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ABSTRACT 
The paper presents an approach to the Model Reference 

Adaptive Control (MRAC) design for nonlinear dynamical 
systems. A nonlinear reference system is considered such that its 
response is designed to be stable via Successive Approximation 
Approach (SAA). Having designed the stable reference model 
through the SAA, MRAC is then formulated for nonlinear plant 
dynamics with a new adaptation rule to guarantee the 
convergence of the nonlinear plant response to that of the 
response of the nonlinear reference model. The proposed design 
methodology is illustrated with examples for different case 
studies. 

 
INTRODUCTION 

 
Model Reference Adaptive Control (MRAC) design 

methodologies are studied for dynamical systems in frequency 
and time domains [1-5]. In general, a Linear Time Invariant (LTI) 
system is considered as a reference model whose response is the 
one to be followed by an unknown dynamical system. The 
control of the plant is established with the MRAC by using a 
suitable adaptation mechanism. The selection of the LTI 
reference model is mainly due to its stability property, which is 
guaranteed by the closed loop eigenvalues of the reference 
model. In addition, based on the LTI reference model, the 
adaptation rule can also be generated easily through some 
specified assumptions (see [1-5] and references therein). 

Provided that its stability is ensured, a nonlinear reference 
model could also be utilized. The advantages of using nonlinear 

reference model (instead of LTI one) are studied in [6-8]. It is 
stated that the adaptation of a nonlinear plant response to the 
response of a nonlinear reference model may be faster than to 
that of an LTI reference model [6-8]. The critical issue is that a 
stable nonlinear reference model is to be assigned so that the 
response of a dynamical (presumably nonlinear) system 
converges to the response of the stable nonlinear reference 
model. There are some approaches to create a stable nonlinear 
reference dynamics such as State Dependent Riccati Equation 
(SDRE) approach [6, 9] and Successive Approximation 
Approach (SAA) [10-12]. Among these publications, SDRE is 
combined with MRAC in [8] to design personalized drugs for 
cancer treatment and SAA is extended to MRAC design in [12]. 
In SAA methodology, the nonlinear system model is 
approximated as a sequence of linear time varying (LTV) 
dynamical systems, whose controller can be designed by the 
classical control approaches developed for the linear systems. 
The convergence of solutions of the LTV approximations to the 
solution of the nonlinear system has been proved in the literature 
(see [10 and 11] and references therein). Although extensive 
approaches like SDRE and SAA methodologies have been used 
successively to control several nonlinear problems, uncertain 
parameters or unmodeled dynamics may be encountered during 
practice. 

SAA is also synthesized with MRAC to control nonlinear 
dynamics of Multiple Input Multiple Output (MIMO) systems in 
[13]. In [13], it is assumed that the parameters and dynamics of 
the plant are the key in compounding SAA with MRAC, 
therefore, the optimal solution for the reference model is found 
first by using SAA. Then known plant dynamics is considered as 
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a sequence of LTV approximations and the LTV plant 
approximation with MRAC is stabilized. Thus, it proved that the 
solution of MRAC for LTV approximations approaches to the 
solution of the MRAC for nonlinear plant. All these procedures 
are done by considering fully known plant dynamics, which may 
violate the general assumptions of MRAC. 

In this paper, the assumption of known parameters in the 
plant dynamics is relaxed. The stability problem of the nonlinear 
reference model is reduced to the stabilizing controller design 
problem by using LTV approximations. The Linear Quadratic 
Regulator (LQR) scheme is utilized for this purpose. Then, the 
solution of the approximation of the reference model is 
considered as a reference model (trajectory) to MRAC approach 
for the stabilization of an unknown nonlinear plant. 

The rest of the paper is organized as follows: Section 2 
presents a basic overview of the SAA control methodology for 
nonlinear dynamics. Section 3 describes the main result of this 
paper, in which a new adaptation rule is derived for nonlinear 
systems. The methodology is illustrated with simulations in 
Section 4. Section 5 provides conclusions. 

 
SAA FOR NONLINEAR SYSTEMS: BACKGROUND 

 
LTV approximations for nonlinear systems is studied in [10, 

11] for different controller designs. Consider the following 
general nonlinear system, 

 

�̇ = �(�) + �(�)�(�),    �(0) = �� ∈ ℝ�.                          (1) 
 

The nonlinear system (1) may be represented in the so-called 
“pseudo-linear” form as, 

 

�̇ = �(�)�(�) + �(�)�(�),   �(0) = �� ∈ ℝ�                     (2) 
 

where �(�) ∈ ℝ�×� and �(�) ∈ ℝ�×� are state dependent 
matrices and are referred to State Dependent Coefficient (SDC) 
matrices. � ∈ ℝ� and � ∈ ℝ� are input and state vectors 
respectively. The pseudo-linear form allows one to design 
controller for the nonlinear system by using the design 
techniques for the linear dynamical systems. For instance, 
consider the optimal control problem for the following given 
performance index 

 

� =
�

�
������������+

�

�
∫ [��(�)�(�)�(�) + ��(�)�(�)�(�)]�� 

��

��
    (3) 

 

where � (�) ∈ ℝ�×� and � ∈ ℝ�×� are symmetric positive semi-
definite and �(�) ∈ ℝ�×� is symmetric positive definite 
matrices. To minimize the performance index of (3) with respect 
to pseudo-linear form of the nonlinear system (2), we may use 
the recursive LTV approximations for both the nonlinear system 
and the cost function. The first approximation is obtained by 
evaluating the SDC matrices at the initial conditions, which 
results in the LTI system and related performance index as, 

 

�̇[�](�) = �(��)�[�](�) + �(��)�[�](�),      �[�](0) = ��,       (4) 
 

�[�] =
�

�
�[�]�������[�]����+

�

�
∫ ��[�]�� (��)�[�]+ �[�]��(��)�[�]���,

��

��
   (5) 

 

For the LTI system in the first iteration, �= 1, the optimal 
feedback control can be achieved as follows 

 

�[�](�) = − �[�]�[�](�) = − ���(��)��(��)�[�]�[�](�)         (6) 
 

where �[�] is computed by solving the Algebraic Riccati 
Equation (ARE) 

 

�[�]�(��) + ��(��)�[�] − �[�]�(��)���(��)��(��)�[�](�) + � (��) = 0   (7) 
 

The LTV approximations for �> 1 are 
 

�̇[�](�) = � ��[���](�)� �[�](�) + ���[���]��[�](�), �[�](0) = ��,            (8) 
 

�[�] =
�

�
�[�]�������[�]����+

�

�
∫ ��[�]����[���](�)��[�]+

��

��

�[�]����[���](�)��[�]���,   

                  (9) 
 

At each iteration of the approximation sequence with �> 1, 
the problem becomes an LTV optimal control problem. The 
control of each iteration is given as follows 

 

�[�](�) = − �[�](�)�[�](�) = − ��� ��[���](�)� �� ��[���](�)� �[�](�)�[�](�)  

 (10) 
 

where �[�](�) = ��� ��[���](�)� �� ��[���](�)� �[�](�). The �[�](�) 

term is the solution of a sequence of matrix Differential Riccati 
Equation (DRE) 

 

�̇[�](�) = − �[�](�)� ��[���](�)� − �� ��[���](�)� �[�](�) +

�[�](�)� ��[���](�)� � �� ��[���](�)� �� ��[���](�)� �[�](�) − � ��[���](�)�,  

�[�]���� = �.     (11) 
 

The DRE of (11) is the final value problem, i.e. �[�]���� = �, 
and should be solved by backward integration. Then the ith 
closed-loop dynamical system becomes 

 

�̇[�](�) = �����[���](�)� �[�](�)                         (12) 
 

where 
 

�����[���](�)� = � ��[���](�)� −

���[���]���� ��[���](�)� �� ��[���](�)� �[�](�)�[�](�)                  (13) 
 

The solution of a sequence of LTV system converges to the 
solution of the nonlinear system (2) under some mild conditions, 
which are formulated in the following theorem. 

 
Theorem 1. Suppose that �(�) and �(�) satisfy the 

following conditions 
 

1. ��(�) ≤ ��   ∀� ∈ ℝ�, 
2. ‖�(�) − �(�)‖ ≤ �‖� − �‖    ∀�, � ∈ ℝ�, 
3. ‖�(�) − �(�)‖ ≤ �‖� − �‖    ∀�, � ∈ ℝ�, 
4. ‖�(�)‖ ≤ �    ∀� ∈ ℝ�, 
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where �(�(�)) is the logarithmic norm of �(�). Then 
approximations �[�] and �[�] in (8) and (10) converge to functions 
�(�) and �(�) in system (2) which minimize (3) over the set of 
feedback controls of the form − ���(�)��(�)�(�)�(�). 

 
Proof. The proof is given in [10]. 
 
The idea of using SAA will be used to create a stable 

nonlinear dynamics in the next section, which is then used as a 
reference model in the MRAC design problem. 

 
MRAC DESIGN FOR NONLINEAR SYSTEMS WITH SAA 

 
The SAA is extended to MRAC design for the control of 

nonlinear systems with unknown parameters. Consider a 
nonlinear reference model in the following pseudo-linear form, 

 

�̇� = ��(��)��(�) + ��(��)��(�), ��(0) = ��� ∈ ℝ� (14) 
 

where ��(��) ∈ ℝ�×� and ��(��) ∈ ℝ�×� are completely 
known SDC matrices. Based on the background given in Section 
2, optimal control may be designed for the reference nonlinear 
system (14) via SAA as follows, 

 

�̇�
[�](�) = ������

���
[�](�) + ������

���
[�](�),     ��

[�](0) = ���
 

⋮                                                             
�̇�

[���](�) = �����
[���]���

[���](�) + �����
[���]���

[���](�),   ��
[���](0) =

���
, �≥ 1 

 

�̇�
[�](�) = �� ���

[���](�)� ��
[�](�) + �����

[���]���
[�](�), 

    (15) 
 

where the full state feedback control for each iteration is 
 

��
[�](�) = − ��

[�]���
[���](�)���

[�]  (16) 
 

where ��
[�]( �) = �����[���]���

���[���]��[�](�) and �[�](�) is the 
solution of a sequence of DRE, as given in (11). 

We can represent the closed-loop nonlinear reference model 
dynamics as follows, 

 

�̇�
[�](�) = ����

(�)��
[�](�)   (17) 

 

where ����
���

[�], ��
[���]� = �����

[���]�− �����
[���]���

[�]��
[�]. 

 
By Theorem 1, the solution of sequence of LTV 

approximations approaches to the solution of nonlinear dynamic 
of (14). Therefore, we may consider the last iteration of (15) as 
the reference model and its states as the reference states to be 
followed by the plant. Then, the following unforced LTV system, 
with the desired trajectory, is considered as the reference model 

 

�̇�(�) = ����
(�)��(�)    (18) 

 

Corollary 1 Matrix ����
(�) ∈ ℝ�×� is bounded and 

uniformly stable, that is �����
(�)� ≤ �, ∀� ≥ 0,  where � < ∞  is a 

constant. 

Consider now the nonlinear plant dynamics given by (1), in 
which �(�) ∈ ℝ�×� and �(�) ∈ ℝ�×� and we assume that the 
input matrix of �(�) is known and the nonlinear term of �(�) is 
unknown. In addition, we assume that all states of (1) are 
measureable. One could represent the plant dynamics in the 
pseudo-linear form as defined by (2), in which the �(�) ∈ ℝ�×� 
is assumed to be unknown state matrix. The known �(�) matrix 
may be represented as a collection of constant �� and nonlinear 
��(�) matrices as follows, 

 

�(�) = ��  + ��(�), �� = �(0).   (19) 
 

For known �(�) and �(�) matrices, perfect model following 
may be achieved with the following controller, 

 

�(�) = − �∗(�)�(�)    (20) 
 

Assumption 1 There exists an ideal gain matrix, �∗(�) ∈

ℝ�×�, that results in perfect matching between the reference 
model and the plant such that 

 

�(�) − �(�)�∗(�) = ����
(�)(�)   (21) 

 

where ����
(�) ∈ ℝ�×� is uniformly stable (Hurwitz) matrix for 

all � ≥ 0 which is obtained from the last iteration of SAA. 
 
It should be noted that the exact values of the gains �∗(�) is 

not required, but its existence is essential. 
 
Assumption 2 We assume that �∗(�) is continuously 

differentiable, and its derivative is uniformly bounded, ��̇∗(�)� ≤

� < ∞  for all � ≥ 0. 
 
Since �(�) matrix is not known exactly, we use estimation 

of �∗(�) in (20) in the adaptive control 
 

�(�) = − �(�)�(�)    (22) 
 

where �(�) is the estimate of the ideal �∗(�) in (20). On the other 
hand, the following state and control parameter errors are 
considered; �(�) ≜ �(�) − ��(�), ��(�) ≜ �(�) − �∗(�) ;   ��(�) ≜

�(�) − ��. Substituting (22) into (2) yields the following closed-
loop dynamics 

 

�̇(�) = �(�)�(�) + �(�)���(�) + �∗(�)��(�)  

�̇(�) = ����
(�)�(�) + �(�)��(�)�(�), �(0) = ��, � ≥ 0.           (23) 

 

By adding and subtracting ����
(�)��(�) to the right-hand 

side of (23), the state tracking error dynamics is obtained as 
 
�̇(�) = �̇(�) − �̇�(�) = ����

(�)�(�) + �(�)��(�)�(�), �(0) = �� = �� −

���
, � ≥ 0.      (24) 

 

In addition, the control parameter error dynamics and �(�) 
matrix virtual errors are 

 

��̇(�) ≜ �̇(�) − �̇∗(�)      
�

��
(��(�)) ≜

��(�)

��
�̇(�) (25) 
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Now consider the following positive definite Lyapunov 
function candidate, 

 

� ���(�), ��(�), ��(�)� = �(�)���� (�)�(�) + ���������(�)��� ��(�) +

���(�) ���(�)��� ��(�)��(�)�          (26) 
 

where ��� (�) is the symmetric positive definite matrix, that 
satisfies the following Differential Lyapunov Equation for some 
��� (�) = ���

�(�) > 0, 
 

����

� (�)��� (�) + ��� (�)����
(�) + �̇�� (�) = − ��� (�)  (27) 

 

The time derivative of the Lyapunov function along the error 
trajectories is 

 

�̇ ���(�), ��(�), ��(�)� = − �(�)���� (�)�(�) + 2��(�)��� (�)�(�)��(�)�(�) + 

2���������(�)�����̇(�) + ���(�)���(�)�����(�)��̇(�) +

���(�)���(�)��� ���(�)

��
�̇(�)��(�)�    (28) 

 

The adaptation rule is then obtained from, 
 

��(�)��� (�)�(�)��(�)�(�)

+ ���������(�)�����̇(�) + ���(�)���(�)�����(�)��̇(�)

+ ���(�)���(�)���
���(�)

��
�̇(�)��(�)� = 0 

 

which gives 
 

��̇(�) + �
���(�)

�� ���(�)��(�)

���(�)

��
�̇(�)� ��(�) = −

���(�)��� (�)�(�)��(�)

�� ���(�)��(�)
 

      (29) 
 

One can separate equation (29) into two differential 
equations based on ��(�) and �(�) as follows, 

 

�̇(�) + �
���(�)

��� ���(�)��(�)�

���(�)

��
�̇(�)� �(�) = � �

����(�)��� (�)�(�)��(�)

��� ���(�)��(�)�
�  

    (30) 
 

�̇∗(�) + �
���(�)

�1 + ���(�)��(�)�

���(�)

��
�̇(�)� �∗(�)

= (1 − �) �
− ���(�)��� (�)�(�)��(�)

�1 + ���(�)��(�)�
� 

    (31) 
 

where � ∈ [1, ∞ ). The following theorem is the main result of this 
paper, which summarizes the new adaptation rule for the 
nonlinear system. 

 
Theorem 2. The nonlinear plant dynamics �̇ = �(�)� +

�(�)�, �(0) = ��, � ≥ 0 and the controller �(�) = − �(�)�(�) 
together with the adaptation law 

 

�̇(�) + �
���(�)

�1 + ���(�)��(�)�

���(�)

��
�̇(�)� �(�)

= � �
− ���(�)��� (�)�(�)��(�)

�1 + ���(�)��(�)�
� , �(0) = 0, � ≥ 0 

 

guarantees that all closed-loop signals in the error dynamics 
including  �(�) and ��(�) are bounded and that the tracking error 
�(�) ∈ ℒ� and �(�) → 0 as � → ∞ . 

Proof: Using the Lyapunov direct stability method by 
considering positive definite Lyapunov function candidate in 
(26), the derivative of the Lyapunov function along the system 
trajectories together with the control parameter error given in 
(29) will be �̇ ���(�), ��(�), ��(�)� = − �(�)��(�)�(�) ≤ 0, which 

implies that the error signals �(�), ��(�), ��� ��(�) are bounded. 
Then boundedness of ��(�), ��(�), ��(�) imply the boundedness of 
�̇(�). Further, second derivative of the Lyapunov function 
candidate is 

 

�̈ ���(�), ��(�), ��(�)� = − �̇�(�)��� (�)�(�) − �(�)�
�

��
���� (�)��̇(�)�(�)

− �(�)���� (�)�̇(�) 
 

In �(̈��(�), ��(�), ��(�)), the �(�),�̇(�) and �̇(�) are bounded 
functions. Also assuming that ��� (�) is satisfying Lipschitz 
conditions, i.e. ∀��, �� ∈ ℝ, |��� (��) − ��� (��)|≤ �|�� − ��|, the 
boundedness of �

��
���� (�)� is verified. Thus, �(̈��(�), ��(�), ��(�)) is 

bounded function of time, which implies that �̇ ���(�), ��(�), ��(�)� 

is uniformly continuous. Then, using Barbalats Lemma, one can 

verify that �̇ ���(�), ��(�), ��(�)� asymptotically tends to zero by 

time, which under the assumption of ��� (0) ≠ 0 implies 
���
�→ �

�(�) = 0.    

 
The following section illustrates the application of the new 

adaptation rule, which is formulated by (30). 
 

ILLUSTRATIVE EXAMPLES 
 
This section elaborates the proposed SAA based MRAC 

with two examples. In the first example, plant and reference 
model have similar nonlinear dynamical expressions, but 
parameters/coefficients are different. In the second example, we 
use the same reference model of the first example, but we 
consider structurally different nonlinear plant dynamics. The 
proposed MRAC design is illustrated with the simulations of the 
examples. 

 
Example 1. Consider the following nonlinear reference 

model dynamics 
 

�̇��
= ���

+ �� ; �̇��
= ���

+ ���

� + 4���
���

� + 2���

� + ���
�� 

 

We assume that all parameters and model dynamics are 
known. One of the possible representations of the reference 
model in the SDC form is as follows 
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��(��) = �
0 1

1 + ���
+ 4���

� 2���

�, ��(��) = �
1

���

� 

 

By using the SAA, we first design optimal control for the 
nonlinear reference model in order to have a desirable reference 
response to be followed by the nonlinear dynamical system. In 
the optimal control design stage, the following non-quadratic 
performance index is considered to be minimized by the control 
action. 

 

� =
1

2
��

������������+
1

2
� [��

�(�)�(�)��(�) + ��(�)�(�)�(�)]�� 
��

��

 

 

In this problem, the following constant weighting matrices 

are considered � = �
10 0
0 50

� and � = 1. Therefore, at each 

iteration, we shall solve the finite value problem of the following 
DRE, 

 

�̇[�] = − �[�]�����
[���]�− ��

����
[���]��[�](�)

+ �[�](�)����
[���]�1��

����
[���]��[�] − �

10 0
0 50

� 

 

 

 
Figure 1. Approximations of the first and second states of 

the reference model with SAA and nonlinear solution. 
 
The final-value matrix differential Riccati equations are 

solved in the time interval of � = [0  6] via backward integration. 

Final-value of �[�](�) at each iteration is taken as � = �[�]���� =

�[�](6) = �
5 0
0 5

�. 

 
The initial conditions for the simulations are, ��(0) =

[1, − 1]. The solution of LTV approximations converge to the 
solution of the nonlinear system. The simulation results for the 
reference model are depicted in Fig. 1. It is seen that the 
approximations converge to the solution of the nonlinear 
reference system and the 10th approximation almost fit in the 
solution of the nonlinear system. Figure 2 shows the control 
input and control gains of the reference model respectively. It 
should be noted that the presented control input in Fig. 2 is the 
control input of the 10th iteration of the approximations, which is 
the desired optimal control input to stabilize the nonlinear 
reference model. 

 

 

 
Figure 2. Control input and control gains of the reference 

model with SAA for the last (10th) iteration. 
 
Now consider the following plant nonlinear dynamics, 

which is similar to the reference nonlinear model but having 
different parameters. 

 

�̇� = 3�� + �; �̇� = 2�� + 3��
� + 2����

� + 5��
� + 3��� 
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The following SDC representation is used for the plant 
dynamics. 

 

�(�) = �
0 3

2 + 3�� + 2��
� 5��

�, �(�) = �
1

3��
� 

 

The positive definite matrix in the Lyapunov Equation, ��� , 

is considered to be as ��� = �
20 0
0 1

�. We assume that the �(�) is 

unknown but �(�) is known. Then we split the matrix as �(�) =

�� + ��(�) = �
1
0

�+ �
0

3��
� which yields 

���(�)

��
= �

0 0
0 3

�. Then, we 

can derive the adaptation rule as follows 
 

Δ(�) ≜ 1 + ���(�)��(�) = 1 + [0 3��]�
0

3��
�= 1 + 9��

�  

Π(�) ≜ ���(�)
���(�)

��
�̇(�) = [0 3��]�

0 0
0 3

��
�̇�

�̇�
�= 9���̇� 

��̇(�) + �
�(�)

�(�)
� ��(�) =
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Then ��̇(�) + �
����̇�

�� ���
�
� ��(�) =

����(�)�(�)�(�)��(�)

�� ���
�

. We consider 

� = 1.5, then 
 

�̇(�) + �
9���̇�

1 + 9��
�

��(�) = 1.5 �
− ���(�)�(�)�(�)��(�)

1 + 9��
�

� 

 

 

 
Figure 3. First and second states of plant with MRAC by 

considering adaptation rates of 100 and 1000. 

 

The numerical solutions related to the plant control whit the 
proposed MRAC are illustrated in Figures 3-4. The states of the 
plant using two different adaptation rates of 100 and 1000 are 
given in Fig. 3. Adaptive control input and control gains are 
depicted in Fig. 4. It is clearly seen that the proposed SAA based 
MRAC is capable of controlling the nonlinear plant dynamics. 

 

 

 
Figure 4. Plant control input and control gains with MRAC 

by considering adaptation rates of 100 and 1000. 
 
Example 2. Consider now the same nonlinear reference 

model dynamics as in example 1. However, we consider 
structurally different nonlinear plant dynamics for the second 
case study. The new nonlinear plant dynamics is given as 
follows, 

 

�̇� = 5�� + (2�� + 0.5)�; �̇� = 2��
� + 2���� + 5��

� + (2�� − 4��
� +

3����
�)� 
 

We choose the following SDC representation for the plant, 
 

�(�) = �
0 5

2�� + 2�� 5��
��,   �(�) = �

2�� + 0.5

2�� − 4��
� + 3����

�� 

 

Also we consider the following positive semi-definite, state 
dependent matrix for the Lyapunov equation, ���(�) =

�
��

� 0

0 5 + 20��
��. We assume that �(�) is unknown but �(�) is 
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known. Then, �(�) = �� + ��(�) = �
0.5
0

�+ �
2��

2�� − 4��
� + 3����

�� and 

therefore, 
���(�)

��
= �

2 0
− 12��

� + 3��
� 2 + 6����

� which yields, 

 

1 + ���(�)��(�) = 1 + [2�� 2�� − 4��
� + 3����

�]�
2��

2�� − 4��
� + 3����

��

= 1 + 4��
� + (2�� − 4��

� + 3����
�)�  ≜ Δ(�) 

 

Then, 
 

���(�)
���(�)

��
�̇(�)

= [2�� 2�� − 4��
� + 3����

�]�
2 0

− 12��
� + 3��

� 2 + 6����
��

�̇�

�̇�
�                                                               

= 4���̇� + (2�� − 4��
� + 3����

�){(− 12��
� + 3��

�)�̇� + (2 + 6����)�̇�}
≜ Π(�) 

 

 

 
Figure 5. First and second states of plant with MRAC by 

considering adaptation rates of 100 and 1000. 
 
Then, we can construct the following differential equation 

for ��(�) as ��̇(�) + �
�(�)

�(�)
� ��(�) =

����(�)�(�)�(�)��(�)

�(�)
. By considering � =

1.5, the following adaptation rule is obtained 
 

�̇(�) + �
Π(�)

Δ(�)
� �(�) = 1.5 �

− ���(�)�(�)�(�)��(�)

Δ(�)
� 

 

The numerical results for evaluation of the plant states are 
shown in Fig. 5 with two different adaptation rates of 100 and 

1000. Increasing the adaptation rate, a quicker stabilization may 
be reached. Fig. 6 illustrates the MRAC control input and the 
adaptive control gains for the plant with two adaptation rates of 
100 and 1000. The second case study reveals that the proposed 
MRAC approach is also capable of controlling the nonlinear 
plant with structurally different dynamics. 

 

 

 
Figure 6. Plant control input and control gains with MRAC 

by considering adaptation rates of 100 and 1000. 
 

CONCLUSIONS 
 
In this paper, a new MRAC methodology is introduced for a 

general class of nonlinear systems. The method is based on 
nonlinear reference model whose stability is designed by using 
SAA. The proposed MRAC derives a new adaptation rule to 
force the response of the plant to that of the nonlinear reference 
model. The proposed method is illustrated with two examples 
giving the capabilities of the proposed SAA based MRAC. The 
SAA based MRAC method studied in this paper is extended to 
drug delivery design for cancer treatment in [14]. The physical 
implementations of the proposed methodology will be the future 
study. 
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