
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/goms20

Outer approximation algorithms for convex vector
optimization problems

İrem Nur Keskin & Firdevs Ulus

To cite this article: İrem Nur Keskin & Firdevs Ulus (2023) Outer approximation algorithms for
convex vector optimization problems, Optimization Methods and Software, 38:4, 723-755, DOI:
10.1080/10556788.2023.2167994

To link to this article: https://doi.org/10.1080/10556788.2023.2167994

Published online: 09 Feb 2023.

Submit your article to this journal

Article views: 184

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/journals/goms20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2023.2167994
https://doi.org/10.1080/10556788.2023.2167994
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2023.2167994?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2023.2167994?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2023.2167994&domain=pdf&date_stamp=09 Feb 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2023.2167994&domain=pdf&date_stamp=09 Feb 2023

OPTIMIZATION METHODS & SOFTWARE
2023, VOL. 38, NO. 4, 723–755
https://doi.org/10.1080/10556788.2023.2167994

Outer approximation algorithms for convex vector
optimization problems

İrem Nur Keskin a∗ and Firdevs Ulus b

aDepartment of Industrial Engineering, Bilkent University, Ankara, Turkey; bDepartment of Industrial
Engineering, Bilkent University, Ankara, Turkey

ABSTRACT
In this study, we present a general framework of outer approxima-
tion algorithms to solve convex vector optimization problems, in
which the Pascoletti-Serafini (PS) scalarization is solved iteratively.
This scalarization finds the minimum ‘distance’ from a reference
point, which is usually taken as a vertex of the current outer approx-
imation, to the upper image through a given direction. We propose
efficient methods to select the parameters (the reference point and
direction vector) of the PS scalarization and analyse the effects of
these on the overall performance of the algorithm. Different from
the existing vertex selection rules from the literature, the proposed
methods donot require solving additional single-objective optimiza-
tion problems. Using some test problems, we conduct an extensive
computational study where three different measures are set as the
stopping criteria: the approximation error, the runtime, and the car-
dinality of the solution set. We observe that the proposed variants
have satisfactory results, especially in terms of runtime compared to
the existing variants from the literature.

ARTICLE HISTORY
Received 14 September 2021
Accepted 5 January 2023

KEYWORDS
Multiobjective optimization;
convex vector optimization;
approximation algorithms;
Pascoletti–Serafini
scalarization

MATHEMATICS SUBJECT
CLASSIFICATIONS (2020)
90B50; 90C25; 90C29

1. Introduction

Multiobjective optimization refers to optimizing multiple conflicting objectives simulta-
neously and it is a useful tool for many applications in various fields from finance to
engineering since, by the nature of applications, there may be a trade-off among several
objectives. For a multiobjective optimization problem (MOP), there is no single solution
optimizing all objectives. Instead, feasible solutions that cannot be improved in one objec-
tive without deteriorating in at least another objective, namely efficient solutions, are of
interest. In many applications, instead of finding the set of all efficient solutions, it is suf-
ficient to obtain the images of efficient solutions, namely the nondominated points, in the
objective space.

An optimization problem that requires minimizing or maximizing a vector-valued
objective function with respect to a partial order induced by an ordering cone C is referred

CONTACT Firdevs Ulus firdevs@bilkent.edu.tr Department of Industrial Engineering, Bilkent University, Ankara
06800, Turkey
∗Present address: Fuqua School of Business, Duke University, Durham, NC, USA

Supplemental data for this article can be accessed here. https://doi.org/10.1080/10556788.2023.2167994
This article has been corrected with minor changes. These changes do not impact the academic content of the article.

© 2023 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2023.2167994&domain=pdf&date_stamp=2023-07-10
http://orcid.org/0000-0001-9530-7889
http://orcid.org/0000-0002-0532-9927
mailto:firdevs@bilkent.edu.tr
https://doi.org/10.1080/10556788.2023.2167994

724 İ. N. KESKIN AND F. ULUS

to as a vector optimization problem (VOP) and it is also widely used in different fields: for
instance, see [11,22] for applications in financial mathematics.MOPs can be seen as special
instances of VOPs where the ordering cone is the nonnegative orthant. The terminology in
vector optimization is slightly different from the multiobjective optimization terminology.
In particular, for a minimization problem where the ordering cone is C, a minimizer is a
feasible solution that cannot be improved with respect to the order relation induced by C.
The image of a minimizer is then a C-minimal point in the objective space.

One of the most common approaches to obtain a minimizer for a VOP is to solve a
scalarization problem, which is a single objective optimization problem induced by the
VOP. In general, a scalarization model is parametric and has the potential to generate a
‘representative’ set of minimizers when solved for different sets of parameters. Through-
out, two scalarization methods will be used. The first one is the well-known weighted sum
scalarization [8], which is performed by optimizing theweighted sumof the objectives over
the original feasible region. In addition, we use the Pascoletti–Serafini (PS) scalarization
[20], which aims to find the closest C-minimal point from a given reference point through
a given direction parameter. Unlike weighted sum scalarization, it has the potential to find
all minimizers of a given VOP even if the problem is not convex.

In this paper, we focus on convex vector optimization problems (CVOPs). In the litera-
ture, there are iterative algorithms utilizing scalarizationmodels to generate an approxima-
tion of the set of all C-minimal points in the objective space. To the best of our knowledge,
the first such algorithm is proposed in 1998, by Benson, [4] and it is designed to solve
linear MOPs. It generates the set of all nondominated points in the objective space by iter-
atively obtaining improved polyhedral outer approximations of it. Later, this algorithm is
generalized to solve linear VOPs; moreover, using geometric duality results, a geometric
dual counterpart of this algorithm is also proposed, see [15]. In 2011, Ehrgott et al. [7]
extended the linear VOP algorithm from [15] to solve CVOPs. Then, in 2014, Löhne et al.
[18] proposed a similar algorithm and a geometric dual variant.

On the other hand, in 2003, Klamroth et al. [14] proposed approximation algorithms
for convex and non-convex MOPs. The mechanism of the outer approximation algorithm
for the convex case is similar to Benson’s algorithm [4]. Different from [4], in [14] the
selection for the reference point for the scalarization is not arbitrary. In [14], there is also
an inner approximation algorithm for the convex problems and the convergence rates of
both algorithms are provided for the biobjective case.

Recently, Dörfler et al. [6] proposed a variant of Benson’s algorithm for CVOPs that
includes a vertex selection procedure that also yields a direction parameter for the PS
scalarization. To compute the parameters, the algorithm solves quadratic programming
problems for the vertices of the current outer approximation.

In addition to the algorithms which solve PS scalarization (or equivalent models),
recently Ararat et al. [2] proposed an outer approximation algorithm that solves norm-
minimizing scalarizations. This scalarization does not require a direction parameter but
only a reference point, which is again selected among the vertices of the current outer
approximation.

The aforementioned algorithms differ in terms of the selection procedures for the
parameters of the scalarization. The ones from [6,14] require solving additional models to
select a vertex at each iteration. This feature enables them to provide the current approxi-
mation error at each iteration of the algorithm at the cost of solving a considerable number

OPTIMIZATION METHODS & SOFTWARE 725

of models. The rest of the algorithms do not solve additional models and they provide the
approximation error after termination. For the selection of the direction parameter, [7,14]
use a fixed point from the upper image; [6] uses the point from the inner approximation
that yields the minimum distance to the selected vertex; and [18] uses a fixed direction
from the interior of the ordering cone through the algorithm. Table 1 summarizes these
properties.

The main contributions of this paper can be listed as follows: (1) We present a general
framework of the outer approximation algorithms from the literature; (2) propose various
additional variants, which select the two parameters of the PS scalarizations in structured
and efficient ways; and (3) compare the performances through numerical tests. In par-
ticular, after proposing different direction selection rules and conducting a preliminary
computational study, we propose three vertex selection rules. Different from the vertex
selection rules from the literature, these rules are not based on solving additional single-
objective optimization problems, hence they are computationally more efficient. The first
one benefits from the clustering of the vertices. The second rule selects the vertices using
the adjacency information among them. For the last one, we employ a procedure that cre-
ates local upper bounds to the nondominated points. This procedure is first introduced
in the context of multiobjective combinatorial optimization, see for instance [5], and by its
design, it works only for convexMOPs. Togetherwith the proposed variants, we also imple-
ment some of the algorithms from the literature andwe provide an extensive computational
study to observe their behaviour under different stopping conditions.

In Sections 2 and 3,we provide the preliminaries and the solution concepts togetherwith
the scalarizationmodels used in the paper, respectively. In Section 4, we present the general
framework of the outer approximation algorithm; the construction of different direction
and vertex selection rules; and similar algorithms from the literature. We provide the test
instances and some preliminary computational results in Section 5. Section 6 includes the
main computational study where we compare the proposed variants with the algorithms
from the literature. Finally, we conclude the paper in Section 7.

2. Preliminaries

In this section, we provide the notation and definitions that are used throughout.
For p ≥ 2,Rp is the p dimensional Euclidean space and ‖·‖ is the Euclidean normonR

p.
The closed ball around a point a ∈ R

p with radius r>0 is denoted by B(a, r) := {y ∈ R
p |∥∥y− a

∥∥ ≤ r}. Moreover, we use the following notation: e := (1, . . . , 1)T ∈ R
p, ej ∈ R

p is
the unit vector with jth component being 1 and R

p
+ := {y ∈ R

p | y ≥ 0}.
Let S be a subset of R

p. The convex hull, conic hull, interior, closure, and boundary of
S are denoted by conv S, co S, int S, cl S, and bd S respectively. A vector z ∈ R

p \ {0} is a
recession direction of S, if y+ γ z ∈ S for all γ ≥ 0, y ∈ S. The set of all recession directions
of S is the recession cone of S and is denoted by rec S.

Let S ⊆ R
p further be a convex set. A hyperplane given by {y ∈ R

p | aTy = b} for some
a ∈ R

p \ {0}, b ∈ R is a supporting hyperplane of S if S ⊆ {y ∈ R
p | aTy ≥ b} and there

exists s ∈ Swith aTs = b. A convex subset F ⊆ S is called a face of S if λy1 + (1− λ)y2 ∈ F
with y1, y2 ∈ S and 0 < λ < 1 imply y1, y2 ∈ F. A zero-dimensional face is an extreme point
(or vertex) and a one-dimensional face is an edge of S. A recession direction z ∈ R

p \ {0}

726
İ.N

.KESKIN
A
N
D
F.U

LU
S

Table 1. Existing outer approximation algorithms to solve CVOPs.

Algorithm Finiteness / Convergence Choice of Direction
Vertex

Selection (VS) Models Solved for VS
Approximation

Error

Klamroth et al. [14] Convergence for biobjective Inner point (fixed) Distance to upper image Gauge-based Model At each iteration
Ehrgott et al. [7] – Inner point (fixed) Arbitrary – After termination
Löhne et al. [18] – Fixed Arbitrary – After termination
Dörfler et al. [6] – Inner point (changing) Distance to inner approximation Quadratic Model At each iteration
Ararat et al. [2] Finiteness Not Relevant Arbitrary – After termination

OPTIMIZATION METHODS & SOFTWARE 727

of convex set S is said to be an extreme direction of S if {v+ rz ∈ R
p | r ≥ 0} is a face for

some extreme point v of S, see [21, Section 18].
The set S is a polyhedral convex set if it is of the form S = {y ∈ R

p |ATy ≥ b}, whereA ∈
R
p×k, b ∈ R

k. This form is called a halfspace representation of S. If S has at least one vertex,
then it can also be represented as S = convVS + co convDS, whereVS ⊆ R

p andDS ⊆ R
p

are the finite sets of vertices and extreme directions of S, respectively. For a polyhedral
convex set S, we call two vertices adjacent if the line segment between them is an edge
of S.

The problem of finding the set of all vertices and extreme directions of a polyhedral
convex set S, given its halfspace representation is called the vertex enumeration problem.
Throughout, we employ the bensolve tools for this purpose [16,17]. In addition to the
vertices V and directions D of S, bensolve tools also yields the set of all adjacent vertices
Vv
adj ⊆ V of each vertex v ∈ V .
LetT ⊆ R

p be another subset ofRp. TheMinkowski sumof S andT is S+ T := {s+ t ∈
R
p | s ∈ S, t ∈ T}. Moreover, for α ∈ R, we have αS := {αs ∈ R

p | s ∈ S} and we denote
the set S+ (−1) · T simply by S− T := {s− t ∈ R

p | s ∈ S, t ∈ T}.

Definition 2.1: Let S,T ⊆ R
p. The Hausdorff distance between S and T is defined as

dH(S,T) := max{sup
s∈S

d(s,T), sup
t∈T

d(t, S)},

where d(t, S) := inf s∈S ‖t − s‖ is the distance from point t to set S.

The following result provides a simpleway ofmeasuring theHausdorff distance between
a polyhedral set and a convex subset of it. The proof is omitted since it follows the same
steps as the proof of [2, Lemma 5.3].

Lemma2.2: Let S and T be convex sets inR
p with rec S = recT andT ⊆ S. If S is polyhedral

convex with at least one vertex, then dH(S,T) = maxv∈VS d(v,T) where VS is the set of all
vertices of S.

LetC ⊆ R
p be a nonempty closed convex cone.C is said to be pointed ifC ∩ (−C) = {0}

and non-trivial if C 	= {0},C 	= R
p. If C is pointed and non-trivial, then a partial order≤C

is defined as follows: for all y1, y2 ∈ R
p, y1 ≤C y2 holds if and only if y2 − y1 ∈ C.

The dual cone of C is defined as C+ := {a ∈ R
p | ∀x ∈ C : aTx ≥ 0} and it is a closed

convex cone. If C ⊆ R
p is a polyhedral cone, then C+ is also polyhedral and can be writ-

ten as C+ = co conv {w1, . . . ,wl}, where w1, . . . ,wl ∈ R
p are the extreme directions of

C+ for some l ≥ 0. In this case, y1 ≤C y2 holds if and only if (wi)Ty1 ≤ (wi)Ty2 for all
i ∈ {1, . . . , l}.

LetC ⊆ R
p be a nonempty convex pointed cone. The following definitions are based on

the partial order≤C and they are well-known concepts in convex vector optimization.

Definition 2.3 ([19, Ch. 2, Definition 2.1]): For a set S ⊆ R
p, a point s ∈ S is aC-minimal

element of S if ({s} − C \ {0}) ∩ S = ∅. If C has nonempty interior and ({s} − intC) ∩ S =
∅, then s ∈ S is called a weakly C-minimal element of S. The set of all C-minimal (weakly
C-minimal) elements of S is denoted by MinC S (wMinC S).

728 İ. N. KESKIN AND F. ULUS

Figure 1. Illustrations of sets f (X), P (left) and solution concepts given by Definitions 3.1 (middle)
and 3.2 (right). The dashed lines show bd (conv f (X̄)+ C) (middle and right) and solid blue lines show
bd (conv f (X̄)+ C − ε{c}) (middle) and bd (conv f (X̄)+ C + B(0, ε)) (right).

Definition 2.4 ([19, Ch. 1, Definition 6.1]): A function f : R
n→ R

p is said to be
C-convex if f (λx+ (1− λ)y) ≤C λf (x)+ (1− λ)f (y) for all x, y ∈ R

n, λ ∈ [0, 1].

3. The problem

We consider a convex vector optimization problem given by

minimize f (x) with respect to ≤C subject to x ∈ X , (P)

where C is a closed convex pointed cone with a nonempty interior,X ⊆ R
n is a nonempty

closed convex set and f : Rn→ R
p is a continuous C-convex function given by f (x) :=

(f1(x), . . . , fp(x))T. Throughout, we assume that C is polyhedral, in particular, its dual
cone is given by C+ := co conv {w1, . . . ,wl}, and X is compact with nonempty interior.
f (X) := {f (x) ∈ R

p | x ∈ X } is the image of X under f and the upper image for prob-
lem (P) is defined as P := cl (f (X)+ C), see Figure 1. P is a closed convex set and
under the assumptions of the problem, P = f (X)+ C [2]. Moreover, the set of all weakly
C-minimal points of P is bdP [7].

Different from a single objective optimization problem, there are various optimality
and solution concepts for the problem (P). We will now introduce the solution concepts
that will be used throughout. A feasible point x̄ ∈ X of (P) is called (weak) minimizer, if
f (x) is (weakly) C-minimal element of f (X). In the context of multiobjective optimiza-
tion where the ordering cone is C = R

p
+, (weak) minimizers are referred to as (weak)

efficient solutions. Another important concept for the multiobjective case that will be used
through the rest of the paper is the ideal point, which is denoted by yI ∈ R

p and defined as
yIi := inf{fi(x) | x ∈ X } for i = 1, . . . , p.

Problem (P) is said to be bounded ifP ⊆ {y} + C for some y ∈ R
p. SinceX is assumed

to be compact, we know that problem (P) is bounded [18]. Below, we provide two solution
concepts for bounded convex vector optimization problems, which are motivated from a
set-optimization point of view [15]. The first solution concept depends on a fixed direction
parameter c ∈ intC. It is introduced in [18] as a ‘finite ε-solution’. Here we add the term
‘with respect to c’ to emphasize this dependence. The second one is free of a direction
parameter but depends on a norm in R

p.

OPTIMIZATION METHODS & SOFTWARE 729

Definition 3.1 ([18, Definition 3.3]): Let c ∈ intC be fixed. For ε > 0, a nonempty finite
set X̄ ⊆ X of (weak)minimizers is afinite (weak) ε-solutionwith respect to c if conv f (X̄)+
C − ε{c} ⊇ P .

Definition 3.2 ([2,6]): For ε > 0, a nonempty finite set X̄ ⊆ X of (weak) minimizers is a
finite (weak) ε-solution if conv f (X̄)+ C + B(0, ε) ⊇ P .

Illustrations of an upper image and Definitions 3.1 and 3.2 can be seen in Figure 1.
Note that both of these solution concepts yield an outer approximation to the upper

image. On the other hand, conv f (X̄)+ C is an inner approximation to P . The Hausdorff
distance between these inner and outer sets is bounded [6].Moreover, as the feasible region
X is compact, for any ε > 0, there exists a finite weak ε-solution (with respect to c) to
problem (P), see [18, Proposition 4.3] and [2, Proposition 3.8].

There are different solution approaches to solve bounded CVOPs in the sense of Def-
initions 3.1 or 3.2. The main idea of these approaches is to generate (weak) minimizers
for (P) in a structured way. One way of generating (weak) minimizers is to solve scalariza-
tion models. Below, we provide two well-known scalarization models together with some
results regarding them.

For a weight parameter w ∈ R
p, the weighted sum scalarization model is given by

minimizewTf (x) subject to x ∈ X . (WS(w))

Proposition 3.3 ([13, Corollary 5.29]): An optimal solution x ∈ X of (WS(w)) is a weak
minimizer of (P) if w ∈ C+ \ {0}. Conversely, for any weak minimizer x ∈ X , there exists
w ∈ C+ \ {0} such that x is an optimal solution of (WS(w)).

Pascoletti–Serafini scalarization [20] is given by

minimize z subject to f (x) ≤C v+ zd, x ∈ X , z ∈ R. (PS(v, d))

The parameters v, d ∈ R
p are referred to as the reference point and the direction, respec-

tively. The Lagrange dual of the PS problem can be written as

maximize inf
x∈X

wTf (x)− wTv subject to wTd = 1, w ∈ C+, (D-PS(v, d))

see [6,18]. Below, we provide some well-known results regarding (PS(v, d)) and
(D-PS(v, d)).

Proposition 3.4 ([18, Proposition 4.5]): If (x∗, z∗) ∈ R
n+1 is an optimal solution of

problem (PS(v, d)), then x∗ is a weak minimizer. Moreover, v+ z∗d ∈ bdP .

Remark 3.5: Note that f (x) ≤C v+ zd holds for some x ∈ X if and only if v+ zd ∈ P . To
see, assume f (x) ≤C v+ zd holds for some x ∈ X , that is, v+ zd − f (x) ∈ C holds. Then,
we have v+ zd ∈ {f (x)} + C ⊆ f (X)+ C = P . The other implication follows similarly.

The following propositions show the existence of an optimal solution to prob-
lem (PS(v, d)) under the assumptions of problem (P) together with some additional

730 İ. N. KESKIN AND F. ULUS

conditions on the problem parameters. Note that Proposition 3.6 is already stated in [18,
Proposition 4.4]. We still provide a proof of it as the one given in [18] has inaccuracies.1

Proposition 3.6: Let v ∈ R
p. If d ∈ intC, then there exist optimal solutions to (PS(v, d))

and (D-PS(v, d)). Moreover, the optimal values of the two problems coincide.

Proof: First, we show that there exists a feasible solution to (PS(v, d)). By the assumptions
on (P), there exists x̄ ∈ intX . Let z̄ := maxi∈{1,...,l}

(wi)T(f (x̄)−v)
(wi)Td + δ for some δ > 0, where

C+ = co conv {w1, . . . ,wl}. Note that z̄ is well defined since d ∈ intC, hence (wi)Td > 0
for all i ∈ {1, . . . , l}. It is not difficult to see that (x̄, z̄) is a feasible solution for (PS(v, d)).
Indeed, (x̄, z̄) is strictly feasible, hence a Slater point for (PS(v, d)). Hence, there exists an
optimal solution w∗ for (D-PS(v, d)) and the optimal values of the two problems coincide.

For the existence of an optimal solution for (PS(v, d)), we first show that for any feasible
solution (x, z) ∈ R

n+1, z is bounded below. AsX is compact, (P) is bounded, that is, there
exists a ∈ R

p such thatP ⊆ {a} + C. Then, by Remark 3.5, v+ zd ∈ {a} + C holds for any
feasible (x, z). This implies that for allw ∈ C+ we havewT(v+ zd − a) ≥ 0. SincewTd > 0
for all w ∈ C+ \ {0}, it is true that

z ≥ sup
w∈C+\{0}

wT(a− v)
wTd

= sup

{
wT(a− v)

wTd
| w ∈ C+, ‖w‖ = 1

}
=: z̃ ∈ R.

Then, without changing the problem, we may add the constraint: z̃ ≤ z ≤ z̄ to (PS(v, d)).
As the feasible region of the equivalent form is compact, (PS(v, d)) has an optimal solution.

�

Proposition 3.7 ([6, Proposition 3.7]): For v /∈ P , y ∈ intP and d = y−v, both (PS(v, d))
and (D-PS(v, d)) have optimal solutions and the optimal values coincide.

The next result states that using the primal-dual solution pair to problems (PS(v, d))
and (D-PS(v, d)), it is possible to find a supporting hyperplane to the upper image. It will
play a critical role in the description of the solution algorithm which will be discussed in
Section 4.

Proposition 3.8 ([18, Proposition 4.7]): Let v, d ∈ R
p and (x∗, z∗), w∗ ∈ R

p be the opti-
mal solutions for (PS(v, d)) and its Lagrange dual, respectively. If the optimal objective
function values of (PS(v, d)) and (D-PS(v, d)) coincides, then H := {y ∈ R

p | (w∗)�y =
(w∗)Tv+ z∗} is a supporting hyperplane for P at y∗ = v+ z∗d and H = {y ∈ R

p |
(w∗)Ty ≥ (w∗)Tv+ z∗} contains P .

Figure. 2 illustrates problem (PS(v, d)) and Proposition 3.8.

4. The algorithm and variants

In this section,wewill first provide themain framework of aCVOPalgorithm that solves PS
scalarizations iteratively and finds a finite weak ε-solution to problem (P) for a given ε > 0.
Then, wewill provide some variants based on selecting the parameters of the scalarizations.

OPTIMIZATION METHODS & SOFTWARE 731

Figure 2. Illustration of (PS(v, d)) and Proposition 3.8. The bluemarker shows the point v + z∗d and the
dashed red line shows the supporting hyperplaneH ofP at v + z∗d.

4.1. The algorithm

Weconsider a CVOP algorithm that starts with an outer approximation to the upper image,
iteratively updates it by solving PS scalarizations, and stops when the approximation is
fine enough. More specifically, it starts by solving (WS(wi)) for all i ∈ {1, . . . , l} where
wi’s are extreme directions of C+. Optimal solutions xi, i ∈ {1, . . . , l} of these problems
form the initial set of weak minimizers X̄ 0. Then, the initial outer approximation P0 of
P is set as P0 =⋂

i∈{1,...,l}Hi (lines 2, 3 of Algorithm 1), whereHi = {y ∈ R
p | (wi)

Ty ≥
(wi)

Tf (xi)}.
In the kth iteration, the vertices Vk of the current outer approximation Pk are con-

sidered and a vertex that was not used in the previous iterations, i.e. v ∈ Vk \ Vused is
selected. We will later discuss different vertex selection methods, some of which return
Vk
info 	= ∅. Vk

info stores triples (v, yv, zv) for the vertices v ∈ Vk \ Vused , where yv ∈ bdP
and zv = ∥∥yv − v

∥∥. In this case, an upper bound for the Hausdorff distance between Pk

and P , namely ĥ = maxv∈Vk\Vused
zv can be computed. If ĥ ≤ ε, the algorithm terminates

by letting Vk = ∅. Vk
info = ∅ means that the vertex selection method does not store any

information regarding the current vertices, see lines 6–12.
If Vk

info = ∅ or if the algorithm is not terminated as explained above, then (PS(v, d)) is
solved to find a weak minimizer xv, see Proposition 3.4. Note that if the direction param-
eter d is not fixed from the beginning of the algorithm, then it has to be computed before
this step. The selected vertex v is added to Vused and the corresponding weak minimizer
xv is added to set X̄ k (lines 13-16). If the current vertex is close enough to the upper image,
then the algorithm checks another vertex from Vk \ Vused . Otherwise, the current outer
approximation is updated by intersecting it with the supporting halfspaceH ofP at f (xv),
see Proposition 3.8. The vertices of the updated outer approximation are computed by solv-
ing a vertex enumeration problem (lines 18–20). The algorithm terminates if all the vertices

732 İ. N. KESKIN AND F. ULUS

of the current outer approximation are in ε distance to the upper image and returns a set
of weak minimizers X̄ .

Algorithm 1 Primal Approximation Algorithm for (P)
1: Vused = ∅, k = 0, solve = 1;
2: For i = 1, . . . , l: Solve (WS(wi)) to find an optimal solution xi;
3: Set X̄ 0 = {x1, . . . , xl} and P0 =⋂

i∈{1,...,l}{y ∈ R
p | (wi)Ty ≥ (wi)Tf (xi)};

4: Compute the set of vertices V0 of P0;
5: Fix rules for selecting a vertex from Vk and a direction parameter d;
6: while Vk \ Vused 	= ∅ do
7: [v,Vk

info]←SelectVertex(Vk,Vused);
8: if Vk

info 	= ∅ then
9: if ĥ = maxv∈Vk\Vused

zv ≤ ε then
10: Vk = ∅, solve = 0;
11: end if
12: end if
13: if Vk

info = ∅ or solve = 1 then
14: (If not fixed) compute dv such that dv ∈ intC and ‖dv‖ = 1;
15: Solve (PS(v, dv))/(D-PS(v, dv)). Let (xv, zv) and wv be optimal solutions;
16: Vused ← Vused ∪ {v}, X̄ k← X̄ k ∪ {xv};
17: if zv > ε then
18: ComputeH = {y ∈ R

p | (wv)Ty ≥ (wv)Tv+ zv};
19: Pk+1← Pk ∩H, X̄ k+1← X̄ k;
20: Compute the set of vertices Vk+1 of Pk+1;
21: k← k+ 1;
22: end if
23: end if
24: end while

X̄ k

Remark 4.1: In Algorithm 1, to obtain a coarser set of solutions, instead of adding all weak
minimizers to the solution set, one can add the ones which satisfy zv ≤ ε.

Later, we will discuss different rules for selecting the direction parameter and the ver-
tices, respectively in Sections 4.2 and 4.3. The following proposition holds for any selection
rule.

Proposition 4.2: When terminates, Algorithm 1 returns a finite weak ε-solution.

Proof: There exists optimal solutions xi to (WS(wi)) for all i ∈ {1, . . . , l} as X is compact
and f is continuous. Moreover, Hi = {y ∈ R

p | (wi)Ty ≥ (wi)Tf (xi)} ⊇ P = f (X)+ C
holds since xi is an optimal solution for (WS(wi)) and inf c∈C(wi)Tc = 0. Then, P0 ⊇ P .
Moreover, P0 has at least one vertex as C is pointed and (P) is bounded, see [21, Corollary
18.5.3]. Hence, we have V0 	= ∅ (consequently V0 \ Vused 	= ∅). By Proposition 3.3, the

OPTIMIZATION METHODS & SOFTWARE 733

initial solution set X̄ 0 = {x1, . . . , xl} consists of weak minimizers. See lines 2–4 of
Algorithm 1.

At iteration k, SelectVertex() returns a vertex v ∈ Vk \ Vused and Vk
info . First, consider

the case Vk
info = ∅. As dv ∈ intC is ensured (line 14), by Proposition 3.6, there exists solu-

tions (xv, zv) and wv to (PS(v, dv)) and (D-PS(v, dv)), respectively. By Proposition 3.4, xv is
a weakminimizer. Hence, for any iteration k, X̄ k is finite and contains only the weakmini-
mizers (line 16). By Proposition 3.8,H = {y ∈ R

p | (wv)Ty ≥ (wv)Tv+ zv} ⊇ P (line 18).
Since P0 ⊇ P and Pk+1 = Pk ∩H for all k ≥ 0, we have Pk ⊇ P for all k ≥ 0 through the
algorithm.

The algorithm terminates when Vk \ Vused = ∅. Assume this is the case after K itera-
tions. This suggests that each v ∈ VK is also an element ofVused , that is,VK ⊆ Vused (line
16) and zv ≤ ε for all v ∈ VK at termination (line 17). To show that X̄ K is a finite weak
ε-solution of (P) in the sense of Definition 3.2, it is sufficient to have

PK ⊆ conv f (X̄ K)+ C + B(0, ε). (1)

Similar to [2, Lemma 5.2], one can show that the recession cone of Pk isC for any k. Hence,
PK = convVK + C holds true. Then, for any p ∈ PK , there exist (λv)v∈VK ≥ 0 and c̄ ∈ C
such that

∑
v∈VK λv = 1 and p =∑

v∈VK λvv+ c̄. On the other hand, for each v ∈ VK ⊆
Vused , there exist xv ∈ X̄ K , zv ≤ ε such that (xv, zv) is an optimal solution of (PS(v, dv)).
In particular, there exists cv ∈ C such that v+ dvzv = f (xv)+ cv. These imply

p =
∑
v∈VK

λvv+ c̄ =
∑
v∈VK

λv(f (xv)+ cv − dvzv)+ c̄

=
∑
v∈VK

λvf (xv)+
∑
v∈VK

λvcv + c̄−
∑
v∈VK

λvdvzv.

Clearly,
∑

v∈Vk λvf (xv) ∈ conv f (X̄ K) and
∑

v∈VK λvcv + c̄ ∈ C. Moreover, as zv ≤ ε and
‖dv‖ = 1 for each v ∈ VK , we have

∑
v∈VK λvzvdv ∈ B(0, ε). Hence, p ∈ conv f (X̄ K)+

C + B(0, ε) and this implies (1) as p ∈ PK is arbitrary.
For the vertex selection rules that give Vk

info 	= ∅, assume ĥ = maxv∈VK\Vused zv ≤ ε

holds for some K. Note that if there exists a vertex v in VK ∩ Vused , then zv ≤ ε has to
be satisfied by the structure of the algorithm. Hence, for the vertices VK of PK , we have
zv ≤ ε. Similar steps for the previous case can be applied to show that X̄ K is a finite weak
ε-solution of (P). �

4.2. Direction selection rules

As explained in Section 1, algorithms from [7,18] follow the framework given by
Algorithm 1. In [18], a fixed direction parameter d is used within (PS(v, d)) and in [7],
dv is taken as p̂− v for a fixed point p̂ ∈ P . Before proceeding with the proposed direc-
tion selection rules, we use two examples (Examples 5.1 (for p = 2) and 5.2 provided in
Section 5.1) to show that the selection of d in [18] and p̂ in [7] affect the performance of
these algorithms significantly. The results are summarized in Table 2, in which we report
the number of scalarization models (SC) and the CPU time (T).2

734
İ.N

.KESKIN
A
N
D
F.U

LU
S

Table 2. Results for different d and p̂ values fixed for algorithms in [7,18], respectively.

Example 5.1 (p = 2, ε = 0.005) Example 5.2 (ε = 0.05)

d in [18] p̂ in [7] d in [18] p̂ in [7](
1
1

) (
0.1
1

) (
0.01
1

) (
0.001
1

) (
1
1

) (
0.1
1

) (
0.01
1

) (
0.001
1

) (
1
1

) (
0.1
1

) (
0.01
1

) (
100
100

) (
10
1000

) (
10

10000

)
SC 29 27 35 41 17 31 39 47 31 56 304 30 178 741
T 10.10 9.94 13.34 14.62 6.27 11.06 13.97 23.76 13.60 18.19 93.81 10.52 61.12 226.63

OPTIMIZATION METHODS & SOFTWARE 735

Figure 3. Three vertices of the current outer approximation are v1, v2 and v3. The adjacent vertices of
v1 (v2 and v1 + e2) and v2 (v1 and v3) and the directions based on the Adjacent vertices approach from
vertices v1 and v2 are illustrated.

Motivated by these results, we propose two additional selection rules for the direction
parameter to be used in PS scalarization.

Adjacent vertices-based approach (Adj): When the double description method is used to
solve the vertex enumeration problem (line 20 of Algorithm 1), the sets of adjacent ver-
tices for each vertex are also returned. We use this information to compute the direction
parameter for a given vertex. In particular, for each vertex v, the normal direction of a
hyperplane passing through the adjacent vertices of v is computed. The main motivation
for this selection rule is that the positions of the adjacent vertices depend on the curvature
of the upper image as they are formed by the supporting hyperplanes of the upper image
at points that are possibly close to the current vertex. This geometric intuition is illustrated
in Figure 3 for a two-dimensional setting.

Note that the adjacency list of a vertex may also contain extreme directions. If for a
vertex v, we have an adjacent extreme direction z, then it is known that the line segment
{v+ rz ∈ R

p | r ≥ 0} is a face ofPk. In these cases, we construct an artificial adjacent vertex
by moving the current vertex along the adjacent extreme direction, that is, we take v+ z.
An example of this case can be seen in Figure 3.

In general, a vertex may have more adjacent vertices than required. In that case, we
choose p of the vertices, vi1adj, . . . , vipadj and compute d ∈ R

p such that dTvi1adj = . . . =
dTvipadj, see line 3 of Procedure 2. Note that it is possible to obtain−d as the solution of this
system. On the other hand, by Proposition 3.6, if d ∈ intC we obtain a weak minimizer
by solving (PS(v, d)). Hence, we first check if one of two candidate unit normal vectors, d
or−d, is in intC. If this is not the case, we use a predetermined direction d ∈ intC where
‖d‖ = 1. In particular, we set d =

∑r
i=1 ci‖∑r
i=1 ci‖ , where c

1, . . . , cr are the extreme directions
of C.

Remark 4.3: For p = 2,C = R
2+, it is easy to show that either d ∈ intC or −d ∈

intC is satisfied (see Figure 3 for an illustration). However, this may not be true in
general for p ≥ 3 or for C 	= R

2+. Through our computational tests, we obtain some
counterexamples for p = 4. Even though we haven’t encountered this situation for
p = 3, it is still possible that ±d /∈ intR3+. See Figure 4 for an illustration, in which
vertex v = 0 ∈ R

3 has 4 adjacent vertices: v1adj = (−1, 1, 1)T, v2adj = (1, 1,−1)T, v3adj =

736 İ. N. KESKIN AND F. ULUS

Procedure 2 ChooseDirection(v,P)
1: Let v1adj, v

2
adj, . . . , v

s
adj be the vertices adjacent to v;

2: Pick p vertices vi1adj, . . . , v
ip
adj and let A = [vi1adj, . . . , v

ip
adj] ∈ R

p×p;

3: Compute d ∈ B(0, 1) satisfying ATd = e (d = A−Te
A−Te if A

−1 exists.);
4: if d ∈ intC then
5: return d
6: else if −d ∈ intC then
7: return −d
8: else
9: return d =

∑r
i=1 ci∑r
i=1 ci

, where c1, . . . , cr are the extreme directions of C.
10: end if

Figure 4. An example with p = 3, C = R
3+ for which d computed in line 3 of Procedure 2 is not in

±intR3+. In particular, the normal direction of the hyperplane passing thorough v2adj , v
3
adj , v

4
adj is d =

(0.2273, 0.1818,−0.5909)T.

(3.3,−2.2,−1.1)T, v4adj = (5,−4, 1)T. (Note that v, v1adj, . . . , v
4
adj are still extreme points

of the set conv {v, v1adj, . . . , v4adj} +R
3+. For illustrative purposes, the figure shows

conv {v, v1adj, . . . , v4adj}.) The normal direction d of the hyperplane passing through
v2adj, v

3
adj, v

4
adj satisfies d /∈ intR3+ and−d /∈ intR3+.

Ideal point-based approach (IP): For this approach, we assume that the ordering cone isR
p
+,

hence the ideal point yI is well defined. For a vertex v of the current outer approximation,we
consider the vector v− yI . Note that for the initial iteration, we have v− yI = 0. In the sub-
sequent iterations, we obtain v− yI ≥ 0 since Pk ⊆ P0 for any k throughout the algorithm.
For i ∈ {1, . . . , p}, we define di = 1

vi−yIi+ε̄
for some sufficiently small ε̄ > 0, which is added

for computational convenience. For the numerical examples, we take ε̄ = 10−5. Then d is
normalized such that ‖d‖ = 1. Geometrically, this corresponds to considering the points
(vi − yIi)ei for each i ∈ {1, . . . , p} and taking the normal direction of the hyperplane passing
through them.

OPTIMIZATION METHODS & SOFTWARE 737

4.3. Vertex selection rules

We propose different vertex selection rules that can be used within Algorithm 1. As will be
detailed in Section 4.4, there are algorithms from the literature using some vertex selection
rules that require solving additional optimization models, see [6,14]. Our motivation is
to propose vertex selection rules which are computationally less complicated yet have the
potential to increase the efficiency of Algorithm 1.
Vertex selection with clusters (C): This vertex selection rule clusters the vertices of the cur-
rent outer approximation and visits these clusters sequentially. The motivation is to ensure
that the vertices fromdifferent regions of the outer approximation are selected in a balanced
fashion.

The first step is to fix centres for the clusters, which can be done in different ways. For
this purpose, we first solve (PS(v, d)) for each vertex of the initial polyhedron P0. The cor-
responding supporting halfspaces are intersected with the current polyhedron to obtain
P1. The same procedure is repeated for P1 and the vertices of P2 are selected as the centres
of the clusters, see Procedure 3. It is possible to use the vertices of P1 to have fewer clusters
or continue in the same fashion and use the vertices of Pk for some k>2 to have more
clusters. Note that SelectCentres(V0,P0) has to be called right before line 6 of Algorithm 1.

Procedure 3 SelectCentres(V0,P0)
1: for k ∈ {0, 1} do
2: for all v ∈ Vk do
3: Solve (PS), let (xv, zv) be the optimal solution, X̄ ← X̄ ∪ {xv};
4: Find supporting halfspaceH of P at yv = v+ zvd, Pk+1← Pk ∩H;
5: end for
6: Compute the set of vertices Vk+1 of Pk+1;
7: end for
8: C = ∅.
9: for v ∈ V2 do
10: C ← C ∪ {v};
11: end for
12: return C

For the remaining iterations of Algorithm 1, each vertex of the current outer approxi-
mation is assigned to the cluster whose centre is the closest with respect to the Euclidean
distance.Whenever a vertex has to be selected, a vertex is chosen arbitrarily from the cluster
in turn. If there is no unexplored vertex assigned to the current cluster, then the algorithm
selects the next nonempty cluster. The pseudocode is given in Procedure 4.
Vertex selection with adjacency information (Adj): Recall that bensolve tools returns the
adjacency information for the vertices of the outer approximation. We use this to detect
‘isolated’ vertices of the current outer approximation. The motivation is to obtain uni-
formity among the vertices of the outer approximation and consequently, the C-minimal
points found on the boundary of the upper image as long as the geometry allows. For

738 İ. N. KESKIN AND F. ULUS

Procedure 4 SelectVertex(t,Vk,Vused , C)
1: Initialize the ith cluster with centre ci ∈ C as Ci = ∅ for i ∈ {1, . . . , |C|};
2: for all v ∈ Vk \ Vused do
3: Pick i ∈ argmini∈{1,··· ,|C|} ‖v− ci‖ and Ci← Ci ∪ {v};
4: end for
5: current ≡ t + 1 (mod |C|);
6: while Ccurrent = ∅ do
7: t← t + 1 and current← t + 1 (mod |C|);
8: end while
9: Pick an arbitrary v ∈ Ccurrent;
10: t← t + 1;
11: return v, t

each vertex v, the procedure finds the minimum distance, say distv, from v to its current
neighbours. Then, it selects the vertex which has the maximum distv, see Procedure 5.

Procedure 5 SelectVertex(Vk,Vused)
1: for all v ∈ Vk \ Vused do
2: Let Vv

adj be the set of vertices adjacent to v;
3: Let distv = minṽ∈Vv

adj

∥∥ṽ− v
∥∥;

4: end for
5: return v∗ ∈ argmaxv∈Vk\Vused

distv.

Vertex selection using local upper bounds (UB): This selection rule can only be used for
C = R

p
+. It is motivated by split algorithms, which are originally designed to solve multi-

objective integer programming problems, see for instance [3,5,12]. Themain idea is to find
a set of local upper bounds for the nondominated points and use them to select a vertex.

For this method, in line 1 of Algorithm 1, we additionally fix an upper bound u = Me
where M is a sufficiently large number such that {u} −R

p
+ ⊇ f (X) and we initialize the

set of upper bounds as U = {(u,∅)}. Here, ∅means that the upper bound u is not defined
based on any other (weakly) nondominated point found in the algorithm. Note that the
initial upper bound u satisfies that yI ≤ u. Through the algorithm, for any vertex v of Pk,
it is guaranteed that there exists a local upper bound u such that v ≤ u. Indeed, among all
the upper bounds satisfying v ≤ u, we fix the one that yields the minimum ‖v− u‖ value
as the ‘corresponding’ local upper bound for v.

Together with the vertex v to proceed, this method returns also the corresponding
local upper bound u where (u, y) ∈ U. Let (xv, zv) be an optimal solution for (PS(v, d)).
Using yv := v+ zvd ∈ bdP , p new upper bounds u1, . . . , up are generated as follows: for
j ∈ {1, . . . , p}, we set uji = ui for each i ∈ {1, . . . , p} \ {j} and ujj = yvj . Then, the list of upper
bounds is updated accordingly. To capture these changes, line 7 of Algorithm 1 is replaced
by

[v, (u, y),Vk
info]← SelectVertex(U,Vk,Vused);

OPTIMIZATION METHODS & SOFTWARE 739

and line 15 of Algorithm 1 is modified as in Procedure 6.

Procedure 6 Line 15 of Algorithm 1 for UB
Solve (PS(v, d))/(D-PS(v, d)). Let (xv, zv)/wv be optimal solutions and yv = v+ zvd;
for j = 1 : p do

uj← u, ujj← yvj , U ← U ∪ {(uj, yv)};
end for
U ← U \ {(u, y)};

For the vertex selection procedure, we first assign the corresponding upper bounds for
each vertex (line 3 of Procedure 7). Then, we choose v∗ ∈ Vk \ Vused , which has the great-
est distance to its corresponding local upper bound u∗ (lines 10 and 12 of Procedure 7).
Note that ‖v∗ − u∗‖ yields an upper bound for the current approximation error since we
have dH(Pk,P) = maxv∈Vk d(v,P) ≤ maxv∈Vk ‖v− uv‖ = ‖v∗ − u∗‖ , where uv denotes
the corresponding upper bound of v.3 As it will be detailed in Section 4.4, the algorithms
proposed in [6,14] also compute an upper bound for the approximation error during
any iteration. Different from them, UB does not solve optimization models to find this
approximation error.

Note that some upper bounds have components equal to M. This causes the distances
between v and its corresponding upper bound to be significantly large. To tackle this, the
modifications are made, see lines 4–9 of Procedure 7 for the details.

Procedure 7 SelectVertex(U,Vk,Vused)
1: Vk

info = ∅
2: for all v ∈ Vk \ Vused do
3: Let (û, ŷ) ∈ argmin{(u,y)∈U : v≤u} ‖v− u‖;
4: utemp = û;
5: for i = 1 : p do
6: if ûi = M then
7: utemp

i ← max{avg, ŷi}4;
8: end if
9: end for
10: ẑ = ∥∥v− utemp

∥∥ ,Vk
info ← Vk

info ∪ {(v, û, ẑ)};
11: end for
12: Let (v∗, u∗, z∗) ∈ argmax

(v,u,z)∈Vk
info

z, and let y∗ be such that (u∗, y∗) ∈ U;

13: return v∗, (u∗, y∗),Vk
info

Remark 4.4: For Procedure 7 to work correctly, wemodify Algorithm 1 slightly as follows:
In line 1, we initialize V0

info as an empty set and in line 19 we also update Vk+1
info ← Vk

info .
The same modification is also applied to the algorithms from the literature that will be
explained in Section 4.4.

740 İ. N. KESKIN AND F. ULUS

4.4. Algorithms from the literature

In this section, we briefly explain similar approaches from the literature, namely, Algorithm
KTW from [14], Algorithm DLSW from [6], and an algorithm from [2].5 The algorithm
from [2] does not totally fit into the framework of Algorithm 1 as it solves a different
scalarization model in each iteration. Here, we consider a variant of Algorithm 1, which is
motivated by the one from [2].

Algorithm KTW: The outer approximation algorithm provided in [14] is a special case of
the general framework given by Algorithm 1, applied to a maximization problem. Here,
we shortly explain it for problem (P). KTW assumes 0 ∈ P . In iteration k, it minimizes the
distance (with respect to an oblique norm) between the current outer approximation and
the upper image. To do that, for every vertex v ∈ Vk \ Vused , it solves:

maximize λ subject to f (x) ≤ λv, x ∈ X , λ ∈ R. (2)

Assuming (xv, λv) is an optimal solution to (2), v∗ ∈ argminv∈Vk\Vused
λv is selected in

Algorithm 1.
Problem (2) is equivalent to (PS(v, d)) with d = −v. Indeed, (xv, λ) is an optimal solu-

tion to (2) if and only if (xv, 1− λ) is an optimal solution to (PS(v,−v)). Note that KTW is
similar to the algorithm proposed in [7] in the sense that p̂ = 0 is fixed. However, different
from [7], the selection of the vertices in each iteration is not arbitrary in KTW.

For the examples from Section 5.1, it is not guaranteed that 0 ∈ P . To overcome this,
for the computational tests that will be presented in Section 6, we take p̂ as in (6). Then,
we modify the model given in (6) as:

maximize λ subject to f (x) ≤ p̂+ λ(v− p̂), x ∈ X , λ ∈ R. (3)

This simply corresponds to shifting the upper image as well as the vertices of the outer
approximation by p̂ ∈ P . To have a more efficient implementation to select the vertices,
we do not solve (3) for all v ∈ Vk \ Vused . Instead, we check if (3) is solved in previous
iterations.

Algorithm DLSW: Dörfler et al. [6] propose a vertex selection rule that uses the inner
approximation obtained in each iteration. Accordingly, for each vertex v of the current
outer approximation Pk, the following problem, which measures the distance from v to the
current inner approximation Ik := cl conv f (X̄ k)+ C, is solved:

minimize
∥∥y− v

∥∥2 subject to y ∈ Ik. (4)

Then, vertex v∗ which is the farthest away from the inner approximation is selected, that
is, v∗ ∈ argmaxv∈Vk\Vused

∥∥yv − v
∥∥, where yv is an optimal solution of (4). Moreover, d

is set to yv
∗−v∗∥∥yv∗−v∗∥∥ . An upper bound for the Hausdorff distance between the current outer

approximation and the upper image is found as
∥∥∥yv∗ − v∗

∥∥∥.
In [6], also an improved version of this algorithm is presented. Using the information

from the previous iterations, it is possible to skip solving (4) for some of the vertices. In
particular, for xk being the weak minimizer found in iteration k, if (4) is solved for some v

OPTIMIZATION METHODS & SOFTWARE 741

in the previous iterations and (yv − v)T(f (xk)− yv) ≥ 0 holds true, then the solution of (4)
for v in iterations k and k−1 are the same by [6, Theorem 4.4]. Hence there is no need to
solve (4) for v. See [6] for the details.

Algorithm AUU: Ararat et al. [2] propose an outer approximation algorithm to solve
CVOPs. Even though this algorithm is similar to Algorithm 1, it is different since instead
of (PS(v, d)), it solves the following scalarization:

minimize ‖z‖ subject to f (x) ≤C v+ z, x ∈ X , z ∈ R
p. (5)

Note that (5) does not require a direction parameter. Instead, it computes the distance zv
from v to the upper image, where (xv, zv) is an optimal solution. If one solves (5) for all
vertices of the current outer approximation Pk, then it is possible to compute the exact
Hausdorff distance between Pk and P as maxv∈Vk zv, where Vk is the set of vertices of Pk.
See [2] for the details.

As themainmotivation of this study is to compare the effect of parameter selection rules
for the PS scalarization, we consider a variant (namely, Algorithm AUU) of Algorithm 1
which is motivated by the algorithm from [2]. For AUU, we solve (5) only for parameter
selection for the PS scalarizations and we still execute line 14 of Algorithm 1. The direction
parameter is set as d = zv

‖zv‖ . Note that this is the direction that would yield the minimum
optimal objective function value for (PS(v, d)).

In [2], the vertex selection is arbitrary, however, a special vertex selection rule is dis-
cussed in [2, Corollary 7.4 and Remark 7.5] to obtain a convergence result. Here, for
algorithm AUU, we apply this vertex selection rule, that is, we solve (5) for each vertex
of Pk and select the one that is the farthest away from the upper image. This allows the
algorithm to provide the approximation error in each iteration rather than at termination.
Indeed, by Lemma 2.2, this approximation error is equal to theHausdorff distance between
P and the outer approximation. As in KTW, the solution of (5) for a vertex v is added to
Vk
info , if (5) is not solved for v in the previous iterations.

5. Test examples and preliminary results

Before we proceed with the main computational study, we provide the numerical examples
that will be used throughout. Moreover, to possibly decrease the number of variants to be
tested for the main computational study, we provide some preliminary results.

For the computational tests provided here and in Section 6, the algorithms are imple-
mented using MATLAB R2020b. The scalarizations are solved via CVX v2.2 [9,10] and
SeDuMi 1.3.4 [23]. Vertex enumeration problems are solved by bensolve tools [17], which
is a free solver providing commands for the calculus of convex polyhedra and polyhe-
dral convex functions for Octave and MATLAB. The computer specification that is used
throughout the computational study is Intel(R) Core(TM) i7-4790CPU @ 3.60GHz.

5.1. Test examples

Consider problem (P), where the ordering cone C is R
p
+; and objective function f : Rn→

R
p and feasible region X ⊆ R

n are given as follows:

742 İ. N. KESKIN AND F. ULUS

Example 5.1: f (x) = x, X = {x ∈ R
n | ‖x− e‖ ≤ 1, x ≥ 0} for n = p ∈ {2,3, 4}.

Example 5.2: 6 f (x) = (x, 1
x)

T, X = R+.

Example 5.3: 7 Four instances of the following example are considered for a ∈
{5, 7, 10, 20}:

f (x) = x, X =
{
x ∈ R

3∣∣ (x1 − 1
1

)2
+

(
x2 − 1

a

)2
+

(
x3 − 1

5

)2
≤ 1

}
.

Example 5.4: Three instances of the following example are considered for a ∈ {5, 7, 10}:

f (x) = x, X =
{
x ∈ R

4∣∣ (x1 − 1
1

)2
+

(
x2 − 1

a

)2
+

(
x3 − 1

5

)2
+

(
x4 − 1

1

)2
≤ 1

}
.

Example 5.5: f (x) = PTx, X = {x ∈ R
n | ATx ≤ b}, where P ∈ R

p×n, A ∈ R
m×n and

b ∈ R
m. For the computational tests, each component ofA and P is generated according to

independent normal distributions with mean 0, and variance 100; each component of b is
generated according to a uniform distribution between 0 and 10. Components are rounded
to the nearest integer for computational simplicity.

We consider examples where the ordering cone is the positive orthant, mainly because
some of the algorithms considered in our computational tests are designed to solve MOPs
only. However, Algorithm 1 can solve vector optimization problems with ordering cones
different from the positive orthant. To illustrate this feature, we consider Example 5.1 for
p ∈ {2, 3}with different ordering cones taken from [2]. The details and results are provided
as an online supplement.

5.2. A preliminary computational study

As a preliminary analysis, we compare the proposed direction selection methods with the
ones from the literature.

For the fixed point approach (FP) from [7], p̂ ∈ P is set as

p̂i := 2max{fi(x1), . . . , fi(xp)} − v0i , (6)

where xi is the optimal solution of (WS(wi)) for i ∈ {1, . . . , p} found in the initialization
step and v0 is a vertex of the initial polyhedron P0. Note that as the ordering cone is R

p
+,

we have v0 = yI . Moreover, it is not difficult to see that p̂ ∈ intP for all the test examples.
The direction parameter for a vertex v is set as d = p̂−v

‖p̂−v‖ . By Proposition 3.7, there are
optimal solutions to (PS(v, d)) and (D-PS(v, d)) under this direction selection rule. How-
ever, for the computational tests, we ensure d ∈ intRp

+ for computational simplicity and
to reduce the numerical issues. Accordingly, if d /∈ intRp

+ then we use the predetermined
direction d as in (Adj), which gives d = e

‖e‖ sinceC = R
p
+. For the fixed direction approach

(FD) from [18], d is also set to e
‖e‖ .

OPTIMIZATION METHODS & SOFTWARE 743

For our preliminary analysis, we employ different ‘simple’ vertex selection rules which
are summarized below.

• Closest to the Ideal Point (Id): Assume that the ordering cone isR
p
+ and the ideal point

yI is well-defined. Choose v ∈ Vk \ Vused such that ‖v− yI‖ is minimum.
• Farthest to an Inner Point (In): Choose v ∈ Vk \ Vused which yields the greatest

distance
∥∥p̂− v

∥∥, where p̂ is computed as in (6).
• Random Choice (R): Randomly choose a vertex among Vk \ Vused , using the discrete

uniform distribution. For the numerical examples, we run the same example five times
for this vertex selection rule.

For the test examples in Section 5.1, we run Algorithm 1 for direction selection rules
FD, Adj, IP, FP and vertex selection rules Id, R, In. For the total of 12 variants formed by
these parameter selection rules, we report the total number of scalarization models solved
(SC) as well as the total CPU time (T) required, see Table 3. The results for Example 5.5
display the averages over 20 randomly generated problem instances.

We observe that while no direction selection method consistently outperforms the oth-
ers for the same vertex selection method, FD and FP are outperformed by either Adj or IP
in almost all cases except two: In Example 5.1 with p = 4 and vertex selection rule R, FP
has the smallest SC; and in Example 5.4 with a = 7, FD has the smallest SC and T.

In Examples 5.2–5.4, FP consistently performs worse than the other direction selection
rules in terms of SC and T. On the other hand, in more than half of all the cases (21 out of
36) Adj performs the best among other direction selection rules, whereas IP performs the
best in around one-third of all the cases (13/14 out of 36). Based on these results, we fix
Adj as the direction selection rule for the main computational analysis.

When we compare the vertex selection rules for a given direction selection rule, we
observe that R performs the best in almost all instances. The reason that Id and In decrease
the algorithm’s performance may be the result of these methods’ tendency to choose ver-
tices that are close to each other, especially for certain problem instances. However, R also
has a disadvantage because it may not always provide consistent results.

6. Main computational results

In this section, we present a computational study on the examples listed in Section 5.1. We
compare the proposed variants with the algorithms discussed in Section 4.4. We use three
stopping criteria: the approximation error, CPU time, and cardinality of the solution set.

Recall that depending on our preliminary analysis from Section 5.2, we fix the direction
selection rule as Adj. On the other hand, we consider all vertex selection rules, namely C,
Adj, andUB as introduced in Section 4.3. In addition, we consider the random vertex selec-
tion, namely R, because of its good performance in our preliminary analysis in Section 5.2.
Since the direction selection rule is common, we simply call the proposed variants C, Adj,
UB, and R. For R, we solve each problem five times and report the average values.

Before presenting our computational study, we discuss two proximity measures. The
first one is the approximation error, which is the realized Hausdorff distance between the
upper image and the final outer approximation, i.e. dH(PK ,P). Note that AUU returns

744
İ.N

.KESKIN
A
N
D
F.U

LU
S

Table 3. Preliminary computational results for Examples 5.1–5.5.

FD Adj IP FP FD Adj IP FP

SC T SC T SC T SC T SC T SC T SC T SC T

Example 5.1, p = 3, ε = 0.005 Example 5.1, p = 4, ε = 0.05
Id 488 134.73 425 116.76 627 169.90 461 126.79 900 275.15 1099 328.62 600 177.79 682 205.87
R 461.2 127.60 392.2 107.55 388 105.51 407.8 111.29 460 153.96 460.6 140.05 420 126.76 416 128.83
In 502 134.40 420 111.77 457 118.89 436 114.06 755 232.26 605 183.87 – – – –

Example 5.2, ε = 0.005
Id 154 35.38 134 31.11 141 31.83 283 63.99
R 127.8 27.64 120.8 26.54 113 24.49 223.6 48.40
In 222 48.48 165 35.26 131 28.74 271 58.93

Example 5.3, a = 5, ε = 0.05 Example 5.3, a = 7, ε = 0.05
Id 142 38.28 155 41.79 114 31.45 187 50.10 150 39.71 134 35.55 160 42.25 291 77.27
R 125.8 33.56 102.4 27.34 109 29.03 173.4 46.60 123.2 32.77 111.4 29.85 115.4 30.55 204.6 54.62
In 120 31.73 116 30.77 124 32.63 180 47.67 146 38.97 113 30.77 120 31.98 224 60.08

Example 5.3, a = 10, ε = 0.05 Example 5.3, a = 20, ε = 0.05
Id 150 39.95 123 33.70 130 34.69 273 74.12 204 55.04 141 38.26 148 39.87 517 144.02
R 138.2 36.78 118.8 31.64 108.2 28.66 250.6 67.15 162 43.81 128.6 34.86 147.2 39.43 472.8 130.10
In 156 41.21 136 35.58 129 34.25 290 76.92 153 41.56 130 35.09 144 38.99 666 183.50

Example 5.4, a = 5, ε = 0.05 Example 5.4, a = 7, ε = 0.05
Id 5529 2085.90 2497 630.53 – – 7218 2806.85 8153 2538.08 – – 1973 646.46 7099 2938.67
R 1185 424.59 1107.4 379.02 – – – – 1247.4 450.86 1139 397.09 – – 3093.6 1567.57
In 2401 800.11 1584 526.82 – – 5742 2203.63 2956 1012.39 4969 1554.33 3452 1013.43 6327 2771.90

Example 5.4, a = 10, ε = 0.05
Id 3292 1120.34 2807 880.45 3050 937.37 – –
R 1359.6 498.34 1150.6 396.60 – – – –
In – – 2098 710.81 2106 683.75 11876 5970.35

Example 5.5, d = 2, ε = 10−8 Example 5.5, d = 3, ε = 10−8
Id 73.8 13.93 73.3 13.86 71.0 13.41 72.8 13.73 308.5 54.64 301.3 53.55 292.5 52.04 357.0 62.89
R 71.6 13.74 72.5 13.39 70.8 13.47 71.3 13.46 192.1 34.97 194.8 35.50 186.2 33.91 200.5 36.49
In 75.2 14.12 72.2 13.64 71.1 13.44 73.2 13.87 337.0 59.45 284.0 50.56 294.2 51.99 327.6 57.59

Notes: The columns and rows show the direction and simple vertex selection rules discussed in Section 4.2, respectively. Each instance is solved in 12 different settings and the smallest SC and T
values are indicated by boldface. For some of the instances, bensolve toolswas unable to perform vertex enumeration due to numerical issues. These are indicated by (-).

OPTIMIZATION METHODS & SOFTWARE 745

the exact dH(PK ,P) by its structure. For all the other algorithms, we compute the correct
Hausdorff distance using the vertices v ∈ VK , after the termination.

The second measure is the hypervolume gap, which is originally designed in the con-
text of multiobjective combinatorial optimization, see for instance [24], and recently used
for convex vector optimization [1]. Here, we use it similarly to [1]. Let Q ⊆ R

p be such
that Q ⊇ f (X) and VK be the vertices of the outer approximation at the termination
of the algorithm. Let � be the Lebesgue measure on R

p and �in := �((conv f (X̄ K)+
C) ∩Q),�out := �((convVK + C) ∩Q). Then, we compute the hypervolume gap as HG
= �out −�in.

Noting that the ordering cone is R
p
+ for all the examples from Section 5.1, the setQ is

taken as {u} − C, where upper bound u is set such that ui := maxx∈X fi(x) for i = 1, . . . , p.
For the examples that ui cannot be computed (e.g. Example 5.2), the upper bound is set as
ui = max fi(X̄ 1 ∪ . . . ∪ X̄ s), where s is the number of the variants of Algorithm 1 that we
solve the problem and X̄ i is the solution set returned by the ith variant. For Example 5.2, the
solutions found by the weighted-sum scalarizations at initialization are eliminated from X̄ i

when computing ui. This is because these solutions are excessively large in one component
and this causes bensolve toolsnot to perform the vertex enumeration as a result of numerical
issues.

In the tables throughout, we report the total number of models solved to choose a
vertex (VS), the number of scalarizations solved throughout the algorithm (SC), the car-
dinality of the solution set (Card), the CPU time (T), the realized approximation error
(Err), and the hypervolume gap (HG). Note that VS is positive only for the algorithms in
Section 4.4 as the others do not solve models to select vertices. The realized approximation
error is dH(PK ,P). For Example 5.5 with p = 3, we generate 20 instances as explained
in Section 5.1 and report the averages of the results; whereas, for p = 4, we generate 3
instances and report the results of each instance separately. We use the convhulln() func-
tion in MATLAB to compute HG values. The ones that could not be calculated are given
as (-) in the tables.

6.1. Computational results based on the approximation error

In this section, we solve the examples with a predetermined approximation error ε > 0,
that is, when the algorithms terminate it is guaranteed that the Hausdorff distance between
the outer approximation and P is less than ε. Tables 4 and 5 show the results for Exam-
ples 5.1–5.5, respectively. Since the realized errors are close to each other for all the
algorithms, the tables do not show Err values.Moreover, since the number of scalarizations
is the same as the cardinality of the solution set, Card is not reported separately.

For Example 5.4, we do not report the results for Algorithms AUU, DLSW, and KTW
since bensolve tools was unable to perform the vertex enumeration in some iterations. For
Example 5.5, DLSW results are not reported because of solver failures. Moreover, as the
upper images are polyhedral for Example 5.5, the algorithms have the potential to return
the exact upper image. We take ε sufficiently small (10−8), hence the proximity measures
are negligibly small and are not reported for these problems.

When Tables 4 and 5 are analysed, UB, R, C and Adj are faster than AUU, DLSW and
KTW in all examples even though they solve more scalarization problems. Note that in
Examples 5.1–5.3, AUU consistently solves the least number of scalarizations whereas, in

746
İ.N

.KESKIN
A
N
D
F.U

LU
S

Table 4. Computational Results for Examples 5.1–5.3 when the algorithms run until returning a finite weak ε-solution for provided ε values.

Example 5.1, p = 3, ε = 0.005 Example 5.1, p = 4, ε = 0.05 Example 5.2, ε = 0.005

Algorithm VS SC Time HG VS SC Time HG VS SC Time HG

AUU 572 124 206.63 0.0247 515 62 185.94 0.4366 387 39 141.46 2.1795
DLSW 1281 239 355.21 0.0095 2192 128 517.33 – 414 57 145.25 0.5875
KTW 901 143 256.86 0.0141 1735 74 524.39 0.4146 – – – –
UB 0 389 113.15 0.0111 0 496 171.27 0.244 0 103 33.18 0.9108
R 0 382.2 110.33 0.0104 0 449.8 145.61 0.2593 0 120.8 37.65 0.9166
C 0 414 120.94 0.0118 0 485 154.83 0.2593 0 112 34.75 0.7918
Adj 0 406 122.51 0.0117 0 462 147.07 0.2504 0 351 107.51 0.9107

Example 5.3, a = 5, ε = 0.05 Example 5.3, a = 7, ε = 0.05 Example 5.3, a = 10, ε = 0.05 Example 5.3, a = 20, ε = 0.05

Algorithm VS SC Time HG VS SC Time HG VS SC Time HG VS SC Time HG

AUU 160 43 62.21 2.0076 169 46 62.7 2.8207 170 47 64.01 4.1825 198 49 73.11 8.7898
DLSW 1531 66 252.83 1.5598 330 75 86.36 1.4369 1060 72 168.61 2.299 323 77 85.92 5.0659
KTW 299 63 84.64 0.8997 373 70 104.72 1.3481 327∗ 76∗ 93.49∗ – 1764 157 499.27 1.5611
UB 0 110 32.51 1.1933 0 112 33.36 2.0808 0∗ 90∗ 26.93∗ – 0 127 37.44 7.0989
R 0 102.2 29.49 1.3571 0 112.6 32.41 3.394 0 120.8 34.88 5.0066 0 133.2 38.72 4.8624
C 0 112 31.8 1.2773 0 113 32.57 2.9109 0 126 36.18 3.9589 0 148 42.88 4.8074
Adj 0 101 40.26 1.4888 0 119 37.11 1.824 0∗ 115∗ 40.66∗ – 0∗ 102∗ 40.05∗ –

Notes: For some instances of Example 5.3, the final plot of the outer approximating set was not accurate even though the approximations during the iterations seem to be correct. We indicate
these results by (·)∗.

O
PTIM

IZA
TIO

N
M
ETH

O
D
S
&
SO

FTW
A
RE

747

Table 5. Computational Results for Examples 5.4 and 5.5 when the algorithms run until returning a finite weak ε-solution, where ε = 0.05 for instances of
Example 5.4 and ε = 10−8 for instances of Example 5.5.

Example 5.4, a = 5 Example 5.4, a = 7 Example 5.4, a = 10

Algorithm VS SC Time VS SC Time VS SC Time

UB 0 1246 827.73 0 1295 909.46 0 1386 1019.63
R 0 1085 515 0 1137.8 550.34 0 1286 592.55
C 0 1163 598.77 0 1203 579.92 0 1183 529.31
Adj 0 1108 516.48 0 1203 580.53 0 1290 603.17

Example 5.5, p = 3 (avg) Example 5.5, p = 4 (ins 1) Example 5.5, p = 4 (ins 2) Example 5.5, p = 4 (ins 3)

Algorithm VS SC Time VS SC Time VS SC Time VS SC Time

AUU 602.45 99.6 196.72 5610 275 1672 667 80 233.4 2557 173 783.09
KTW 1139.5 96.85 291.07 14914 263 3763 1174 71 291.53 6531 157 1645.65
UB 0 226.65 61.33 0 861 319.7 0 161 47.08 0 427 137.02
R 0 195.2 51.32 0 517.6 177.4 0 125.8 32.92 0 331 92.86
C 0 231.55 63.89 0 1180 385.2 0 124 33.29 0 427 129.12
Adj 0 307.45 80.46 0 1103 338.9 0 147 41.75 0 635 181.58

748 İ. N. KESKIN AND F. ULUS

Figure 5. The outer approximations obtained after the first, second and third iterations of the KTW
algorithm for Example 5.2 are shown, where p̂ = (1.2, 1.2)T. In each figure, the selected vertex for the
corresponding iteration is indicated. Theminimal point to be found after the scalarization is the intersec-
tion of bdP with the dashed line between the selected vertex and p̂. Even though the approximation
gets finer in each iteration, the distances found by the KTW algorithm are 0.7619, 0.7633 and 0.7803,
respectively.

Example 5.5, KTW yields the smallest SC values. Moreover, AUU has shorter CPU times
compared to DLSW and KTW in each example. When we compare the proposed variants,
we observe that R generally provides better performance in terms of runtime for the lin-
ear problems (Example 5.5). Moreover, for nonlinear examples with p = 4 (Examples 5.1
and 5.4), UB is outperformed by R, C and Adj. For the rest of the examples, UB, R, C and
Adj have similar performances in terms of runtime. There is an exception in Example 5.2,
where Adj is outperformed by UB, R and C with a significant difference. However, Adj still
has a shorter CPU time than AUU, DLSW and KTW.

When we compare the HG values in Table 4, we observe that AUU yields higher HG
values than the others in most cases. The best HG values are obtained by DLSW or KTW,
except in Example 5.1, p = 4, in which UB yields the smallest HG.

Table 4 does not show the results for KTW for Example 5.2. Indeed, KTW can not solve
this example, whose feasible region is not compact and upper image has an asymptotic
behaviour. Because of this structure of the upper image, depending on the position of p̂,
KTW finds larger distances through the iterations even though the approximations get
finer. In order to illustrate this behaviour, we pick p̂ as (1.2, 1.2)T and perform a few iter-
ations of KTW, see Figure 5. Note that p̂ is selected as a point that is close to the boundary
ofP , for illustrative purposes. This behaviour of the algorithmmay be observed for any p̂,
but generally after a certain number of iterations. In our computations, we did not observe
this behaviour illustrated in Figure 5 mainly because we fix p̂ large enough. However, since
p̂ is large, it caused numerical issues.

6.2. Computational results under limited runtime

In this set of experiments, we run Examples 5.1–5.5 under a runtime limit and report the
proximity measures that the algorithms return in Table 6. For each example, around half of
the shortest CPU time obtained in Section 6.1 is set as the time limit. For the variants UB,
R, C and Adj, two different cardinality values are provided. The original value is greater
(which is also equal to SC), whereas the smaller value is found by using Remark 4.1.

In Example 5.5, for p = 3, we solve the same randomly generated instances that we
solved in Section 6.1. Since the CPU times for these instances differ significantly, the most

O
PTIM

IZA
TIO

N
M
ETH

O
D
S
&
SO

FTW
A
RE

749

Table 6. Computational results for Examples 5.1–5.5 when the algorithms run under runtime limit T.

Example 5.1, p = 3, T = 50 Example 5.1, p = 4, T = 75 Example 5.2, T = 15

Algorithm VS Err HG Card VS Err HG Card VS Err HG Card

AUU 95 0.0168 0.13 29 154 0.0783 – 28 31 0.0296 32.37 15
DLSW 139 0.0136 0.09 36 234 0.0707 1.07 32 37 0.0346 34.54 15
KTW 129 0.0183 0.12 27 183 0.0771 – 30 – – – –
UB 0 0.0057 0.04 124 (35) 0 0.0348 0.53 155 (80) 0 0.0283 0.90 44 (16)
R 0 0.0067 0.14 127.8 (44.4) 0 0.0338 0.55 169.2 (98.8) 0 0.0589 39.84 45 (16.2)
C 0 0.0054 0.09 120 (32) 0 0.0356 0.56 161 (95) 0 0.0129 12.46 42 (11)
Adj 0 0.0071 0.13 124 (32) 0 0.0359 0.66 166 (94) 0 0.0989 1.79 46 (27)

Example 5.3, a = 5, T = 15 Example 5.3, a = 7, T = 15 Example 5.3, a = 10, T = 15 Example 5.3, a = 20, T = 15

VS Err HG Card VS Err HG Card VS Err HG Card VS Err HG Card

AUU 25 0.4119 18.37 10 28 0.4138 25.64 11 28 0.4033 38.89 11 25 0.6616 100.51 11
DLSW 42 0.4625 23.34 9 33 0.6168 19.73 12 42 0.4424 – 12 35 0.2958 59.14 13
KTW 35 0.2274 8.48 12 34 0.1839 5.83 16 37 0.1953 10.32 16 36 0.3164 25.38 16
UB 0 0.1744 2.76 34 (14) 0 0.2163 4.09 35 (9) 0 0.4800 – 36 (9) 0 0.3712 12.00 37 (6)
R 0 0.5984 5.21 35.8 (10) 0 0.2862 8.38 36.4 (9.2) 0 0.8142 18.76 37 (11.2) 0 0.4522 33.37 37.4 (11.8)
C 0 0.1057 2.54 35 (8) 0 0.1494 4.99 36 (10) 0 0.1672 5.38 37 (7) 0 0.1878 12.45 37 (10)
Adj 0 0.2059 3.08 31 (10) 0 0.4557 6.11 35 (14) 0 0.1850 5.91 34 (11) 0 0.5074 11.54 37 (9)

Example 5.4, a = 5, T = 250 Example 5.4, a = 7, T = 250 Example 5.4, a = 10, T = 250

VS Err HG Card VS Err HG Card VS Err HG Card

UB 0 0.1010 – 392 (233) 0 0.1261 7.23 366 (211) 0 0.1010 – 382 (214)
R 0 0.2072 – 508.5 (164.5) 0 0.1825 – 480.4 (318.4) 0 0.2759 – 498.6 (329)
C 0 0.1678 – 452 (304) 0 0.1013 – 424 (276) 0 0.3343 – 519 (361)
Adj 0 0.2072 – 537 (378) 0 0.1312 – 504 (349) 0 0.1518 – 513 (351)

Example 5.5, p = 3, T = 50 (avg) Example 5.5, p = 4, T = 100 (ins 1) Example 5.5, p = 4, T= 15 (ins 2) Example 5.5, p = 4, T = 50 (ins 3)

VS Err HG Card VS Err HG Card VS Err HG Card VS Err HG Card

AUU 69.125 1.3145 15966.61 22.13 318 2.7899 3453462.73 38 43 11.3862 415587.08 12 182 2.9557 722544.84 26
DLSW 72.375 2.1944 22167.71 20.25 338 3.1038 2776469.82 33 41 5.6440 224514.46 13 175 3.2645 803350.19 21
KTW 98 0.9805 11919.47 26.25 403 4.8830 3176108.34 30 57 10.2325 182864.48 13 194 1.5588 408030.61 30
UB 0 1.1396 32596.53 95.38 (25.63) 0 1.2209 – 269 (101) 0 3.0480 – 56 (20) 0 1.0328 37740.57 165 (66)
R 0 2.8557 3564.33 91.75 (22.13) 0 2.5621 – 286.4 (82.6) 0 8.6336 23599.91 55.4 (14.4) 0 3.1134 42125.39 163.8 (44)
C 0 0.9553 2825.69 89 (21) 0 1.4384 139495.18 266 (111) 0 1.7226 13700.71 55 (18) 0 0.8621 – 150 (50)
Adj 0 1.0659 3209.04 92.5 (29.63) 0 1.8833 268168.59 336 (182) 0 0.8027 19003.47 57 (20) 0 1.1001 46920.04 180 (88)

Note: ε is taken as in Tables 4 and 5 even though it is not the stopping criteria.

750 İ. N. KESKIN AND F. ULUS

Figure 6. Approximation error results under runtime limits T ∈ {50, 100, 200} for Example 5.3, a = 5
when ε is taken as 0 (left) and 0.005 (right).

time-consuming 8 instances are selected, and the same runtime limit of 50 seconds is fixed
for them. The corresponding results in Table 6 are the averages over the 8 instances.

From Table 6, we observe that the solution sets returned by the variants (when
Remark 4.1 is applied for UB, R, C and Adj) have similar cardinality values for two and
three-dimensional examples. In Examples 5.2 and 5.3, C returned smaller approximation
errors compared to the other variants, in general. In Example 5.1 with p = 3, proposed
variants return smaller error values compared to the variants from the literature, but in
Example 5.5 with p = 3, there is no clear conclusion.

For four-dimensional problems, AUU, DLSW, and KTW returned solution sets with
smaller cardinality values than the others. In return, the approximation errors returned by
AUU, DLSW, and KTW are larger than UB, C, and Adj for these problems. On the other
hand,R behaves similarly toAUU,DLSW, andKTW. Inmost of the cases,HGvalues behave
similarly to Err. However, in Example 5.5 for problems with p = 3 and (ins 3) of p = 4, the
proposed variants return smaller HG, even though Err values are comparable among the
algorithms.

An additional computational study is conducted on Example 5.3 to observe the
behaviour of the algorithms as the time limit changes. The variants are terminated after 50,
100 and 200 seconds. In this set of experiments, we also observe the effect of ε used within
the variants UB, C, Adj and R even if the ε does not determine the stopping condition.
Since we do not select the farthest away vertex to proceed with, ε has still an important
role to decide if the algorithm would add a cut to the current outer approximation or
not. To observe this effect, we run all the variants for the above-mentioned time limits
both with ε = 0.005 and ε = 0. The results are provided as an online supplement and the
approximation errors obtainedwithin different time limits for a = 5 are shown in Figure 6.
8

As expected, the performance of AUU, KTW and DLSW are not affected by the change
in ε. On the other hand, an increase in ε affects the performance ofUB,C andAdj positively.
R is affected less compared to UB, C and Adj, while UB is affected significantly. Note that
the two variants that give the worst approximation error in each setting (UB and R for
ε = 0 and R and DLSW for ε = 0.005) are not plotted to increase visibility.

OPTIMIZATION METHODS & SOFTWARE 751

6.3. Computational results under fixed cardinality

In this section, we compare the performances of the algorithmswhen they run until finding
a solution set with a predetermined cardinality. For each example, we give a cardinality
limit so that the algorithms terminate before reaching the approximation error that is set
for the experiments in Section 6.1. In Example 5.5 where p = 3, the same 8 instances are
selected as in Section 6.2. For the variants UB, R, C, and Adj, we apply Remark 4.1. The
results can be seen in Table 7.

In line with the observations from Section 6.1, we observe from Table 7 that UB, R, C,
andAdj require less CPU time compared toAUU,DLSW, andKTW.Among the algorithms
from Section 4.4, DLSW requires less CPU time compared to AUU and KTW, especially if
the dimension of the objective space is high. When we compare the proposed variants, we
see that Adj is slightly faster than the others in most examples.

The approximation errors obtained by AUU, DLSW, and KTW are smaller than or very
close to those obtained by UB, R, C, and Adj, in general. This shows the trade-off between
the runtime and approximation error. When we compare the algorithms from Section 4.4,
AUUandKTWyield better results in terms of the approximation error compared toDLSW,
in general. On the other hand, the variants UB, R,C, and Adj are comparable among them-
selves. When we consider the HG values, we observe a similar behaviour as Err, especially
for problemswith p ∈ {2, 3}. However, in Example 5.5 the proposed variants return smaller
HG values even though the Err values are slightly worse than or comparable with the
algorithms from the literature.

7. Conclusion

We consider bounded convex vector optimization problems and present a general frame-
work for existing outer approximation algorithms from the literature. We observe that
many algorithms iterate by solving Pascoletti–Serafini scalarizations or equivalent mod-
els and they mainly differ in selecting the parameters of the scalarization in each iteration.
We propose additional methods to select the reference point (a vertex of the current outer
approximation) and direction parameter of this scalarization.

First, for a given vertex, we propose two methods to select the direction parameter.
These methods are based on the position of the selected vertex as well as (1) the ideal
point and (2) the adjacent vertices of the selected vertex, respectively. We compare the
proposed direction selection rules together with the ones commonly used in the litera-
ture through preliminary computational tests and observe that using the positions of the
adjacent vertices yields promising results. Hence, if the vertex enumeration problems are
solved based on the double description method (e.g. by bensolve) so that the adjacency
information is already obtained, then using Adj to select the direction parameter for each
vertex is preferable.

We also propose some vertex selection rules which, different from the existing ones in
the literature, do not require solving additional optimization problems. Instead, the pro-
posed selection methods use the positions of all vertices (1) to form clusters and select
accordingly, (2) to pick the most isolated vertex, or (3) to find the farthest away vertex
from its corresponding local upper bound, respectively.

752
İ.N

.KESKIN
A
N
D
F.U

LU
S

Table 7. Computational results for Examples 5.1–5.5 when the algorithms run until finding a solution set with predetermined cardinality (Card).

Example 5.1, p = 3, Card= 100 Example 5.1, p = 4, Card= 50 Example 5.2, Card= 20

Algorithm VS T Err HG VS T Err HG VS T Err HG

AUU 451 252.12 0.0062 0.03 401 197.53 0.0578 0.51 64 29.15 0.0197 14.98
DLSW 455 175.98 0.0065 0.03 430 144.85 0.0579 0.52 90 34.97 0.0188 16.06
KTW 695 266.51 0.0067 0.03 816 327.38 0.0614 – – – – –
UB 0 93.74 0.0196 0.03 0 62.20 0.1448 – 0 15.83 0.0283 11.77
R 0 51.98 0.0325 0.07 0 48.24 0.4142 1.13 0 16.81 0.2236 32.63
C 0 90.66 0.0195 0.07 0 54.12 0.0894 0.49 0 21.45 0.0129 81.53
Adj 0 84.96 0.0116 0.04 0 48.75 0.1281 1.02 0 11.72 0.0989 –

Example 5.3, a = 5, Card= 30 Example 5.3, a = 7, Card= 30 Example 5.3, a = 10, Card= 30 Example 5.3, a = 20, Card= 30

VS T Err HG VS T Err HG VS T Err HG VS T Err HG

AUU 98 50.51 0.0789 3.88 100 50.48 0.0789 4.32 104 52.06 0.0874 8.37 123 59.48 0.0877 15.77
DLSW 581 174.80 0.0979 4.22 106 41.22 0.1112 4.86 505 150.75 0.1122 7.70 104 41.40 0.1264 15.61
KTW 106 106.15 0.0543 1.96 102 78.82 0.0682 2.83 97 71.16 0.0639 4.07 116 76.91 0.0945 10.21
UB 0 25.14 0.0629 2.94 0 25.78 0.2163 6.36 0 26.66 0.1056 6.43 0 26.85 0.1256 7.29
R 0 25.27 0.1752 6.88 0 24.84 0.1677 8.97 0 25.59 0.2086 13.38 0 26.26 0.3129 15.93
C 0 24.32 0.1006 3.63 0 25.87 0.1184 5.71 0 26.10 0.1105 6.78 0 25.18 0.1827 7.98
Adj 0 23.34 0.1020 4.39 0 21.31 0.4557 7.82 0 24.69 0.1535 11.55 0 24.97 0.5069 7.84

Example 5.4, a = 5, Card= 100 Example 5.4, a = 7, Card= 100 Example 5.4, a = 10, Card= 100

VS T Err HG VS T Err HG VS T Err HG

UB 0 137.56 0.1221 – 0 131.28 0.1261 – 0 145.59 0.2072 –
R 0 112.89 0.4142 16.22 0 113.22 0.3092 – 0 115.72 0.4101 –
C 0 142.94 0.1039 9.28 0 148.59 0.1530 17.54 0 129.40 0.3343 –
Adj 0 100.93 0.175 7.48 0 99.75 0.2072 – 0 113.33 0.2226 –

Example 5.5, p = 3, Card= 50 (avg) Example 5.5, p = 4, Card= 125 (ins 1) Example 5.5, p = 4, Card= 40 (ins 2) Example 5.5, p = 4, Card= 75 (ins 3)

VS T Err HG VS T Err HG VS T Err HG VS T Err HG

AUU 204 72.53 0.2502 5573.2 2533 768.70 0.229 606958.2 266 87.09 0.4871 30354.2 1207 386.52 0.4436 121479.4
DLSW 233 81.98 0.4715 3567.4 3042 904.62 0.348 163459.1 298 95.81 0.3892 12517.2 2027 363.61 0.5809 79236.2
KTW 347.75 94.26 0.2564 4484.0 6457 1641.78 0.256 605558.1 609 156.71 0.2523 24715.2 1167 534.57 0.3119 138802.3
UB 0 41.84 0.3672 1025.2 0 110.63 1.221 163636.9 0 25.16 0.4871 4128.8 0 58.71 1.0328 27890.2
R 0 43.31 1.0093 1325.7 0 127.41 1.206 40282.1 0 26.85 0.3716 1112.3 0 65.57 0.9916 10856.6
C 0 46.17 0.4707 1051.4 0 106.68 0.450 118499.2 0 26.84 0.2489 876.6 0 63.51 0.8274 89151.3
Adj 0 36.08 0.6722 1860.9 0 79.83 1.883 331493.0 0 24.36 0.1966 1636.87 0 47.58 1.1001 54859.5

OPTIMIZATION METHODS & SOFTWARE 753

We implement the proposed vertex selection procedures together with the direction
selection rule Adj and three relevant approaches from the literature. We provide an exten-
sive computational study and observe that (especially when the ordering cone is the
positive orthant or a larger cone) the proposed variants perform better in terms of CPU
time if the stopping condition is the approximation error or the cardinality of the solution
set. On the other hand, the CPU times are comparable when the ordering cone is a strict
subset of the positive orthant.9

When the algorithms are run under a time limit, the proximity measures returned by
the proposed variants are either better than or comparable to the ones returned by the algo-
rithms from the literature. We also observe that the selection of ε affects the performance
of the proposed variants even when ε is not used as the stopping criterion.

We conclude that if a reasonably good direction selection method (e.g. Adj) is used in
the algorithm, then the vertex selection rule may have less impact on the performance of
the algorithm. Hence, solving additional single objective optimization problems to select
a vertex may not be necessary to improve the performance of the algorithm.

When we compare the overall performances of the proposed vertex selection methods,
there is no clear conclusion. Indeed, random selection works very well inmany cases, espe-
cially if the stopping condition is the approximation error. However, there are also some
cases for whichRworks considerably worse than the proposed variants, see for instance the
results for Examples 5.3 and 5.5 when the algorithms run until a predetermined runtime
or cardinality limit (Tables 6 and 7). In that sense, we conclude that Rmay not be as robust
as the proposed variants, as expected. As a final remark, note that if the ordering cone is
the positive orthant, then using UB has an advantage as it also returns an upper bound for
the current approximation error when it is terminated after a predetermined runtime or
cardinality limit.

Notes

1. In the proof of [18, Proposition 4.4], the feasible region of (PS(v, d)) is stated to be compact.
2. See Section 5 for the computer and solver specifications.
3. In addition to the ones from Section 4.2, different direction selection methods that are specifi-

cally designed forUB are discussed and tested. The details are provided as an online supplement.

4. avg is the average of ûi values that are not equal toM, that is avg =
∑

i : ûi 	=M ûi
|{i:ûi 	=M}| . Note that u

temp

is in P by construction and it is used only to compute a better upper bound for d(v,P).
5. The pseudocodes of the corresponding procedures are provided in the online supplement.
6. This example is bounded in the sense that the upper image is included in yI +R

2+ where
yI = 0 ∈ R

2. In theory, the weighted sum scalarizations for the initialization step, namely,
(infx∈R+ x) and (infx∈R+

1
x) do not have solutions as x = 0 is not in the domain of the problem

and (infx∈R+
1
x = 0) is not attained, respectively. For the computational tests, we manually set

the initial outer approximation as P0 = {0} +R
2+.

7. This set of examples is taken from [6].
8. The results for other a values are similar, hence the corresponding figures are not included here.
9. See the online supplement for the results with C 	= R

p
+.

Acknowledgments

The authors thank the anonymous referees for insightful comments that allowed them to correct
some inaccuracies appearing in the preceding version and for numerous suggestions that improved

754 İ. N. KESKIN AND F. ULUS

the presentation. They also thank Daniel Dörfler for his suggestions to improve the computational
results.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

İremNurKeskin received her bachelor’s andmaster’s degrees in Industrial Engineering fromBilkent
University in Ankara, Turkey. She is currently pursuing her Ph.D. studies in Decision Sciences at
Duke University’s Fuqua School of Business.

Firdevs Ulus is an assistant professor at Industrial Engineering Department in Bilkent University,
Ankara. She received her Ph.D. in Operations Research and Financial Engineering from Princeton
University, NJ in 2015. She also received a M.S. degree in Mathematics from Sabanc? University,
Istanbul in 2010. Her research interests are in vector and set optimization, convex program-
ming, multiobjective (mixed) integer programming, algorithms and applications from finance and
economics.

ORCID

İrem Nur Keskin http://orcid.org/0000-0001-9530-7889
Firdevs Ulus http://orcid.org/0000-0002-0532-9927

References

[1] Ç. Ararat, S. Tekgül, and F. Ulus, Geometric duality results and approximation algorithms for
convex vector optimization problems. SIAM Journal on Optimization (to appear), pp. 1–31.

[2] Ç. Ararat, F. Ulus, and M. Umer, A norm minimization-based convex vector optimization
algorithm, J. Optim. Theory. Appl. 194 (2) (2022), pp. 681–712.

[3] T. Bektaş, Disjunctive programming for multiobjective discrete optimisation, INFORMS. J.
Comput. 30 (4) (2018), pp. 625–633.

[4] H.P. Benson, An outer approximation algorithm for generating all efficient extreme points in the
outcome set of a multiple objective linear programming problem, J. Glob. Optim. 13 (1) (1998),
pp. 1–24.

[5] K. Dächert and K. Klamroth, A linear bound on the number of scalarizations needed to solve
discrete tricriteria optimization problems, J. Glob. Optim. 61 (4) (2015), pp. 643–676.

[6] D. Dörfler, A. Löhne, C. Schneider, and B. Weißing, A Benson-type algorithm for bounded con-
vex vector optimization problems with vertex selection, Optim. Methods Softw. 37(3) (2022),
pp. 1006–1026.

[7] M. Ehrgott, L. Shao, and A. Schöbel, An approximation algorithm for convex multi-objective
programming problems, J. Glob. Optim. 50(3) (2011), pp. 397–416.

[8] S. Gass and T. Saaty, The computational algorithm for the parametric objective function, Nav.
Res. Logist. Q. 2(1-2) (1955), pp. 39–45.

[9] M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in Recent
Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds., Lecture Notes
in Control and Information Sciences, Springer-Verlag Limited, 2008, pp. 95–110.

[10] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, March
2014. Available at http://cvxr.com/cvx.

[11] A. Hamel, B. Rudloff, and M. Yankova, Set-valued average value at risk and its computation,
Math. Financ. Econ. 7(2) (2013), pp. 229–246.

http://orcid.org/0000-0001-9530-7889
http://orcid.org/0000-0002-0532-9927
http://cvxr.com/cvx

OPTIMIZATION METHODS & SOFTWARE 755

[12] T. Holzmann and J.C. Smith, Solving discrete multi-objective optimization problems using
modified augmented weighted Thebychev scalarizations, Eur. J. Oper. Res. 271 (2) (2018),
pp. 436–449.

[13] J. Jahn, Vector Optimization–Theory, Applications, and Extensions, Springer, 2004.
[14] K. Klamroth, J. Tind, andM.M.Wiecek,Unbiased approximation in multicriteria optimization,

Math. Methods Oper. Res. 56 (3) (2003), pp. 413–437.
[15] A. Löhne, Vector Optimization with Infimum and Supremum, Springer, 2011.
[16] A. Löhne and B. Weißing, BENSOLVE: A Free VLP Solver, Version 2.0.1, 2015. Available at

https://bensolve.org/.
[17] A. Löhne and B. Weißing, The vector linear program solver bensolve–notes on theoretical

background, Eur. J. Oper. Res. 260(3) (2017), pp. 807–813.
[18] A. Löhne, B. Rudloff, and F. Ulus, Primal and dual approximation algorithms for convex vector

optimization problems, J. Glob. Optim. 60(4) (2014), pp. 713–736.
[19] D. Luc,Theory of Vector Optimization, Lecture Notes in Economics andMathematical Systems,

Vol. 319, Springer Verlag, 1989.
[20] A. Pascoletti and P. Serafini, Scalarizing vector optimization problems, J. Optim. Theory. Appl.

42(4) (1984), pp. 499–524.
[21] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
[22] B. Rudloff and F. Ulus, Certainty equivalent and utility indifference pricing for incomplete

preferences via convex vector optimization, Math. Financ. Econ. 15(2) (2021), pp. 397–430.
[23] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,

Optim. Methods Softw. 11 (1-4) (1999), pp. 625–653.
[24] E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and

the strength Pareto approach, IEEE Trans. Evol. Comput. 3(4) (1999), pp. 257–271.

https://bensolve.org/

	1. Introduction
	2. Preliminaries
	3. The problem
	4. The algorithm and variants
	4.1. The algorithm
	4.2. Direction selection rules
	4.3. Vertex selection rules
	4.4. Algorithms from the literature

	5. Test examples and preliminary results
	5.1. Test examples
	5.2. A preliminary computational study

	6. Main computational results
	6.1. Computational results based on the approximation error
	6.2. Computational results under limited runtime
	6.3. Computational results under fixed cardinality

	7. Conclusion
	Notes
	Acknowledgments
	Disclosure statement
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

