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A joint fractional domain signal representation is proposed based on an intuitive understanding from a time-
frequency distribution of signals that designates the joint time and frequency energy content. The joint frac-
tional signal representation (JFSR) of a signal is so designed that its projections onto the defining joint frac-
tional Fourier domains give the modulus square of the fractional Fourier transform of the signal at the
corresponding orders. We derive properties of the JFSR, including its relations to quadratic time-frequency
representations and fractional Fourier transformations, which include the oblique projections of the JFSR. We
present a fast algorithm to compute radial slices of the JFSR and the results are shown for various signals at
different fractionally ordered domains. © 2008 Optical Society of America

OCIS codes: 070.0070, 070.2575.

1. INTRODUCTION

One of the major areas of research in time-frequency sig-
nal processing is the design of novel time-frequency rep-
resentations that are utilized to analyze and process non-
stationary signals [1,2]. As time-frequency distributions
do not always convey desirable qualifications in every ap-
plication, the demand for powerful signal representations
has led to a substantial amount of research on the design
of 2D signal representations defined by alternative vari-
ables other than time and frequency. Joint time-scale rep-
resentations, which have attracted much interest espe-
cially in the fields of sonar and image processing,
constitute one of the earliest examples of this type of rep-
resentation. Other popular choices of joint variables in-
clude higher derivatives of the instantaneous phase of
signals for radar and sonar problems [3,4]; dispersive
time-shifts for wave propagation problems and analogs of
quantum mechanical quantities such as spin, angular mo-
mentum, and radial momentum [5]; and scale-hyperbolic
time, warped time-frequency, and warped time-scale.
Such signal representations have been derived by using
two alternative approaches that are both based on the op-
erator theory: the variables are associated with either
Hermitian operators as in [2] or unitary operators as in
[5]. Similarly, a joint fractional signal representation has
been derived in a mathematical framework by associating
Hermitian fractional operators to fractional Fourier
transform (FrFT) variables constituting the joint distribu-
tion [6].

The fractional Fourier domains are the set of all do-
mains interpolating between time and frequency [7,8].
The associated transform, FrFT with order a transforms
a signal into the ath-order fractional Fourier domain and
the ath-order FrFT of x(¢) is given by [9]
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x4 (t) E{f“x}(t)=f3a(t,t’)x(t’)dt', -2<a<2, (1

where

e—j(w sgn(a)/4+¢/2)

s (12 ' 12
Ba(t,t,) — e/-rr(t cot ¢-2tt" csc p+t'“ cot ) (2)

|sin d)‘ 1/2

is the transformation kernel, ¢=a(7w/2) and sgn() is the
sign function.

The fractional Fourier domains corresponding to a=0
and 1 are the time and frequency domains, respectively.
The FrFT with an order parameter a=qa, transforms a
signal into the agth-order fractional Fourier domain,
which is oriented by ¢y=aqm/2 with respect to the time
axis in the counterclockwise direction as illustrated in
Fig. 1. The FrFT has found many applications in signal
processing [10-16], optics, diffraction theory, optical
propagation, and optical signal processing [17-20].

In this paper, we derive the joint fractional signal rep-
resentation (JF'SR), which designates the energy contents
of signals in fractional Fourier domain variables instead
of time and frequency. To this end, rather than using cum-
bersome mathematical equations based on operator
theory, we extend our intuitive understanding from a
time-frequency distribution, i.e., a function that desig-
nates joint time and frequency contents of signals. Then,
we derive some important properties of the JFSR includ-
ing its relation to quadratic time-frequency representa-
tions and fractional Fourier transformations, and present
a simple formula for its oblique projections. We also
present a fast algorithm to compute radial slices of the
JFSR and numerically computed JFSRs of some synthetic
signals.

© 2008 Optical Society of America
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Fig. 1. agth-order fractional Fourier domain makes an angle of
do=ay(m/2) on the time-frequency plane.

The outline of the paper is as follows. In Section 2, a
concise derivation of JFSR is presented and some of its
properties are provided. After presenting a fast computa-
tion algorithm in Section 3, JFSRs of some synthetic sig-
nals are numerically computed in Section 4. Finally, con-
clusions are drawn in Section 5.

2. DISTRIBUTION OF SIGNAL ENERGY ON
JOINT FRACTIONAL FOURIER
DOMAINS

One of the primary expectations from a time-frequency
distribution D, (¢,f) associated with a signal x(¢) is that it
accurately represents the energy distribution of x(¢). It is
desired that the signal energy at a frequency f for a time
instant ¢ is given by D,(¢,/). Because of the uncertainty
relationship between time and frequency domains, it is
impossible to satisfy this pointwise energy density re-
quirement. Therefore, one must usually be satisfied with
a looser condition on the marginal densities

fD(t,f)df= l(@)]?, 3)

fD(t,f)dt = X%, (4)

and integration of the distribution on the whole time-
frequency plane

f f DAt fdtdf = |2, (5)

where X(f) is the Fourier transform of x(¢), and || || denotes
the Ly norm. One of the prominent energetic distributions
that satisfies the desired relations [Eqs. (4) and (5)] is the
Wigner distribution (WD), which is defined as [2]

WP = J x(t + 72)x*(t — 72)e V2™ 7, (6)

The WD of a signal can be roughly interpreted as an en-
ergy density of the signal, since it is real and covariant to
time and frequency domain translations; and, moreover,
signal energy in any extended time-frequency region can
be determined by integrating W, (¢,f) over that region. An-
other nice property of the WD is that its oblique projec-
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tions give the energy distribution with respect to the cor-
responding fractional Fourier domain [21]. Such
properties and its ability to provide high time-frequency
domain signal concentration make the WD attractive
compared to other representations. Although the WD and
its enhanced versions are useful in time-frequency analy-
sis, in some applications such as signal design and syn-
thesis it is more useful to have a time-fractional Fourier
domain representation.

In this section, the JFSR is constructed using condi-
tions similar to the ones given in Eqgs. (3)—(5). The JFSR is
then generalized to a cross JFSR, and some properties of
the JFSR are investigated in detail.

A. JFSR
Let the JFSR of a signal be denoted by E?(u,v) where a
=(a1,a9) denotes the orders of fractional Fourier domains
u and v, respectively. It is desired that the marginal den-
sities satisfy

JE,‘;‘(u,v)dv =[x, @), )

fEfc‘(u,v)du = |xa2(v)|2, (8)

where |x,, (w)[? and |x,,(v)|* are the energy contents of the
signal at the ath and asth fractional Fourier domains, re-
spectively. Similar to Eq. (5), the overall integral on the
u—v plane is desired to be

J f E3(u,v)dudv = |lx?. 9)

The conditions stated in Egs. (7)—(9) make the JFSR a
generalization of the WD, since the JFSR reduces to the
WD when (aq,a9)=(0,1).

To construct the distribution E2(x,v) satisfying the con-
ditions on the marginal densities and the total energy, we
make use of the projection property of the WD [21]:

f W (1 cos ¢ — v sin ¢,u sin ¢ + v cos ¢)dv = |x,(w)]?.
(10)

In Fig. 2, we observe that the value of the time-frequency
distribution at a point P contributes to the energy densi-
ties of the fractional Fourier domains u and v at points
u=ug and v=v,, respectively. Therefore, the JFSR can
simply be formed by redistributing the WD so that

El(u,v) = CW(P(t(u,v),f(u,v))), (11)

where the coordinates (z,v) and (¢,f) are related by

cos ¢y singy || ¢t u
: =l | (12)
cosS ¢y sin gy || f v
and ¢;=a;w/2 for i=1,2. By using the total energy con-

straint [Eq. (9)], the constant C in Eq. (11) is determined
as
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Fig. 2. Value of the time-frequency distribution at a point P con-
tributes to the energy densities of the fractional Fourier domains
v and v at points u=u, and v=v,, respectively.

C =|csc(pra)|, (13)
where ¢13=po— ¢1. Thus, E2(u,v) is explicitly given by
u sin ¢y — v sin ¢y
lese( o) f x - +7/2 |x*
sin ¢qg
u sin ¢y — v sin ¢,
X - 72

sin (2’712

— U COS g + U COS ¢y
X exp| —j2mT - T
sin ¢y

An equivalent and more compact form of E3(«,v) can be
obtained by using the rotation effect of the FrFT on the
WD,

W, (u,v) =W, (u cos ¢1o— v sin ¢qg,u Sin Py + U €OS ¢hy9),
ay
(14)

which verbally translates that WD of the a;th-order FrFT
of a signal x(¢) is the same as the WD of the signal x(¢),
which is rotated by ¢; radians in the clockwise direction
in the time-frequency plane. Consequently, E2(«z,v) can be
derived in terms of the fractionally Fourier transformed
signal x,,(¢) as

Tsin ¢12 Tsin ¢12
E2u,v)=| xg |u+ ——— ' (u - ——
1 2 1 2

X e—jZ’?T(U—u cos ¢12)Td7', (15)

which has the same form as given in [6].

B. Cross JFSR
The JFSR can be generalized to define a cross JFSR of

signals x(¢) and y(¢)
EZ (u,0) = [esc(¢r2)|[W,, (Pt (u,v),f(u,0)))

Tsin ¢12 78in (}’)12
= | X \u+——— |y \u———
! 2 ! 2

X e—j27-r(v—u cos ¢’12)Td7'. (16)

Defining E?(u,v) through its relation to the WD pro-
vides an easily interpretable definition of the JFSR of sig-
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nals. From the definition given in Eq. (15), it follows that
JFSR is a quadratic distribution while it is not a time-
frequency distribution. Therefore it belongs to a broader
class than the familiar Cohen’s class. Thus, its introduc-
tion to the nonstationary signal processing will bring new
insights into the design, filtering, analysis, and synthesis
of signals in many applications.

C. Properties of the JFSR

In this section, we investigate the properties of the JFSR.

In the properties listed below, the joint fractional Fourier

domains have the orders of a=(a;,a,) making angles of

(¢1, ) with respect to the time axis where ¢;=a;(7/2).
Property 1. The JFSR is a real distribution

E2(u,v) = (E2)*(u,v). (17)

Property 2. The orthogonal projections of the JFSR of a
signal x(¢) onto u and v axes give the magnitude square of
the FrFTs of the signal at orders associated with these
axes, that is,

fE;’(u,v)dv = |z, @), (18)

fEf(u,v)du = |xa2(v)|2. (19)

Property 3. The area under the JFSR of a signal x(t)
gives the total signal energy

fJE?(u,v)dudv=f|x(t)|2dt, (20)

which follows from Property 2 and the unitarity of the
FrFT.

Property 4. The JFSR and WD of a signal x(¢) are re-
lated as

U —u cos ¢12)

Ef:(u,v) = |CSC ¢12|Wx (u’ N
“ sin ¢qg

u sin ¢y — v sin ¢,

>

=|esc ¢12|Wx(

sin ¢12

— U COS g + U COS ¢y
X
sin ¢qq

Property 5. The JFSR and the FrFT of a signal x(¢) are
related as

B2 (u,0) =EZ (u,v), (21)

where a+a’=(a;+a’,aqs+a’).
Proof: By using Eq. (21) in Property 4, the JFSR of
x4(¢) can be written as

u sin ¢y — v sin ¢;

’

E? (u,v)= |CSC ¢12|Wx < X
a a sin ¢qo

X

— U COS g + U COS ¢y
sin ¢12

Then, by using the rotation property of the WD given in
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Eq. (14), the right-hand side of this expression is simpli-
fied to

E;ar(u’v) = |CSC ¢12|Wx(u’7v’),

| usin(¢' + ¢p) —vsin(¢’ + ¢y)

u

’

sin ¢qq
—u cos(@’ + ¢g) + v cos(d’ + )
v' = s
sin ¢po
which proves the property where ¢'=a’(7/2). |

Property 6. Any oblique projection of JFSR of a signal
x(¢) onto an oblique axis making an angle of ¢ is

!

2¢
Pd,[Efc‘](r) = \x(a,)(r/]\/[)|2, a' = 7, (22)

where
¢’ = arctan 2(cos ¢; + cos ¢ + cos ¢ sin ¢,sin ¢; cos ¢

+ sin ¢ sin @), (23)

M = (1 +sin 2¢ cos ¢y9) V2. (24)

Proof: By the projection-slice theorem, the oblique pro-
jection of the JFSR of x(¢) at an angle ¢ is given by

PE}](r) = f F, (¢ cos ¢, sin ¢p)e??™dL,  (25)

where

F3(¢, n):ffE;(u,v)H2“(§“+W)dudv, (26)

is the radial slice of the 2D inverse Fourier transform of
the JFSR of x(¢). By using Eq. (21), the following expres-
sion can be obtained for Fi")(é ,7) in terms of the ambigu-
ity function A,() of x(¢)

F3(Z,m) = A, (L cos ¢y + 1¢OS g, { sin ¢y + { sin ¢by).
(27

Thus, the radial slice F2({ cos ¢, sin ¢) of F2({, 5) can be
expressed as

F2({ cos ¢, sin ¢) = A ({M cos ¢, (M sin ¢'), (28)

where ¢’ and M are as given in Eqgs. (23) and (24), respec-
tively. It is known that the radial slice of the ambiguity
function of a signal x(¢) at the angle ¢ has the following
relation to the (a’)th FrFT of the signal x(¢)

Algcos ¢',¢sin ¢') = f (PP rdr. (29)

Then, the relation in Eq. (22) can be obtained by combin-
ing Eqgs. (25), (28), and (29). [ |

Property 7. Similar to the time-bandwidth product
analysis on the joint time-frequency plane, the product of
the spreads of signals in arbitrary fractional Fourier do-
mains can also be defined. In [9], it has been shown that
the product of the spreads of a signal x( ) in two arbitrary
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fractional Fourier domains a; and ay are bounded below
by

Isin[7(a; — ay)/2]|

. ) (30)

04,7, =

where o, , is defined as follows:

1/2
Ual’z = |:f (ual’z - na1’2)2|xa1’2(ualyz)2dua1’2:| / ”xH,

(31)

n{ f |<)|d} / 2, (s2)

where u,  represents the a;sth-order fractional Fourier
domains. In [22], a tighter lower bound is derived for real
signals, and it is shown that this bound actually corre-
sponds to the product of fractional domain spreads of a
Gaussian function. The analysis on the fractional domain
spreads indicates that, as the joint parameters vary, the
product of the spreads and consequently the area of the
support of the signals on the joint fractional plane varies,
and it diminishes to 0 as the joint fractional Fourier order
parameters are equal to each other.

3. FAST COMPUTATION OF THE JFSR

In this section, we provide an efficient computation algo-
rithm of the JFSR of a signal on arbitrary radial slices.
Throughout the computations, we assume that the signal
x(¢) is scaled to x(¢/s) before sampling, so that its WD is
approximately confined into a circle of radius A,/2. Here,
if the time width and bandwidth of the signal is approxi-
mately A, and Az, respectively, then the scaling parameter
s becomes s=(As/A,)Y? providing a signal that has negli-
gible energy outside the interval [-A,/2,A,/2].

To compute the radial slice of the JFSR of a signal x(¢),
we use the relation

E;’a(r oS ¢,r sin ¢) =|csc p19|W,(r cos ¢, r sin ¢'),
(33)
where

¢' = arctan(cos ¢ cos ¢, + sin ¢ cos ¢pq,cos ¢ sin ¢y

—sin ¢ cos ¢y), (34)

and ¢; and ¢, are the corresponding angles of the frac-
tional Fourier domains u and v with respect to the time
axis. It has been shown in [15] that the radial slice of the
WD along the line (r cos ¢’,r sin ¢') is

-\ A
Wx(r COoSs (]5’,7‘ sin (;5’) = f x(a’—l)(7)35;,_1)(5)@_]2””‘(1)\,
(35)
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Therefore, Egs. (33) and (35) can be used to construct the
radial slice of E2 (u,v) as

A -\
E;a(r cos ¢,7 sin ¢) = [esc ¢y fx(“"l)(a)x(a’—1)<7)
X e 2NN, (36)

If the double-sided bandwidth of x(,_y) is A, and the
time-bandwidth product is N, then the integral in Eq. (36)
can be discretized by

|esc ¢y vl .
E’f:a(rAx cos ¢,rA, sin ¢) = E q[kle~02mk/A) |
X k=—-N

(37)

*

where q[k]:x(ar_l)[k]x'(a,_l
X (k/(24A,)) is computed using the algorithm given in [23]
with O(V log N) computational complexity.

As the relationship [Eq. (36)] depends on the FrFTs of
the signal x(¢), computation of any M uniformly spaced
samples on the line segment r €[r;,r/] along the radial
slice of E2 (rA, cos ¢,rA, sin ¢) can be performed through
the chirp-% transform algorithm in O((N+M)log(N +M))
computational complexity [24]. In Section 4, the results of
the algorithm are presented for synthetic signals on vari-
ous joint fractional Fourier planes.

)[—k] and .’)C(ar_]_)[k]=X(ar_1)

4. SIMULATIONS

In this section, the JFSR of a chirp signal and a quadratic
FM modulated signal that has a nonconvex time-
frequency support on the time-frequency plane are evalu-
ated for four different joint fractional Fourier order pairs
of a=(aq,a9) as (0,0.25), (0,0.5), (0,0.75), and (0,1).
Moreover, an application example, which makes use of
the localization property of the JFSR is presented by em-
ploying the time-frequency component analyzer algorithm
in [25].

For a chirp signal of x(¢)=rect(t/10)exp(j27(0.5t2+1)),
the JFSRs of the four different a=(ay,as) are presented in
Fig. 3. The distribution given in Fig. 3(d) is the same as
the WD of x(¢) because the fractional order parameters of
the domains are a;=0, as=1, corresponding to the time
and frequency domains, respectively. As shown in Fig. 3,
the supports of the chirp signal at various joint fractional
Fourier planes remains linear. However, the localization
of the resultant components varies, because the uncer-
tainty relation of the fractional Fourier domains has a
tighter lower-bound when compared to the time and fre-
quency domains [9].

The JFSRs of a quadratic FM modulated signal x(t)
=exp(-m((¢/3)2+0.3j¢%)), which has a nonconvex time-
frequency support on the time-frequency plane are pre-
sented in Fig. 4. The distribution given in Fig. 4(d) with
fractional Fourier order pair (0,1) is the same as the WD
of x(¢). It is easier to observe the localization of the signal
component that depends on the order of the joint frac-
tional Fourier domains. By comparing Figs. 4(a) and 4(d),
it will be noticed that the amount of cross-term interfer-
ence is significantly less when the two fractional orders
are closer to each other. We expect that these types of
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Fig. 3. JFSRs of x(t) =rect(t/ 10)@27(0‘5‘2+’) at joint fractional Fou-
rier domains with orders (a) (aq,a5)=(0,0.25), (b) (aj,as)
=(0,0.5), (c) (a1,a5)=(0,0.75), (d) (a1,a9)=(0,1).

properties of JFSR will facilitate the analysis and design
of time-frequency distributions where the signal compo-
nents have curved time-frequency supports.

We also compute the JFSR of a 2.5 ms echolocation
pulse emitted by a large brown bat, eptesicus fuscus. The
recorded signal is plotted in Fig. 5(a) and can be down-
loaded at [26]. The time axis in Fig. 5(a) has been scaled
as discussed in [23]. Figures 5(b)-5(d) show the JFSR of
the bat signal that has been evaluated for three different
joint fractional Fourier order pairs of a=(a;,as) as (0,1),
(0,1.2), and (0,1.3). The distribution given in Fig. 5(b) is
the same as the WD, because the fractional order param-
eters a;=0 and agy=1 correspond to the time and fre-
quency domains, respectively. We see that the bat signal
is composed of several components with nonconvex time-
frequency supports. Therefore, the WD contains both in-
ner and outer interference terms. In each of the plots,
Figs. 5(c) and 5(d), one of the components in the bat signal
has a very localized fractional frequency content. This is
consistent with the fact that the uncertainty relation of
the fractional Fourier domains has a tighter lower-bound
when compared to the time and frequency domains [9].

Because of its localization property, the JFSR can be
used to compute the instantaneous fractional frequency
content of the analyzed signals. This will be illustrated on
the signal shown in Fig. 6(a), which is one of the compo-
nents extracted from the bat signal given in Fig. 5(a) by
using the time-frequency component analyzer algorithm
[25]. Figure 6(b) shows the WD of the component and Fig.
6(c) shows its JFSR corresponding to the fractional Fou-
rier order pairs of (0,1.2). In this domain, the analyzed
component contains only a very narrow band of
ag=1.2th-order fractional frequency. Here we extend the
definition of instantaneous frequency to the fractional do-
main as follows:
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(a) 2.5 ms echolocation pulse emitted by a large brown bat, eptesicus fuscus. The JFSRs at joint fractional Fourier domains with
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(a) One of the components extracted from the bat signal. (b) The WD of the component and (c¢) its JFSR corresponding to the

fractional Fourier order pairs of (0,1.2). (d) The computed instantaneous frequency from the JFSR shown in (c).

)

vWal,az(u,v)dv

—0

faya,(w) = , (38)

f We,a,(,0)dv

which is the center of mass of the JFSR along the v axis.
The plot Fig. 6(d) shows the computed instantaneous fre-
quency from the JFSR shown in Fig. 6(c). Essentially, this
is the asth-order fractional frequency content in the sig-
nal xal(u).

5. CONCLUSIONS

A joint fractional domain signal representation is devel-
oped using the energy density interpretation of the WD
on the time-frequency plane. The (z,v) axes defining the
joint representation are chosen as the a=(a;,ay)th-order
fractional Fourier domains. The distribution is designed
so that its projections onto the u and v axes gives the
modulus square of the fractional Fourier transform of sig-
nals at the corresponding orders a; and ay as |xa1(1t)|2 and
|xaz(t)|2, respectively. It is shown that the distribution
E2(u,v) depends on the WD through a coordinate trans-
formation. Therefore, the JFSR is a real-valued distribu-
tion, too. The overall integral of the JFSR on the (u,v)
plane gives the total energy of the signal. In this paper, as

part of the novel results, oblique projections of the JFSR
is also derived, and a fast computation algorithm de-
signed for the computation of arbitrary radial slices of the
WD in [15] is extended to the computation of the JFSR.
The JFSRs of various signals at various fractionally or-
dered domains are presented, and the localization of the
signal components are compared.

The JFSR is not analyzed in the framework of the fa-
miliar Cohen’s class. Therefore, its introduction to the
nonstationary signal processing will bring new insights
into the design, filtering, analysis, and synthesis of
signals.
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