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Abstract—A wireless source localization network consisting of
synchronized target and anchor nodes is considered. An anchor
placement problem is formulated to minimize the Cramér-Rao
lower bound (CRLB) on estimation of target node positions
by anchor nodes. First, it is shown that the anchor placement
problem can be approximated as a minimization problem of
the ratio of two supermodular functions. Due to the lack of a
polynomial time algorithm for such problems, an anchor selection
problem is proposed to solve the anchor placement problem. Via
relaxation of integer constraints, the anchor selection problem is
approximated by a convex optimization problem, which is used
to propose two algorithms for anchor selection. Furthermore,
extensions to quasi-synchronous wireless localization networks
are discussed. To examine the performance of the proposed
algorithms, various simulation results are presented.

Index Terms—Localization, anchor placement, estimation,
CRLB.

I. INTRODUCTION

In wireless localization networks, location estimation is
performed via signal exchanges between target and anchor
nodes in order to determine positions of target nodes [1],
[2]. There exist two main types of wireless localization net-
works; namely, self localization and source (network centric)
localization networks. Target nodes estimate their positions
from signals transmitted from anchor nodes in self localization
networks. On the other hand, anchor nodes estimate positions
of target nodes from signals emitted by target nodes in source
localization networks.

For both self localization and source localization networks,
the main goal is to maintain high localization accuracy [1].
Determining where to place anchor nodes and how to allocate
power among them are crucial issues to address for achieving
high localization accuracy. There exist a vast amount of studies
on these issues such as [3]–[12]. For example, in [6], anchor
positions are assumed to be known, and optimization problems
for optimal power allocation among anchor nodes, anchor
selection, and anchor deployment are proposed to minimize
the estimation error for target position considering a time-
of-arrival (TOA) based approach. The problem of anchor
placement is also investigated in [11], and a near-optimal node
placement algorithm is proposed. In addition to anchor and tar-
get nodes, assisting nodes are placed in the network to improve
localization accuracy, and an upper bound on the gap between
the near-optimal node placement algorithm and the optimal
placement strategy is provided [11]. Apart from the TOA
based approach, there also exist some studies that consider
the optimal anchor placement problem for time-difference-
of-arrival (TDOA) and angle-of-arrival (AOA) based wireless
localization networks [7], [12].

In this work, we consider a wireless source localization
network consisting of anchor and target nodes, and propose
an anchor selection problem to solve the anchor placement
problem. The main contributions of this manuscript can be
summarized as follows:

• We formulate the anchor placement problem for TOA
based source localization networks by considering the
Cramér-Rao lower bound (CRLB) as a performance
metric, and we discretize the problem due to its non-
convexity.

• After discretization, we prove the equivalence of this
problem to the problem of minimizing the ratio of two
supermodular functions. Due to the lack of a polynomial
time algorithm for such problems [13], we express the
resulting problem as an anchor selection problem.

• Even though the problem of anchor selection is consid-
ered in [6], its convexity properties are not investigated
and specific algorithms are not proposed to solve it.
We prove that the objective function of this problem
is convex with respect to the anchor selection vector.
After relaxing the integer constraints, we come up with
a convex optimization problem, which is related to the
solution of the anchor selection problem.

• We propose two algorithms to solve the proposed anchor
selection problem and present simulation results for both
two and three dimensional wireless localization networks.

• We also show that this analysis can easily be extended to
TDOA based wireless localization networks.

II. SYSTEM MODEL

Consider a two-dimensional wireless source localization
network in which a target (source) node sends signals to
anchor (reference) nodes for estimation of the target node loca-
tion by anchor nodes. It is known that the target node is located
at xi ∈ R2 with probability wi ≥ 0 for i = 1, 2, . . . , NT ,
where NT is the number of possible target locations and∑NT

i=1 wi = 1. Anchor nodes are located at {yj}NA
j=1 ⊂ R2,

where NA is the number of anchor nodes in the network.
φij is the angle between jth anchor node and ith target
node, i.e., φij = arctan

xi2−yj2

xi1−yj1
, where xi = [xi1 xi2]ᵀ and

yj = [yj1 yj2]ᵀ.
In the following sections, we provide the signal model and

formulate the corresponding anchor placement problems for
TOA and TDOA based wireless localization networks.
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III. TOA BASED ANCHOR PLACEMENT PROBLEM

A. Signal Model
Consider a scenario in which the clocks of the anchor and

target nodes are perfectly synchronized. For the signal emitted
from the target node located at xi, the signal received at the
anchor node at location yj is given by

rij(t) =

Lij∑
l=1

α
(l)
ij si

(
t− τ (l)ij

)
+ ηij(t) (1)

where si(t) is a known signal transmitted from the ith target
node, Lij is the number of multipath components between the
jth anchor node and the ith target node, α(l)

ij , and τ (l)ij denote,
respectively, the amplitude and the delay of the lth multipath
component between the jth anchor node and the ith target
node, and ηij(t) is the measurement noise modeled as zero-
mean white Gaussian noise with a power spectral density level
of N0/2. The delays of the paths are given by

τ
(l)
ij =

‖yj − xi‖+ b
(l)
ij

c
(2)

where c is the speed of the light and b(l)ij is the range-bias term
(b(l)ij = 0 for line-of-sight (LOS) propagation and b(l)ij > 0 for
non-line-of-sight (NLOS) propagation).

B. Problem Formulation
In the considered wireless localization network, the aim is to

determine the best NA locations to place the anchor nodes in
order to estimate the location of the target node as accurately
as possible in the mean-square sense. In other words, yj’s are
the optimization variables in the anchor placement problem. In
order to emphasize that, we introduce a matrix Y as follows:
Y , [y1 y2 . . . yNA

]. It is assumed that each anchor node can
be placed in some bounded region R ⊂ R2, that is, yj ∈ R
for j = 1, . . . , NA.

After defining the anchor positions as optimization vari-
ables, the number, amplitudes and delays of the multipath
components, and the angles between the anchor and target
nodes become functions of the anchor positions. In order
to emphasize the dependence on Y, we replace Lij , α(l)

ij ,
τ
(l)
ij , and φij with Li(yj), α(l)

i (yj), τ (l)i (yj), and φi(yj),
respectively, in the remainder of the manuscript.

Via similar steps to those in [14], the equivalent Fisher
information matrix (EFIM), JTOA

i (Y), corresponding to the
target location xi can be expressed as a function of the anchor
locations {yj}NA

j=1 as

JTOA
i (Y) =

∑
j∈AL

i (Y)

λi(yj)ϕi(yj)ϕi(yj)
ᵀ, (3)

λi(yj) ,
8π2β2

i

c2
(1− ξi(yj))

|α(1)
i (yj)|2

∫∞
−∞ |Si(f)|2 df
N0

,

(4)

β2
i ,

∫∞
−∞ f2|Si(f)|2 df∫∞
−∞ |Si(f)|2 df

, ϕi(yj) , [cos(φi(yj)) sin(φi(yj))]
ᵀ

(5)

where AL
i (Y) is the set of indices of anchor nodes that are

in LOS with the target node at location xi for the anchor
positions given by matrix Y, Si(f) is the Fourier transform of
si(t), and ξi(yj) is the path-overlap coefficient for the anchor
location yj and the target location xi satisfying 0 ≤ ξi(yj) ≤
1 [14].

It is known that for any unbiased estimator x̂i of xi, the
error vector satisfies [15]:

E{‖x̂i − xi‖2} ≥ tr
{
JTOA
i (Y)−1

}
(6)

where the expression on the right-hand-side corresponds to the
CRLB. Then, by considering the CRLB as a performance met-
ric, the proposed anchor placement problem can be formulated
as

min
Y

NT∑
i=1

wi tr
{
JTOA
i (Y)−1

}
(7a)

subject to yj ∈ R, j = 1, 2, . . . , NA. (7b)

C. Theoretical Results and Algorithms
From (3) and (5), tr

{
JTOA
i (Y)−1

}
can be expressed after

some algebraic manipulations as

tr
{
JTOA
i (Y)−1

}
= (8)

2
∑

k∈AL
i (Y) λi(yk)∑

k∈AL
i (Y)

∑
l∈AL

i (Y) λi(yk)λi(yl) sin2(φi(yk)− φi(yl))

It is noted from (8) that the optimal anchor placement
problem in (7) is quite challenging since the number of
multipath components, the amplitudes, the delays, the angles
between the anchor and target nodes, and the path-overlap
coefficients become functions of the anchor locations (see (3)–
(5)). Moreover, this problem is not convex in general. For
example, the set R may not necessarily be a convex set.

In order to solve the anchor placement problem, we first
discretize set R in (7b). Let R̃ be a finite subset of R,
and consider the problem in (7) for set R̃ by replacing the
constraint in (7b) by yj ∈ R̃ for j = 1, . . . , NA. Since the
objective function in (7a) is continuous with respect to the
anchor locations, the optimal value of the discretized version
of (7) gets closer to the optimal value of (7) as the number of
elements in R̃ increases. Therefore, it is possible to achieve
an accurate approximation to the original problem in (7) via
discretization.

In the discretized version of (7), the aim is to identify a
subset of R̃ with a cardinality of NA. As R̃ is finite, we
can represent its elements as R̃ = (y(k))k. Furthermore, we
define λ(k)i , λi(y(k)), φ(k)i , φi(y(k)), and ϕ

(k)
i , ϕi(y

(k))
for any i and k. Moreover, let the set of indices of anchor
nodes in R̃ which are in LOS with the target node at location
xi be denoted as ÃL

i for any i. For any set S, we define
SLi , S∩ÃL

i . Then, the discretized version of (7) is expressed
as

min
S⊂N

NT∑
i=1

wi f
TOA
i (S) (9a)

subject to |S| = NA (9b)
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where N denotes the set of natural numbers and fTOA
i (S) is

given by

fTOA
i (S) ,

2
∑

k∈SL
i
λ
(k)
i∑

k∈SL
i

∑
l∈SL

i
λ
(k)
i λ

(l)
i sin2(φ

(k)
i − φ(l)i )

· (10)

The following lemma proves that solving (9) is equivalent
to minimizing the ratio of non-decreasing supermodular func-
tions subject to a cardinality constraint.

Lemma 1: The objective function in (9) is a ratio of two
non-decreasing supermodular functions.

Proof: Define pTOA
i (S) , 2

∑
k∈SL

i
λ
(k)
i , and qTOA

i (S) ,∑
kSL

i

∑
l∈SL

i
λ
(k)
i λ

(l)
i sin2(φ

(k)
i − φ(l)i ).

If S ⊂ W , then pTOA
i (S) ≤ pTOA

i (W) and qTOA
i (S) ≤

qTOA
i (W). In other words, both pTOA

i (·) and qTOA
i (·) are non-

decreasing functions.
Take any e /∈ W . If e /∈ ÃL

i , then it is clear that
pTOA
i (W ∪{e})− pTOA

i (W) = pTOA
i (S ∪ {e})− pTOA

i (S) = 0,
and qTOA

i (W∪{e})−qTOA
i (W) = qTOA

i (S∪{e})−qTOA
i (S) =

0. If e ∈ ÃL
i , it is observed that

pTOA
i (W ∪ {e})− pTOA

i (W) = pTOA
i (S ∪ {e})− pTOA

i (S)

qTOA
i (W ∪ {e})− qTOA

i (W) = 2λ
(e)
i

∑
k∈W

λ
(k)
i sin2(φ

(k)
i − φ(e)i )

≥ 2λ
(e)
i

∑
k∈S

λ
(k)
i sin2(φ

(k)
i − φ(e)i )

= qTOA
i (S ∪ {e})− qTOA

i (S)

Therefore, both pTOA
i (·) and qTOA

i (·) are non-decreasing su-
permodular functions [16]. Since the product of two non-
decreasing, non-negative and supermodular functions is su-
permodular, it is concluded that pTOA

i (S)
∏

j 6=i q
TOA
j (S) and∏

j qj(S) are supermodular functions as pTOA
i (·) and qTOA

i (·)
are supermodular, non-negative and non-decreasing. Based on
the definitions at the beginning of the proof, the objective
function in (9), which is specified via (10), can be expressed
as

NT∑
i=1

wif
TOA
i (S) =

∑NT

i=1 wip
TOA
i (S)

∏
j 6=i q

TOA
j (S)∏

j q
TOA
j (S)

· (11)

Since supermodularity is preserved under non-negative
weighted summation,

∑NT

i=1 wip
TOA
i (S)

∏
j 6=i q

TOA
j (S) is also

supermodular. Therefore, both the numerator and the denom-
inator of the objective function are supermodular. �

In [13], it is stated that whether optimizing the ratio of
monotone supermodular functions admits any polynomial time
algorithm with bounded approximations is an open problem.
Therefore, instead of employing integer programming ap-
proaches, we aim to transform (9) into an anchor selection
problem that can be solved via convex optimization tools. To
this aim, we introduce a selection vector z = [z1 z2 . . . z|R̃|]

ᵀ

as follows:

zk =

{
1, if an anchor node is placed at y(k)

0, otherwise
. (12)

It is noted that (9) is equivalent to the following problem:

min
z∈R|R̃|

NT∑
i=1

wi f̃
TOA
i (z) (13a)

subject to
|R̃|∑
k=1

zk = NA (13b)

zk ∈ {0, 1} , k = 1, 2, . . . ,
∣∣∣R̃∣∣∣ (13c)

where f̃TOA
i (z) is given by

f̃TOA
i (z) ,

2
∑

k∈ÃL
i

zkλ
(k)
i∑

k∈ÃL
i

∑
l∈ÃL

i

zkzlλ
(k)
i λ

(l)
i sin2(φ

(k)
i − φ(l)i )

(14)
The following proposition proves that the objective function
in (13) is a convex function of the selection vector z.

Proposition 1: The objective function in (13) is convex with
respect to the selection vector z.

Proof: It can be shown that f̃TOA
i (z) in (13) is equal to

tr
{
J̃TOA
i (z)−1

}
, where

J̃TOA
i (z) ,

∑
k∈ÃL

i

zkλ
(k)
i ϕ

(k)
i

(
ϕ

(k)
i

)ᵀ
. (15)

First, it is clear that J̃TOA
i (z) is a linear function of z. More-

over, it is known that tr{A−1} is a non-increasing convex
function of the positive semi-definite matrix A [17]. Due to
the concavity of J̃TOA

i (z), we can argue, based on the chain
rule, that f̃TOA

i (z) is convex with respect to z for any i. As
wi’s in (13a) are non-negative, we have the desired conclusion
about the convexity of the objective function in (13). �

Since the objective function is convex with respect to z, by
relaxing the integer constraints in (13c), we obtain a convex
optimization problem as follows:

min
z∈R|S|

NT∑
i=1

wi f̃
TOA
i (z) (16a)

subject to
|R̃|∑
k=1

zk = NA (16b)

0 ≤ zk ≤ 1 , k = 1, 2, . . . , |S| (16c)

To summarize the main approach, we first formulate the
anchor placement problem as a continuous and non-convex
optimization problem as in (7). Then, we take finitely many
points from the region R to discretize the problem as in (9).
Next, we prove that this problem is equivalent to minimizing
the ratio of two supermodular functions, for which there exists
no polynomial time algorithms with bounded approximations
in the literature. Therefore, we express this problem as an
anchor selection problem as in (13), and by relaxing the integer
constraints, it is proven that a convex formulation can be
achieved as in (16). Thus, we propose the anchor selection
problem in (16) as a convex approximation of the anchor
placement problem in (7). After solving (16) via convex opti-
mization tools (such as CVX [18]), we propose the following
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two algorithms to obtain a solution of the original problem in
(7). First, we can simply set the largest NA components of the
solution of (16) to one, and the others to zero (called largest-
NA algorithm). Second, starting from this solution, we can use
the swap algorithm [19]. In this algorithm, for each run, one
checks whether there is a decrease in the objective function by
simply swapping one of the NA selected locations with one
of the

∣∣∣R̃∣∣∣ − NA locations that are not selected. The overall
procedure starting from R and NA is outlined in Algorithm
1, where zrelaxed, zlargest and zswap denote the optimal selection
vectors obtained from (16) (e.g., via CVX), the largest-NA

algorithm and the swap algorithm, respectively.

Algorithm 1 Proposed Anchor Placement Algorithm

Input: R, NA

Output: {y(k)}k∈I .
1: Discretize set R as R̃.
2: Find optimal selection vector zrelaxed by solving (16) (via

CVX) for set R̃.
3: Obtain zlargest from zrelaxed by setting largest NA compo-

nents of zrelaxed to one, and others to zero.
4: Run swap algorithm starting from zlargest to obtain zswap.
5: I ← {i | zswap(i) = 1}
6: Place anchors to {y(k)}k∈I .

D. Extension to Three-Dimensional Anchor Placement

Similar to the analysis in [14], our results can easily be
extended to three dimensional scenarios. In that case, ϕi(yj)
in (5) becomes

ϕi(yj) = [sin θi(yj) cosφi(yj)

sin θi(yj) sinφi(yj) cos θi(yj)]
ᵀ

where θi(yj) and φi(yj) denote, respectively, the azimuth and
polar angles in the direction from the target node at location
xi to the anchor node located at yj .

It is observed that after discretization and approximating the
anchor placement problem as the anchor selection problem,
Proposition 1 holds also for the three dimensional case as the
FIM is a linear function of the selection vector z (cf. (15)).
Hence, the proposed algorithms can be used for the three
dimensional anchor placement problem, as well.

IV. TDOA BASED ANCHOR PLACEMENT PROBLEM

In the TDOA based approach, the anchor nodes are syn-
chronized among themselves but they are not synchronized
with the target node. Therefore, there are additional unknown
parameters {∆i}NT

i=1, where ∆i characterizes the time offset
between the clocks of the target node located at xi and the
anchor nodes. Hence, (2) changes as follows:

τ
(l)
ij =

1

c

(
‖yj − xi‖+ b

(l)
ij + ∆i

)
(17)

As in the previous section, due to the difficulty of the con-
tinuous optimization problem (see (7)), we discretize the set
R as R̃. After the discretization, via similar steps to those in

[19], one can show that the CRLB related to the estimation of
the ith target location, xi, by anchor nodes is given by

fTDOA
i (S) ,

3
∑

k∈SL
i

∑
l∈SL

i
λ
(k)
i λ

(l)
i a

(k,l)
i

4
∑

k∈SL
i

∑
l∈SL

i

∑
m∈SL

i
λ
(k)
i λ

(l)
i λ

(m)
i ã

(k,l,m)
i

,

(18)

a
(k,l)
i , sin2

(
φ
(k)
i − φ(l)i

2

)
, ã

(k,l,m)
i , a(k,l)i a

(l,m)
i a

(m,k)
i .

Similar to Lemma 1, it can be proven that the objective
function

∑NT

i=1 wif
TDOA
i (S) can be written as a ratio of

two non-decreasing supermodular functions. In addition, after
relaxation, from Proposition 2 in [19], the anchor selection
problem for the TDOA based approach can be shown to be
convex, as well. Hence, the algorithms proposed for the TOA
based approach in the previous section can also be used for
TDOA based wireless localization networks.

Remark 1: Throughout the manuscript, a source localization
network is considered. However, due to the similarity of the
expressions for the FIMs, all the preceding analyses and
the proposed algorithms are also valid for self localization
networks (for both TOA and TDOA approaches).

Remark 2: In this manuscript, we rely on the perfect
knowledge of λ(k)i ’s. In fact, due to the monotonic behavior
of the CRLB with respect to λ

(k)
i ’s, it is straightforward to

extend the analyses if we have some uncertainty region for
each λ(k)i ’s as in [19].

V. SIMULATION RESULTS AND CONCLUSIONS

In this section, numerical examples are presented to evaluate
the proposed approaches in Section III. Examples are provided
for two different setups in which two and three dimensional
source localization networks are considered. In both setups,
we evaluate the performance of two algorithms, namely, the
largest-NA and the swap algorithms. We also compare their
performance with the lower bound provided by the solution
of the relaxed problem in (16).

A. Example of Two Dimensional Wireless Network
Consider a wireless source localization network as shown

in Fig. 1 (all locations are in meters). In particular, the anchor
nodes are placed in the region R = R1 ∪ R2, where R1 =
[0, 3] × ([0, 3] ∪ [8, 11]) and R2 = [8, 11] × ([0, 3] ∪ [8, 11]).
We provide two different discretizations of R by taking 196
and 676 points from R. (We take points from R for each 0.5
and 0.25 meters along both x and y directions for the first and
second setups, respectively.) Moreover, the number of possible
locations for the target node, NT , is equal to 129 as illustrated
in Fig. 1.

In the simulations, the same parameters as in [19], [20]
are used. In particular, α(l)

i (yj) and ξi(yj) are modeled
as α

(l)
i (yj) = ‖xi − yj‖−2 and ξi(yj) = 0. Hence,

λ
(k)
i is expressed as λ(k)i = 8πβ2

iEi/(c
2
∥∥xi − y(k)

∥∥2N0).
Also, the signal parameters are selected such that λ(k)i =

1/(
∥∥xi − y(k)

∥∥2N0) as in [20]. Also we set wi = 1/NT for
i = 1, . . . , NT . The average CRLBs are presented in terms of
meters, i.e., we take the square roots of the objectives.
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Fig. 1: Illustration of possible locations of target and anchor
nodes, together with optimal anchor locations (obtained from
the swap algorithm) when NA = 10 and N0 = 1 for two
different cases: (a)

∣∣∣R̃∣∣∣ = 196 and (b)
∣∣∣R̃∣∣∣ = 676.

Fig. 1 shows the cases of
∣∣∣R̃∣∣∣ = 196 and

∣∣∣R̃∣∣∣ = 676,
together with the optimal anchor locations obtained from the
swap algorithm when NA = 10 and N0 = 1. It is noted that
even though the number of points in R̃ increases, the optimal
placement strategy does not change effectively. Hence, it is
expected that the resulting CRLBs do not differ significantly
with respect to discretization once a sufficiently dense grid is
employed. Therefore, in the remaining examples, we use the
first setup and take 196 points from R̃, i.e.,

∣∣∣R̃∣∣∣ = 196.
Fig. 2 presents the average CRLB performance of each

algorithm versus NA for two different noise levels: N0 = 1
and N0 = 10. For the same setting, in Fig. 3, the average
CRLB performance of each algorithm is plotted versus 1/N0

for NA = 3 and 5. It is observed that the solution of the
relaxed problem is very close to the other two algorithms
in both Figs. 2 and 3. Therefore, the optimal solution of
the discretized anchor placement problem in (9) is practically
achieved in this scenario. Another important observation is that
the optimal placement strategy does not change with the noise
power, N0 since by changing N0, we scale all λ(k)i ’s with the

same factor. For example, in Fig. 2, the curve corresponding
to N0 = 10 is just the scaled version of the curve for N0 = 1.

3 4 5 6 7 8 9 10

N
A

100

A
v
e
ra

g
e
 C

R
L
B

 [
m

]

Relaxed

Largest-N
A

Swap

Fig. 2: Average CRLB versus NA for different algorithms
when N0 = 1 and 10.
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Fig. 3: Average CRLB versus 1/N0 for different algorithms
when NA = 3 and 5.

B. Example of Three Dimensional Wireless Network
In this part, we consider a wireless localization network

as in Fig. 4. In particular, the anchor nodes are placed in
R = {[x, y, z] | 0 ≤ x, y ≤ 10, z = 10} and for the
discretization we take points from R for each 0.5 meter along
both x and y directions such that the number of all points
in R̃ is equal to 441. Furthermore, the number of possible
target positions is equal to 121 as illustrated in Fig. 4. We
use the same simulation parameters as in the two dimensional
example except that to realize the shadowing effect, λ(k)i ’s are
multiplied by independent log-normal random variables with
a mean parameter of −3 and a variance parameter of 3. For
this purpose, we generate a matrix with dimensions 121×441
by using MATLAB (the seed is equal to 1), where the (i, k)th
element of this matrix corresponds to the log-normal random
variable for the channel between xi and y(k) as in [19].

Fig. 5 presents the average CRLB performance of each
algorithm versus NA for two different noise levels: N0 = 1
and N0 = 10. We see that when NA = 3, starting from the
solution of the largest-NA, via the swap algorithm, we obtain
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Fig. 4: Illustration of possible locations of target and anchor
nodes, together with the optimal anchor locations (obtained
from the swap algorithm) when NA = 10 and N0 = 1.
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Fig. 5: Average CRLB versus NA for different algorithms
when N0 = 1 and 10.

a solution very close to that of the relaxed algorithm. In other
words, in this scenario, we benefit from the swap algorithm.
Moreover, in Fig. 5 we again observe that by changing the
noise power, we only scale the objective value. For the same
setting, in Fig. 6, the average CRLB performance of each
algorithm is plotted versus 1/N0 for NA = 3 and 5. Again
the same observations can be made as those for NA = 3.

Overall, the proposed approach provides an effective solu-
tion to the anchor placement problem via discretization and
convex relaxation. The performance loss due to discretization
can be remedied by using a dense grid, and the suboptimality
due to convex relaxation can be mitigated via the swap
algorithm, as seen in the numerical examples.
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