 

that the starting time of the subsequent job on a given machine cannot be earlier than the 

finishing time of the former job. Constraint sets (5) and (6) determine the required setups 

between the different types of jobs. Constraint set (7) determines the waiting time of the 

jobs. Note that, constraint sets (7) and (16) together satisfy the demand. If there is only 

direct production, the sum of the start time of the production of a job with the processing 

time has to be smaller than the due date of the job. If the job is fulfilled from inventory 

at first and then replenished, the sum of the start time of the production of a job with 

processing time has to be less than the planning horizon. Also we do not allow 

decreasing the contingency stock level, so the demand is satisfied in this way. Constraint 

set (8) restricts the total setup and processing time of all jobs so that they do not exceed 

the length of the planning horizon. Constraint set (9) allows only those jobs consumed 

earlier from the existing inventory to be produced to replenish inventory. Constraint set 

(10) restricts the total number of jobs consumed from the inventory to be less than the 

contingency stock. Constraint set (11) limits the starting time of any job to be no late 

than the end of the planning horizon. Finally, constraint sets (12) - (14) define the binary 

restrictions followed by (15) and (16) which are the non-negativity constraints.  

 

4.1.2. Model IT-R 

When there is a feasible solution with the current contingency stock level, relaxed 

version of IT finishes with the same stock level. However,  when there is no feasible 

solution with that level, it decreases the contingency stock level in an attempt to find a 

feasible solution. This flexibility is provided by constraint sets (17) - (34). 

In this relaxed model, the indices and the parameters are the same as IT but we need the 

following new decision variables:  
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Decision Variables 

      
                                                               

                              
                                                                                                          

  

      
                                                                  
                                                                                                                  

     

    
                                                                                            
                                                                                                               

  

     
                                                 
                                                                                     

  

   : starting time of the job in position k on machine m 

    : waiting time of the job in position k on machine m 

 

IT-R: 

Min  

                 

 

   

 

   

             

    

     
        

    
    

    

                    

 

       

 

   

 

               

Subject to  

         
 
              

 
         (17) 

              
 
               

 
          (18) 

       
 
   

 
                           (19) 

                                                (20) 

                   
                                             

              (21) 
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                                                       (22) 

                                                                       

                              (23)  

                                                                        

                            (24) 

                                                             

                         (25) 

      
 
                            

 
                  (26) 

                               (27) 

                                  (28) 

                      (29) 

                    (30) 

                   (31) 

                     (32) 

               (33) 

                (34) 

The objective of Model IT-R is the same with Model IT as both of their aim is to 

minimize the total inventory holding and setup costs. In this model, constraint set (17) 

corresponds to constraint set (1) in Model IT. It differs from Model IT as it can replenish 

the job from the inventory. Different than Model IT, Model IT-R consists of constraint 

sets (18), (19), (31) and (32). Constraint set (18) provides that if a job is produced, it is 

either immediately produced or supplied from inventory and then replenished. 

Constraint set (19) indicates that a job, which is supplied from inventory, can either be 

produced or not. Constraint set (31) is a binary decision variable for jobs which are 

supplied from inventory. Lastly constraint set (32) is a binary decision variable for 

replenishing the contingency stock. Constraint sets  (20), (21), (22), (23), (24), (25), 
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(26), (27), (28), (29), (30), (33), (34) correspond to constraint sets (2), (3), (4), (5), (6), 

(7), (8), (10), (11), (12), (13), (15), (16), respectively. The objective function of this 

model is slightly different from Model IT. In this model, we add a new term to the 

objective function of Model IT which always maintains the contingency stock level. In 

this term, we penalize not replenishing the contingency stock with a sufficiently large 

number M so as to ensure feasibility. We compute the minimum value of M by taking 

the difference of the maximum and minimum possible objective function value of 

producing versus not producing the same job. 

M used in objective function can be deduced as follows; 

 

            

 

If M is selected larger than          than it is enough large to make the model 

effectively work.  

 

4.2. Case with No Idle Times 

Recall that, in No Idle Times case we do not allow to insert idle time between successive 

jobs. In this case, the same notations and parameters are used with the IT case. In the 

following subsections the different parts of the models from the NIT case is explained.  

4.2.1. Model NIT 

NIT: 

Min 
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Subject to  

(1)  - (16) 

                                                               

                             (35) 

 

In this model, constraint sets (1) - (16) are the same with the IT case. Additionally, we 

add the following constraint to the previous model. This constraint set (35) ensures to 

schedule the jobs on machines successively without idle time between jobs.  

4.2.2. Model NIT-R 

NIT-R: 

Min 

                  

 

   

 

   

             

    

     
        

    
    

    

                    

 

       

 

   

 

               

Subject to  

(17) - (34) 

                                                   

                                                       (36) 

 

In this model, constraint sets (17) - (34) are the same with IT case. Additionally, we add 

the following constraint to the previous model. With the addition of constraint set (36), 
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our model is modified to the version of no idle time between successive jobs is allowed 

on machines.  

In the next chapter, two different algorithms about the problem are expressed. 
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Chapter 5  

Solution Approaches 

 

Models developed in Chapter 4 solve the problems optimally, but due to exponential 

time requirements, they are not convenient to use for practical purposes when the 

problem size is large. For instance, Model IT is used to solve problem instances with 

two-, four- and eight-hour planning horizons including approximately 9, 16, 32 jobs, 

respectively. The problems with two-hour data (approximately 9 jobs) take 

approximately 1 minute to solve, whereas the four-hour (approximately 16 jobs) data 

takes more than 6 hours and the eight-hour (approximately 32 jobs)  data could not be 

solved with IT model in a reasonable time due to memory problems on a computer with 

a 3.7 GHz Intel i7 processor running with a 16 GB of RAM. Although the relaxed model 

(IT-R) response is faster than the IT model, it still fails to solve the practical problems in 

reasonable time limits. Thus, we propose two computationally efficient heuristic 

algorithms: Rolling Horizon Algorithm (RHA) and Two Pass Algorithm (TPA). The aim 

of these heuristic algorithms is to schedule the jobs with the lowest inventory level. 

These heuristic algorithms split the planning horizon into smaller periods and solve each 

period with a proposed exact model. Thus, they can be used to plan for longer horizons 

and they also offer the advantage of providing a longer term perspective which allows 

flagging potential infeasibility issues in satisfying demand in further periods in time. 
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Note that, as we mentioned in the previous chapter in details, our problem has two 

different versions, which are IT and NIT cases. The structure of the heuristics is the 

same for both cases, only the corresponding model is different in the heuristics. So, we 

explain the proposed algorithm for only one case in this chapter. 

In the proposed solution approaches, the general working principle is to divide the 

planning horizon into sub-intervals so that each of these sub-intervals can be solved 

optimally in a reasonable time by the mathematical models proposed in Chapter 4. In the 

following subsections, we provide a description of the general working principles of 

these solution approaches. 

5. 1. Rolling Horizon Algorithm (RHA)  

In this algorithm, first an incumbent planning horizon with a length of t is determined 

for which the optimal solution can be found by IT or NIT in a reasonable time. The first 

half of the optimal plan obtained for the incumbent horizon is settled as a final plan, and 

a new incumbent horizon of length t starting from the ending point of the currently 

settled optimal plan is determined. The algorithm proceeds in the same manner and stops 

when all of the original planning horizon with length H is exhausted. Let STime and 

ETime be the starting and ending time of the planning horizon, respectively and STotal 

be the set of jobs in [STime, ETime] time interval. Let t be an interval length where t   

ETime – STime (see Figure 5.1-(a)). Firstly, the algorithm takes the first sub-interval and 

assumes [STime, STime + t] as the incumbent planning horizon to solve the 

corresponding problem optimally with IT-R model. After obtaining the optimal plan for 

the incumbent horizon, the algorithm settles the schedule obtained for the first half 

[STime, STime + t/2]. In Figure 5.1-(b) the set of jobs that are settled in a final plan is 

represented as SSolved. The planning horizon is shown with the blue line. The green line 

represents the incumbent planning horizon while the purple line shows the settled plan. 

After the first sub-interval is solved, the job list of the planning horizon (STotal) is 

updated by subtracting the scheduled jobs. This process actually truncates the original 
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[STime, ETime] with STotal jobs problem into a new problem (STime, ETime) with 

SNew = STotal \ SSolved jobs, which is the incumbent job list consisting of the 

unscheduled jobs. Since the proposed mathematical model allows the due dates to be 

first fulfilled from inventory and later puts back the jobs to inventory, there might be 

jobs that are used from inventory in [STime, STime + t/2] and produced in [STime + t/2, 

STime + t] time intervals. Note that if we update STime, RHA does not consider these 

jobs in the incumbent planning horizon so not updating STime always makes RHA to 

reconsider those jobs in the incumbent planning interval. For this reason, the truncated 

problem’s time interval starts from STime instead of STime + t/2. This process repeats 

by shifting sub-interval t to 3t/2, 2t, 5t/2 … until it reaches to the end of the planning 

horizon ETime.  

 

(a)  

 
(b) 

Figure 5.1 A representation which shows how Rolling Horizon Algorithm works 
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In the following part, we give the notation that is used throughout the algorithm (see 

Table 5.1) and provide the pseudo-code of the algorithm. In the pseudo-code, CTime is 

set to STime at the beginning and increased t/2 amount in each iteration. The iterations 

continue until STime exceeds the ETime.        and       are used to feed the 

mathematical model so that the model keeps track of the available time of the machine m 

and the family of the last job produced, so that it decides when to schedule the job in the 

new iteration or to incur a setup time or not.       is set to – 1 which corresponds to a 

non existing family so that the model incurs a setup time for the first job in the schedule 

and       and        are updated afterwards (see Lines 20 – 22  and 24 – 26, 

respectively). At each iteration, the algorithm finds jobs that are in sub-interval [STime, 

CTime + t] (see Lines 6 - 8), solves the corresponding optimization problem and then 

updates the job list STotal. The model solves the corresponding sub-problem (see Lines 

10 – 12) and updates the total job list STotal (see Lines 16 – 18). 

 

Table 5.1 Notations Used in Rolling Horizon Algorithm 

Notations   

m machine index, m = 1,2 

j 

t 

ETime 

STime 

job index, j = 1,..,J 

length of the interval 

ending time of the planning horizon 

starting time of the planning horizon 

      

      

family of job j 

most recent setup family on machine m  

   due date of job j 

       starting time of job j’s processing operation 

   Boolean variable showing if the due date for job j is fulfilled from 

inventory 
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The machine on which job j is scheduled  

set of jobs in (STime, ETime) time interval 

        list of scheduled jobs where each scheduled job is a tuple  

                  

       starting time of the operations on each machine m 

        current time of the system 

         job set between time x to time y 

  processing time of a job 

 

Algorithm - RHA Rolling Horizon  

 

1 set        to STime     

2 set       to -1 for each m 

3 set       to STime 

4 while               

5                      

6  for each job                 

7   if                              

8                                            
9  

10  for each job                       

11 solve IT-R to obtain           ,    using         

12 and       

13  SSolved =   

14  for each job                        
15    

16   if                    
     

17                                                  

18        = Stotal \ { j } 

19 

20 if      1 and    = 0 and                    

21                      

22            =       
23 
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24   if       1 and    = 1 and                   

25                      

26            =        

27 

28                   
        

   

The algorithm tries to schedule the jobs in the incumbent planning horizon in line 11 and 

in case of infeasibility for the solution in the incumbent planning horizon, the algorithm 

increments the contingency stock levels for each family and solves the problem from 

scratch.  We have not included this procedure to keep the algorithm concise. 

5. 2. Two-Pass Algorithm (TPA) 

This algorithm has three stages. At the very beginning of this algorithm, the planning 

horizon is divided into manageable sub-intervals which can be optimally solved by the 

proposed MIP models in a reasonable time. In the first pass stage, the optimal schedules 

are found for successive sub-problems by using the proposed IT-R or NIT-R model, also 

taking into consideration the last job’s finishing time and the current setup on each 

machine. If the finishing time of the last job in a sub-interval exceeds the ending time of 

the interval, the excess amount of the processing time on its assigned machine is added 

to the starting time of the next sub-interval’s starting time. Continuity between 

successive sub-intervals is attained in this way. With this procedure, we find the required 

contingency stock and ending inventory level of each sub-interval and compare these  

for successive sub-intervals. If ending inventory level of one of the sub-intervals is 

different from starting inventory level of the following sub-interval, this will cause a 

problem while applying the plans continuously. For that reason, there must be 

consistency between the successive sub-intervals’ inventory levels and this is ensured in 

the second pass of the algorithm. In the update stage, the job lists of each sub-problem 

are updated by comparing the successive sub-problems’ inventory levels. If the 

consecutive sub-interval’s ending and contingency stock levels are not equal, the 

algorithm deletes the excessive number of jobs from the previous sub-interval’s job list 



38 
 

or adds the lacking number of jobs to the previous sub-interval’s job list. We refer to this 

procedure as “Update Stage”. The details of this stage can be seen on Figure 5.2. In the 

second pass, all of the sub-problems with updated job lists are solved with the IT model, 

which is based on the principle of retaining the contingency stock levels at the end of 

each sub-interval. In order to ensure the continuity of the inventory levels between 

intervals for the updated job list, it is important to ensure the same set of jobs produced 

in the first pass and new jobs added in update stage are produced in the second pass. 

Hence, the algorithm uses IT model which replenishes the contingency stock level. 

 

 

Figure 5.2 The details of the “Update Stage” of TPA 

The details of the aforementioned stages can be seen in the following pseudo-code. The 

proposed Two-Pass Algorithm finds the contingency stock and ending inventory levels 

for each interval indexed with k. The set of jobs in each interval k is denoted by     In 

order to find the contingency stock level of interval k, the proposed algorithm initializes 

contingency stock to 0 for each family and attempts to solve the set of jobs      If a 

feasible solution cannot be found, it then increments the contingency stock level, until a 

feasible solution becomes available for interval k (see Line 8). The ending inventory for 



39 
 

interval k is calculated by decrementing the contingency stock for the jobs that are used 

from the inventory in the computed feasible solution which is done in line 14. In the 

update stage, the algorithm provides continuity between the contingency stock and 

ending level of intervals. In this stage, the algorithm compares the contingency stock 

level of interval k and ending inventory level of interval k – 1. If the contingency stock 

level of interval k is less than the ending inventory level of interval k – 1 for some family 

l, then the algorithm deletes from the set of jobs which have the earliest due date in 

family l and uses it from the inventory (see Line 18). For the other case when the 

contingency stock level k is larger than the ending inventory level of k – 1 for some 

family l, the algorithm introduces new jobs of family l which have the due date of the 

previous interval’s horizon as shown in line 20. Finally, the second pass solves the new 

problem with the updated job set    for each interval k to ensure the feasibility of the 

intervals when new jobs are introduced or existing jobs are removed from the 

production. In Line 24, second pass schedules jobs in   , in case of infeasibility in that 

line, the algorithm increments the contingency stock level at the first interval by 

removing jobs according to their due date sequence that are produced in the second pass 

and the algorithm starts to the second pass from scratch. This process is not shown in the 

pseudo-code to keep the exposition simple. 

In addition to the notation in section 5.1 we define the following notations for this 

algorithm. 

Table 5.2 Notations used in Two-Pass Algorithm 

Notations   

k interval index, k = 1,..,K 

     initial inventory requirement of family l at the beginning of the     

interval 

      ending inventory of family l at the end of the     interval 

    set of jobs that must be processed in the     interval 
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    set of jobs that are used from inventory and not produced in the     

interval 

    solution set that consists of the scheduled jobs at the     interval 

      used from inventory and not produced jobs of family l in the     

interval 

   planning horizon of the     interval 

 

Algorithm - TPA Two-Pass  

First pass 

1 set          to STime for each m     

2 set       to -1 for each m 

3 set       to       

4 for each             
5 for each k initialize      = 0 

6 solve    using IT model with        and       

7  while    is infeasible  

8        =         for all l 

9   solve    and obtain      for all l 

10  endwhile 

11  compute                     ) for each l 

12  for each           

13   if            

14       =                  
15       =    + {         
Update stage 

16  for each                     
17   if                 
18    delete jobs                  from      list 

19   else 

20    add jobs                with due date       to      list 

Second pass 

21  set          as the start time of each m 

22  for each       

23   update      by using inventory for each job in    

24  solve    with        and       obtained from the first pass using IT 

25  model 
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In the next chapter, we first present the test instances and then analyze the solutions 

obtained by using the proposed heuristics. 
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Chapter 6  

Computational Results 

 

 

In this chapter, our aim is to show the effectiveness of the heuristic algorithms for the 

planning and scheduling problem under study. We compare the heuristics and exact 

methods in terms of contingency stock levels, average inventory carrying levels, setup 

numbers and CPU times. To this end, we first explain the characteristics of the test 

problems and environment we used to compare the heuristics and the exact solution 

methods. Afterwards, we give the test results and present their detailed comparisons. 

Finally, we summarize the results.  

6. 1. Test Instances  

We use a test bed which includes both real and random problems. Real problems are 

gathered directly from the operations of the body shell department of Oyak-Renault and 

the realized demand generated by the consumption line in a specific time period in year 

2011. Whereas, random problems are randomly generated with different characteristics 

which are appropriate to future goals of the company and suitable to understand the 

behavior of the solution methods at different cases.  
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For real problems, data for three consecutive workdays are used to test the heuristic 

algorithms and the exact methods. The planning horizon is set to eight hours, therefore 

from three work days, we generate nine problem instances since the company is working 

for three shifts and 24 hours every day. There are approximately 35 jobs in each 

instance. In the current operations of Renault, there are eight different types of doors 

demanded by the consumption line, but four of these types are produced by the existing 

door manufacturing cells. Therefore, we only include the demand of these four types in 

our problem instances. There are seven parameters of the test bed namely, the planning 

horizon length, the sub-interval length, the setup times, the processing time, the 

inventory holding cost and  the setup cost. These parameters can be seen in Table 6.1. 

The sub-interval length is used in heuristics. The setup time, holding cost, and setup cost 

are given in Table 6.1 by Renault engineers. The processing times depend on the number 

of workers allocated to the body shop and assume one of the values given in Table 6.1. 

This allocation might change depending on the tactical decisions made by planners. 

Hence, we analyze two scenarios for each problem instance, one with a slower operation 

(30 vehicles per hour) and the other with a faster operation (20 vehicles per hour). We 

denote slow operations by P1 and faster operations by P2. 

Table 6.1 The parameters of solution methods for the real problems 

Parameters Values 

Planning Horizon 28800 sec. (8 hours) 

Sub-Interval Length 7200 sec. (2 hours) 

Setup Time 300 sec. (5 min.) 

Processing Time - 1 960 sec. (16 min.) 

Processing Time - 2 1440 sec. (24 min.) 

Holding Cost                   

Setup Cost 3 € 

 

Since Renault aims to increase the flexibility of the manufacturing cells and therefore 

the type of the doors manufactured on these cells, we generate the random problems 
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according to their future plans. Thus, in random problems there are six different types of 

doors with approximately 30 jobs in total in each instance. For practical purposes, we set 

the planning horizon to four hours for random instances.  

We employ two different generation methods for the random problems. In the first 

generation method GM-S1, there are eight types of doors (which are represented by A, 

B, C, D, E, F, G and H) demanded by the consumption line. They are demanded in a 

prespecified manner. The details can be seen in Table 6.2. In Table 6.2 where, “Prob.” 

represents the probability rate of each type and “Num.” represents the number of jobs of 

a given type to be requested consecutively. For instance, in GM-S1, one piece of ‘E’, 

‘F’, ‘G’, and ‘H’ door types are demanded and ‘C’ and ‘E’ are demanded twice as many 

as  them. Likewise, ‘A’ and ‘B’ door types are demanded three times as many ‘D’ and 

‘E’. Second generation method GM-S2 is similar to GM-S1 however it has different 

probability rates for each type as given in Table 6.2. In order to generate random 

problems for a given generation method, we first select a door type among the six 

alternatives using a probability distribution for the generation method in Table 6.2 and 

place a given number of selected type jobs consecutively (see Table 6.2). The difference 

between the due dates of every two consecutive doors demanded by the consumption 

line is set as 1 minute and this process is repeated until the time of the last door reaches 

to the end of the planning horizon.  

Table 6.2 The characteristics of Generation Method 

 GM 

 S1 S2 

Type Prob. Num. Prob. Num. 

A   1/8 6 6/20 6 

B   1/8 6 6/20 6 

C   1/8 2 2/20 2 

D   1/8 2 2/20 2 

E   1/8 1 1/20 1 

F   1/8 1 1/20 1 

G   1/8 1 1/20 1 

H   1/8 1 1/20 1 
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The parameters that are used by solution methods are different for the random problems 

than real problems. These parameters are listed in Table 6.3. Although the planning 

horizon is set to 8 hours in real problems, it is set to 4 hours in random problems because 

the number of jobs in random problems is more than that in real problems. The setup 

time, holding cost, and setup cost are given the same values that are used in for real 

problems as given in Table 6.3. Since the jobs are more frequent in the random problems 

than real problems, the company has to work with higher capacity so the processing time 

is shorter. However, similar to real problems, there are still two different processing 

times, slow (40 vehicles per hour) or fast (60  vehicles per hour). In both test instances, 

the parameter M that is used in constraint sets of Model IT and IT-R is set as  

         which is always greater than the right hand side (RHS) of the 

constraints. 

Recall that, we have two different versions of the exact methods which are idle time - IT 

Model that allows idle time between consecutive jobs and the no idle time - NIT Model 

that does not allow such idle time insertion. Throughout the chapter we represent the 

solutions with the same abbreviations, so IT represents the solution of the problem 

version which allows idle time between jobs and NIT represents the solution of the 

problem version which does not allow idle time between consecutive jobs. Besides, we 

use P1 (P2) for referring whether the solution is for Processing Time - 1 or Processing 

Time - 2. For example, IT-P1 indicates idle time solution with Processing Time -1. 
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Table 6.3 The parameters for random problems 

Parameters Values 

Planning Horizon 14400 sec. (4 hours) 

Sub-Interval Length 7200 sec. (2 hours) 

Setup Time 300 sec. (5 min.) 

Processing Time - 1 480 sec. (8 min.) 

Processing Time - 2 720 sec. (12 min.) 

Holding Cost                   

Setup Cost 3 € 

 

We use JAVA programming language to implement the solution methods and run our 

experiments on a computer with a 3.7 GHz Intel i7 processor and 16 GB memory. 

6. 2. Computational Results  

We solve real and random problems with the heuristic algorithms and exact solution 

methods. We present the results of the exact methods in section 6.2.1. We give the 

comparison of the exact methods with the heuristics in section 6.2.2. Finally, we 

compare the heuristics with each other in section 6.2.3. In the comparisons, we report 

average results. The detailed results for each instance of these test problems can be 

found in Appendix 1 - 32. 

 

6.2.1. Exact Methods  

In this section, we give the results for the exact methods. Note that these methods 

attempt to solve test problems with minimum contingency stock levels and increment 

them if they cannot find a solution. Additionally, exact solution methods do not allow 

decreasing the contingency stock levels in the end of the planning horizon. In Table 6.4, 

we show the results for average CPU time and average number of setups for real 

problems with the NIT-P2 and IT-P2 exact solutions. We present the results for the 

average inventory level and maximum inventory level for each job type among all real 

problems in Table 6.5. In general, NIT-P2 solutions have larger average inventory levels 
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than IT-P2 solutions; because in NIT-P2 solutions, idle times between the production of 

jobs are not allowed and this leads to compressed production schedule of the demanded 

jobs, therefore in the no idle time case, the production of a job starts earlier than that in 

the idle time case. This causes carrying more inventories in the no idle time case with 

respect to the idle time case. Differently from the solutions for the no idle time case, idle 

time solutions shift the production of the jobs forward in the planning horizon as much 

as possible. This leads to less number of setups in idle time (IT) solutions. The 

maximum inventory level for a job type gives us a good idea about the maximum 

number of fully loaded unitizing vessels needed for that type among all problems. The 

results can be seen from Table 6.4 and Table 6.5. 

 

Table 6.4 Average CPU time and average number of setups found by exact methods 

with the same contingency stock and ending inventory levels for real problems with 

processing time 2  

    Avg. CPU 

time  (sec.) 

 Avg. # of Setup 

    M/C. 1 M/C. 2 Total 

P2 
NIT 28,164 6.6 4.6 11.1 

IT 9,139 6.6 3.2 9.8 

 

Table 6.5 The average and maximum inventory levels obtained by exact methods for 

real problems with processing time 2 

   Exact  

    Average Inv. Levels  Max.Inv. 

  Type  0 1 2 3 Total 0 1 2 3 

P2 
NIT 1.01 1.19 1.26 0.79 4.24 4 4 4 3 

IT 0.78 0.36 0.64 0.69 2.46 5 2 3 2 

 



48 
 

6.2.2. Comparison of Heuristics with Exact Methods 

TPA and RHA are two heuristics we proposed. Unlike the exact methods, TPA and 

RHA may decrease the contingency stock levels at the end of the solution. In order to 

compare their results with the exact method, we solve the same test instances with the 

exact method using the same contingency stock and ending inventory levels that 

heuristics found. To this end, we modify Model IT-R (or similarly NIT-R) and refer to 

them as IT-R-M (or NIT-R). In the modified model, we change the objective function 

for IT-R (or NIT-R) and add the following parameters: 

 

Parameters: 

  : ending inventory level of family l 

  : the number of jobs belonging to family l 

The details of IT-R-M and NIT-R-M models can be found in the following subsections.  

IT-R-M: 

Min 

                 

 

   

 

   

             

    

     
        

    
    

     

Subject to  

(17)  - (34) 

              
 
           

 
                               (37) 

In this model, constraint sets (17) - (34) are the same as those in the IT - R case 

discussed in Chapter 4 and we change the objective function as seen above. With the 

addition of constraint set (37), our model is modified so that it finds solutions with given 

contingency levels and finishes with given ending inventory levels.  
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NIT-R-M: 

Min 

                  

 

   

 

   

             

    

     
        

    
    

     

 Subject to  

(17)  - (34) 

(36)   

              
 
           

 
                               (38) 

In this model, constraint sets (17) - (34) and (36) are the same as that in the NIT - R case 

given in Chapter 4 and we change the objective function and add constraint set (38) as 

seen above. 

 

6.2.2.1 Comparison of TPA with Exact Methods 

We report the results of TPA and exact methods for the real problems in Table 6.6 and 

Table 6.7. Table 6.6 shows the average CPU time and average number of setups for each 

machine while Table 6.7 lists the average and maximum inventory levels. When we 

consider the average running time of the algorithms in Table 6.7-(a), exact methods take 

more than 10 hours on the average to solve real problems while TPA solves them in less 

than one minute. Obviously, exact methods are not suitable for practical purposes. If we 

examine the number of setups, TPA has approximately 10.45 setups on average while 

the exact methods have approximately 6.85 setups. TPA schedules the jobs in sub-

intervals and combines them to produce the final schedule, hence it does not consider the 

whole planning horizon at once. Therefore, it aims to produce jobs as early so it tends to 

carry less inventory than the exact methods. Consequently, the average inventory levels 

of TPA are less than the exact methods. Besides, TPA has no higher maximum 

inventory levels than exact methods for 14 of 16 different combinations of type, 
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processing time and idle/no idle times factors as seen in Table 6.7-(b). This can explain 

one of the reasons for TPA carrying less inventory than exact methods. 

 

Table 6.6 Comparison of average CPU time and average number of setups obtained by 

TPA and exact methods for real problems with processing time  1 and 2  

    Avg. CPU time  

(sec.) 

 Avg. # of Setup 

    Exact TPA 

    Exact TPA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P1 
NIT 47,778 13 4.4 1.9 6.3 6.2 3.0 9.2 

IT 36,153 31 4.2 2.3 6.6 7.6 3.1 10.7 

P2 
NIT 18,385 16 4.8 2.7 7.4 7.2 2.9 10.1 

IT 17,538 25 4.6 2.6 7.1 7.3 4.4 11.8 
 

 

Table 6.7 Comparison of average and maximum inventory levels obtained by TPA and 

exact methods for real problems with processing time 1 and 2  

 

    Average Inventory Levels  

    Exact  TPA  

  Type 0 1 2 3 Total 0 1 2 3 Total 

P1 
NIT 1.74 3.19 1.81 0.70 7.44 1.63  2.48 1.87 0.51 6.49 

IT 1.01 1.30 0.89 1.03 4.23 0.54 0.56 0.50 0.60 2.19 

P2 
NIT 1.16 1.51 1.17 0.60 4.43 1.07 1.56 1.07 0.48 4.19 

IT 0.93 0.87 1.07 0.84 3.70 0.84 0.77 0.65 0.81 3.07 

(a) 

 

    Maximum Inventory Levels  

    Exact  TPA  

  Type 0 1 2 3 0 1 2 3 

P1 
NIT 5 7 6 2 6 9 6 2 

IT 5 7 5 3 3 3 2 2 

P2 
NIT 4 5 4 2 3 5 4 2 

IT 4 5 5 3 3 5 3 2 

(b) 
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We list the results of TPA and exact methods for GM-S1 random problems in Tables 6.8 

and 6.9. We present average running time and average number of setups in Table 6.8; 

and average and maximum inventory levels in Table 6.9. When we consider the average 

CPU time of the algorithms, TPA is quite faster than the exact methods. If we compare 

average CPU times of the TPA for random problems with average CPU times of TPA 

with real problems, we see that TPA requires more time for random problems than the 

real problems. This may indicate relative difficulty of random problems. For the number 

of setups, maximum (1.8 setup) and minimum difference (1.1 setup) among average 

number of setups indicate that the exact methods are slightly better than the TPA. 

Considering the differences between TPA and exact methods in Table 6.6 and 6.8, TPA 

is more successful in random problems than it is in real problems with respect to its 

number of setups. The data in random problems are uniformly distributed and more 

demanding than the real problems; hence this characteristic of the data restricts exact 

methods to utilize more empty intervals in the planning horizon. If we examine Table 

6.9-(a), TPA has lower average inventory levels than exact methods except GM-S1-NIT-

P2 case. For that case, the exact method has an average inventory level that is 0.1 

door/sec. less than TPA’s. In Table 6.9-b, the maximum inventory levels of TPA are less 

than those of exact methods for 22 of 24 different combinations of type, processing time 

and idle/no idle times factors. The comparison of these combinations shows the 

heuristics’ efficiency in terms of the resulting storage area requirements. 
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Table 6.8 Comparison of average CPU time and number of setups obtained by TPA and 

exact methods for random problems (GM-S1) with processing time 1 and 2  

  
    

Avg. CPU time (sec.) 
 Avg. # of Setup 

      Exact TPA 

      Exact TPA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

GM 

 S1 

P1 
NIT 20,846 327 3.2 3.0 6.2 4.6 3.0 7.6 

IT 25,401 2,256 3.3 3.0 6.3 4.2 3.2 7.4 

P2 
NIT 38,819 113 3.0 3.0 6.0 4.4 3.0 7.4 

IT 49,537 355 3.0 2.4 5.4 4.6 2.6 7.2 

 

Table 6.9 Comparison of average and maximum inventory levels obtained by TPA and 

exact methods for random problems (GM-S1) with processing time 1 and 2  

   
Average Inventory Levels 

   
Exact  TPA  

  
Type 0 1 2 3 4 5 Total 0 1 2 3 4 5 Total 

GM 

 S1 

P1 
NIT 2.1 2.7 1.4 1.6 1.2 0.9 10.1 1.9 2.2 1.2 1.0 1.4 1.1 8.8 

IT 0.8 1.7 1.4 1.1 0.8 0.7 6.6 1.6 0.7 0.7 0.8 1.0 0.7 5.5 

P2 
NIT 1.8 1.8 1.4 1.1 1.4 1.2 8.7 2.1 1.6 1.3 1.3 1.3 1.2 8.8 

IT 1.2 1.0 0.9 1.4 1.0 0.7 6.1 0.6 0.5 0.8 0.8 1.1 0.8 4.6 

(a) 

   
Maximum Inventory Levels 

   
Exact  TPA  

  
Type 0 1 2 3 4 5 0 1 2 3 4 5 

GM  

S1 

P1 
NIT 7 8 4 4 3 2 6 7 4 3 3 3 

IT 5 6 4 3 2 2 5 4 2 2 2 2 

P2 
NIT 6 5 5 3 3 3 7 5 4 4 3 2 

IT 5 5 3 4 2 2 2 2 2 2 2 2 

(b) 

6.2.2.2 Comparison of RHA and Exact Methods 

Similar to TPA, we report the results of RHA and exact methods for real problems in 

Tables 6.10 and 6.11. Table 6.10 contains average CPU time and number of setups 

information. If we look at the average CPU times in Table 6.10, RHA finds solutions in 
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less than 15 seconds on the average while the exact methods find solutions 

approximately in 7 hours. If we compare RHA’s and TPA’s CPU times (Table 6.6) for 

real problems, RHA is also faster than TPA, because TPA solves the problem in two 

passes. The average number of setups is 7.15 for RHA and 11.05 for the exact methods. 

Table 6.11-(a) contains average inventory levels for RHA and exact methods. For the 

average inventory levels, RHA is better than the exact methods for the idle time (IT) and 

no idle time (NIT) P2 cases, but the exact method is better than RHA for the no idle time 

(NIT) P1 case. Maximum inventory levels are given in Table 6.11-(b) and RHA has no 

higher maximum inventory levels for 15 of 16 different combinations of type, 

processing time and idle/no idle times factors. 

Table 6.10 Comparison of CPU time and number of setups obtained by RHA and exact 

methods for real problems with processing time 1 and 2 for average  

    
Avg. CPU time (sec.) 

 Avg. # of Setup 

    Exact RHA 

    Exact RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P1 
NIT 48,752 6 4.2 2.2 6.4 10.7 1.6 12.2 

IT 27,641 22 4.1 2.3 6.4 7.1 2.0 9.1 

P2 
NIT 21,852 5 5.4 3.8 9.2 8.6 3.6 12.1 

IT 25,143 11 4.3 2.2 6.6 7.6 3.2 10.8 

 

Table 6.11 Comparison of average and maximum inventory levels obtained by RHA and 

exact methods for real problems with processing time 1 and 2  

    Average Inventory Levels  

    Exact  RHA  

  Type  0 1 2 3 Total 0 1 2 3 Total 

P1 
NIT 1.82 3.39 2.46 1.15 8.82 2.08 3.72 1.83 0.76 8.40 

IT 1.05 0.67 1.12 1.11 3.95 0.64 0.39 0.73 0.35 2.11 

P2 
NIT 1.17 1.45 1.29 0.73 4.64 1.16 1.97 1.17 0.50 4.80 

IT 0.99 0.59 1.03 0.83 3.44 0.72 0.69 0.74 0.57 2.73 

(a) 
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    Maximum Inventory Levels  

    Exact  RHA  

   Type 0 1 2 3 0 1 2 3 

P1 
NIT 5 8 7 3 5 8 4 2 

IT 5 7 5 3 3 3 3 2 

P2 
NIT 4 6 6 3 5 6 4 2 

IT 4 4 4 2 4 3 3 2 

(b) 

We also compare our algorithms with exact methods for random problems as well and 

give the results for the GM-S1 cases in Tables 6.12 and 6.13. In terms of CPU times, 

RHA is faster than the exact methods for all cases as given in Table 6.12, however its 

average setup numbers (approximately 6.75 on average) are greater than the exact 

methods (approximately 8.90 on average)  for all cases. Average inventory levels for 

RHA and exact methods are given in Table 6.13-(a). RHA is better than the exact 

methods for all cases except GM-S1-P2 idle time (IT) case. We give results for 

maximum inventory levels in Table 6.13-(b). The results indicate that RHA has no 

higher maximum inventory levels for 22 of 24 different combinations of type, 

processing time and idle/no idle times factors. 

 

Table 6.12 Comparison of average CPU time and number of setups obtained by RHA 

and exact methods for random problems (GM-S1) with processing time 1 and 2  

      Avg. CPU time 

(sec.) 

 Avg. # of Setup 

      Exact RHA 

      Exact RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

GM 

S1 

P1 
NIT 19,243 22 3.6 3.2 6.8 4.8 5.0 9.8 

IT 42,668 39 3.2 3.0 6.2 4.2 4.2 8.4 

P2 
NIT 30,386 30 3.8 3.8 7.6 4.4 4.2 8.6 

IT 25,194 26 3.6 2.8 6.4 4.4 4.4 8.8 



55 
 

 

Table 6.13 Comparison of average and maximum inventory levels obtained by RHA and 

exact methods for random problems (GM-S1) with processing time 1 and 2  

      Average Inventory Levels  

      Exact  RHA  

     Type 0 1 2 3 4 5 Total 0 1 2 3 4 5 Total 

GM 

 S1 

P1 
NIT 2.7 3.1 2.1 1.6 1.6 1.2 12.4 2.5 3.0 2.1 2.1 1.4 1.0 12.2 

IT 1.0 2.0 1.1 1.2 0.9 0.7 7.0 1.7 1.5 0.9 0.9 0.9 0.8 6.6 

P2 
NIT 2.6 2.8 1.5 1.6 1.4 1.1 11.0 2.4 2.8 1.3 1.8 1.5 1.1 10.9 

IT 1.2 1.2 0.7 1.4 1.0 0.9 6.4 1.6 1.7 0.8 1.1 1.3 0.7 7.1 

(a) 

      Maximum Inventory Levels  

      Exact  RHA  

    Type  0 1 2 3 4 5 0 1 2 3 4 5 

GM 

 S1 

P1 
NIT 9 8 5 4 3 3 6 7 4 4 3 2 

IT 5 6 5 4 2 2 8 6 2 3 2 2 

P2 
NIT 7 7 5 4 3 3 7 7 4 4 3 3 

IT 4 5 2 4 2 2 4 5 2 3 3 2 

(b) 

6.2.3. Comparison of Heuristics 

In this section, we compare the results of heuristic algorithms both for real problems and 

random problems. We first give the comparison of real problems in section 6.2.3.1. Then 

we provide the comparison of random problems for the heuristic algorithms in section 

6.2.3.2.  

6.2.3.1. Comparison of RHA vs. TPA with Real Problems  

TPA and RHA results for real problems are given in Table 6.14, 6.15 and 6.16. These 

tables contain average contingency stock and ending inventory levels, CPU time, 

number of setups, average and maximum inventory levels. If we consider the average 

contingency stock and ending inventory levels given in Table 6.14, both algorithms start 

with closer contingency stock levels, but RHA decreases contingency stock levels with a 
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small degree compared to TPA. RHA is faster than TPA in terms of average CPU time 

as given in Table 6.15, and TPA has less average number of setups compared to RHA 

except P2 idle time (IT) case. The average number of setups are directly oriented with 

the number of produced jobs in real problems, so we can say TPA and RHA are similar 

to each other in terms of average number of setups although TPA has less average 

number of setups in general. The results for the average inventory levels are given in 

Table 6.16-(a), RHA has less average inventory levels than TPA for P1 idle time (IT) 

and P2 idle time (IT) cases. When we look at the maximum inventory levels at Table 

6.16-(b), both algorithms more or less have the same maximum inventory levels, TPA 

has no higher maximum inventory levels for 12 of 16 different combinations of type, 

processing time and idle/no idle times factors. Similar to TPA, RHA have no higher 

maximum inventory levels for 12 of 16 different combinations of type, processing time 

and idle/no idle times factors. 

Table 6.14 Comparison of average contingency stock  and ending inventory levels 

obtained by TPA and RHA for real problems with processing time 1 and 2  

    CS & EI 

    TPA RHA 

    CS EI CS EI 

  Type  0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

P1 
NIT 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 

IT 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 

P2 
NIT 1.0 1.6 1.2 1.2 0.1 0.1 0.1 0.1 1.2 1.2 1.2 1.2 0.6 1.0 0.9 0.6 

IT 1.3 2.1 1.7 1.3 1.0 1.0 1.0 0.7 1.6 1.6 1.6 1.6 1.1 1.2 0.7 0.4 
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Table 6.15 Comparison of average CPU time and number of setups obtained by TPA 

and RHA for real problems with processing time 1 and 2  

 
  Avg. CPU 

time (sec.) 

 Avg. # of Setup 

    TPA RHA 

    TPA RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P1 
NIT 13 6 6.2 3.0 9.2 10.7 1.6 12.2 

IT 31 22 7.6 3.1 10.7 7.1 2.0 9.1 

P2 
NIT 16 5 7.2 2.9 10.1 8.6 3.6 12.1 

IT 25 11 7.3 4.4 11.8 7.6 3.2 10.8 

 

Table 6.16  Comparison of average and maximum inventory levels obtained by 

TPA and RHA for real problems with processing time 1 and 2 

    Average Inventory Levels  

    TPA  RHA  

   Type 0 1 2 3 Total 0 1 2 3 Total 

P1 
NIT 1.63  2.48 1.87 0.51 6.49 2.08 3.72 1.83 0.76 8.40 

IT 0.54 0.56 0.50 0.60 2.19 0.64 0.39 0.73 0.35 2.11 

P2 
NIT 1.07 1.56 1.07 0.48 4.19 1.16 1.97 1.17 0.50 4.80 

IT 0.84 0.77 0.65 0.81 3.07 0.72 0.69 0.74 0.57 2.73 
(a) 

    Maximum Inventory Levels  

    TPA  RHA  

   Type 0 1 2 3 0 1 2 3 

P1 
NIT 6 9 6 2 5 8 4 2 

IT 3 3 2 2 3 3 3 2 

P2 
NIT 3 5 4 2 5 6 4 2 

IT 3 5 3 2 4 3 3 2 
(b) 

6.2.3.2. Comparison of RHA vs. TPA with Random Problems  

The results of TPA and RHA for GM-S1 random problems are reported in Table 6.17-

(a) and (b) , 6.18 and 6.19. We give the results for average contingency stock levels and 

ending inventory levels in Table 6.17. The results in Table 6.17-(a-b) show that RHA 

does not decrease contingency stock levels much compared to TPA. These results are 

coherent with the results for real problems in Table 6.15. In Table 6.18, we report results 
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for average CPU time and average number of setups. RHA has CPU time that is less 

than one minute in average, but TPA's CPU time average is more than 10 minutes. In 

case of average number of setups, RHA plans more setups than TPA, this is normal 

since RHA produces more jobs than TPA. We present results for average inventory 

levels in Table 6.19-(a) which shows that RHA has higher average inventory levels than 

TPA. Since RHA finishes the planning horizon with higher ending inventory levels than 

TPA, the results are reasonable. We give the results for maximum inventory levels in 

Table 6.19-(b), TPA has less or equal maximum inventory levels than RHA for all cases. 

Table 6.17  Comparison of average contingency stock and ending inventory levels 

obtained by TPA and RHA for random problems (GM-S1) with processing time 1 and 2 

  
Average CS & EI 

    TPA 

    CS  EI 

   Type 0 1 2 3 4 5 0 1 2 3 4 5 

P1 
NIT 1.6 1.6 1.6 1.6 1.6 1.6 0.0 0.0 0.4 0.4 0.8 0.6 

IT 1.6 1.6 1.6 1.6 1.6 1.6 1.0 1.0 1.0 0.8 0.6 0.8 

P2 
NIT 1.8 1.8 1.8 1.8 1.8 1.8 0.2 0.2 0.6 0.4 0.8 0.8 

IT 1.8 1.8 2.0 1.8 1.8 1.8 1.0 1.0 0.4 0.6 0.6 0.8 

(a) 

    Average CS & EI 

    RHA 

    CS  EI 

   Type 0 1 2 3 4 5 0 1 2 3 4 5 

P1 
NIT 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.6 1.2 0.8 

IT 1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.6 1.2 1.6 1.2 1.4 

P2 
NIT 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.4 1.4 1.6 1.2 

IT 1.8 1.8 1.8 1.8 1.8 1.8 1.6 1.6 1.0 1.8 1.2 1.0 

(b) 
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Table 6.18 Comparison of TPA vs. RHA for random problems (GM-S1) with processing 

time 1 & 2 for average CPU time and number of setups 

      
Avg. CPU time (sec.) 

 Avg. # of Setup 

      TPA RHA 

      TPA RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

GM  

S1 

P1 
NIT 327 22 4.6 3.0 7.6 4.8 5.0 9.8 

IT 2,256 39 4.2 3.2 7.4 4.2 4.2 8.4 

P2 
NIT 113 30 4.4 3.0 7.4 4.4 4.2 8.6 

IT 355 26 4.6 2.6 7.2 4.4 4.4 8.8 

 

Table 6.19 Comparison of average and maximum of maximum inventory levels obtained 

by TPA and RHA for random problems (GM-S1) with processing time 1 and 2  

      Average Inventory Levels  

      TPA  RHA  

    Type  0 1 2 3 4 5 Total 0 1 2 3 4 5 Total 

GM  

S1 

P1 
NIT 1.9 2.2 1.2 1.0 1.4 1.1 8.8 2.5 3.0 2.1 2.1 1.4 1.0 12.2 

IT 1.6 0.7 0.7 0.8 1.0 0.7 5.5 1.7 1.5 0.9 0.9 0.9 0.8 6.6 

P2 
NIT 2.1 1.6 1.3 1.3 1.3 1.2 8.8 2.4 2.8 1.3 1.8 1.5 1.1 10.9 

IT 0.6 0.5 0.8 0.8 1.1 0.8 4.6 1.6 1.7 0.8 1.1 1.3 0.7 7.1 

(a) 

      Maximum Inventory Levels  

      TPA RHA  

    Type  0 1 2 3 4 5 0 1 2 3 4 5 

GM S1 

P1 
NIT 6 7 4 3 3 3 6 7 4 4 3 2 

IT 5 4 2 2 2 2 8 6 2 3 2 2 

P2 
NIT 7 5 4 4 3 2 7 7 4 4 3 3 

IT 2 2 2 2 2 2 4 5 2 3 3 2 

(b) 

The results for TPA and RHA for GM-S2 random problems are reported in Table 6.20, 

6.21, 6.22. In Table 6.20, we report average contingency stock and ending inventory 

levels in Table 6.20. The results show that although TPA and RHA start from the same 

average contingency stock, TPA consumes the contingency stock levels more than RHA 

does.  If we look at the average CPU time and number of setups comparison of TPA and 



60 
 

RHA in Table 6.21, TPA is slower than RHA in terms of average CPU time, and it 

schedules less number of setups than RHA. We give results for average and maximum 

inventory levels in Table 6.22. Since TPA decreases the ending inventory levels, it has 

less average inventory than the RHA as given in Table 6.22-(a). Results for the 

maximum inventory levels in Table 6.22-(b) indicate that TPA has less or equal 

maximum inventory levels than RHA for 21 of 24 different combinations of type, 

processing time and idle/no idle times factors. This can be explained also with the 

decreased contingency stock levels in TPA. 

Table 6.20 Comparison of average contingency stock & ending inventory levels 

obtained by TPA and RHA for random problems (GM-S2) with processing time 1 and 2  

      CS & EI 

      TPA 

      CS EI 

    Type 0 1 2 3 4 5 0 1 2 3 4 5 

GM-1 S2 

P1 
NIT 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.2 0.0 0.0 0.0 0.0 

IT 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.6 0.4 0.6 0.6 0.6 

P2 
NIT 1.8 1.8 1.8 1.8 1.8 1.8 0.4 0.6 0.2 0.4 0.2 0.0 

IT 1.8 1.8 1.8 1.8 1.8 1.8 1.0 1.2 1.0 1.0 1.0 1.0 

(a) 

      CS & EI 

      RHA 

      CS EI 

    Type 0 1 2 3 4 5 0 1 2 3 4 5 

GM-1 S2 

P1 
NIT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

IT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 

P2 
NIT 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.6 1.6 

IT 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.6 

(b) 
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Table 6.21 Comparison of average CPU time and number of setups obtained by 

TPA and RHA for random problems (GM-S2) with processing time 1 and 2  

   Avg. CPU time (sec.) 
Avg. # of Setup 

   
TPA RHA 

   
TPA RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

GM 

S2 

P1 
NIT 40 18 4.2 4.2 8.4 5.8 5.0 10.8 

IT 257 32 4.8 4.6 9.4 5.4 4.2 9.6 

P2 
NIT 30 15 4.4 2.8 7.2 5.4 4.6 10.0 

IT 116 17 4.4 4.2 8.6 4.2 4.6 8.8 

Table 6.22 Comparison of TPA vs. RHA for random problems (GM-S2) with processing 

time 1 & 2 for average and maximum inventory levels 

   
Average Inventory Levels 

   
TPA  RHA  

  
Type 0 1 2 3 4 5 Total 0 1 2 3 4 5 Total 

GM 

 S2 

P1 
NIT 0.9 1.1 1.2 1.4 1.1 0.9 6.6 1.5 1.4 1.7 2.0 1.7 1.5 9.9 

IT 0.5 0.7 0.7 0.5 0.5 0.5 3.3 0.7 0.5 0.7 0.6 0.7 0.5 3.8 

P2 
NIT 1.2 1.4 1.4 1.6 1.6 1.0 8.2 2.0 1.9 2.2 2.0 1.8 1.9 11.8 

IT 1.1 1.0 0.9 0.8 0.7 0.7 5.2 1.7 1.4 1.4 1.1 0.8 1.5 7.8 

(a) 

      Maximum Inventory Levels  

      TPA  RHA  

    Type  0 1 2 3 4 5 0 1 2 3 4 5 

GM S2 

P1 
NIT 3 4 5 4 5 4 4 4 4 5 5 4 

IT 2 3 3 2 2 2 2 3 2 3 3 2 

P2 
NIT 3 4 5 5 5 4 4 3 5 5 5 4 

IT 2 2 2 2 2 3 5 4 4 3 3 4 

(b) 

6.3. Summary 

Exact methods are better than the heuristics, they optimize number of setups and average 

inventory levels. However, they are impractical because of their CPU time and it is not 

convenient to use them. The heuristics generally have better or close average inventory 

levels compared to exact methods, this is important due to the storage area restrictions. 

We decrease approximately 70% of the current  inventory levels in the company. As we 
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mentioned before, maximum inventory levels are also important when we consider the 

number of unitizing vessels. Our heuristic algorithms decreased the current maximum 

inventory levels of the company by about 75%. RHA and TPA obtain their best results 

for the random data case, which is appropriate for the near future goal of the company in 

which they want to increment the number of door types and want to solve scheduling 

problems with more frequent demand of jobs as simulated in random problems. 

Additionally, our algorithms are flexible such that they adapt to cases of infeasibility and 

they always give the best solution they can find by starting from the lowest minimal 

contingency stock and incrementing until they have a feasible solution. This is also 

important for practical purposes. When we compare RHA and TPA, we see that RHA 

conserves contingency stock levels better than TPA and it is faster than TPA. In terms of 

average and maximum inventory levels and number of setups, TPA is better than RHA. 

Renault company can use either of the solutions according to their purposes. 
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Chapter 7  

 

Conclusion & Future Directions 

 

This thesis proposes two mixed integer programming based solution approaches to make 

integrated inventory carrying and scheduling decisions in a parallel machine 

environment subject to machine eligibility restrictions.  

Both heuristics provide effective results and are computationally efficient for practical 

purposes. The algorithms are general enough to be of value to other plants or 

departments and applications that involve the use of robotic/flexible manufacturing cells 

feeding a downstream operation with a steady demand pattern. Both algorithms (RHA 

and TPA) are programmed in Java programming language using the Gurobi library. We 

obtain solutions that synchronize the operations in the door manufacturing processes 

with the speed of the consumption line. In this way, we obtain significant reductions in 

the inventory levels with respect to the current levels. In comparison to the exact 

methods, the two algorithms have significantly modest CPU time requirements. Still, 

they lead to a reduction of about 70% in the present inventory levels at Oyak-Renault. 

These results and other potential benefits offered by our solution approaches to the 

company are verified and validated based on real data collected at real and random 
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problems test scenarios. Renault engineers and planners also attest to the practical 

applicability of the resulting production plans. Currently, the algorithms proposed in this 

thesis are being implemented at Renault in the form a decision support system and pilot 

studies are expected to commence in the end of 2012.  

One future research direction is to investigate other heuristic mechanisms to better 

capture the trade-offs between doing setup or keeping inventory. Additionally, design of 

the solutions for multiple machines and different shop structures is another direction that 

can increase the generality of possible applications. 
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    CPU Time # of Setup 
Average Mean and Max. Inventory Levels CS EI 

    
Type 0 Type 1 Type 2 Type 3 

Total 
Type Type 

  
Day Shift (sec.) M/C. 1 M/C. 2 Total Mean Max Mean Max Mean Max Mean Max 0 1 2 3 0 1 2 3 

P2 

NIT 

1 

1 16,701 5 5 10 0.88 3 1.05 3 1.39 4 1.19 3 4.5 1 1 1 1 1 1 1 1 

2 50,164 5 3 8 0.86 3 1.61 4 1.47 3 1.16 2 5.1 1 1 1 1 1 1 1 1 

3 15,839 8 4 12 0.72 2 1.67 4 1.11 3 0.73 2 4.2 1 1 1 1 1 1 1 1 

2 

1 36,896 10 5 15 1.09 3 1.23 3 0.76 2 0.23 1 3.3 1 1 1 1 1 1 1 1 

2 65,771 7 6 13 0.69 2 0.75 2 1.52 4 0.40 1 3.4 1 1 1 1 1 1 1 1 

3 15,353 6 4 10 1.49 3 1.05 3 1.01 3 0.63 2 4.2 1 1 1 1 1 1 1 1 

3 

1 27,452 10 6 16 0.44 2 0.96 2 0.70 2 0.51 1 2.6 1 1 1 1 1 1 1 1 

2 18,686 4 4 8 1.81 4 1.05 3 1.63 4 1.19 3 5.7 1 1 1 1 1 1 1 1 

3 6,620 4 4 8 1.13 3 1.31 3 1.71 4 1.06 2 5.2 1 1 1 1 1 1 1 1 

Average. 28,165 6.6 4.6 11.1 1.0 
 

1.2 
 

1.3 
 

0.8 
 

4.2 
        

IT 

1 

1 13,024 6 3 9 0.56 2 0.30 2 0.61 2 0.72 2 2.2 1 1 1 1 1 1 1 1 

2 48,151 5 3 8 0.60 2 0.42 2 0.64 2 0.74 2 2.4 1 1 1 1 1 1 1 1 

3 2,416 6 3 9 0.65 2 0.22 1 0.67 3 1.03 2 2.6 1 1 1 1 1 1 1 1 

2 

1 1,885 8 3 11 0.57 2 0.49 2 0.83 3 0.26 1 2.1 1 1 1 1 1 1 1 1 

2 5,913 9 3 12 0.74 2 0.44 2 0.56 2 0.42 2 2.2 1 1 1 1 1 1 1 1 

3 2,621 6 3 9 0.54 2 0.35 2 0.90 3 0.81 2 2.6 1 1 1 1 1 1 1 1 

3 

1 1,650 10 5 15 0.38 2 0.30 2 0.48 2 0.43 1 1.6 1 1 1 1 1 1 1 1 

2 2,016 4 3 7 2.15 5 0.25 2 0.46 2 0.88 2 3.7 1 1 1 1 1 1 1 1 

3 4,584 5 3 8 0.80 3 0.45 2 0.60 2 0.89 2 2.7 1 1 1 1 1 1 1 1 

Average. 9,140 6.6 3.2 9.8 0.8 
 

0.4 
 

0.6 
 

0.7 
 

2.5 
        

Appendix 1 The solutions found by exact methods with the same contingency stock and ending inventory levels for real problems with processing time 2 based on CPU 

time and number of setups 
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CPU Time # of Setup 

    

(sec.) Exact TPA 

  

Day Shift Exact TPA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P1 

NIT 

1 

1 14,389 7 5 1 6 3 5 8 

2 23,798 12 5 1 6 11 1 12 

3 164,957 12 5 2 7 4 5 9 

2 

1 3,831 12 4 2 6 3 5 8 

2 66,569 19 4 2 6 6 2 8 

3 81,489 21 5 2 7 7 1 8 

3 

1 4,966 16 4 3 7 3 5 8 

2 47,390 9 4 2 6 10 1 11 

3 22,607 9 4 2 6 9 2 11 

Average 47,777 13 4 2 6 6 3 9 

IT 

1 

1 3,075 18 4 2 6 7 3 10 

2 32,659 22 4 1 5 6 3 9 

3 72711 25 4 2 6 6 4 10 

2 

1 7,539 37 5 2 7 8 3 11 

2 95,425 34 5 2 7 10 2 12 

3 39,631 41 4 3 7 8 3 11 

3 

1 18,184 40 5 3 8 8 4 12 

2 32,235 37 4 3 7 9 2 11 

3 23,916 22 3 3 6 6 4 10 

Average 36,153 31 4 2 7 8 3 11 

Appendix  2 1 Comparison of CPU time and number of setups obtained by TPA and exact methods for real problems with processing time 1 
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CPU Time # of Setup 

    

(sec.) Exact TPA 

  

Day Shift Exact TPA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P2 

NIT 

1 

1 19,950 6 6 2 8 7 2 9 

2 25,849 14 4 3 7 6 4 10 

3 4,447 9 6 3 9 9 2 11 

2 

1 40,469 7 5 2 7 7 2 9 

2 31,512 19 5 2 7 5 4 9 

3 3,132 17 4 2 6 6 4 10 

3 

1 11,174 39 4 3 7 8 2 10 

2 9,068 9 5 3 8 8 2 10 

3 19,859 18 4 4 8 9 4 13 

Average 18,384 15 5 3 7 7 3 10 

IT 

1 

1 23,013 14 6 2 8 7 4 11 

2 33,381 15 4 3 7 7 5 12 

3 14,188 18 4 3 7 8 4 12 

2 

1 17,693 18 6 2 8 8 6 14 

2 11,217 15 4 3 7 9 4 13 

3 22,241 102 3 2 5 6 3 9 

3 

1 13,285 15 4 2 6 8 4 12 

2 9,068 8 5 3 8 5 4 9 

3 13,753 15 5 3 8 8 6 14 

Average 17,538 25 5 3 7 7 4 12 

Appendix  3 2 Comparison of CPU time and number of setups obtained by TPA and exact methods for real problems with processing time 2  
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CS & EI 

    

Exact TPA 

    

CS (Type) EI (Type) CS (Type) EI (Type) 

  

Day Shift 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

P1 

NIT 

1 

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

2 

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

3 

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

Average 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 

IT 

1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 

2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Average 1.00 1.00 1.00 1.00 0.78 0.78 0.78 0.89 1.00 1.00 1.00 1.00 0.78 0.78 0.78 0.89 

Appendix  4 Comparison of contingency stock & ending inventory levels obtained by TPA and exact methods for real prolems with processing time 1 

  



74 
 

 

 

 

    

CS & EI 

    

Exact TPA 

    

CS (Type) EI (Type) CS (Type) EI (Type) 

  

Day Shift 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

P2 

NIT 

1 

1 1 1 1 2 0 0 0 0 1 1 1 2 0 0 0 0 

2 1 2 1 1 0 0 0 0 1 2 1 1 0 0 0 0 

3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

2 

1 1 2 2 1 0 0 0 0 1 2 2 1 0 0 0 0 

2 1 2 2 1 0 0 0 0 1 2 2 1 0 0 0 0 

3 1 2 1 1 0 0 0 0 1 2 1 1 0 0 0 0 

3 

1 1 2 1 2 0 0 0 0 1 2 1 2 0 0 0 0 

2 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Average 1.00 1.56 1.22 1.22 0.22 0.22 0.22 0.11 1.00 1.56 1.22 1.22 0.11 0.11 0.11 0.11 

IT 

1 

1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 

2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 

3 1 2 2 1 1 1 1 0 1 2 2 1 1 1 1 0 

2 

1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 

2 1 2 2 1 1 1 1 0 1 2 2 1 1 1 1 0 

3 3 5 3 2 1 1 1 1 3 5 3 2 1 1 1 1 

3 

1 2 3 2 2 1 1 1 1 2 3 2 2 1 1 1 1 

2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Average 1.33 2.11 1.67 1.33 1.00 1.00 1.00 0.67 1.33 2.11 1.67 1.33 1.00 1.00 1.00 0.67 

Appendix  5 Comparison of contingency stock & ending inventory levels obtained by TPA and exact methods for real prolems with processing time 2 
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Average Mean and Max. Inventory Levels 

    

Exact TPA 

    

Type 0 Type 1 Type 2 Type 3 
Total 

Type 0 Type 1 Type 2 Type 3 
Total 

  

Day Shift Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

P1 

NIT 

1 

1 1.46 4 3.71 7 1.41 4 0.60 2 7.18 1.12 3 2.26 5 2.43 5 0.69 2 6.49 

2 1.49 4 3.78 7 1.16 3 1.09 2 7.52 0.59 2 4.58 9 0.88 3 0.26 1 6.31 

3 2.36 5 2.95 6 1.45 4 0.81 2 7.57 1.52 4 1.88 4 2.86 6 0.71 2 6.97 

2 

1 1.16 3 3.80 7 1.84 4 0.52 2 7.33 1.21 3 1.98 4 2.48 5 0.68 2 6.35 

2 1.64 4 2.91 7 2.56 6 0.40 1 7.51 1.51 3 3.27 7 2.12 4 0.45 1 7.35 

3 1.99 4 3.74 7 1.53 4 0.60 2 7.87 1.75 4 3.74 7 1.56 4 0.52 1 7.57 

3 

1 2.41 5 2.15 5 1.59 4 0.51 2 6.66 1.03 3 1.87 4 2.43 5 0.60 2 5.92 

2 1.88 4 3.07 6 2.06 4 0.78 2 7.79 3.12 6 1.02 3 1.19 4 0.30 1 5.64 

3 1.29 3 2.59 6 2.72 6 0.94 2 7.53 2.81 6 1.70 5 0.92 3 0.37 1 5.81 

Average 1.74 
 

3.19 
 

1.81 
 

0.70 
 

7.44 1.63 
 

2.48 
 

1.87 
 

0.51 
 

6.49 

IT 

1 

1 0.32 2 2.95 7 0.76 3 1.09 3 5.11 0.68 2 0.56 2 0.55 2 0.68 2 2.46 

2 2.38 5 1.07 4 0.74 3 0.93 2 5.13 0.52 2 0.61 2 0.78 2 0.70 2 2.62 

3 1.70 4 1.19 4 0.62 2 0.95 2 4.46 0.41 2 0.77 2 0.49 2 0.80 2 2.46 

2 

1 0.58 3 2.35 5 1.59 4 1.09 2 5.62 0.61 2 0.66 2 0.74 2 0.80 2 2.81 

2 1.46 4 0.16 2 0.27 2 0.39 1 2.28 0.34 2 0.22 2 0.34 2 0.16 1 1.05 

3 0.67 3 2.71 6 0.52 2 1.22 3 5.11 0.66 3 0.48 3 0.38 2 0.38 1 1.90 

3 

1 0.87 3 0.29 2 0.67 3 1.26 3 3.09 0.41 2 0.59 2 0.37 1 0.72 2 2.09 

2 1.01 3 0.19 2 1.24 4 0.51 2 2.95 0.72 2 0.45 2 0.47 2 0.40 2 2.03 

3 0.12 1 0.75 3 1.59 5 1.80 3 4.27 0.49 2 0.70 2 0.36 2 0.73 2 2.28 

Average 1.01 
 

1.30 
 

0.89 
 

1.03 
 

4.23 0.54 
 

0.56 
 

0.50 
 

0.60 
 

2.19 

Appendix  6 Comparison of average mean and max. inventory levels obtained by TPA and exact methods for real prolems with processing time 1 
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Average Mean and Max. Inventory Levels 

    

Exact TPA 

    

Type 0 Type 1 Type 2 Type 3 
Total 

Type 0 Type 1 Type 2 Type 3 
Total 

  

Day Shift Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

P2 

NIT 

1 

1 1.16 3 1.40 3 0.96 3 0.59 2 4.11 1.33 3 0.70 2 1.02 3 0.59 2 3.65 

2 1.47 4 1.20 3 1.36 3 0.81 2 4.84 1.09 2 1.91 4 1.21 3 0.46 1 4.67 

3 0.71 2 1.53 3 1.08 3 0.51 1 3.83 0.98 3 1.28 3 1.07 3 0.16 1 3.49 

2 

1 1.38 3 1.62 4 1.00 2 0.80 2 4.79 0.98 2 2.22 5 0.87 2 0.46 1 4.54 

2 1.44 3 1.76 4 1.31 3 0.45 1 4.96 1.11 3 1.06 3 1.88 4 0.56 1 4.60 

3 1.45 4 1.56 4 1.18 3 0.51 2 4.70 0.83 2 1.50 4 1.28 3 0.54 1 4.15 

3 

1 1.18 3 1.35 3 1.51 4 0.38 2 4.42 1.18 3 1.23 3 0.68 2 0.57 2 3.65 

2 0.49 2 1.84 5 0.40 2 0.27 1 8.23 1.00 3 2.23 5 0.82 3 0.18 1 8.23 

3 1.13 3 1.31 3 1.71 4 1.06 2 5.21 1.15 3 1.92 5 0.82 2 0.82 2 4.71 

Average 1.16 
 

1.51 
 

1.17 
 

0.60 
 

5.01 1.07 
 

1.56 
 

1.07 
 

0.48 
 

4.63 

IT 

1 

1 0.61 2 2.16 5 0.88 3 0.41 2 4.06 0.71 2 0.61 2 0.53 2 0.92 2 2.77 

2 0.98 3 0.72 2 2.19 5 0.61 2 4.50 0.56 2 0.85 2 0.38 1 0.72 2 2.52 

3 0.73 2 0.99 3 0.51 2 0.80 2 3.04 0.92 2 0.64 3 0.76 2 0.60 1 2.92 

2 

1 1.16 3 0.26 2 0.74 2 1.24 3 3.39 0.55 2 0.56 2 0.83 2 0.87 2 2.81 

2 1.43 4 0.27 2 0.72 3 0.97 2 3.40 0.58 2 0.46 2 0.82 2 0.58 1 2.44 

3 1.41 3 0.83 5 1.96 4 0.57 2 4.76 1.72 3 1.41 5 1.01 3 1.01 2 5.14 

3 

1 0.76 2 0.27 3 1.61 4 1.78 3 4.42 1.10 3 1.07 3 0.63 2 1.18 2 3.97 

2 0.49 2 1.84 5 0.40 2 0.27 1 3.00 0.70 2 0.82 2 0.52 2 0.62 2 2.65 

3 0.80 3 0.45 2 0.60 2 0.89 2 2.73 0.75 2 0.54 2 0.39 2 0.75 2 2.42 

Average 0.93 
 

0.87 
 

1.07 
 

0.84 
 

3.70 0.84 
 

0.77 
 

0.65 
 

0.81 
 

3.07 

Appendix  7 Comparison of average mean and max. inventory levels obtained by TPA and exact methods for real prolems with processing time 2 
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        # of Setup 

      

 

CPU Time sec. Exact TPA 

       Day Exact TPA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

S1 

P1 

NIT 

1 5,773 199 4 3 7 3 5 8 

2 6,946 42 2 4 6 6 1 7 

3 23,625 686 3 3 6 4 3 7 

4 50,119 664 3 3 6 5 3 8 

5 17,768 44 4 2 6 5 3 8 

Average 20,846 327 3.2 3 6.2 4.6 3 7.6 

IT 

1 18,045 1,857 3 4 7 5 4 9 

2 22,331 171 3 2 5 5 3 8 

3 25,514 266 3 1 4 5 0 5 

4 23,785 941 3 3 6 3 4 7 

5 34,259 8,044 4 4 8 3 5 8 

Average 24,787 2,256 3.2 2.8 6 4.2 3.2 7.4 

P2 

NIT 

1 38,468 118 2 4 6 4 3 7 

2 33,958 32 3 2 5 5 2 7 

3 51,782. 167 3 3 6 4 4 8 

4 39,962 199 3 3 6 4 3 7 

5 29,927 47 4 3 7 5 3 8 

Average 38,819 113 3 3 6 4.4 3 7.4 

IT 

1 75,231 969 3 3 6 6 4 10 

2 55,420 91 3 2 5 5 2 7 

3 46,508 70 2 1 3 3 1 4 

4 35,915 243 3 2 5 4 2 6 

5 34,609 404 4 4 8 5 4 9 

Average 49,537. 355 3 2.4 5.4 4.6 2.6 7.2 

Appendix  8 Comparison of CPU time and number of setups obtained by TPA and exact methods for random problems (GM-S1) with processing time 1 and 2 
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        CS & EI 

        Exact TPA 

        CS (Type) EI (Type) CS (Type) EI (Type) 

      Day 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

S1 

P1 

NIT 

1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 

2 2 2 2 2 2 2 0 0 0 0 1 1 2 2 2 2 2 2 0 0 0 0 1 1 

3 2 2 2 2 2 2 0 0 1 1 2 1 2 2 2 2 2 2 0 0 1 1 2 1 

4 2 2 2 2 2 2 0 0 1 1 1 1 2 2 2 2 2 2 0 0 1 1 1 1 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 

Average 1.60 1.60 1.60 1.60 1.60 1.60 0.00 0.00 0.40 0.40 0.80 0.60 1.60 1.60 1.60 1.60 1.60 1.60 0.00 0.00 0.40 0.40 0.80 0.60 

IT 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 

2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 

3 2 2 2 2 2 2 1 1 1 1 1 0 2 2 2 2 2 2 1 1 1 1 1 0 

4 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 

Average 1.60 1.60 1.60 1.60 1.60 1.60 1.00 1.00 1.00 0.80 0.60 0.80 1.60 1.60 1.60 1.60 1.60 1.60 1.00 1.00 1.00 0.80 0.60 0.80 

P2 

NIT 

1 2 2 2 2 2 2 1 1 1 0 0 1 2 2 2 2 2 2 1 1 1 0 0 1 

2 2 2 2 2 2 2 0 0 0 0 1 1 2 2 2 2 2 2 0 0 0 0 1 1 

3 2 2 2 2 2 2 0 0 1 1 2 1 2 2 2 2 2 2 0 0 1 1 2 1 

4 2 2 2 2 2 2 0 0 1 1 1 1 2 2 2 2 2 2 0 0 1 1 1 1 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 

Average 1.80 1.80 1.80 1.80 1.80 1.80 0.20 0.20 0.60 0.40 0.80 0.80 1.80 1.80 1.80 1.80 1.80 1.80 0.20 0.20 0.60 0.40 0.80 0.80 

IT 

1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 

2 2 2 2 2 2 2 1 1 0 1 1 1 2 2 2 2 2 2 1 1 0 1 1 1 

3 2 2 2 2 2 2 1 1 0 0 1 0 2 2 2 2 2 2 1 1 0 0 1 0 

4 2 2 2 2 2 2 1 1 1 1 0 1 2 2 2 2 2 2 1 1 1 1 0 1 

5 1 1 1 1 1 1 1 1 0 0 0 1 1 1 2 1 1 1 1 1 0 0 0 1 

Average 1.80 1.80 1.80 1.80 1.80 1.80 1.00 1.00 0.40 0.60 0.60 0.80 1.80 1.80 2.00 1.80 1.80 1.80 1.00 1.00 0.40 0.60 0.60 0.80 

Appendix  9 Comparison of contingency stock & ending inventory levels obtained by TPA and exact methods for random problems (GM-S1) with processing time 1 and 2 
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        Average Mean and Max.Inventory Levels 

        Exact TPA 

        Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 
Total 

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 
Total 

      Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

S1 

P1 

NIT 

1 1.03 4 2.74 5 1.59 3 1.36 3 0.60 1 0.25 1 7.56 1.13 4 1.43 4 1.93 4 1.18 3 0.39 1 0.23 1 6.29 

2 2.39 7 2.22 4 1.18 3 1.21 3 1.27 2 1.53 2 9.81 1.55 4 2.45 5 0.60 2 0.63 3 1.27 2 1.94 2 8.43 

3 3.11 7 2.30 6 2.02 3 2.16 3 2.12 3 1.55 2 13.25 2.33 6 2.80 7 1.42 2 1.25 2 2.51 3 1.93 3 12.24 

4 2.00 5 2.80 6 2.00 4 2.72 4 1.73 2 1.34 2 12.60 2.34 5 2.24 4 1.64 4 1.62 2 1.73 2 1.63 3 11.20 

5 1.86 4 3.52 8 0.43 2 0.77 2 0.47 1 0.00 1 7.05 2.35 4 2.00 5 0.30 2 0.28 1 1.10 2 0.00 1 6.05 

Average 2.08   2.72   1.44   1.64   1.24   0.93     1.94   2.18   1.18   0.99   1.40   1.15     

IT 

1 0.18 2 2.77 6 2.65 4 0.33 1 0.45 1 0.60 1 6.96 0.65 2 0.21 1 0.49 1 0.98 2 0.61 1 0.58 1 3.53 

2 0.15 2 1.53 4 0.50 2 1.88 3 1.27 2 1.87 2 7.20 2.55 5 0.68 2 1.00 2 0.49 2 1.27 2 1.00 2 6.98 

3 1.49 5 1.61 4 1.75 2 1.92 3 1.56 2 1.04 2 9.38 2.08 5 1.28 4 1.07 2 1.01 2 1.56 2 1.04 2 8.05 

4 0.70 2 2.17 5 0.69 2 1.66 2 0.84 2 0.74 2 6.80 0.79 2 0.83 3 0.90 2 0.98 2 0.93 2 0.74 2 5.18 

5 0.87 2 0.33 2 0.50 2 0.33 1 0.49 1 0.59 1 3.11 2.10 4 0.26 2 0.00 1 0.71 2 0.73 2 0.00 1 3.80 

Average 0.68   1.68   1.22   1.23   0.92   0.97     1.63   0.65   0.69   0.83   1.02   0.67     

P2 

NIT 

1 1.22 3 1.38 3 2.98 5 1.21 3 1.06 2 1.00 2 8.83 2.82 6 2.37 5 1.62 4 1.09 2 1.06 2 1.32 2 10.27 

2 2.19 6 2.36 5 0.76 2 1.16 2 1.27 2 1.93 2 9.67 3.15 7 0.95 3 0.84 2 0.58 2 1.27 2 1.93 2 8.71 

3 2.65 6 1.20 3 1.43 2 0.93 2 2.42 3 1.97 3 10.60 1.09 3 1.83 5 2.00 3 2.08 3 2.05 3 1.46 2 10.51 

4 1.75 4 2.63 4 1.20 2 1.83 3 1.72 2 1.28 2 10.40 2.18 4 1.38 3 1.80 4 2.23 4 1.33 2 1.35 2 10.26 

5 1.33 3 1.23 3 0.59 2 0.33 1 0.72 2 0.00 1 4.20 1.38 3 1.23 3 0.35 2 0.45 1 0.72 2 0.00 1 4.14 

Average 1.83   1.76   1.39   1.09   1.44   1.23     2.13   1.55   1.32   1.28   1.29   1.21     

IT 

1 2.18 5 0.68 3 1.38 3 0.81 2 1.06 2 0.73 2 6.83 0.88 2 0.42 2 0.70 2 1.44 2 1.13 2 0.66 2 5.21 

2 0.27 2 2.11 5 0.50 2 1.94 3 1.27 2 1.00 2 7.08 0.35 2 0.93 2 0.83 2 0.54 2 1.27 2 1.00 2 4.91 

3 0.96 2 0.45 2 1.07 2 1.08 2 1.56 2 1.04 2 6.16 0.43 2 0.15 2 1.07 2 0.71 2 1.56 2 1.04 2 4.97 

4 1.91 4 0.86 2 1.33 3 2.67 4 0.79 2 0.74 2 8.30 0.41 2 0.63 2 1.13 2 1.20 2 0.79 2 0.74 2 4.88 

5 0.50 2 0.78 2 0.00 1 0.38 2 0.54 2 0.00 1 2.20 0.92 2 0.40 2 0.42 2 0.26 1 0.50 1 0.63 1 3.13 

Average 1.16   0.98   0.86   1.38   1.04   0.70   6.11 0.60   0.50   0.83   0.83   1.05   0.81   4.62 

Appendix 10 Comparison of average mean and max. inventory levels obtained by TPA and exact methods for random problems (GM-S1) with processing time 1 and 2 
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CPU Time sec. 

# of Setup 

      Exact RHA 

    Day Exact RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P1 

NIT 

1 

7,748 3 5 1 6 12 1 13 

22,580 6 2 4 6 13 1 14 

48,287 12 7 1 8 11 1 12 

2 

33,403 4 5 1 6 10 2 12 

44,267 6 5 1 6 9 2 11 

73,158 5 2 5 7 10 2 12 

3 

10,280 6 5 2 7 9 2 11 

185,278 2 4 2 6 12 1 13 

13,765 6 3 3 6 10 2 12 

Avg. 48,752 6 4 2 6 11 2 12 

IT 

1 

3,075 14 4 2 6 7 1 8 

32,659 23 4 1 5 8 1 9 

26,066 33 5 1 6 8 2 10 

2 

7,539 24 5 1 6 5 3 8 

60,554 14 5 2 7 8 1 9 

44,535 21 2 5 7 9 1 10 

3 

18,184 23 5 3 8 7 3 10 

32,235 23 4 3 7 7 2 9 

23,916 22 3 3 6 5 4 9 

Avg. 27,640 22 4 2 6 7 2 9 

Appendix  11 Comparison of CPU time and number of setups obtained by RHA and exact methods for real prolems with processing time 1  
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CPU Time sec. 

# of Setup 

      Exact RHA 

    Day Exact RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P2 

NIT 

1 

18,408 3 6 4 10 9 4 13 

7,150 5 5 3 8 7 5 12 

30,622 4 5 5 10 9 3 12 

2 

19,358 3 7 5 12 10 4 14 

62,387 6 5 1 6 7 1 8 

23,006 10 3 3 6 8 3 11 

3 

5,874 3 10 5 15 10 5 15 

4,951 3 4 4 8 9 4 13 

24,909 5 4 4 8 8 3 11 

Avg. 21,852 5 5 4 9 9 4 12 

IT 

1 

13,144 3 5 3 8 10 5 15 

17,437 6 4 3 7 11 4 15 

21,954 17 4 1 5 7 1 8 

2 

20,490 5 4 1 5 8 3 11 

26,264 15 3 3 6 6 1 7 

31,214 17 5 1 6 7 2 9 

3 

33,899 13 5 1 6 6 3 9 

52,333 11 5 3 8 6 5 11 

9,544 8 4 4 8 7 5 12 

Avg. 25,142 11 4 2 7 8 3 11 

Appendix  12 Comparison of CPU time and number of setups obtained by RHA and exact methods for real prolems with processing time 2 
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      CS & EI 

      Exact RHA 

      CS (Type) EI (Type) CS (Type) EI (Type) 

    Day  0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

P1 

NIT 

1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Avg. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 

IT 

1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 

3 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Avg. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 

Appendix  13 Comparison of contingency stock & ending inventory levels obtained by RHA and exact methods for real prolems with processing time 1 
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      CS & EI 

      Exact RHA 

      CS (Type) EI (Type) CS (Type) EI (Type) 

  
Day 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

P2 

NIT 

1 

1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 

1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 

2 

1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 

2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 1 

2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 

3 

1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 

Avg. 1.22 1.22 1.22 1.22 0.67 1.00 0.89 0.56 1.22 1.22 1.22 1.22 0.67 1.00 0.89 0.56 

IT 

1 

1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 

1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 

2 2 2 2 1 2 0 0 2 2 2 2 1 2 0 0 

2 

2 2 2 2 0 2 2 1 2 2 2 2 0 2 2 1 

2 2 2 2 2 2 0 0 2 2 2 2 2 2 0 0 

2 2 2 2 2 1 2 0 2 2 2 2 2 1 2 0 

3 

2 2 2 2 2 2 1 0 2 2 2 2 2 2 1 0 

1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 

1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 

Avg. 1.56 1.56 1.56 1.56 1.11 1.22 0.67 0.44 1.56 1.56 1.56 1.56 1.11 1.22 0.67 0.44 

Appendix  14 Comparison of contingency stock & ending inventory levels obtained by RHA and exact methods for real prolems with processing time  2 
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      Average Mean and Max. Inventory Levels 

      Exact RHA 

      Type 0 Type 1 Type 2 Type 3 
Total 

Type 0 Type 1 Type 2 Type 3 
Total 

     Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

P1 

NIT 

1 

1.34 3 4.26 8 2.11 5 1.24 3 8.95 1.62 3 4.26 8 1.73 3 0.89 2 8.49 

1.15 3 3.01 7 2.59 6 2.07 3 8.82 1.52 3 4.34 8 1.71 3 1.21 2 8.77 

1.96 4 3.42 6 2.63 6 0.36 2 8.37 1.67 3 3.99 7 2.21 4 0.84 2 8.71 

2 

1.38 3 4.33 8 1.93 5 1.09 2 8.73 2.54 5 2.50 5 1.80 3 0.80 2 7.64 

1.96 5 4.36 8 1.72 4 0.53 2 8.57 2.30 5 3.40 6 1.96 4 0.32 1 7.98 

2.07 5 1.58 4 3.99 7 0.94 2 8.58 2.24 4 4.27 8 1.83 4 0.80 2 9.14 

3 

1.83 4 3.06 7 2.37 5 0.71 2 7.97 2.59 5 2.68 5 1.60 3 0.21 1 7.08 

2.42 5 3.68 7 1.76 4 1.62 3 8.23 1.92 3 4.12 8 1.71 4 0.90 2 8.23 

2.28 5 2.80 7 3.03 6 1.83 3 9.94 2.31 4 3.95 7 1.95 4 0.89 2 9.11 

Avg. 1.82   3.39   2.46   1.15   8.68 2.08   3.72   1.83   0.76   8.35 

IT 

1 

0.32 2 2.95 7 0.76 3 1.09 3 4 0.51 2 0.08 1 0.66 2 0.35 1 1.60 

2.38 5 1.07 4 0.74 3 0.93 2 3 0.66 3 0.07 1 0.64 2 0.39 1 1.76 

1.51 4 0.11 2 2.06 5 1.19 2 3 0.96 3 0.54 2 0.77 2 0.27 1 2.54 

2 

0.58 3 0.03 1 1.58 4 1.09 2 3 0.97 3 0.40 2 0.74 2 0.39 1 2.50 

0.83 3 0.18 2 1.39 4 1.16 3 4 0.96 3 0.18 2 0.78 3 0.28 1 2.20 

1.82 5 0.45 3 0.03 1 0.97 2 3 0.61 3 0.22 2 0.66 2 0.13 1 1.62 

3 

0.87 3 0.29 2 0.67 3 1.26 3 4 0.43 2 0.22 2 0.98 3 0.22 1 1.85 

1.01 3 0.19 2 1.24 4 0.51 2 3 0.06 1 0.68 2 0.71 3 0.55 2 2.00 

0.12 1 0.75 3 1.59 5 1.80 3 5 0.63 3 1.08 3 0.62 2 0.59 2 2.91 

Avg. 1.05   0.67   1.12   1.11   3.56 0.64   0.39   0.73   0.35   2.11 

Appendix  15 Comparison of average mean and max. inventory levels obtained by RHA and exact methods for real prolems with processing time 1 
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Average Mean and Max. Inventory Levels 

   
Exact RHA 

   
Type 0 Type 1 Type 2 Type 3 

Total 
Type 0 Type 1 Type 2 Type 3 

Total 

  
Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

P2 

NIT 

1 

1.10 3 1.52 4 0.96 3 0.86 2 4.44 0.40 1 2.04 5 1.13 3 0.75 2 4.31 

1.60 4 1.45 4 1.27 3 0.59 2 4.91 1.26 3 1.73 3 1.43 3 0.25 1 4.66 

0.88 2 1.11 3 1.08 3 0.51 1 3.58 0.56 2 2.05 4 0.96 3 0.23 1 3.80 

2 

0.67 2 1.12 2 1.03 3 0.08 1 2.90 0.79 2 1.60 4 0.53 2 0.06 1 2.97 

1.74 4 3.61 6 1.59 4 0.73 2 7.67 1.04 2 3.61 6 2.06 4 0.81 2 7.52 

1.41 4 1.81 4 3.25 6 1.93 3 8.40 1.90 4 3.09 5 1.97 4 0.95 2 7.91 

3 

0.53 2 0.80 3 0.57 2 0.38 1 2.28 0.61 2 0.94 3 0.44 2 0.35 1 2.34 

1.81 4 1.05 3 1.63 4 1.19 3 8.23 1.90 4 1.89 4 1.07 3 0.68 2 8.23 

0.80 3 0.59 2 0.23 2 0.28 1 1.90 1.97 5 0.77 2 0.98 2 0.45 1 4.17 

Avg. 1.17 
 

1.45 
 

1.29 
 

0.73 
 

4.92 1.16 
 

1.97 
 

1.17 
 

0.50 
 

5.10 

IT 

1 

0.84 3 0.84 3 0.25 1 0.72 2 2.65 0.24 1 0.09 1 0.35 2 0.37 1 1.05 

1.92 4 0.21 1 0.48 2 0.41 1 3.03 0.39 2 0.56 2 0.25 1 0.27 1 1.46 

0.89 3 0.25 2 1.51 4 1.05 2 3.70 0.90 3 0.90 3 0.82 2 0.85 2 3.47 

2 

1.47 4 0.34 2 1.18 4 0.87 2 3.86 0.58 2 0.85 2 1.17 3 1.23 2 3.84 

0.29 2 1.72 4 1.80 4 1.03 2 4.84 1.00 3 0.90 2 0.99 3 0.41 2 3.30 

0.92 2 0.37 2 1.72 4 0.99 2 4.00 1.06 2 1.21 2 1.45 3 0.51 2 4.24 

3 

1.21 3 0.27 2 1.02 3 0.50 2 3.00 1.24 4 0.92 2 0.84 2 0.93 2 3.94 

0.53 2 0.72 3 1.02 3 1.03 2 3.30 0.62 2 0.53 2 0.45 2 0.31 1 1.92 

0.80 3 0.60 3 0.28 2 0.89 2 2.57 0.46 2 0.29 2 0.32 2 0.28 1 1.35 

Avg. 0.99 
 

0.59 
 

1.03 
 

0.83 
 

3.44 0.72 
 

0.69 
 

0.74 
 

0.57 
 

2.73 

Appendix  16 Comparison of average mean and max. inventory levels obtained by RHA and exact methods for real prolems with processing time 2 
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# of Setup 

    
CPU Time sec. Exact RHA 

   
Day Exact RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

S1 

P1 

NIT 

1 30,189 40 4 3 7 5 7 12 

2 17,993 25 2 4 6 3 5 8 

3 12,143 15 3 3 6 4 5 9 

4 16,769 17 4 3 7 7 3 10 

5 19,123 11 5 3 8 5 5 10 

Average 19,243 22 3.6 3.2 6.8 4.8 5 9.8 

IT 

1 50,066 37 3 3 6 5 5 10 

2 30,628 8 3 2 5 4 3 7 

3 26,567 45 3 3 6 3 3 6 

4 71,561 60 3 3 6 3 4 7 

5 34,520 44 4 4 8 6 6 12 

Average 42,668 39 3.2 3 6.2 4.2 4.2 8.4 

P2 

NIT 

1 20,734 89 4 4 8 4 4 8 

2 18,015 11 4 3 7 4 4 8 

3 40,780 7 3 4 7 4 4 8 

4 39,260 12 3 4 7 4 5 9 

5 33,141 31 5 4 9 6 4 10 

Average 30,386 30 3.8 3.8 7.6 4.4 4.2 8.6 

IT 

1 24,407 32 3 4 7 4 8 12 

2 35,769 31 4 2 6 5 2 7 

3 15,672 16 3 2 5 4 4 8 

4 32,798 27 3 3 6 4 4 8 

5 17,325 25 5 3 8 5 4 9 

Average 25,194 26 3.6 2.8 6.4 4.4 4.4 8.8 

Appendix  17 Comparison of CPU time and number of setups obtained by RHA and  exact methods for random problems (GM-S1) with processing time 1 and 2 
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        CS & EI 

        Exact RHA 

        CS (Type) EI (Type) CS (Type) EI (Type) 

      Day 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

S1 

P1 

NIT 

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 

2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 1 

3 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 

4 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2 1 2 1 1 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Average 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.6 1.2 0.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.6 1.2 0.8 

IT 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 

2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 

3 2 2 2 2 2 2 0 2 1 2 2 1 2 2 2 2 2 2 0 2 1 2 2 1 

4 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Average 1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.6 1.2 1.6 1.2 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.6 1.2 1.6 1.2 1.4 

P2 

NIT 

1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 

4 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 

5 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 

Average 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.4 1.4 1.6 1.2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.4 1.4 1.6 1.2 

IT 

1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 

2 2 2 2 2 2 2 2 2 0 2 1 2 2 2 2 2 2 2 2 2 0 2 1 2 

3 2 2 2 2 2 2 2 2 1 2 2 0 2 2 2 2 2 2 2 2 1 2 2 0 

4 2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 

5 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 

Average 1.8 1.8 1.8 1.8 1.8 1.8 1.6 1.6 1.0 1.8 1.2 1.0 1.8 1.8 1.8 1.8 1.8 1.8 1.6 1.6 1.0 1.8 1.2 1.0 

Appendix  18 Comparison of contingency stock & ending inventory levels obtained by RHA and exact methods for random problems (GM-S1) with processing time 

1 and 2 
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        Average Mean and Max. Inventory Levels 

        Exact RHA 

        Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 
Total 

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 
Total 

      Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

S1 

P1 

NIT 

1 1.40 4 3.35 6 2.69 4 1.38 2 1.03 2 0.22 1 10.07 2.00 4 2.56 4 1.94 4 1.25 3 1.26 2 0.15 1 9.17 

2 3.81 9 2.06 5 3.06 5 2.45 4 1.27 2 1.50 2 14.15 3.48 6 2.59 5 2.89 4 2.58 4 1.27 2 1.35 2 14.15 

3 4.52 9 3.43 6 2.02 3 1.52 3 2.51 3 1.93 3 15.93 2.12 5 3.26 7 2.61 3 2.72 4 2.19 3 1.29 2 14.19 

4 2.04 4 4.55 8 1.20 2 1.51 3 1.73 2 1.63 3 12.68 3.07 5 3.53 5 1.84 4 2.74 4 1.46 2 1.46 2 14.10 

5 1.97 4 2.08 4 1.66 3 1.12 2 1.37 3 0.73 1 8.93 1.90 4 3.12 6 1.46 3 1.22 3 0.90 2 0.73 1 9.33 

Average 2.75   3.10   2.13   1.60   1.58   1.20     2.51   3.01   2.15   2.10   1.42   1.00     

IT 

1 1.65 5 2.77 6 2.90 5 0.33 1 0.23 1 0.38 1 8.25 0.80 3 1.36 4 0.68 2 1.03 2 0.23 1 0.38 1 4.47 

2 0.38 3 1.39 5 0.53 2 2.73 4 1.27 2 1.03 2 7.33 3.35 8 1.67 3 0.71 2 1.23 3 1.27 2 1.03 2 9.25 

3 0.45 2 2.18 5 1.07 2 0.83 2 1.56 2 1.10 2 7.20 1.63 4 1.27 3 1.41 2 0.73 2 1.56 2 1.10 2 7.68 

4 1.60 3 3.04 6 0.90 2 1.02 2 0.82 2 0.95 2 8.32 1.50 4 2.82 6 1.06 2 1.02 2 0.82 2 1.34 2 8.55 

5 1.08 3 0.77 4 0.32 1 1.10 2 0.42 2 0.00 1 3.68 0.99 3 0.63 2 0.55 2 0.33 1 0.70 2 0.06 1 3.25 

Average 1.03   2.03   1.15   1.20   0.86   0.69     1.66   1.55   0.88   0.86   0.91   0.78     

P2 

NIT 

1 2.39 4 3.31 7 2.85 5 1.60 3 1.34 2 0.90 2 12.39 3.08 6 2.62 4 1.75 4 1.91 3 2.03 3 1.05 2 12.43 

2 3.77 7 2.66 4 1.49 3 1.68 3 1.56 2 1.76 3 12.92 3.62 7 2.78 6 1.34 3 2.20 3 1.56 2 1.38 3 12.88 

3 1.48 4 2.62 5 1.41 2 2.22 4 2.20 3 1.75 2 11.68 1.86 4 3.58 7 1.61 2 1.68 3 1.70 2 1.11 2 11.53 

4 3.38 6 3.60 6 1.05 2 2.24 4 1.18 2 1.32 2 12.77 2.13 4 3.09 5 1.20 2 2.39 4 1.25 2 2.20 3 12.27 

5 2.05 4 1.56 3 0.83 2 0.18 1 0.74 2 0.00 1 5.37 1.45 3 2.11 5 0.37 1 0.72 2 0.75 2 0.00 1 5.40 

Average 2.62   2.75   1.53   1.58   1.40   1.15     2.43   2.84   1.25   1.78   1.46   1.15     

IT 

1 2.05 4 1.61 4 0.42 2 2.10 3 1.11 2 1.42 2 8.70 1.45 2 2.47 4 0.62 2 1.86 3 1.95 3 0.85 2 9.21 

2 0.69 3 1.96 5 0.50 2 1.08 2 1.27 2 1.05 2 6.54 1.26 3 2.49 5 0.53 2 1.19 3 1.27 2 1.05 2 7.79 

3 0.82 3 0.32 2 1.07 2 2.41 4 1.56 2 1.04 2 7.22 2.51 4 1.16 4 1.07 2 0.88 2 1.68 2 1.04 2 8.35 

4 2.01 4 0.85 4 0.95 2 1.03 2 0.91 2 0.79 2 6.54 1.64 3 1.92 4 0.95 2 1.03 2 0.98 2 0.79 2 7.31 

5 0.47 2 1.34 3 0.60 2 0.38 2 0.38 1 0.00 1 3.18 0.97 2 0.61 2 0.65 2 0.38 2 0.43 1 0.00 1 3.05 

Average 1.21   1.21   0.71   1.40   1.05   0.86     1.57   1.73   0.76   1.07   1.26   0.75     

Appendix  19 Comparison of average mean and max. inventory levels obtained by RHA and exact methods for random problems (GM-S1) with processing time 1 and 2 
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CS & EI 

   
TPA RHA 

   
CS (Type) EI (Type) CS (Type) EI (Type) 

  
Day 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

P1 

NIT 

1 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

2 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

3 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

Avg. 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 

IT 

1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 

2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

3 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Avg. 1.00 1.00 1.00 1.00 0.78 0.78 0.78 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 

Appendix  20 Comparison of contingency stock & ending inventory levels obtained by TPA and RHA for real problems with processing time 1 
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CS & EI 

   
TPA RHA 

   
CS (Type) EI (Type) CS (Type) EI (Type) 

  
Day 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

P2 

NIT 

1 

1 1 1 2 0 0 0 0 1 1 1 1 0 1 1 1 

1 2 1 1 0 0 0 0 1 1 1 1 1 1 1 0 

1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 

2 

1 2 2 1 0 0 0 0 1 1 1 1 0 1 0 0 

1 2 2 1 0 0 0 0 2 2 2 2 1 2 2 1 

1 2 1 1 0 0 0 0 2 2 2 2 2 2 2 1 

3 

1 2 1 2 0 0 0 0 1 1 1 1 0 0 0 1 

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 

Avg. 1.00 1.56 1.22 1.22 0.11 0.11 0.11 0.11 1.22 1.22 1.22 1.22 0.67 1.00 0.89 0.56 

IT 

1 

1 1 1 2 1 1 1 1 1 1 1 1 0 1 0 1 

1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

1 2 2 1 1 1 1 0 2 2 2 2 1 2 0 0 

2 

1 2 2 1 1 1 1 1 2 2 2 2 0 2 2 1 

1 2 2 1 1 1 1 0 2 2 2 2 2 2 0 0 

3 5 3 2 1 1 1 1 2 2 2 2 2 1 2 0 

3 

2 3 2 2 1 1 1 1 2 2 2 2 2 2 1 0 

1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 

Avg. 1.33 2.11 1.67 1.33 1.00 1.00 1.00 0.67 1.56 1.56 1.56 1.56 1.11 1.22 0.67 0.44 

Appendix  21 Comparison of contingency stock & ending inventory levels obtained by TPA and RHA for real problems with processing time 2 
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CPU Time sec. 

# of Setup 

      TPA RHA 

    Day  TPA RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P1 

NIT 

1 

7 3 3 5 8 12 1 13 

12 6 11 1 12 13 1 14 

12 12 4 5 9 11 1 12 

2 

12 4 3 5 8 10 2 12 

19 6 6 2 8 9 2 11 

21 5 7 1 8 10 2 12 

3 

16 6 3 5 8 9 2 11 

9 2 10 1 11 12 1 13 

9 6 9 2 11 10 2 12 

Avg. 13 6 6.2 3.0 9.2 10.7 1.6 12.2 

IT 

1 

18 14 7 3 10 7 1 8 

22 23 6 3 9 8 1 9 

25 33 6 4 10 8 2 10 

2 

37 24 8 3 11 5 3 8 

34 14 10 2 12 8 1 9 

41 21 8 3 11 9 1 10 

3 

40 23 8 4 12 7 3 10 

37 23 9 2 11 7 2 9 

22 22 6 4 10 5 4 9 

Avg. 31 22 7.6 3.1 10.7 7.1 2.0 9.1 

Appendix  22 Comparison of for CPU time and number of setups obtained by TPA and RHA for real problems with processing time 1 
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CPU Time sec. 

# of Setup 

      TPA RHA 

     Day TPA RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

P2 

NIT 

1 

6 3 7 2 10 9 4 13 

14 5 6 4 8 7 5 12 

9 4 9 2 10 9 3 12 

2 

7 3 7 2 12 10 4 14 

19 6 5 4 6 7 1 8 

17 10 6 4 6 8 3 11 

3 

39 3 8 2 15 10 5 15 

9 3 8 2 8 9 4 13 

18 5 9 4 8 8 3 11 

Avg. 15 5 7.2 2.9 9.2 8.6 3.6 12.1 

IT 

1 

14 3 7 4 8 10 5 15 

15 6 7 5 7 11 4 15 

18 17 8 4 5 7 1 8 

2 

18 5 8 6 5 8 3 11 

15 15 9 4 6 6 1 7 

102 17 6 3 6 7 2 9 

3 

15 13 8 4 6 6 3 9 

8 11 5 4 8 6 5 11 

15 8 8 6 8 7 5 12 

Avg. 25 11 7.3 4.4 6.6 7.6 3.2 10.8 

Appendix  23 Comparison of CPU time and number of setups obtained by TPA and RHA for real problems with processing time 2 
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      Average Mean and Max. Inventory Levels 

      TPA RHA 

      Type 0 Type 1 Type 2 Type 3 
Total 

Type 0 Type 1 Type 2 Type 3 
Total 

     Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

P1 

NIT 

1 

1.12 3 2.26 5 2.43 5 0.69 2 6.49 1.62 3 4.26 8 1.73 3 0.89 2 8.49 

0.59 2 4.58 9 0.88 3 0.26 1 6.31 1.52 3 4.34 8 1.71 3 1.21 2 8.77 

1.52 4 1.88 4 2.86 6 0.71 2 6.97 1.67 3 3.99 7 2.21 4 0.84 2 8.71 

2 

1.21 3 1.98 4 2.48 5 0.68 2 6.35 2.54 5 2.50 5 1.80 3 0.80 2 7.64 

1.51 3 3.27 7 2.12 4 0.45 1 7.35 2.30 5 3.40 6 1.96 4 0.32 1 7.98 

1.75 4 3.74 7 1.56 4 0.52 1 7.57 2.24 4 4.27 8 1.83 4 0.80 2 9.14 

3 

1.03 3 1.87 4 2.43 5 0.60 2 5.92 2.59 5 2.68 5 1.60 3 0.21 1 7.08 

3.12 6 1.02 3 1.19 4 0.30 1 5.64 1.92 3 4.12 8 1.71 4 0.90 2 8.65 

2.81 6 1.70 5 0.92 3 0.37 1 5.81 2.31 4 3.95 7 1.95 4 0.89 2 9.11 

Avg. 1.63   2.48   1.87   0.51   6.49 2.08   3.72   1.83   0.76   8.40 

IT 

1 

0.68 2 0.56 2 0.55 2 0.68 2 2.46 0.51 2 0.08 1 0.66 2 0.35 1 1.60 

0.52 2 0.61 2 0.78 2 0.70 2 2.62 0.66 3 0.07 1 0.64 2 0.39 1 1.76 

0.41 2 0.77 2 0.49 2 0.80 2 2.46 0.96 3 0.54 2 0.77 2 0.27 1 2.54 

2 

0.61 2 0.66 2 0.74 2 0.80 2 2.81 0.97 3 0.40 2 0.74 2 0.39 1 2.50 

0.34 2 0.22 2 0.34 2 0.16 1 1.05 0.96 3 0.18 2 0.78 3 0.28 1 2.20 

0.66 3 0.48 3 0.38 2 0.38 1 1.90 0.61 3 0.22 2 0.66 2 0.13 1 1.62 

3 

0.41 2 0.59 2 0.37 1 0.72 2 2.09 0.43 2 0.22 2 0.98 3 0.22 1 1.85 

0.72 2 0.45 2 0.47 2 0.40 2 2.03 0.06 1 0.68 2 0.71 3 0.55 2 2.00 

0.49 2 0.70 2 0.36 2 0.73 2 2.28 0.63 3 1.08 3 0.62 2 0.59 2 2.91 

Avg. 0.54   0.56   0.50   0.60   2.19 0.64   0.39   0.73   0.35   2.11 

Appendix  24 Comparison of average mean and max. inventory levels obtained by TPA and RHA methods for real problems with processing time 1 
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      Average Mean and Max. Inventory Levels 

      TPA RHA 

      Type 0 Type 1 Type 2 Type 3 
Total 

Type 0 Type 1 Type 2 Type 3 
Total 

     Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

P2 

NIT 

1 

1.33 3 0.70 2 1.02 3 0.59 2 3.65 0.40 1 2.04 5 1.13 3 0.75 2 4.31 

1.09 2 1.91 4 1.21 3 0.46 1 4.67 1.26 3 1.73 3 1.43 3 0.25 1 4.66 

0.98 3 1.28 3 1.07 3 0.16 1 3.49 0.56 2 2.05 4 0.96 3 0.23 1 3.80 

2 

0.98 2 2.22 5 0.87 2 0.46 1 4.54 0.79 2 1.60 4 0.53 2 0.06 1 2.97 

1.11 3 1.06 3 1.88 4 0.56 1 4.60 1.04 2 3.61 6 2.06 4 0.81 2 7.52 

0.83 2 1.50 4 1.28 3 0.54 1 4.15 1.90 4 3.09 5 1.97 4 0.95 2 7.91 

3 

1.18 3 1.23 3 0.68 2 0.57 2 3.65 0.61 2 0.94 3 0.44 2 0.35 1 2.34 

1.00 3 2.23 5 0.82 3 0.18 1 4.23 1.90 4 1.89 4 1.07 3 0.68 2 5.55 

1.15 3 1.92 5 0.82 2 0.82 2 4.71 1.97 5 0.77 2 0.98 2 0.45 1 4.17 

Avg. 1.07   1.56   1.07   0.48   4.19 1.16   1.97   1.17   0.50   4.80 

IT 

1 

0.71 2 0.61 2 0.53 2 0.92 2 2.77 0.24 1 0.09 1 0.35 2 0.37 1 1.05 

0.56 2 0.85 2 0.38 1 0.72 2 2.52 0.39 2 0.56 2 0.25 1 0.27 1 1.46 

0.92 2 0.64 3 0.76 2 0.60 1 2.92 0.90 3 0.90 3 0.82 2 0.85 2 3.47 

2 

0.55 2 0.56 2 0.83 2 0.87 2 2.81 0.58 2 0.85 2 1.17 3 1.23 2 3.84 

0.58 2 0.46 2 0.82 2 0.58 1 2.44 1.00 3 0.90 2 0.99 3 0.41 2 3.30 

1.72 3 1.41 5 1.01 3 1.01 2 5.14 1.06 2 1.21 2 1.45 3 0.51 2 4.24 

3 

1.10 3 1.07 3 0.63 2 1.18 2 3.97 1.24 4 0.92 2 0.84 2 0.93 2 3.94 

0.70 2 0.82 2 0.52 2 0.62 2 2.65 0.62 2 0.53 2 0.45 2 0.31 1 1.92 

0.75 2 0.54 2 0.39 2 0.75 2 2.42 0.46 2 0.29 2 0.32 2 0.28 1 1.35 

Avg. 0.84   0.77   0.65   0.81   3.07 0.72   0.69   0.74   0.57   2.73 

Appendix 25 Comparison of average mean and max. inventory levels obtained by TPA and RHA methods for real problems with processing time 2 
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CS & EI 

    
TPA RHA 

    
CS (Type) EI (Type) CS (Type) EI (Type) 

   
Day 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

S1 

P1 

NIT 

1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 

2 2 2 2 2 2 2 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 1 1 

3 2 2 2 2 2 2 0 0 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 

4 2 2 2 2 2 2 0 0 1 1 1 1 2 2 2 2 2 2 2 2 1 2 1 1 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Avr. 
 

1.60 1.60 1.60 1.60 1.60 1.60 0.00 0.00 0.40 0.40 0.80 0.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.40 1.60 1.20 0.80 

IT 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 

2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 

3 2 2 2 2 2 2 1 1 1 1 1 0 2 2 2 2 2 2 0 2 1 2 2 1 

4 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 2 2 2 

5 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

Avr. 
 

1.60 1.60 1.60 1.60 1.60 1.60 1.00 1.00 1.00 0.80 0.60 0.80 1.60 1.60 1.60 1.60 1.60 1.60 1.20 1.60 1.20 1.60 1.20 1.40 

P2 

NIT 

1 2 2 2 2 2 2 1 1 1 0 0 1 2 2 2 2 2 2 2 2 2 2 2 1 

2 2 2 2 2 2 2 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 0 0 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 

4 2 2 2 2 2 2 0 0 1 1 1 1 2 2 2 2 2 2 2 2 1 2 1 2 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 

Avr. 
 

1.80 1.80 1.80 1.80 1.80 1.80 0.20 0.20 0.60 0.40 0.80 0.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.40 1.40 1.60 1.20 

IT 

1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 

2 2 2 2 2 2 2 1 1 0 1 1 1 2 2 2 2 2 2 2 2 0 2 1 2 

3 2 2 2 2 2 2 1 1 0 0 1 0 2 2 2 2 2 2 2 2 1 2 2 0 

4 2 2 2 2 2 2 1 1 1 1 0 1 2 2 2 2 2 2 2 1 1 2 1 2 

5 1 1 2 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 

Avr. 
 

1.80 1.80 2.00 1.80 1.80 1.80 1.00 1.00 0.40 0.60 0.60 0.80 1.80 1.80 1.80 1.80 1.80 1.80 1.60 1.60 1.00 1.80 1.20 1.00 

Appendix  26 Comparison of contingency stock & ending inventory levels obtained by TPA and RHA for random problems (GM-S1) with processing time 1 and 2 
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CS & EI 

    

TPA RHA 

    

CS (Type) EI (Type) CS (Type) EI (Type) 

   

Day 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

S1 

P1 

NIT 

1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 

2 2 2 2 2 2 2 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 1 1 

3 2 2 2 2 2 2 0 0 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 

4 2 2 2 2 2 2 0 0 1 1 1 1 2 2 2 2 2 2 2 2 1 2 1 1 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Avr. 

 

1.60 1.60 1.60 1.60 1.60 1.60 0.00 0.00 0.40 0.40 0.80 0.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.40 1.60 1.20 0.80 

IT 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 

2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 

3 2 2 2 2 2 2 1 1 1 1 1 0 2 2 2 2 2 2 0 2 1 2 2 1 

4 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 2 2 2 

5 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

Avr. 

 

1.60 1.60 1.60 1.60 1.60 1.60 1.00 1.00 1.00 0.80 0.60 0.80 1.60 1.60 1.60 1.60 1.60 1.60 1.20 1.60 1.20 1.60 1.20 1.40 

P2 

NIT 

1 2 2 2 2 2 2 1 1 1 0 0 1 2 2 2 2 2 2 2 2 2 2 2 1 

2 2 2 2 2 2 2 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 0 0 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 

4 2 2 2 2 2 2 0 0 1 1 1 1 2 2 2 2 2 2 2 2 1 2 1 2 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 

Avr. 

 

1.80 1.80 1.80 1.80 1.80 1.80 0.20 0.20 0.60 0.40 0.80 0.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.40 1.40 1.60 1.20 

IT 

1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 

2 2 2 2 2 2 2 1 1 0 1 1 1 2 2 2 2 2 2 2 2 0 2 1 2 

3 2 2 2 2 2 2 1 1 0 0 1 0 2 2 2 2 2 2 2 2 1 2 2 0 

4 2 2 2 2 2 2 1 1 1 1 0 1 2 2 2 2 2 2 2 1 1 2 1 2 

5 1 1 2 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 

Avr. 

 

1.80 1.80 2.00 1.80 1.80 1.80 1.00 1.00 0.40 0.60 0.60 0.80 1.80 1.80 1.80 1.80 1.80 1.80 1.60 1.60 1.00 1.80 1.20 1.00 

Appendix 27 Comparison of contingency stock & ending inventory levels obtained by TPA and RHA for random problems (GM-S1) with processing time 1 and 2 
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# of Setup 

    
CPU Time (sec.) TPA RHA 

   
Day TPA RHA M/C. 1 M/C.  2 Total M/C. 1 M/C.  2 Total 

S1 

P1 

NIT 

1 199 40 3 5 8 5 7 12 

2 42 25 6 1 7 3 5 8 

3 686 15 4 3 7 4 5 9 

4 664 17 5 3 8 7 3 10 

5 44 11 5 3 8 5 5 10 

Avr. 
 

327 22 4.6 2.6 7.6 4.8 5 9.8 

IT 

1 1,857 37 5 4 9 5 5 10 

2 171 8 5 3 8 4 3 7 

3 266 45 5 0 5 3 3 6 

4 941 60 3 4 7 3 4 7 

5 8,044 44 3 5 8 6 6 12 

Avr. 
 

2,256 39 4.6 2.6 7.4 4.2 4.2 8.4 

P2 

NIT 

1 118 89 4 3 7 4 4 8 

2 32 11 5 2 7 4 4 8 

3 167 7 4 4 8 4 4 8 

4 199 12 4 3 7 4 5 9 

5 47 31 5 3 8 6 4 10 

Avr. 
 

113 30 4.6 2.6 7.4 4.4 4.2 8.6 

IT 

1 969 32 6 4 10 4 8 12 

2 91 31 5 2 7 5 2 7 

3 70 16 3 1 4 4 4 8 

4 243 27 4 2 6 4 4 8 

5 404 25 5 4 9 5 4 9 

Avr. 
 

355 26 4.6 2.6 7.2 4.4 4.4 8.8 

Appendix 28 Comparison of CPU time and number of setups contingency stock & ending inventory levels obtained by TPA and RHA for random problems 

(GM-S1) with processing time 1 and 2 
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        Average Mean and Max. Inventory Levels 

        TPA RHA 

        Type 0 Type 1 Type 2 Type 3 Type 4 Type 5   Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 
Total 

      Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Total Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

S1 

P1 

NIT 

1 1.1 4 1.4 4 1.9 4 1.2 3 0.4 1 0.2 1 6.3 2.0 4 2.6 4 1.9 4 1.3 3 1.3 2 0.2 1 9.2 

2 1.6 4 2.4 5 0.6 2 0.6 3 1.3 2 1.9 2 8.4 3.5 6 2.6 5 2.9 4 2.6 4 1.3 2 1.3 2 14.2 

3 2.3 6 2.8 7 1.4 2 1.3 2 2.5 3 1.9 3 12.2 2.1 5 3.3 7 2.6 3 2.7 4 2.2 3 1.3 2 14.2 

4 2.3 5 2.2 4 1.6 4 1.6 2 1.7 2 1.6 3 11.2 3.1 5 3.5 5 1.8 4 2.7 4 1.5 2 1.5 2 14.1 

5 2.4 4 2.0 5 0.3 2 0.3 1 1.1 2 0.0 1 6.0 1.9 4 3.1 6 1.5 3 1.2 3 0.9 2 0.7 1 9.3 

Avr.   1.9   2.2   1.2   1.0   1.4   1.1     2.5   3.0   2.1   2.1   1.4   1.0     

IT 

1 0.7 2 0.2 1 0.5 1 1.0 2 0.6 1 0.6 1 3.5 0.8 3 1.4 4 0.7 2 1.0 2 0.2 1 0.4 1 4.5 

2 2.5 5 0.7 2 1.0 2 0.5 2 1.3 2 1.0 2 7.0 3.4 8 1.7 3 0.7 2 1.2 3 1.3 2 1.0 2 9.3 

3 2.1 5 1.3 4 1.1 2 1.0 2 1.6 2 1.0 2 8.0 1.6 4 1.3 3 1.4 2 0.7 2 1.6 2 1.1 2 7.7 

4 0.8 2 0.8 3 0.9 2 1.0 2 0.9 2 0.7 2 5.2 1.5 4 2.8 6 1.1 2 1.0 2 0.8 2 1.3 2 8.5 

5 2.1 4 0.3 2 0.0 1 0.7 2 0.7 2 0.0 1 3.8 1.0 3 0.6 2 0.5 2 0.3 1 0.7 2 0.1 1 3.3 

Avr.   1.6   0.7   0.7   0.8   1.0   0.7     1.7   1.5   0.9   0.9   0.9   0.8     

P2 

NIT 

1 2.8 6 2.4 5 1.6 4 1.1 2 1.1 2 1.3 2 10.3 3.1 6 2.6 4 1.8 4 1.9 3 2.0 3 1.0 2 12.4 

2 3.2 7 0.9 3 0.8 2 0.6 2 1.3 2 1.9 2 8.7 3.6 7 2.8 6 1.3 3 2.2 3 1.6 2 1.4 3 12.9 

3 1.1 3 1.8 5 2.0 3 2.1 3 2.1 3 1.5 2 10.5 1.9 4 3.6 7 1.6 2 1.7 3 1.7 2 1.1 2 11.5 

4 2.2 4 1.4 3 1.8 4 2.2 4 1.3 2 1.3 2 10.3 2.1 4 3.1 5 1.2 2 2.4 4 1.3 2 2.2 3 12.3 

5 1.4 3 1.2 3 0.3 2 0.5 1 0.7 2 0.0 1 4.1 1.5 3 2.1 5 0.4 1 0.7 2 0.7 2 0.0 1 5.4 

Avr.   2.1   1.6   1.3   1.3   1.3   1.2     2.4   2.8   1.3   1.8   1.5   1.1     

IT 

1 0.9 2 0.4 2 0.7 2 1.4 2 1.1 2 0.7 2 5.2 1.5 2 2.5 4 0.6 2 1.9 3 2.0 3 0.9 2 9.2 

2 0.3 2 0.9 2 0.8 2 0.5 2 1.3 2 1.0 2 4.9 1.3 3 2.5 5 0.5 2 1.2 3 1.3 2 1.0 2 7.8 

3 0.4 2 0.2 2 1.1 2 0.7 2 1.6 2 1.0 2 5.0 2.5 4 1.2 4 1.1 2 0.9 2 1.7 2 1.0 2 8.3 

4 0.4 2 0.6 2 1.1 2 1.2 2 0.8 2 0.7 2 4.9 1.6 3 1.9 4 1.0 2 1.0 2 1.0 2 0.8 2 7.3 

5 0.9 2 0.4 2 0.4 2 0.3 1 0.5 1 0.6 1 3.1 1.0 2 0.6 2 0.6 2 0.4 2 0.4 1 0.0 1 3.0 

Avr.   0.6   0.5   0.8   0.8   1.1   0.8     1.6   1.7   0.8   1.1   1.3   0.7     

Appendix  29 Comparison of average mean and max. inventory levels obtained by TPA and RHA for random problems (GM-S1) with processing time 1 and  2 
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# of Setup 

    

CPU Time (sec.) TPA RHA 

   

Day TPA RHA M/C. 1 M/C. 2 Total M/C. 1 M/C. 2 Total 

S1 

P1 

NIT 

1 31 4 2 6 8 6 3 9 

2 39 25 5 4 9 5 5 10 

3 70 9 2 5 7 4 7 11 

4 43 38 7 3 10 7 5 12 

5 16 15 5 3 8 7 5 12 

Avr. 

 

40 18 4.2 4.2 8.4 5.8 5.0 10.8 

IT 

1 49 21 5 4 9 5 3 8 

2 1,044 53 5 6 11 5 5 10 

3 116 19 4 5 9 6 4 10 

4 68 51 5 5 10 5 4 9 

5 10 18 5 3 8 6 5 11 

Avr. 

 

257 32 4.8 4.6 9.4 5.4 4.2 9.6 

P2 

NIT 

1 46 7 5 2 7 3 6 9 

2 39 26 2 5 7 6 4 10 

3 25 9 4 2 6 7 2 9 

4 33 24 7 3 10 7 5 12 

5 8 7 4 2 6 4 6 10 

Avr. 

 

30 15 4.4 2.8 7.2 5.4 4.6 10.0 

IT 

1 31 12 5 3 8 5 3 8 

2 175 10 7 5 12 5 4 9 

3 117 32 2 5 7 4 6 10 

4 247 22 5 4 9 4 6 10 

5 11 10 3 4 7 3 4 7 

Avr. 

 

116 17 4.4 4.2 8.6 4.2 4.6 8.8 

Appendix  30 Comparison of CPU time and number of setups obtained by TPA and RHA for random problems (GM-S2) with processing time 1 and 2 
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CS & EI 

    

TPA RHA 

    

CS (Type) EI (Type) CS (Type) EI (Type) 

   

Day 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

S1 

P1 

NIT 

1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Avr. 

 

1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

IT 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

3 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Avr. 

 

1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.6 0.4 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 

P2 

NIT 

1 2 2 2 2 2 2 0 2 0 1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 0 0 1 0 0 0 2 2 2 2 2 2 2 2 2 2 1 2 

3 2 2 2 2 2 2 1 1 0 1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 

4 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 

5 2 2 2 2 2 2 1 0 0 0 1 0 2 2 2 2 2 2 2 2 2 2 2 2 

Avr. 

 

1.8 1.8 1.8 1.8 1.8 1.8 0.4 0.6 0.2 0.4 0.2 0.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.6 1.6 

IT 

1 2 2 2 2 2 2 1 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

5 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

Avr. 

 

1.8 1.8 1.8 1.8 1.8 1.8 1.0 1.2 1.0 1.0 1.0 1.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.6 

Appendix  31 Comparison of contingency stock & ending inventory levels obtained by TPA and RHA for random problems (GM-S2) with processing time 1 and 2 
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Average Mean and Max. Inventory Levels 

    

TPA RHA 

    

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 

 

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 
Total 

   

Day Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Total Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. Mn. Mx. 

S1 

P1 

NIT 

1 1.25 3 2.12 3 2.00 4 0.63 2 1.07 3 0.53 1 7.60 1.70 3 1.68 3 2.09 4 1.25 2 2.63 5 1.40 3 10.75 

2 1.15 3 0.58 1 0.96 3 1.96 4 0.76 2 0.98 4 6.38 2.19 4 0.96 2 1.58 4 2.22 4 1.38 2 1.45 4 9.77 

3 0.92 3 1.14 2 1.67 5 1.38 3 1.85 5 0.08 1 7.04 1.48 4 1.49 3 2.07 4 2.17 4 1.44 4 0.90 2 9.55 

4 0.85 2 1.11 4 0.73 2 1.43 3 0.36 3 1.48 3 5.96 1.23 2 1.40 4 1.71 3 2.69 5 1.09 2 2.05 3 10.16 

5 0.22 1 0.57 2 0.89 2 1.39 3 1.47 3 1.43 3 5.97 1.06 2 1.46 3 1.28 2 1.54 3 2.15 4 1.77 3 9.26 

Avr. 

 

0.9 

 

1.1 

 

1.2 

 

1.4 

 

1.1 

 

0.9 

 

6.6 1.5 

 

1.4 

 

1.7 

 

2.0 

 

1.7 

 

1.5 

 

9.9 

IT 

1 0.72 1 0.87 1 0.79 2 0.77 2 0.48 2 0.60 2 4.23 1.08 2 0.87 1 0.79 2 0.62 1 0.38 1 0.58 2 4.30 

2 0.70 2 0.89 2 1.05 3 0.73 2 0.90 1 0.23 1 4.50 0.98 2 0.03 1 0.76 1 0.34 1 1.22 3 0.34 1 3.66 

3 0.98 2 1.25 3 0.80 2 0.28 1 0.27 2 0.68 1 4.26 0.89 2 0.07 1 0.72 2 0.26 1 0.58 3 0.68 1 3.20 

4 0.09 1 0.36 2 0.38 1 0.36 1 0.15 1 0.25 2 1.59 0.36 2 0.94 3 0.46 1 1.50 3 0.80 1 0.25 2 4.30 

5 0.22 1 0.10 1 0.33 1 0.30 1 0.50 1 0.61 2 2.05 0.22 1 0.65 1 0.68 2 0.27 2 0.66 2 0.83 2 3.31 

Avr. 

 

0.5 

 

0.7 

 

0.7 

 

0.5 

 

0.5 

 

0.5 

 

3.3 0.7 

 

0.5 

 

0.7 

 

0.6 

 

0.7 

 

0.5 

 

3.8 

P2 

NIT 

1 1.33 3 2.77 4 1.73 4 1.51 2 2.16 4 0.85 2 10.35 2.35 3 2.13 3 3.00 5 2.34 3 1.68 4 2.37 3 13.87 

2 1.07 3 0.58 2 2.13 4 2.42 5 0.80 2 1.26 4 8.25 2.18 4 2.02 3 1.89 3 2.38 5 1.39 2 1.80 4 11.65 

3 1.68 3 2.40 3 1.73 5 1.87 4 2.01 5 0.25 2 9.95 2.44 4 2.03 3 2.40 4 1.68 3 2.48 5 1.96 3 12.98 

4 0.50 1 0.68 2 0.55 2 0.66 3 0.28 2 1.31 2 3.98 1.15 2 1.31 3 1.48 3 1.33 3 0.68 2 0.87 2 6.82 

5 1.22 2 0.63 2 1.06 2 1.53 3 2.77 4 1.43 3 8.62 1.93 2 2.00 3 2.42 3 2.10 4 2.83 4 2.47 4 13.75 

Avr. 

 

1.2 

 

1.4 

 

1.4 

 

1.6 

 

1.6 

 

1.0 

 

8.2 2.0 

 

1.9 

 

2.2 

 

2.0 

 

1.8 

 

1.9 

 

11.8 

IT 

1 1.28 2 1.88 2 0.68 2 1.00 2 0.27 2 0.50 2 5.60 1.63 3 2.26 4 1.80 4 1.72 3 0.43 3 1.90 3 9.74 

2 0.78 2 0.70 2 1.35 2 0.71 2 0.73 2 0.70 2 4.97 2.39 5 0.80 2 1.39 2 1.23 3 0.68 3 2.27 4 8.75 

3 1.41 2 0.99 2 1.26 2 0.73 2 0.68 2 0.78 2 5.84 1.52 3 1.78 3 1.58 3 1.37 2 0.97 3 1.85 3 9.07 

4 0.67 2 0.56 2 0.51 1 1.09 2 0.82 1 0.80 3 4.44 0.85 2 0.20 1 0.61 2 0.49 1 0.81 1 0.50 2 3.46 

5 1.22 2 0.75 2 0.73 2 0.70 2 1.05 2 0.80 2 5.25 2.03 3 1.81 3 1.58 3 0.56 3 1.11 2 1.10 3 8.20 

Avr. 
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Appendix  32 Comparison of average mean and max inventory levels obtained by TPA and RHA for random problems (GM-S2) with processing time 1 and 2 


