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Abstract
In this paper, we consider discrete-time partially observed mean-field games with the risk-
sensitive optimality criterion. We introduce risk-sensitivity behavior for each agent via an
exponential utility function. In the game model, each agent is weakly coupled with the rest
of the population through its individual cost and state dynamics via the empirical distribution
of states. We establish the mean-field equilibrium in the infinite-population limit using the
technique of converting the underlying original partially observed stochastic control problem
to a fully observed one on the belief space and the dynamic programming principle. Then,
we show that the mean-field equilibrium policy, when adopted by each agent, forms an
approximate Nash equilibrium for games with sufficiently many agents. We first consider
finite-horizon cost function and then discuss extension of the result to infinite-horizon cost
in the next-to-last section of the paper.

Keywords Mean field games · Partial observation · Risk sensitive cost

1 Introduction

Mean-field games have been introduced in [28] and [34] to show the existence of approximate
Nash equilibria for fully observed non-cooperative continuous time games, when the number
of agents is large but finite. The underlying idea of the mean-field method is to transform
the decentralized game problem to a centralized stochastic control problem using the so-
called Nash certainty equivalence (NCE) principle [28]. The optimal solution of this control
problem, calibrated appropriately using the empirical distribution of the term that (weakly)
couples the players, provides an approximate Nash equilibrium for games with a sufficiently
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large number of agents. To obtain the optimal solution to the associated stochastic control
problem, one should simultaneously solve aFokker–Planck equation evolving forward in time
and a Hamilton–Jacobi–Bellman equation evolving backward in time. We refer the reader
to [7, 13, 14, 22, 27, 29, 35, 50] for studies of fully observed continuous-time mean-field
games with different models and cost functions, such as games with major-minor players,
risk-sensitive games, games with Markov jump parameters, and LQG games.

In this paper, we study discrete-time partially observed mean-field games with risk-
sensitive optimality criteria. Risk-sensitivity brings in an element of robustness to decision
making and has been widely used in many fields, such as control, economics, financial
engineering, and operations research, among others. As opposed to risk-neutral optimiza-
tion where only the mean value of the cost is considered, risk-sensitive one places positive
weights on also the higher moments, thus capturing the risk element (see [3, 50, 52]). In the
model we study in this paper, we have a large but finite number of agents interacting with
each other through their individual dynamics and cost functions via the mean-field term (i.e.,
the empirical distribution of their states). It is known that establishing the existence of Nash
equilibria for these types of games is quite difficult due to the (almost) decentralized and
noisy nature of the information structure of the problem [4, 5]. Therefore, it is of interest
to find an approximate equilibrium with reduced complexity. To that end, upon letting the
number of agents go to infinity, the mean-field term converges to the distribution of the state
of a single generic agent. This decouples the dynamics and cost functions of the agents from
each other, and because of that, in the limiting case, a generic agent is faced with a stochastic
control problemwith a constraint on the distribution of the state at each time (i.e., amean-field
game problem). The main goal in these problems is to show the existence of a policy and
a state distribution flow such that this policy is an optimal solution of the stochastic control
problem when the total population behavior is modeled by the state distribution flow and
the resulting distribution of each agent’s state is the same as the state distribution flow when
the generic agent applies this policy. This equilibrium condition is called the Nash certainty
equivalence (NCE) principle in the literature. In this paper, we first consider the existence of
such an equilibrium for the limiting case and then establish that the policy in this equilibrium
constitutes an approximate Nash equilibrium for finite-agent games with sufficiently many
agents.

In the literature, partially observed mean-field games have not been studied much, espe-
cially in the discrete-time setup. Indeed, this work seems to be the first one that studies
discrete-time risk-sensitive mean-field games under partial observations. Prior works have
mostly considered the risk-neutral continuous-time setup. It is obvious that analyses of
continuous-time and discrete-time setups are quite different, requiring different sets of tools.
In [30], the authors study a partially observed continuous-time mean-field game with lin-
ear individual dynamics. In [43, 45, 46], the authors consider a continuous-time mean-field
game with major-minor agents and nonlinear dynamics where the minor agents can partially
observe the state of the major agent. In [44, 47], the same authors also develop a nonlinear
filtering theory for McKean–Vlasov-type stochastic differential equations that arise as the
infinite population limit of the partially observed differential game of the mean-field type. In
[12], the authors study the linear quadratic mean-field game with major-minor agents where
the minor agents can partially observe the state of the major agent. In [20, 21], the authors
consider the linear quadratic mean-field game, again with major-minor agents where, in this
case, both the minor agents and the major agent can partially observe the state of the major
agent. In [48], the authors study a continuous-time partially observed stochastic control prob-
lem of the mean-field type and establish a maximum principle to characterize the optimal
control. In [31], the authors consider a continuous-time mean-field game with linear indi-
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vidual dynamics where two types of partial information structure are considered: (i) agents
cannot observe the white noise which is common to all agents; (ii) agents can access the
additive white-noise version of their own states.

For risk-sensitive cost criteria, existing works are mostly on the continuous-time set-up,
with [37], discussed further below, being one exception. Now, in continuous-time set-up,
reference [50] studies a class of mean-field games with nonlinear individual dynamics and a
risk-sensitive cost function. They characterize the mean-field equilibrium via coupled HJB
and FP equations and explicit solutions to these equations are given when the individual state
dynamics are linear. In [49], the author considers a continuous-time mean-field game with
nonlinear individual dynamics, where state dynamics have L p-norm structure. Stochastic
maximum principle is used to characterize the optimal solution of the problem. In [17], the
authors study a partially observed version of the continuous-time risk-sensitive mean-field
game. They establish a stochastic maximum principle for the characterization of the mean-
field equilibrium. Reference [36] considers continuous-time risk-sensitive mean-field games
with linear individual dynamics and local state information for the players. First a generic
risk-sensitive optimal control problem is solved which yields mean-field equilibrium, and
then, it is shown that the policies in mean-field equilibrium lead to an approximate Nash
equilibrium for games with a sufficiently large number of agents. It is also shown that this
approximate Nash equilibrium is partially equivalent to the approximate Nash equilibrium
of a certain robust mean-field game problem. Finally, [37] presents the counterparts of these
results for the discrete-time linear-quadratic risk-sensitive mean-field game.

Here, we consider discrete-time mean-field games with Polish state, action, and obser-
vation spaces (i.e., complete and separable metric spaces) under risk-sensitive optimality
criteria for the players. In the infinite population limit of such games, a generic agent should
solve a partially observed stochastic control problem under the NCE principle. Due to the
constraints induced byNCE principle, common techniques used to analyze partially observed
stochastic control problems are not sufficient. To establish the existence of an equilibrium
solution in the infinite population limit, we have to bring in the fixed-point approach that is
used to obtain equilibria in classical game problems, along with the technique of converting
partially observed optimal control problems to fully observed ones on the belief space. The
definitions of the finite-agent game and the mean-field game problems are given in Sect. 2
and Sect. 3, respectively. In Sect. 4, we prove the existence of a mean-field equilibrium. In
Sects. 5 and 6, we establish that the mean-field equilibrium policy is approximately Nash for
finite-agent games with sufficiently many agents. In Sect. 7, we extend previous results to
games with infinite-horizon risk-sensitive cost functions. Section 9 concludes the paper.

In an earlier paper [41], we studied the risk-neutral version of this problem under a
similar set of assumptions on the system components. There are some parallels between
the techniques used in this paper and those in [41] to show the existence of a mean-field
equilibrium and to prove that the policies in mean-field equilibrium provide an approximate
Nash equilibrium for games with large but finitely many agents. In this paper, we exploit
this connection and refer the reader to [41] for proofs of certain results. We note, however,
that as far as their analyses go, there are considerable technical differences between risk-
sensitive and risk-neutral cost functions. The fact that, in the risk-sensitive case, the cost
function is in a multiplicative form leads to complication in the analysis of the optimality
condition. Therefore, to establish the existence of a mean-field equilibrium in the infinite-
population limit and an approximate Nash equilibrium in the finite-agent case, we need to
first transform the risk-sensitive problem to one where the cost function is risk-neutral and
in an additive form. However, in this risk-neutral form, the one-stage cost function and the
transition probability become non-homogeneous (i.e., time-dependent) as opposed to the
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risk-neutral problem in [41]. Hence, after a careful execution of this step, we can prove the
existence of a mean-field equilibrium by adapting the technique developed in [41] to the
non-homogeneous and finite-horizon case. We also note that in [42] we have studied the
fully observed version of the same problem under a slightly different set of assumptions on
the system components. Indeed, to prove the existence of an approximate Nash equilibrium,
here we generalize the results established in [42] to the game models with expanding state
spaces and non-homogeneous system components.
Notation. For a metric space E, we let Cb(E) denote the set of all bounded continuous real
functions on E, P(E) denote the set of all Borel probability measures on E, and B(E) denote
the collection of Borel sets. For any E-valued random element x ,L(x)( · ) ∈ P(E) denotes the
distribution of x . A sequence {μn} of measures on E is said to converge weakly to a measure
μ if

∫
E g(e)μn(de) → ∫

E g(e)μ(de) for all g ∈ Cb(E). For any ν ∈ P(E) and measurable
real function g on E, we define ν(g) = ∫

gdν. For any subset B of E, we let ∂B and Bc

denote the boundary and complement of B, respectively. The notation v ∼ ν means that the
random element v has distribution ν. Unless otherwise specified, the term “measurable" will
refer to Borel measurability.

2 Finite Player GameModel

2.1 Original GameModel

Let S, A, and Y be Polish spaces. We consider a discrete-time partially observed N -agent
mean-field game with a state space S, an action space A, and an observation space Y. For
every i ∈ {1, 2, . . . , N }, the state, the action, and the observation of Agent i at time t
(t = 0, 1, 2, . . .) are, respectively, denoted by sNi (t) ∈ S, uN

i (t) ∈ A, and gNi (t) ∈ Y. We

let d(N )
t ( · ) = 1

N

∑N
i=1 δsNi (t)( · ) ∈ P(S) denote the empirical distribution of the states (i.e.,

mean-field term) at time t , where δs ∈ P(S) is the Dirac measure at s; that is, δs(A) = 1 if
s ∈ A and otherwise 0.

At the initial time step t = 0, the states (sN1 (0), . . . , sNN (0)) ∼ κ0 ⊗ . . . ⊗ κ0 are inde-
pendent and identically distributed according to κ0. For each t ≥ 0, the current-observations
(gN1 (t), . . . , gNN (t)) and the next-states (sN1 (t + 1), . . . , sNN (t + 1)) are distributed according
to the probability laws:

N∏

i=1

l
(
dgNi (t)

∣
∣sNi (t)

)
and

N∏

i=1

q
(
dsNi (t + 1)

∣
∣sNi (t), uN

i (t), d(N )
t

)
, (1)

where q : S × A × P(S) → P(S) is the state transition kernel and l : S → P(Y) is the
observation kernel. Note that the state dynamics of each agent are weakly coupled through
the mean-field term d(N )

t .
For any Agent i , define the history spaces G0 = Y and Gt = (Y×A)t ×Y for t = 1, 2, . . .,

all endowed with product Borel σ -algebras. A policy for Agent i is a sequence π i = {π i
t }

of stochastic kernels on A given Gt ; that is, for any t ≥ 0, uN
i (t) ∼ π i

t (·|γ N
i (t)), where

γ N
i (t) = (

gNi (t), uN
i (t − 1), gNi (t − 1) . . . , uN

i (0), gNi (0)
)
is the observation-action history

observed by Agent i up to time t . The set of all policies for Agent i is denoted by Πi .
Let Π̃i be the set of policies in Πi which only use the observations; that is, π ∈ Π̃i if

πt : ∏t
k=0 Y → P(A) for each t ≥ 0. Let Π(N ) = ∏N

i=1 Πi and Π̃
(N ) = ∏N

i=1 Π̃i . We let
π (N ) = (π1, . . . , πN ) (π i ∈ Πi ) denote the N -tuple of joint policies of all the agents in
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the game. Under such an N -tuple of policies, the actions of agents at each time t ≥ 0 are
obtained with respect to the conditional probability distribution

N∏

i=1

π i
t

(
duN

i (t)
∣
∣γ N

i (t)
)
. (2)

The one-stage cost function for a generic agent is a measurable function m : S × A ×
P(S) → [0,∞). Then, the agent’s finite-horizon risk-sensitive cost under a policy π (N ) ∈
Π(N ) is given by

V (N )
i (π (N )) = 1

λ
log

(

Eπ (N )

[

eλ
∑T

t=0 β tm(sNi (t),uNi (t),d(N )
t )

])

,

where β ∈ (0, 1] is the discount factor, λ > 0 is the risk factor, and T is the finite horizon
of the problem. Here, Eπ (N )[ · ]

denotes the expectation with respect to the probability law,
which is uniquely specified by the kernels in (1) and (2) and the initial state distribution κ0.

Since 1
λ
log(·) is a strictly increasing function, without loss of generality, it suffices to

consider only the part with expectation:

W (N )
i (π (N )) = Eπ (N )

[

eλ
∑T

t=0 β tm(sNi (t),uNi (t),d(N )
t )

]

.

With this cost function, the equilibrium solution for the game is defined as follows:

Definition 1 A policy π (N∗) = (π1∗, . . . , πN∗) constitutes a Nash equilibrium for the N -
player game, if

W (N )
i (π (N∗)) = inf

π i∈Πi

W (N )
i (π

(N∗)
−i , π i )

for each i = 1, . . . , N , where π
(N∗)
−i = (π j∗) j 	=i .

As we explained in detail in [41], establishing the existence of Nash equilibria for partially
observed mean-field games is challenging due to the (almost) decentralized and noisy nature
of the information structure of the problem. To that end, we slightly change the definition of
Nash equilibrium in this model and adopt the approximate Nash equilibrium concept instead
of exact Nash equilibrium.

Definition 2 A policy π (N∗) ∈ Π̃
(N )

is a Nash equilibrium if

W (N )
i (π (N∗)) = inf

π i∈Π̃i

W (N )
i (π

(N∗)
−i , π i )

for each i = 1, . . . , N , and an ε-Nash equilibrium (for a given ε > 0) if

W (N )
i (π (N∗)) ≤ inf

π i∈Π̃i

W (N )
i (π

(N∗)
−i , π i ) + ε

for each i = 1, . . . , N .

According to this definition, the agents can only use their local observations (gNi (t), . . . ,
gNi (0)) to construct their policies. In real-life applications, agents typically have access only
to their local observations. Hence, it suffices to establish the existence of an approximate
Nash equilibrium for the game with a local information structure. In addition, in the discrete-
time mean field literature, it is common to establish the existence of approximate Nash
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equilibria with local (decentralized) information structures (see [1] [9]). This is true for
partially observed case as well (see [41]).

Here, our goal is to establish the existence of approximate Nash equilibria for games with
sufficiently many agents. Indeed, if the number of agents is small, it is all but impossible to
show even the existence of approximateNash equilibria for these types of games. Therefore, it
is key to assume that the number of agents is large (but finite).With this assumption, we can go
to the infinite population limit, for which we can model the mean-field term as an exogenous
state-measure flow, which should be consistent with the distribution of a generic agent (i.e.,
the NCE principle) by the law of large numbers. In this case, to establish the existence of
an equilibrium, a generic agent should solve a classical partially observed stochastic control
problem with a constraint on the distributions on the states (i.e., mean-field game). Then,
we expect that if each agent in the finite-agent N game adopts the equilibrium policy in the
infinite-population limit, the resulting policy will be an approximate Nash equilibrium for
all sufficiently large N .

Our approach to prove the existence of approximate Nash equilibria can be summarized
as follows: (i) Note that in the risk-sensitive criteria, the one-stage cost functions are in
a multiplicative form as opposed to the risk-neutral setting. As stated earlier, this makes
the analysis of the problem quite complicated. Therefore, we first construct an equivalent
non-homogeneous game model, where the cost can be written in an additive form as in
the risk-neutral case (see Sect. 2.2). (ii) Then, we introduce the infinite-population limit
(N → ∞) of the equivalent game model to approximate the finite-agent setting (see Sect. 3).
(iii) By adapting the proof technique in [41] to the non-homogeneous and finite-horizon
set-up, we prove the existence of an appropriately defined mean-field equilibrium for this
limiting infinite-population game (see Sect. 4). (iv) Then, we return to the finite-N case for
the equivalent gamemodel and show that if each agent in the game problem adopts the mean-
field equilibrium policy, then the resulting policy will be an approximate Nash equilibrium
for all sufficiently large N . Since the equivalent game model is identical to the original game
model in terms of cost functions, this establishes the existence of approximateNash equilibria
for the original game model (see Sects. 5 and 6).

Now, proceeding along the lines above, we first introduce the following assumptions,
imposed throughout the paper.

Assumption 1 (a) The cost functionm is bounded and continuous with ‖m‖=sups∈S |m(s)|
≤ K .

(b) The stochastic kernel q is weakly continuous in (s, u, κ); i.e.,
q( · |s(k), u(k), κk) → q( · |s, u, κ) weakly when (s(k), u(k), κk) → (s, u, κ).

(c) The observation kernel l is continuous in s with respect to total variation norm; i.e., for
all s, l( · |sk) → l( · |s) in total variation norm when sk → s.

(d) A is compact.
(e) There exist a constant α ≥ 0 and a continuous moment function v : S → [1,∞) (see

[25,Definition E.7]) such that

sup
(u,κ)∈A×P(S)

∫

S
v(y)q(dy|s, u, κ) ≤ αv(s). (3)

(f) The initial probability measure κ0 satisfies
∫
S v(s)κ0(ds) = M < ∞.
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2.2 Equivalent GameModel

In this section, we construct an equivalent game model whose states are the states of the
original model plus the one-stage costs incurred up to that time. Namely, the state at time t
for Agent i is

xNi (t) =
(

sNi (t),
t−1∑

k=0

βkm(sNi (k), uN
i (k), d(N )

k )

)

.

In this new model, finite-horizon risk-sensitive cost function can be written in an additive-
form like in risk-neutral case. For this new game model, we have been inspired by [6], in
which the authors study the classical fully observed risk-sensitive control problem. For a
generic agent, this new game model is specified by

(

X,A, Y, {pt }T+1
t=0 , r , {ct }T+1

t=0 , μ0

)

,

where X = S × [0, L] is the new state space with L = K
1−β

, where L is the maximum
risk-neutral discounted-cost that can be incurred. For every t , the state transition kernel
pt : X × A × P(X) → P(X) is defined as:1

pt
(
B × D

∣
∣x(t), a(t), μt

) = q(B|s(t), a(t), μt,1) ⊗ δm(t)+β t m(s(t),a(t),μt,1)(D),

where B ∈ B(S), D ∈ B([0, L]), x(t) = (s(t),m(t)), and μt,1 is the marginal of μt on S.
Here, pt is indeed the controlled transition probability of the next state sNi (t +1) and current
risk-neutral total discounted cost

t∑

k=0

βkm(sNi (k), aNi (k), d(N )
k )

given the current state-action pair (sNi (t), aNi (t)) and past risk-neutral total discounted cost
∑t−1

k=0 βkm(sNi (k), aNi (k), d(N )
k ) in the original game. The observation kernel r : X → P(Y)

is equivalent to the observation kernel l in the original problem; that is, r(dy|x) = l(dy|s)
where x = (s,m). For each t , the one-stage cost function ct : X × A × P(X) → [0,∞) is
defined as:

ct (x(t), a(t), μt ) =
{
0, if t ≤ T

eλm(t), if t = T + 1.

Finally, the initial measure μ0 is given by μ0(dx(0)) = κ0(ds(0)) ⊗ δ0(dm(0)), where the
initial states {xNi (0)} are independent and identically distributed according to μ0. Note that,
in this equivalent gamemodel, the finite-horizon is T +1 instead of T and system components
depend on time t . We also define the empirical distribution of the states at time t as follows:

e(N )
t ( · ) = 1

N

N∑

i=1

δxNi (t)( · ) ∈ P(X).

Suppose that Assumption 1 holds. Then, for each t , the following are true for the new
game model:

1 In the remainder of this paper, we use letter ‘a’ instead of ‘u’, to denote actions, to emphasize that they are
generated using the new game model.
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(I) The one-stage cost function ct is bounded and continuous.
(II) The stochastic kernel pt is weakly continuous.
(III) The observation kernel r is continuous with respect to the total variation distance.
(IV) Let w : X → [1,∞) be defined as w(x) = w((s,m)) = v(s), which is a moment

function. Then, we have

sup
(a,μ)∈A×P(X)

∫

X
w(y)pt (dy|x, a, μ) ≤ αw(x). (4)

(V) The initial probability measure μ0 satisfies
∫
X w(x)μ0(dx) = M < ∞.

Recall that Π̃i denotes the set of policies for Agent i that only use observations in the
original game. Note that Π̃i is also the set of policies for Agent i that only use observations in
the new game model. For Agent i , the finite-horizon risk-neutral total cost under the N -tuple

of policies π (N ) ∈ Π̃
(N )

is denoted as J (N )
i (π (N )); that is

J (N )
i (π (N )) = Eπ (N )

[T+1∑

t=0

ct (x
N
i (t), aNi (t), e(N )

t )

]

.

The following proposition makes the connection between this new model and the orig-
inal model. The proof is straightforward, and so, we omit the details (see the proof of
[42,Proposition 5.1]).

Proposition 1 For anyπ (N ) ∈ Π̃
(N )

and i = 1, . . . , N, we have J (N )
i (π (N )) = W (N )

i (π (N )).

Proposition 1 states that the new game model is equivalent to the original game model in
terms of cost functions. This is true because the new game model consists of the one-stage
costs incurred up to the current time as an additional state variable. Therefore, if we take
the exponent of this additional state at time T + 1 as in the definition of cT+1, we obtain
the risk-sensitive cost of the original game model. Hence, in the remainder of this paper, we
replace the original game model with the new one; that is, from this point on, we have the
following system components satisfying (I)-(V):

(

X,A, Y, {pt }T+1
t=0 , r , {ct }T+1

t=0 , μ0

)

.

Remark 1 Note that in the new game model, the time horizon is T + 1, which means that
agents should also design control policies for the time step T +1. However, note that control
policies at time step T + 1 do not affect the cost function (i.e., one-stage cost at time T + 1
is only a function of the state), and thus agents indeed do not need to select these policies in
the new game model. Hence, we can in a sense view the time horizons of the two problems
as T .

Note that the cost functions J (N )
i (π (N )) of this new game model are in additive form

(i.e., risk-neutral). Therefore, we can use a technique similar to the one in [41] to prove
the existence of an approximate Nash equilibrium. To this end, we will first consider the
infinite-population limit of the new game model and prove the existence of an equilibrium.
Then, we will go back to the finite agent case and establish the existence of approximate
Nash equilibrium for the new game model using the infinite population equilibrium solution.
Since, by Proposition 1, the new game model has the same cost function as the original game
model, the last result also implies the existence of an approximate Nash equilibrium for the
original game, which was the main goal of this paper.
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3 Partially ObservedMean-Field Games andMean-Field Equilibria

In this section, we introduce the infinite population limit of the new game introduced in the
preceding section. Although it is called mean-field game, it is not game in the classical sense:
It is a stochastic control problem whose state distribution at each time step should satisfy a
certain consistency condition. The optimal solution of this problem is referred to as mean-
field equilibrium. In other words, we have a single agent and model the mean-field term by
an exogenous state-measure flow μ := (μt )

T+1
t=0 ⊂ P(X) with a given initial condition μ0,

by the law of large numbers. This measure flow μ should also be consistent with the state
distributions of this single agent when the agent acts optimally. The precise mathematical
description of the problem is given as follows.

The mean-field game model for a generic agent is specified by
(

X,A, Y, {pt }T+1
t=0 , r , {ct }T+1

t=0 , μ0

)

,

where, as before, X, A, and Y are the state, action, and observation spaces, respectively.
The stochastic kernel pt : X × A × P(X) → P(X) denotes the transition probability, and
r : X×P(X) → P(Y) denotes the observation kernel. The measurable function ct : X×A×
P(X) → [0,∞) is the one-stage cost function and μ0 is the distribution of the initial state.

Recall the history spaces G0 = Y and Gt = (Y × A)t × Y for t = 1, 2, . . ., all endowed
with product Borel σ -algebras. A policy is a sequence π = {πt } of stochastic kernels on A
given Gt . The set of all policies is denoted by Π .

We let M = {
μ ∈ P(X)T+2 : μ0 is fixed

}
be the set of all state-measure flows with

a given initial condition μ0. Given any measure flow μ ∈ M, the evolution of the states,
observations, and actions is as follows:

x(0) ∼ μ0,

y(t) ∼ r( · |x(t)), t = 0, 1, . . .

x(t) ∼ pt−1( · |x(t − 1), a(t − 1), μt−1), t = 1, 2, . . .

a(t) ∼ πt ( · |γ (t)), t = 0, 1, . . . ,

where γ (t) ∈ Gt is the observation-action history up to time t . An initial distribution μ0

on X, a policy π , and a state-measure flow μ define a unique probability measure Pπ on
(X× Y×A)T+2. The expectation with respect to Pπ is denoted by Eπ [ · ]. A policy π∗ ∈ Π

is said to be optimal forμ if Jμ(π∗) = infπ∈Π Jμ(π),where the finite-horizon cost of policy
π with measure flow μ is given by

Jμ(π) = Eπ

[T+1∑

t=0

ct (x(t), a(t), μt )

]

Using these definitions, we first define the set-valued mapping Ψ : M → 2Π as Ψ (μ) =
{π ∈ Π : π is optimal for μ}. Conversely, we define a single-valued mapping Λ : Π → M
as follows: given π ∈ Π , the state-measure flow μ := Λ(π) is constructed recursively as:

μt+1( · ) =
∫

X×A
pt ( · |x(t), a(t), μt )P

π (da(t)|x(t))μt (dx(t)),

where Pπ (da(t)|x(t)) denotes the conditional distribution of a(t) given x(t) under π and
(μτ )0≤τ≤t . Using Ψ and Λ, we now introduce the mean-field equilibrium.
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Definition 3 A pair (π∗,μ∗) ∈ Π × M is a mean-field equilibrium if π∗ ∈ Ψ (μ∗) and
μ∗ = Λ(π∗).

The main result of this section is the existence of a mean-field equilibrium. Later we will
show that this mean-field equilibrium constitutes an approximate Nash equilibrium for games
with sufficiently many agents.

Theorem 1 Themean-field game
(
X,A, Y, {pt }T+1

t=0 , r , {ct }T+1
t=0 , μ0

)
admits amean-field equi-

librium (π∗,μ∗).

The proof of Theorem 1 is given in Sect. 4. Our approach to prove Theorem 1 can be
summarized as follows: (i) First, we lift the partially observed stochastic control problem a
generic agent is faced with for a given measure flow to a fully observed stochastic control
problem; (ii) we then transform the fixed point equation π ∈ Ψ (Λ(π)) characterizing the
mean-field equilibrium into a fixed point equation of a set-valued mapping from the set of
state-action measure flows into itself using the Bellman optimality operator; (iii) then, we
prove that this set-valuedmapping has a closed graph; and (iv) finally,we deduce the existence
of a mean-field equilibrium using Kakutani’s fixed point theorem.

4 Proof of Theorem 1

Note that any measure flow μ ∈ M leads to a non-homogenous partially observed Markov
decision process (POMDP). Hence, before starting the proof of Theorem 1, we first review a
few relevant results on POMDPs. To this end, fix anyμ ∈ M and consider the corresponding
optimal control problem.

Let Pw(X) = {
μ ∈ P(X) : ∫

X w(x)μ(dx) < ∞}
. It is known that any POMDP can be

reduced to a (completely observable) MDP (see [53], [39]), whose states are the posterior
state distributions or beliefs of the observer; that is, the state at time t is

z(t) = Pr{x(t) ∈ · |y(0), . . . , y(t), a(0), . . . , a(t − 1)} ∈ P(X).

We call this equivalent MDP the belief-state MDP. Note that since L(x(t)) ∈ Pw(X) under
any policy by (IV)-(V), we have

Pr{x(t) ∈ · |y(0), . . . , y(t), a(0), . . . , a(t − 1)} ∈ Pw(X)

almost everywhere. Therefore, the belief-state MDP has state space Z = Pw(X) and action
space A. Here, Z is endowed with the Borel σ -algebra generated by the topology of weak
convergence. Next, we construct the transition probabilities {ηt }T+1

t=0 of the belief-state MDP
(see also [24]). Let z denote the generic state variable for the belief-state MDP. Fix any t .
First consider the transition probability on X × Y given Z × A

Rt (x ∈ A, y ∈ B|z, a) =
∫

X
κt (A, B|x ′, a)z(dx ′),

where κt (dx, dy|x ′, a) = r(dy|x) ⊗ pt (dx |x ′, a, μt ). Let us disintegrate Rt as follows
Rt (dx, dy|z, a) = Ht (dy|z, a) ⊗ Ft (dx |z, a, y). Then, we define the mapping Ft : Z ×
A × Y → Z as:

Ft (z, a, y)( · ) = Ft ( · |z, a, y). (5)
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Then, ηt : Z × A → P(Z) is defined as:

ηt ( · |z(t), a(t)) =
∫

Y
δFt (z(t),a(t),y(t+1))( · ) Ht (dy(t + 1)|z(t), a(t)).

The initial point for the belief-state MDP is μ0; that is, L(z(0)) ∼ δμ0 . Finally, for each t ,
the one-stage cost function Ct of the belief-state MDP is given by

Ct (z, a) =
∫

X
ct (x, a, μt )z(dx). (6)

Hence, the belief-state MDP is a Markov decision process with the components(
Z,A, {ηt }T+1

t=0 , {Ct }T+1
t=0 , δμ0

)
.

For the belief-state MDP define the history spaces K0 = Z and Kt = (Z × A)t × Z,
t = 1, 2, . . .. A policy is a sequence ϕ = {ϕt } of stochastic kernels on A given Kt . The
set of all policies is denoted by Φ. A Markov policy is a sequence ϕ = {ϕt } of stochastic
kernels on A given Z. The set of Markov policies is denoted by M. Let J̃ (ϕ, μ0) denote the
finite-horizon cost function of policy ϕ ∈ Φ for initial point μ0 of the belief-state MDP.
Notice that any history vector s(t) = (z(0), . . . , z(t), a(0), . . . , a(t − 1)) of the belief-state
MDP is a function of the history vector γ (t) = (y(0), . . . , y(t), a(0), . . . , a(t − 1)) of the
POMDP. Let us write this relation as i(γ (t)) = s(t). Hence, for a policy ϕ = {ϕt } ∈ Φ, we
can define a policy πϕ = {πϕ

t } ∈ Π as π
ϕ
t ( · |γ (t)) = ϕt ( · |i(γ (t))). Let us write this as a

mapping from Φ to Π : Φ � ϕ �→ i(ϕ) = πϕ ∈ Π . It is straightforward to show that the
cost functions J̃ (ϕ, μ0) and Jμ(πϕ) are the same. One can also prove that (see [53], [39])

inf
ϕ∈Φ

J̃ (ϕ, μ0) = inf
π∈Π

Jμ(π) (7)

and furthermore, that if ϕ is an optimal policy for belief-state MDP, then πϕ is optimal
for the POMDP as well. Therefore, the optimal control problem for the mean-field game is
equivalent to the optimal control of belief-state MDP.

We now derive the conditions that are satisfied by belief-state MDP. To that end, define
W : Z → R as:

W (z) =
∫

X
w(x)z(dx).

Note that W is a lower semi-continuous moment function on Z. One can prove that (see
[41,Section 4]) the belief-state MDP satisfies the following conditions under Assumption 1:

(i) The cost functions {Ct } are bounded and continuous.
(ii) The stochastic kernels {ηt } are weakly continuous.
(iii) A is compact and Z is σ -compact.
(iv) There exists a constant α ≥ 0 such that

sup
a∈A

∫

Z
W (y)ηt (dy|z, a) ≤ αW (z), for all t .

(v) The initial probability measure δμ0 satisfies W (δμ0) = M < ∞.

With these conditions, we are now ready to prove Theorem 1 by adapting techniques in
[41] to the non-homogeneous and finite-horizon set-up.

We first define the mapping B : P(Z) → P(X), which will define the relation between
state-measure flows in the mean-field game and state-measure flows in the belief-state MDP,
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as follows:

B(ν)( · ) =
∫

Z
z( · ) ν(dz).

Using this definition, for any ν ∈ P(Z × A)T+2, we define the measure flow μν ∈ P(X)T+2

as follows:

μν = (
B(νt,1)

)T+1
t=0 ,

where for any ν ∈ P(Z × A), we let ν1 denote the marginal of ν on Z. Let {ην
t }T+1

t=0 and
{Cν

t }T+1
t=0 be, respectively, the transition probabilities and one-stage cost functions of belief-

state MDP induced by the measure flow μν . We let J ν∗,t : Z → [0,∞) denote the optimal
value function at time t of this belief-state MDP; that is,

J ν∗,t (z) = inf
ϕ∈Φ

Eϕ

[T+1∑

k=t

Cν
k (z(k), a(k))

∣
∣
∣
∣z(t) = z

]

.

Let J ν∗ = (
J ν∗,t

)T+1
t=0 .

To prove the existence of a mean-field equilibrium, we use the technique in [32]. To that
end, we first transform the fixed point equation π ∈ Ψ (Λ(π)) characterizing the mean-
field equilibrium into a fixed-point equation of a set-valued mapping from the set of state-
action measure flows P(Z × A)T+2 into itself. Then, using Kakutani’s fixed point theorem
([2,Corollary 17.55]), we deduce the existence of a mean-field equilibrium.

For any t , the Bellman optimality operator T ν
t : Cb(Z) → Cb(Z) is given by

T ν
t u(z) = min

a∈A

[

Cν
t (z, a) +

∫

Z
u(y)ην

t (dy|z, a)

]

.

Note that T ν
t J ν∗,t+1 = J ν∗,t for every t . The following theorem is a known result in the theory

of nonhomogeneous Markov decision processes (see [26,Theorems 14.4 and 17.1]). For any
given ν, it characterizes the optimal policy of the belief-state MDP.

Theorem 2 For any ν, a policy ϕ ∈ M is optimal if and only if, for all t ,

ν
ϕ
t

({

(z, a) : Cν
t (z, a) +

∫

Z
J ν∗,t+1(y)η

ν
t (dy|z, a) = T ν

t J ν∗,t+1(z)

})

= 1, (8)

where ν
ϕ
t = L(

z(t), a(t)
)
under ϕ and ν.

Using Theorem 2, we now define the set-valued map from P(Z × A)T+2 into itself. To
that end, for any ν ∈ P(Z × A)T+2, let us define the following sets:

C(ν) =
{

ν′ ∈ P(Z × A)T+2 : ν′
0,1 = δμ0 , ν′

t+1,1( · ) =
∫

Z×A
ην
t ( · |z, a)νt (dz, da)

}

and

B(ν) =
{

ν′ ∈ P(Z × A)T+2 : ∀0 ≤ t ≤ T + 1,

ν′
t

({

(z, a) : Cν
t (z, a) +

∫

Z
J ν∗,t+1(y)η

ν
t (dy|z, a) = T ν

t J ν∗,t+1(z)

})

= 1

}

.

Here, the set C(ν) characterizes the consistency of the mean-field term with the state dis-
tribution of a generic agent, and the set B(ν) characterizes optimality of the policy for the
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mean-field term. The set-valued mapping Γ : P(Z × A)T+2 → 2P(Z×A)T+2
is given as

follows:

Γ (ν) = C(ν) ∩ B(ν).

Note that the fixed-point equation π ∈ Ψ (Λ(π)) characterizes the behavior of the state dis-
tribution and the control law in mean-field equilibrium separately. To establish the existence
of mean-field equilibrium via Kakutani’s Fixed Point Theorem or Banach Fixed Point The-
orem using this equation, one needs to put some topology on the policy space. However, by
combining the state distribution with the control law, which gives the joint distribution of the
state and the action, we can characterize via the set-valued mapping Γ the behavior of the
state and the control law together in mean-field equilibrium. This will enable us to deduce the
existence of a mean-field equilibrium without introducing a topology for the control laws,
which is in general the solution technique in continuous time setup (see [28]).

An element ν is a fixed point of Γ if ν ∈ Γ (ν). The following proposition makes the
connection between mean-field equilibria and fixed points of Γ .

Proposition 2 Suppose that Γ has a fixed point ν = (νt )
T+1
t=0 . Construct a Markov policy

ϕ = {ϕt } for belief-state MDP by disintegrating each νt as νt (dz, da) = νt,1(dz)ϕt (da|z).
Let π∗ = πϕ and μ∗ = (B(νt,1))

T+1
t=0 . Then, the pair (π∗,μ∗) is a mean-field equilibrium.

Proof Note that, since ν ∈ C(ν), we have νt = L(
z(t), a(t)

)
for belief-state MDP under the

policy ϕ and the measure flow μ∗. Then, for any f ∈ Cb(X), we have

μ∗
t+1( f ) = B(νt+1,1)( f )

=
∫

Z×A

∫

Z
z′( f )ην

t (dz
′|z, a)νt (dz, da)

=
∫

Z×A

{∫

X

∫

X
f (y)pt (dy|x, a, μ∗

t )z(dx)

}

νt (dz, da)

= Eϕ
[
lt (z(t), a(t))

]
(

herelt (z, a) =
∫

X

∫

X
f (y)pt (dy|x, a, μ∗

t )z(dx)

)

= Eπ∗
[∫

X
f (y)pt (dy|x(t), a(t), μ∗

t )

]

. (9)

Since (9) is true for all f ∈ Cb(X), we have

μ∗
t+1( · ) =

∫

X×A
pt ( · |x(t), a(t), μ∗

t )P
π∗

(da(t)|x(t))μ∗
t (dx(t)),

where Pπ∗
(da(t)|x(t)) denotes the conditional distribution of a(t) given x(t) under π∗ and

(μ∗
τ )0≤τ≤t . Hence, Λ(π∗) = μ∗.
Since ν ∈ B(ν), the corresponding Markov policy ϕ satisfies (8) for ν. Therefore, by

Theorem 2 and the fact that νt = L(
z(t), a(t)

)
for belief-state MDP under the policy ϕ and

the measure flow μ∗, ϕ is optimal for belief-state MDP induced by the measure flow μ∗ (or,
equivalently, ν). Therefore, π∗ ∈ Ψ (μ∗). ��

By Proposition 2, it suffices to prove that Γ has a fixed point in order to establish the
existence of a mean-field equilibrium. To prove this, we use Kakutani’s fixed point theorem,
which is stated below:

Theorem 3 [2,Corollary 17.55] Let K be a non-empty compact convex subset of a locally
convex Hausdorff space, and let the set-valued mapping φ : K → 2K have closed graph
and non-empty convex values. Then, the set of fixed points of φ is compact and non-empty.
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Hence, in order to use Kakutani’s fixed point theorem, the set-valued mapping Γ should
be defined on a convex and compact set. However, the set P(Z × A)T+2 in the definition of
Γ is not compact. To get around that, we will prove that the image of P(Z×A)T+2 under Γ

is in fact a subset of some convex and compact set, and it is sufficient to consider this convex
and compact set in the definition of Γ . To that end, for each t , define the set

P t (Z) =
{

μ ∈ P(Z) :
∫

Z
W (z)μ(dz) ≤ αt M

}

.

SinceW is a lower semi-continuous moment function, the set P t (Z) is compact with respect
to the weak topology [25,Proposition E.8, p. 187]. Let us define

P t (Z × A) = {
ν ∈ P(Z × A) : ν1 ∈ P t (Z)

}
.

Since A is compact, P t (Z × A) is tight. Furthermore, P t (Z × A) is closed with respect to
the weak topology since W is lower semi-continuous. Hence, P t (Z × A) is compact. Let
Ξ = ∏T+1

t=0 P t (Z × A), which is convex and compact with respect to the product topology.

Proposition 3 We have Γ
(P(Z × A)T+2

) = {
ν′ : ν′ ∈ Γ (ν), ν ∈ P(Z × A)T+2

} ⊂ Ξ .

Proof Fix any ν ∈ P(Z × A)T+2. It is sufficient to prove that C(ν) ⊂ Ξ as Γ (ν) =
C(ν) ∩ B(ν). Let ν′ ∈ C(ν). We prove by induction that ν′

t,1 ∈ P t
v(Z) for all t . The claim

trivially holds for t = 0 as ν′
0,1 = δμ0 . Assume that the claim holds for t and consider t + 1.

We have
∫

Z
W (y)ν′

t+1,1(dy) =
∫

Z×A

∫

Z
W (y)ην

t (dy|z, a)νt (dz, da)

≤
∫

Z
αW (z)νt,1(dz) (by (iv))

≤ αt+1M (as νt,1 ∈ P t
v(Z)).

Hence, ν′
t+1,1 ∈ P t+1

v (Z). ��
By Proposition 3, we can now consider Γ as a multi-valued mapping from Ξ into itself.

It can be proved that C(ν) ∩ B(ν) 	= ∅ for any ν ∈ Ξ . Indeed, for any t ≥ 0, we define

μt+1( · ) =
∫

Z×A
ην
t ( · |z, a) νt (dx, da).

Moreover, for any t ≥ 0, let ft : Z → A be the minimizer of the following optimality
equation:

Cν
t (z, ft (z)) +

∫

Z
J ν∗,t+1(y)η

ν
t (dy|z, ft (z)) = T ν

t J ν∗,t+1(z).

Existence of such an ft follows from the Measurable Selection Theorem [25,Section D]
since Cν

t is continuous in a, ην
t is weakly continuous in a, and A is compact. If we define

ν′
t (dz, da) = μt (dz) δ ft (z)(da), then it is straightforward to prove that ν′ ∈ C(ν)∩ B(ν), and
thus C(ν) ∩ B(ν) 	= ∅. Moreover, both C(ν) and B(ν) are convex, and so, their intersection
is also convex. Ξ is a convex compact subset of a locally convex topological space M(Z ×
A)T+2, where M(Z × A) denotes the set of all finite signed measures on Z × A. Hence, in
order to deduce the existence of a fixed point of Γ , we only need to prove that it has a closed
graph. Before stating this result, we state the following proposition which is a key element
of the proof.
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Proposition 4 ([41,Proposition 4.3]) Let ν(n) → ν in product topology. Then, for all t ,
ην(n)

t ( · |zn, an) weakly converges to ην
t ( · |z, a) for all (zn, an) → (z, a) ∈ Z × A.

Using Proposition 4, we can now prove the following result.

Proposition 5 The graph of Γ , i.e., the set

Gr(Γ ) := {(ν, ξ) ∈ Ξ × Ξ : ξ ∈ Γ (ν)} ,

is closed.

Proof The graph Gr(Γ ) of Γ is closed if and only if when (ν(n), ξ (n)) → (ν, ξ) as n → ∞
for some

{
(ν(n), ξ (n))

} ⊂ Ξ , then we must have ξ ∈ Γ (ν). To that end, let
{
(ν(n), ξ (n))

} ⊂
Gr(Γ ) be such that (ν(n), ξ (n)) → (ν, ξ) as n → ∞ for some (ν, ξ) ∈ Ξ × Ξ . We prove
that ξ ∈ Γ (ν).

Using Proposition 4, we first prove that ξ ∈ C(ν); that is, for all t , we have

ξt+1,1( · ) =
∫

Z×A
ην
t ( · |z, a)νt (dz, da).

For all n and t , we have

ξ
(n)
t+1,1( · ) =

∫

Z×A
ην(n)

t ( · |z, a)ν
(n)
t (dz, da). (10)

Since ξ (n) → ξ in Ξ , ξ (n+1)
t+1 → ξt+1 weakly. Let g ∈ Cb(Z). Then, by [33,Theorem 3.5],

we have

lim
n→∞

∫

Z×A

∫

Z
g(z′)ην(n)

t (dz′|z, a)ν
(n)
t (dz, da) =

∫

Z×A

∫

Z
g(z′)ην

t (dz
′|z, a)νt (dx, da)

since ν
(n)
t → νt weakly and

∫
Z g(y)η

ν(n)

t ( · |z, a) converges to
∫
Z g(y)η

ν
t ( · |z, a) continu-

ously2 (see [33,Theorem 3.5]). This implies that the measure on the right-hand side of (10)
converges weakly to

∫
Z×A ην

t ( · |z, a)νt (dz, da). Therefore, we have

ξt+1,1( · ) =
∫

Z×A
ην
t ( · |z, a)νt (dz, da),

from which we conclude that ξ ∈ C(ν).
To complete the proof, it suffices to prove that ξ ∈ B(ν). To that end, for each n and t , let

us define the following functions:

F (n)
t (z, a) = Cν(n)

t (z, a) +
∫

Z
J ν(n)

∗,t+1(y)η
ν(n)

t (dy|z, a)

and

Ft (z, a) = Cν
t (z, a) +

∫

Z
J ν∗,t+1(y)η

ν
t (dy|z, a).

By definition, J ν(n)

∗,t (z) = mina∈A F (n)
t (z, a) and J ν∗,t (z) = mina∈A Ft (z, a).Define also the

following sets:

A(n)
t = {

(z, a) : F (n)
t (z, a) = J ν(n)

∗,t (z)
}
and At = {

(z, a) : Ft (z, a) = J ν∗,t (z)
}
.

2 Suppose g, gn (n ≥ 1) are measurable functions on metric space E. The sequence gn is said to converge to
g continuously if limn→∞ gn(en) = g(e) for any en → e where e ∈ E.
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Since ξ (n) ∈ B(ν(n)), we have 1 = ξ
(n)
t

(
A(n)
t

)
, for all n andt . To prove to ξ ∈ B(ν), we

need to show that 1 = ξt
(
At

)
, for all t .

First note that since both F (n)
t and J ν(n)

∗,t are continuous, A(n)
t is closed. Moreover, At is

also closed as both Ft and J ν∗,t are continuous. Using Proposition 4, one can also prove as in

[40,Proposition 3.10], [42,Proposition 4.4] that F (n)
t converges to Ft continuously and J ν(n)

∗,t
converges to J ν∗,t continuously, as n → ∞.

For each M ≥ 1, define the closed set BM
t = {

(z, a) : Ft (z, a) ≥ J ν∗,t (z)+ ε(M)
}
, where

the sequence {ε(M)} is decreasing and ε(M) → 0 as M → ∞. Since both Ft and J ν∗,t are
continuous, we can choose {ε(M)}M≥1 so that ξt (∂BM

t ) = 0 for each M . Note that by the
monotone convergence theorem, we have

ξ
(n)
t

(
Ac
t ∩ A(n)

t
) = lim inf

M→∞ ξ
(n)
t

(
BM
t ∩ A(n)

t ).

This implies that

1 = lim sup
n→∞

lim inf
M→∞

{

ξ
(n)
t

(
At ∩ A(n)

t
) + ξ

(n)
t

(
BM
t ∩ A(n)

t
)
}

≤ lim inf
M→∞ lim sup

n→∞

{

ξ
(n)
t

(
At ∩ A(n)

t
) + ξ

(n)
t

(
BM
t ∩ A(n)

t
)
}

.

For any fixed M , we prove that the limit of the second term in the last expression converges to
zero. To that end,we first note that ξ (n)

t convergesweakly to ξt as n → ∞when bothmeasures
are restricted to BM

t , as BM
t is closed and ξt (∂BM

t ) = 0 [10,Theorem 8.2.3]. Furthermore,

since F (n)
t converges to Ft continuously and J ν(n)

∗,t converges to J ν∗,t continuously, 1A(n)
t ∩BM

t
converges continuously to 0, which implies by [33,Theorem 3.5] that

lim sup
n→∞

ξ
(n)
t

(
BM
t ∩ A(n)

t
) = 0.

Therefore, we obtain

1 ≤ lim sup
n→∞

ξ
(n)
t

(
At ∩ A(n)

t
) ≤ lim sup

n→∞
ξ

(n)
t (At ) ≤ ξt (At ),

where the last inequality follows from the Portmanteau theorem [8,Theorem 2.1] and the fact
that At is closed. Hence, ξt (At ) = 1. Since t is arbitrary, this is true for all t . This means that
ξ ∈ B(ν). Therefore, ξ ∈ Γ (ν). ��

As a result of Proposition 5, we now conclude via Kakutani’s fixed point theorem
([2,Corollary 17.55]) that Γ has a fixed point. Therefore, the pair (π∗,μ∗) in Proposition 2
is a mean field equilibrium. This completes the proof of Theorem 1.

5 Approximation of Nash Equilibria

We are now ready to prove that the policy in the mean-field equilibrium, when applied by
every agent, is approximately Nash equilibrium formean-field gameswith a sufficiently large
number of agents. Let (π

′∗,μ∗) denote the pair in the mean-field equilibrium. In order to
prove the existence of an approximate Nash equilibrium, we need Assumption 2 in addition
to Assumption 1.
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Our approach can be summarized as follows: (i) First, Assumption 2 enables us to
define another mean-field equilibrium, in which the policy deterministically and continu-
ously depends on only the observations; (ii) we then construct an equivalent game model
whose states are the states of the game model in Sect. 2.2 plus the current and past observa-
tions; (iii) in this equivalent model, the new mean-field equilibrium policy becomes Markov;
(iv) using this Markov structure, we prove that the cost function of a generic agent under
any policy in the finite-agent regime, where the rest of the agents adopt mean-field equilib-
rium policy, converges to the cost function in the infinite-population limit as the number of
agents goes to infinity; (v) since the mean-field equilibrium policy is optimal in the infinite-
population limit, we establish the existence of an approximate Nash equilibrium via the result
in step (iv).

Let dBL denote the bounded Lipschitz metric on P(S), which metrizes the weak topology
[18,Proposition 11.3.2].

Assumption 2 (a) ωq(r) → 0 and ωm(r) → 0 as r → 0, where

ωq(r) = sup
(s,u)∈S×A

sup
μ,ν:

dBL (μ,ν)≤r

‖q( · |s, u, μ) − q( · |s, u, ν)‖T V

ωm(r) = sup
(s,u)∈S×A

sup
μ,ν:

dBL (μ,ν)≤r

|m(s, u, μ) − m(s, u, ν)|.

(b) For each t ≥ 0, π
′∗
t : Gt → P(A) is deterministic; that is, π

′∗
t ( · |g(t)) = δ ft (g(t))( · ) for

some measurable function ft : Gt → A, and weakly continuous.

In Appendix 1, we give sufficient conditions for Assumption 2-(b) in terms of the system
components.

We now construct another mean-field equilibrium in which the policy deterministically
depends on only the observations. For t , let Yt+1 = ∏t

k=0 Y. Then, for each t ≥ 1, define
f̃t : Yt+1 → A as:

f̃t (y(t), . . . , y(0)) = ft
(
y(t), . . . , y(0), f̃t−1(y(t − 1), . . . , y(0)), . . . , f̃0(y(0))

)
,

where f̃0 = f0. Let π∗
t ( · |y(t), . . . , y(0)) = δ f̃t (y(t),...,y(0))

( · ). Note that π∗
t is a weakly

continuous stochastic kernel on A given Yt+1 under Assumption 2-(b). Moreover, π∗ and π
′∗

are equivalent because, for all t , we have

Pπ
′∗(

a(t) ∈ · |g(t)) = Pπ
′∗(

a(t) ∈ · |y(t), . . . , y(0))

= Pπ∗(
a(t) ∈ · |y(t), . . . , y(0)).

Hence, (π∗,μ∗) is also a mean-field equilibrium. In the sequel, we use (π∗,μ∗) to prove the
approximation result. The reason for passing from ft to f̃t is that the latter policy becomes
Markov in the equivalent game model that will be introduced in the proof of Theorem 4.
Then, we can prove the existence of an approximate Nash equilibrium by adapting the proof
techniques and results in [40, 42] to the game models with expanding state spaces and non-
homogeneous system components.

The following theorem is the main result of this section, which states that the policy
π (N ,∗) = (π∗, . . . , π∗), where π∗ is repeated N times, is an ε-Nash equilibrium for suffi-
ciently large N . Its proof appears in the next section.
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Theorem 4 For any ε > 0, there exists N (ε) such that for N ≥ N (ε), the policy π (N ,∗) is
an ε-Nash equilibrium for the game with N agents that is introduced in Sect. 2.2. Since the
original N-agent game model is equivalent to the one in Sect. 2.2 by Proposition 1, the policy
π (N ,∗) is also an ε-Nash equilibrium for the original game with N agents.

Remark 2 Note that to obtain an explicit relation between ε and N (ε), one needs to establish
that the optimal policy π∗ in mean-field equilibrium is Lipschitz continuous. In the fully
observed continuous-time setup, this is in general established easily due to very restrictive
structural assumptions on the system components. In a recent monograph [16], Lipschitz
continuity of the optimal policy inmean-field equilibriumwas established inLemma3.3 using
regularity properties of system components. However, in our setup, in order to establish this,
we need Lipschitz continuity, strong convexity, and differentiability conditions on one-stage
cost functions {Ct } and transition probabilities {ηt } of the fully observed reduction. However,
establishing Lipschitzness of the transition probabilities {ηt } is in general prohibitive. Indeed,
even weak continuity of the transition probabilities {ηt }, which is a much weaker condition
than Lipschitz continuity, has been established relatively recently in [19]. Moreover, it was
discussed in that paper that even if very restrictive conditions are imposed on the system
components, it is not possible to extend weak continuity of the transition probability to
setwise continuity, which is also a very weak condition that is used in the stochastic control
literature. Therefore, establishing Lipschitz continuity of the transition probabilities {ηt } is
in general prohibitive. This would also be the case for the partially observed continuous-time
setup, since the above-mentioned result pertains to the fully observed case.

Remark 3 In the mean-field games literature, uniqueness of the mean-field equilibrium can
be established using a monotonicity condition as introduced by Lasry and Lions in [34]
(see also [15]). However, in addition to the monotonicity condition, we should also have the
following conditions in order to have uniqueness (see, e.g., [15,Assumption U]):

a) The cost function should be in additive form.
b) The one-stage cost function can be additively decomposed into two functions, where the

first function is a function of the state and the mean-field term, and the second function
is a function of the state and the action.

c) The dynamics of a generic agent should be independent of the mean-field term.
d) For any state-measure flow, there exists a unique optimal policy.

Under these conditions, one can prove that if (πμ,μ) and (πν, ν) are two mean-field
equilibria, then

Jμ(πμ) + Jν(π
ν) ≥ Jμ(πν) + Jν(π

μ) (11)

in the equivalent game model. This implies that Jμ(πμ) = Jμ(πν) and Jν(πμ) = Jν(πμ).
Then, conditions c) and d) ensure that these mean-field equilibria must be the same, which
implies uniqueness. However, note that to have inequality (11), conditions a), b), and c) must
hold. Indeed, to state the monotonicity condition, we should have condition b).

In our case, the cost function in the equivalent gamemodel is in additive form, and thus we
do have condition a). Moreover, we can assume the decomposition in condition b). However,
if we assume that transition probabilities {pt } are independent of the mean-field term, then
it implies that the transition probability q and the one-stage cost function m of the original
game model are independent of the mean-field term since

pt
(
B × D

∣
∣x(t), a(t), μt

) = q(B|s(t), a(t), μt,1) ⊗ δm(t)+β tm(s(t),a(t),μt,1)(D).
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But this is merely a risk-sensitive stochastic control setup.
Conversely, if we consider the original game model instead of the equivalent one, then, in

this case, the cost function is not in additive form and thus, we cannot achieve inequality (11)
because we cannot have conditions a) and b), which are needed along with the monotonicity
condition to have unique mean-field equilibrium.

6 Proof of Theorem 4

For the game model introduced in Sect. 2.2, the policy π∗ in the mean-field equilibrium
is not necessarily Markov, and so, the joint process of the state, observation, and mean-
field term does not have the Markov property as well. To prove Theorem 4, we will first
introduce another equivalent game model whose states are the state of the original game
model3 plus the current and past observations. In this new model, the mean-field equilibrium
policy automatically becomes Markov.

In the infinite-population limit, this new mean-field game model is specified by
(

{St }T+1
t=0 ,A, {Pt }T+1

t=0 , {Ct }T+1
t=0 , λ0

)

,

where, for each t , St = X × Y × . . . × Y︸ ︷︷ ︸
t+1-times

and A are the Polish state and action spaces at time

t , respectively. The stochastic kernel Pt : St × A × P(St ) → P(St+1) is defined as:

Pt
(
Bt+1 × Dt+1 × . . . × D0

∣
∣b(t), a(t),Δt

)

=
∫

Bt+1

r(Dt+1|x(t + 1))
t∏

k=0

1Dk (y(k))pt (dx(t + 1)|x(t), a(t),Δt,1),

where Bt+1 ∈ B(X), Dk ∈ B(Y) (k = 0, . . . , t + 1), b(t) = (x(t), y(t), y(t − 1), . . . , y(0)),
and Δt,1 is the marginal of Δt on X. Indeed, Pt is the controlled transition probabil-
ity of next state-observation pair, current observation, and past observations, i.e.,

(
x(t +

1), y(t + 1), y(t), . . . , y(0)
)
, given the current state-observation pair and past observations,

i.e.,
(
x(t), y(t), y(t − 1), . . . , y(0)

)
, in the original mean-field game. For each t , the one-

stage cost function Ct : St × A× P(St ) → [0,∞) (do not confuse this with Ct in Sect. 4) is
defined as:

Ct (b(t), a(t),Δt ) = ct (x(t), a(t),Δt,1).

Finally, the initial measure λ0 is given by λ0(db) = r(dy|x)μ0(dx), where b = (x, y).
Suppose that Assumption 1 and Assumption 2 hold. Then, for each t , the following are
satisfied:

(I) The one-stage cost function Ct is bounded and continuous.
(II) The stochastic kernel Pt is weakly continuous.

It is straightforward to prove that (I) and (II) hold since ct is continuous, pt is weakly
continuous, and r is continuous in total variation norm. Recall the set of policies Π̃ in the
originalmean-field gamewhichonlyuse the observations; that is,π ∈ Π̃ ifπt : Yt+1 → P(A)

for each t ≥ 0. Note that Π̃ is a subset of the set of Markov policies in the new model. For

3 When we say original game model in this section, it means the game model introduced in Sect. 2.2 in place
of the risk-sensitive game model.
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any measure flow Δ = (Δt )t≥0, where Δt ∈ P(St ), we denote by ĴΔ(π) the finite-horizon
risk-neutral total cost of the policy π ∈ Π̃ in this new mean-field game model.

We also define the corresponding N agent game as follows. We have the Polish state
spaces {St }T+1

t=0 and action space A. For every t and every i ∈ {1, 2, . . . , N }, let bNi (t) ∈ St
and aNi (t) ∈ A denote the state and the action of Agent i at time t , and let

Δ
(N )
t ( · ) = 1

N

N∑

i=1

δbNi (t)( · ) ∈ P(St )

denote the empirical distribution of the state configuration at time t . The initial states bNi (0)
are independent and identically distributed according to λ0, and, for each t , the next-state
configuration (bN1 (t + 1), . . . , bNN (t + 1)) is generated according to the probability laws

N∏

i=1

Pt
(
dbNi (t + 1)

∣
∣bNi (t), aNi (t),Δ(N )

t
)
.

Recall that Π̃i denotes the set of policies that only use local observations for Agent i in the
original game. Note that policies in Π̃i are Markov for the new model since they partly use
the state information. We let Π̃c

i denote the set of all policies in Π̃i for Agent i that are
weakly continuous; that is, π = {πt } ∈ Π̃c

i if for all t ≥ 0, πt : Yt+1 → P(A) is continuous
when P(A) is endowed with the weak topology. For Agent i , the finite-horizon risk-neutral

total cost under the initial distribution λ0 and N -tuple of policies π (N ) ∈ Π̃
(N )

is denoted by
Ĵ (N )
i (π (N )).
The following proposition makes the connection between this new model and the original

model.

Proposition 6 For any N ≥ 1, π (N ) ∈ Π̃
(N )

, and i = 1, . . . , N, we have Ĵi (π (N )) =
Ji (π (N )). Similarly, for any π ∈ Π̃ and measure flow Δ, we have ĴΔ(π) = Jμ(π) where
μ = (Δt,1)t≥0.

Proof The result can easily be proved as in [41,Proposition 5.1], and thus, we do not include
the details. ��

By Proposition 6, in the remainder of this section we consider the new game model in
place of the one introduced in Sect. 2.2. Define the measure flow Δ = (Δt )t≥0 as follows:

Δt = L(x(t), y(t), . . . , y(0)),

where L(x(t), y(t), . . . , y(0)) denotes the probability law of (x(t), y(t), . . . , y(0)) in the
original mean-field game under the policy π∗ in the mean-field equilibrium. For each t ≥ 0,
define the stochastic kernel Pπ∗

t ( · |b,Δ) on St+1 given St × P(St ) as

Pπ∗
t ( · |b,Δ) =

∫

A
Pt ( · |b, a,Δ)π∗

t (da|b).

Since π∗
t is weakly continuous, Pπ∗

t ( · |b,Δ) is also weakly continuous in (b,Δ). In the
sequel, to ease the notation, we will also write Pπ∗

t ( · |b,Δ) as Pπ∗
t,Δ( · |b).

Lemma 1 Measure flow Δ satisfies

Δt+1( · ) =
∫

St
Pπ∗
t ( · |b,Δt )Δt (db)

= Δt P
π∗
t,Δt

( · ).
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Proof The result can easily be proved as in [41,Lemma 5.1], and thus, we do not include the
details. ��

For each N ≥ 1, let
{
bNi (t)

}
1≤i≤N denote the states of agents at time t in the N -agent new

game model under the policy π (N ,∗) = {π∗, π∗, . . . , π∗}. Define the empirical distribution

Δ
(N )
t ( · ) = 1

N

N∑

i=1

δbNi (t)( · ).

Proposition 7 For all t ≥ 0, we have L(Δ
(N )
t ) → δΔt weakly in P(P(St )), as N → ∞.

Proof Weak topology on P(St ) can be metrized using the following metric:

ρ(μ, ν) =
∞∑

m=1

2−(m+1)|μ( fm) − ν( fm)|,

where { fm}m≥1 is a sequence of real continuous and bounded functions on St such that
‖ fm‖ ≤ 1 for all m ≥ 1 (see [38,Theorem 6.6, p. 47]). Define the Wasserstein distance of
order 1 on the set of probability measures P(P(St )) as follows (see [51,Definition 6.1]):

W1(Φ,Ψ ) = inf
{
E[ρ(X , Y )] : L(X) = Φ and L(Y ) = Ψ

}
.

Note that since δΔt is a Dirac measure, we have

W1(L(Δ
(N )
t ), δΔt ) = {

E[ρ(X , Y )] : L(X) = L(Δ
(N )
t ) and L(Y ) = δΔt

}

= E

[ ∞∑

m=1

2−(m+1)|Δ(N )
t ( fm) − Δt ( fm)|

]

.

Since convergence in W1 distance implies weak convergence (see [51,Theorem 6.9]), it
suffices to prove that

lim
N→∞ E

[|Δ(N )
t ( f ) − Δt ( f )|

] = 0

for any f ∈ Cb(St ) and for all t . We prove this by induction on t .
As {bNi (0)}1≤i≤N are i.i.d. with common distribution Δ0, the claim is true for t = 0. We

suppose that the claim holds for t and consider t + 1. Fix any g ∈ Cb(St+1). Then, we have

|Δ(N )
t+1(g) − Δt+1(g)|

≤ |Δ(N )
t+1(g) − Δ

(N )
t Pπ∗

t,Δ(N )
t

(g)| + |Δ(N )
t Pπ∗

t,Δ(N )
t

(g) − Δt P
π∗
t,Δt

(g)|. (12)

We first prove that the expectation of the second term on the right-hand side (RHS) of (12)
converges to 0 as N → ∞. To that end, define F : P(St ) → R as:

F(Δ) = ΔPπ∗
t,Δ(g) =

∫

St

∫

St+1

g(b′)Pπ∗
t (db′|b,Δ)Δ(db).

One can prove that F ∈ Cb(P(St )). Indeed, suppose thatΔn converges toΔ. Let us define

ln(b) =
∫

St+1

g(b′)Pπ∗
t (db′|b,Δn) and l(b) =

∫

St+1

g(b′)Pπ∗
t (db′|b,Δ).

Since Pπ∗
t is weakly continuous, one can prove that ln converges to l continuously. By

[33,Theorem 3.5], we have F(Δn) → F(Δ), and so, F ∈ Cb(P(St )). This implies that the
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expectation of the second term on the RHS of (12) converges to zero as L(Δ
(N )
t ) → δΔt

weakly, by the induction hypothesis.
Now, let us write the expectation of the first term on the RHS of (12) as:

E

[

E

[

|Δ(N )
t+1(g) − Δ

(N )
t Pπ∗

t,Δ(N )
t

(g)|
∣
∣
∣
∣b

N
1 (t), . . . , bNN (t)

]]

.

Then, by [11,Lemma A.2], we have

E

[

|Δ(N )
t+1(g) − Δ

(N )
t Pπ∗

t,Δ(N )
t

(g)|
∣
∣
∣
∣b

N
1 (t), . . . , bNN (t)

]

≤ 2
‖g‖√
N

.

Therefore, the expectation of the first term on the RHS of (12) also converges to zero as
N → ∞. Since g was arbitrary, this completes the proof. ��

The implication of Proposition 7 is the key to prove the main theorem. It basically says
that in the infinite-population limit, the empirical distribution of the states under the mean-
field policy converges to the deterministic measure flow Δ (i.e., the principle of law of large
numbers). This result leads to the following important proposition.

Proposition 8 We have

lim
N→∞ Ĵ (N )

1 (π (N ,∗)) = ĴΔ(π∗) = inf
π ′∈Π

ĴΔ(π ′).

Proof As the transition probabilities Pt ( · |d, a,Δ) are continuous in Δ, the dynamics of
the state of a generic agent in the finite-agent game with sufficiently many agents and the
dynamics of the state in the mean-field game under policies π (N ,∗) = (π∗, . . . , π∗) and π∗,
respectively, should therefore be close. Hence, the distributions of the states in these games
should also be close, from which we obtain the proposition. The precise mathematical proof
is given below.

For each t ≥ 0, let us define

Cπ∗
t
(b,Δ) =

∫

A
Ct (b, a,Δ)π∗

t (da|b).

Note that random elements
(
bN1 (t), . . . , bNN (t),Δ(N )

t
)
are exchangeable; that is, for any per-

mutation σ of {1, . . . , N }, we have
L(

bN1 (t), . . . , bNN (t),Δ(N )
t

) = L(
bNσ(1)(t), . . . , b

N
σ(N )(t),Δ

(N )
t

)
.

Hence, the cost function at time t can be written as:

E
[Ct (bN1 (t), aN1 (t),Δ(N )

t )
] = 1

N

N∑

i=1

E
[Ct (bNi (t), aNi (t),Δ(N )

t )
]

= E
[
Δ

(N )
t

(Cπ∗
t
(b,Δ(N )

t )
)]

.

Define F : P(St ) → R as

F(Δ) =
∫

St
Cπ∗

t
(b,Δ)Δ(db).
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One can show that F ∈ Cb(P(St )) as π∗
t is weakly continuous. Hence, by Proposition 7, we

obtain

lim
N→∞ E

[Ct (bN1 (t), aN1 (t),Δ(N )
t )

] = lim
N→∞ E

[
Δ

(N )
t

(Cπ∗
t
(b,Δ(N )

t )
)]

= lim
N→∞ E[F(Δ

(N )
t )]

= F(Δt )

= Δt (Cπ∗
t
( · ,Δt )). (13)

Note that by Lemma 1, the cost in the mean-field game can be written as:

ĴΔ(π∗) =
T+1∑

t=0

Δt (Cπ∗
t
( · ,Δt )).

Therefore, by (13) and the dominated convergence theorem, we obtain

lim
N→∞ Ĵ (N )

1 (π (N ,∗)) = ĴΔ(π∗),

which completes the proof. ��
To obtain the approximation result, we should show that if the policy of some agent

deviates from the mean-field equilibrium policy, then the corresponding cost of this agent
should be close to the cost in the mean-field limit as in Proposition 8, for N sufficiently large.
Since the transition probabilities and the one-stage cost functions are identical for all agents
in the game model, it is sufficient to change the policy of Agent 1 for each N . To that end, let
{π̃ (N )}N≥1 ⊂ Π̃c

1 be an arbitrary sequence of policies for Agent 1; that is, for each N ≥ 1

and t ≥ 0, π̃ (N )
t : Yt+1 → P(A) is weakly continuous. For each N ≥ 1, let

{
b̃Ni (t)

}
1≤i≤N be

the collection of states in the N -person game under the policy π̃ (N ) = {π̃ (N ), π∗, . . . , π∗}.
Define

Δ̃
(N )
t ( · ) = 1

N

N∑

i=1

δ
b̃(N )
i (t)

( · ).

The following result says that the asymptotic behavior of the empirical distribution of the
states at each time t is insensitive to local deviations from the mean-field equilibrium policy.

Proposition 9 For all t ≥ 0, we have L(Δ̃
(N )
t ) → δΔt weakly P(P(St )), as N → ∞.

Proof The proof can be done by slightly modifying the proof of Proposition 7, and therefore
will not be included here. ��

For each N ≥ 1, let {b̂N (t)}t≥0 denote the state trajectory of the generic agent in the
mean-field game (i.e., infinite-population limit) under policy π̃ (N ); that is, b̂N (t) evolves as
follows:

b̂N (0) ∼ λ0 and b̂
N (t + 1) ∼ P π̃ (N )

t,Δt
( · |b̂N (t)).

The cost function of this mean-field game is given by

ĴΔ(π̃ (N )) =
T+1∑

t=0

E
[
Ct (b̂

N (t), âN (t),Δt )
]
, (14)
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where the actions at each time t ≥ 0 is generated according to the probability law

π̃
(N )
t (dâN (t)|b̂N (t)) = π̃

(N )
t (dâN (t)|ŷN (t), . . . , ŷN (0)).

The following result is a bit technical but very important for proving the main result. Its
proof is quite long and complicated, and thus can be found in Appendix 2.

Proposition 10 For any t ≥ 0, we have

lim
N→∞

∣
∣L(b̃N1 (t))(gN ) − L(b̂N (t))(gN )

∣
∣ = 0

for any sequence {gN } ⊂ Cb(St ) such that supN≥1 ‖gN‖ < ∞ and ωg(r) → 0 as r → 0,
where

ωg(r) = sup
s∈S
yt∈Yt

sup
N≥1

sup
m,m′

|m−m′|≤r

|gN (s,m, yt ) − gN (s,m′, yt )|.

Using Proposition 10, we now prove the following result.

Theorem 5 Let {π̃ (N )}N≥1 ⊂ Π̃c
1 be an arbitrary sequence of policies for Agent 1. Then, we

have

lim
N→∞

∣
∣ Ĵ (N )

1 (π̃ (N ), π∗, . . . , π∗) − ĴΔ(π̃ (N ))
∣
∣ = 0,

where ĴΔ(π̃ (N )) is given in (14).

Proof Since Ct = 0 for t ≤ T , we set t = T + 1. We have
∣
∣ Ĵ (N )

1 (π̃ (N ), π∗, . . . , π∗) − ĴΔ(π̃ (N ))
∣
∣ = ∣

∣E
[Ct (b̃N1 (t))

] − E
[Ct (b̂N1 (t))

]∣∣.

Note that Ct (b) = Ct ((s,m, y0, . . . , yt )) = eλm , where m ∈ [0, L], is Lipschitz. Therefore,
the term in the above equation converges to zero by Proposition 10. ��

As a corollary of Proposition 8 and Theorem 5, we obtain the following result.

Corollary 1 We have

lim
N→∞ Ĵ (N )

1 (π̃ (N ), π∗, . . . , π∗) ≥ inf
π ′∈Π̃

ĴΔ(π ′) = ĴΔ(π∗)

= lim
N→∞ Ĵ (N )

1 (π∗, π∗, . . . , π∗),

where {π̃ (N )}N≥1 ⊂ Π̃c
1 is an arbitrary sequence of policies for Agent 1.

Now, we are ready to prove the main result of this section.

Proof of Theorem 4 One can prove that for any policy π (N ) ∈ Π̃
(N )

, we have

inf
π i∈Π̃i

Ĵ (N )
i (π

(N )
−i , π i ) = inf

π i∈Π̃c
i

Ĵ (N )
i (π

(N )
−i , π i )

for each i = 1, . . . , N (see the proof of [40,Theorem 2.3]). Hence, it is sufficient to consider
weakly continuous policies in ˙(N ) to establish the existence of ε-Nash equilibrium in the
new model.
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We prove that, for sufficiently large N , we have

Ĵ (N )
i (π (N ,∗)) ≤ inf

π i∈Π̃c
i

Ĵ (N )
i (π

(N ,∗)
−i , π i ) + ε (15)

for each i = 1, . . . , N . As indicated earlier, since the transition probabilities and the one-
stage cost functions are the same for all agents in the new game, it is sufficient to prove (15)
for Agent 1 only. Given ε > 0, for each N ≥ 1, let π̃ (N ) ∈ Π̃c

1 be such that

Ĵ (N )
1 (π̃ (N ), π∗, . . . , π∗) < inf

π ′∈Π̃c
1

Ĵ (N )
1 (π ′, π∗, . . . , π∗) + ε

3
.

Then, by Corollary 1, we have

lim
N→∞ Ĵ (N )

1 (π̃ (N ), π∗, . . . , π∗) = lim
N→∞ ĴΔ(π̃ (N ))

≥ inf
π ′ ĴΔ(π ′)

= ĴΔ(π∗)

= lim
N→∞ Ĵ (N )

1 (π∗, π∗, . . . , π∗).

Therefore, there exists N (ε) such that for N ≥ N (ε), we have

inf
π ′∈Π̃c

1

Ĵ (N )
1 (π ′, π∗, . . . , π∗) + ε > Ĵ (N )

1 (π̃ (N ), π∗, . . . , π∗) + 2ε

3

≥ ĴΔ(π∗) + ε

3

≥ Ĵ (N )
1 (π∗, π∗, . . . , π∗).

The result then follows from Proposition 6. ��

7 Infinite Horizon Cost Function

In this section, we extend Theorem 4 to games with infinite-horizon risk-sensitive cost func-
tions; that is, a generic agent’s infinite-horizon risk-sensitive cost under the initial distribution
κ0 and the N -tuple of infinite-horizon policies π (N ,∞) = (π(1,∞), . . . , π(N ,∞)) ∈ ˙(N ) is
given by

W (N ,∞)
i (π (N ,∞)) = Eπ (N ,∞)

[

eλ
∑∞

t=0 β tm(sNi (t),uNi (t),d(N )
t )

]

,

where, for each Agent j , π( j,∞) = {π( j,∞)
0 , π

( j,∞)
1 , . . .} (i.e., infinitely many stochas-

tic kernels). Note that, by [42,Lemma 4.3], any infinite-horizon risk sensitive cost can be
approximated by finite T -horizon one with the error bound θβT+1 for some constant θ > 0,
which is independent of the policy π (N ,∞); i.e.,

∣
∣W (N ,∞)

i (π (N ,∞)) − W (N )
i (π (N ,∞))

∣
∣ ≤ θβT+1. (16)

Then, the following theorem is a consequence of (16) and Theorem 4.

Theorem 6 For any ε > 0, choose T such that θβT+1 < ε
3 and let N ( ε

3 ) be the constant in
Theorem 4 for the finite horizon T . Then, for N ≥ N ( ε

3 ), the policy π (N ,∞) is an ε-Nash
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equilibrium for the infinite-horizon risk-sensitive game with N agents, where π (N ,∞) =
(π∞, . . . , π∞),

π∞ = {
π∗
0 , . . . , π∗

T︸ ︷︷ ︸
T+1-times

, πT+1, πT+2, . . .
}
,

π∗ = {π∗
t }Tt=0 is the policy in the mean-field equilibrium of the T -horizon game, and

{πt }∞t=T+1 is some arbitrary policy.

8 An Example

In this section, we consider an additive noise model to illustrate our results. In this model,
the state and observation dynamics of a generic agent for the infinite-population game are
given, respectively, by

s(t + 1) =
∫

S
f (s(t), u(t), s)dt (ds) + g(s(t), u(t))w(t)

=: F(s(t), u(t), dt ) + g(s(t), u(t))w(t)

and

g(t) = h(s(t)) + v(t),

where s(t) ∈ S, g(t) ∈ Y, u(t) ∈ A, w(t) ∈ W, and v(t) ∈ V. Here, we assume that
S = Y = W = V = R, A ⊂ R, and {w(t)} and {v(t)} are sequences of i.i.d. standard normal
random variables independent of each other. The one-stage cost function of a generic agent
is given by

m(s(t), u(t), dt ) =
∫

S
b(s(t), u(t), s)dt (ds),

for some measurable function b : S × A × S → [0,∞).
This model is the infinite-population limit of the N -agent game model with state and

observation dynamics

sNi (t + 1) = 1

N

N∑

j=1

f (sNi (t), uN
i (t), sNj (t)) + g(sNi (t), uN

i (t))wN
i (t)

yNi (t) = h(sNi (t)) + vN
i (t)

and the one-stage cost function

m(sNi (t), uN
i (t), d(N )

t ) = 1

N

N∑

j=1

b(sNi (t), uN
i (t), sNj (t)).

For this model, Assumption 1 holds with v(s) = 1 + s2 and α = max{1 + ‖ f ‖2, L}
under the following conditions: (i) A is compact, (ii) b is continuous and bounded, (iii) g is
continuous, and f is bounded and continuous, (iv) supu∈A g2(s, u) ≤ Ls2 for some L > 0,
(v) h is continuous and bounded. Note that ‖ f ‖ is defined as:

‖ f ‖ := sup
(s,u,s′)∈S×A×S

| f (s, u, s′)|.
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Moreover, Assumption 2-(a) holds under the following conditions: (vi) b(s, u, s′) is (uni-
formly) Lipschitz in s′, (vii) f (s, u, s′) is (uniformly) Lipschitz in s′, and (viii) g is bounded
and inf(s,u)∈S×A |g(s, u)| > 0. For the proofs of these facts, we refer the reader to [41,Section
7].

In order to haveAssumption 2-(b),we need to assume thatA is convex. In addition, suppose
that q(ds′|s, a, μ) = �(s′|s, a, μ)ν(ds′) and l(dy|s) = ζ(y|s)ν(dy), where ν denotes the
Lebesgue measure. Assume that both � and ζ are continuous and bounded, and � and m are
strictly convex in a. For the justification of Assumption 2-(b) in this case, we refer the reader
to Sect. 1.

Remark 4 Note that Assumption 1 also holds for finite models (i.e., S, A, and Y are finite)
without any structure on the dynamics of the state and observation if the transition prob-
ability and the one-stage cost function are continuous with respect to the mean-field term.
Moreover, Assumption 2-(a) holds if the transition probability and the one-stage cost func-
tion are Lipschitz continuous with respect to the mean-field term. In finite models, the only
missing condition is the existence of deterministic policy in mean-field equilibrium. This can
be established if we have the uniqueness condition in (17).

9 Conclusion

This paper has considered discrete-time finite-horizon partially observed risk-sensitivemean-
field games. We have first constructed an equivalent game model whose states are the state
of the original model plus the one-stage costs incurred up to that time. In this new model,
the finite-horizon risk-sensitive cost function can be written in an additive-form as in the
risk-neutral case. Then, letting the number of agents go to infinity, we have first established
the existence of a mean-field equilibrium in the limiting mean-field game problem. We have
then shown that the policy in the mean-field equilibrium constitutes an approximate Nash
equilibrium for similarly structured games with a sufficiently large number of agents. Finally,
we have extended our results to the case of infinite-horizon cost functions.

Acknowledgements This work was partly supported by The Scientific and Technological Research Council
of Turkey (TÜBİTAK) BİDEB 2232 Research Grant.

Appendix

Continuous and Deterministic Equilibrium Policy

A common way to establish Assumption 2-(b) is as follows. Suppose that, for the measure-
flow μ in mean-field equilibrium, there exists a unique minimizer az ∈ A of

Cμ
t (z, · ) +

∫

Z
Jμ
∗,t+1(z

′)ημ
t (dz′|z, · ) = Rt (z, · ), (17)

for each z ∈ Z and for all t . In addition, suppose that Ft : Z × A × Y → Z in (5) is
continuous. Note that uniqueness conditions analogous to (17) are quite common in the
mean field literature (see, e.g., [23,Assumption 4], [47,Assumption A5], [28,Assumption
H5], [43,Assumption A9]).

Under the condition of a unique minimizer to (17), one can prove that the policy ϕ in
Proposition 2 is deterministic and weakly continuous (see [41,Remark 5.2]). Indeed, fix any
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t ≥ 0 and consider the policy ϕt at time t in ϕ. By the unique minimizer condition (17), we
must have ϕt ( · |z) = δ ft (z)( · ) for some deterministic function ft : Z → A which minimizes
Rt (z, · ); that is, mina∈A Rt (z, a) = Rt (z, ft (z)) for all z ∈ Z. If ft is continuous, then ϕt is
also weakly continuous. Hence, in order to prove the assertion, it is sufficient to prove that ft
is continuous. Suppose that zn → z in Z. Note that lt ( · ) = mina∈A Rt ( · , a) is continuous.
Therefore, every accumulation point of the sequence { ft (zn)}n≥1 must be a minimizer for
Rt (z, · ). Since there exists a unique minimizer ft (z) of Rt (z, · ), the set of all accumulation
points of { ft (zn)}n≥1 must be the singleton { ft (z)}. This implies that ft (zn) converges to
ft (z) since A is compact. Hence, ft is continuous.
Recall that the mean-field equilibrium policy is given by

πt ( · |g(t)) = ϕt ( · |i(g(t))).

Hence, π is also a deterministic policy as i is a deterministic function. The function i can be
generated recursively using Ft : Z × A × Y → Z (t ≥ 0) in (5) and the policy ϕ. Since Ft
is continuous for all t and ϕ is also weakly continuous, we can conclude that the mean-field
policy π is deterministic and weakly continuous. Hence, Assumption 2-(b) holds.

For instance, we can prove the existence of a uniqueminimizer to (17) and the continuity of
Ft for all t under the following conditions on the system components. Suppose that S = R

d ,
Y = R

p , andA ⊂ R
m is convex. In addition, suppose thatq(ds′|s, a, μ) = �(s′|s, a, μ)ν(ds′)

and l(dy|s) = ζ(y|s)ν(dy), where ν denotes the Lebesgue measure. Assume that both � and
ζ are continuous and bounded, and � andm are strictly convex in a, wherem is the one-stage
cost function of the original problem. Then, we have Ht (dy|z, a) = ht (y|z, a)ν(dy), where
ht (y|z, a) is given by

ht (y|z, a) =
∫

S

∫

S
ζ(y|s)�(s|s′, a, μt )ν(ds)z1(ds

′),

where z1(ds′) = z(ds′ × [0, L]). Similarly, we have

Ft (dx |z, a, y) =
∫
X ft (s|s′, a, y)ν(ds) ⊗ δm′+β tm(s′,a,μt )(dm)z(ds′, dm′)

ht (y|z, a)
,

where ft (s|s′, a, y) is given by ft (s|s′, a, y) = ζ(y|s)�(s|s′, a, μt ). Then, one can prove
that Ft is continuous. To show uniqueness of the minimizer to (17), note that

Jμ
∗,t+1(z) = inf

ϕ∈Φ
Eϕ

[ T+1∑

k=t+1

Cμ
k (z(k), a(k))

∣
∣
∣
∣z(t + 1) = z

]

= inf
π∈Π

Eπ

[ T+1∑

k=t+1

ck(x(k), a(k), μk)

∣
∣
∣
∣x(t + 1) ∼ z

]

=
∫

X
V∗,t+1(x)z(dx),

where

V∗,t+1(x) = inf
π∈Π

Eπ

[ T+1∑

k=t+1

ck(x(k), a(k), μk)

∣
∣
∣
∣x(t + 1) = x

]

.
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Hence, for any a ∈ A, (17) can be written as:
∫

X
ct (x, a, μt )z(dx) +

∫

Y

∫

X
V∗,t+1(x)Ft (z, a, y)(dx)Ht (dy|z, a)

=
∫

X
ct (x, a, μt )z(dx)

+
∫

X

∫

S
V∗,t+1(s,m

′ + β tm(s′, a, μt ))�(s|s′, a, μt )ν(ds)z(ds′, dm′).

Note that

V∗,t+1(s,m) = eλm inf
π∈Π

eλE[∑T
k=t+1 βkm(s(k),u(k),μ1,k )|s(k)=s],

and thus V∗,t+1(s,m) is strictly convex in m. Since m and � are strictly convex in a, the last
expression is also strictly convex in a. Hence, there exists a unique minimizer az ∈ A for
(17).

Proof of Proposition 10

We prove the result by induction on t . The claim trivially holds for t = 0 as L(b̃N1 (0)) =
L(b̂N (0)) = λ0 for all N ≥ 1. Suppose that the claim holds for t and consider t + 1. Set
supN≥1 ‖gN‖ =: L < ∞ and define

TN (b,Δ) :=
∫

A×Bt+1

gN (b′)Pt (db′|b, a,Δ)π̃
(N )
t (da|b).

We can write
∣
∣L(b̃N1 (t + 1))(gN ) − L(b̂N (t + 1))(gN )

∣
∣

=
∣
∣
∣
∣

∫

Bt×P(Bt )
TN (b,Δ)L(b̃N1 (t), Δ̃(N )

t )(db, dΔ)

−
∫

Bt×P(Bt )
TN (b,Δ)L(b̂N (t), δΔt )(db, dΔ)

∣
∣
∣
∣

= ∣
∣L(b̃N1 (t), Δ̃(N )

t )(TN ) − L(b̂N (t), δΔt )(TN )
∣
∣.

Note that, for any b ∈ Bt and (Δ,Δ′) ∈ P(Bt )2, we have

|TN (b,Δ) − TN (b,Δ′)| ≤ ωg
(
ωm(dBL(Δ1,Δ

′
1))

) + Lωq(dBL(Δ1,Δ
′
1)),

where Δ1 is the marginal distribution of s under Δ (recall that b = (s,m, yt )). Hence, the
family {TN (b, · ) : b ∈ Bt , N ≥ 1} is uniformly bounded and equi-continuous. Moreover,
for any Δ ∈ P(Bt ), we have

ωT ,Δ(r) := sup
s,yt

sup
N≥1

sup
m,m′

|m−m′|≤r

|TN (s,m, yt ,Δ) − TN (s,m′, yt ,Δ)|

≤ sup
s,yt

sup
N≥1

sup
m,m′

|m−m′|≤r

ωg(|m − m′|) = ωg(r).

Hence,ωT ,Δ(r) → 0 as r → 0. Therefore, {TN } ⊂ Cb(Bt×P(Bt )) is a sequence of functions
such that the family

{
TN (b, · ) : b ∈ Bt , N ≥ 1)

}
is equi-continuous, supN≥1 ‖TN‖ < ∞,
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and ωT ,Δ(r) → 0 as r → 0 for any Δ ∈ P(Bt ). We now prove that

lim
N→∞

∣
∣L(b̃N1 (t), Δ̃(N )

t )(TN ) − L(b̂N (t), δΔt )(TN )
∣
∣ = 0, (18)

which would then complete the proof. Indeed, we have
∣
∣L(b̃N1 (t), Δ̃(N )

t )(TN ) − L(b̂N (t), δΔt )(TN )
∣
∣

≤
∣
∣
∣
∣

∫

Bt×P(Bt )
TN (b,Δ)L(b̃N1 (t), Δ̃(N )

t )(db, dΔ)

−
∫

Bt×P(Bt )
TN (b,Δ)L(b̃N1 (t), δΔt )(db, dΔ)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Bt×P(Bt )
TN (b,Δ)L(b̃N1 (t), δΔt )(db, dΔ)

−
∫

Bt×P(Bt )
TN (b,Δ)L(b̂N (t), δΔt )(db, dΔ)

∣
∣
∣
∣. (19)

First, note that since the family {TN ( · ,Δt )}N≥1 ⊂ Cb(Bt ) satisfies the hypothesis of the
proposition and the proposition is true for t , by induction hypothesis, we have

lim
N→∞

∣
∣
∣
∣

∫

Bt
TN (b,Δt )L(b̃N1 (t))(db) −

∫

Bt
TN (b,Δt )L(b̂N (t))(db)

∣
∣
∣
∣ = 0.

Hence, the second term in (19) converges to zero as N → ∞.
Now, let us consider the first term in (19). To that end, define F := {

TN (b, · ) : b ∈
Bt , N ≥ 1)

}
. Note that F is a uniformly bounded and equi-continuous family of functions

on P(Bt ), and therefore

lim
N→∞ E

[

sup
F∈F

∣
∣F(Δ̃

(N )
t ) − F(Δt )

∣
∣
]

= 0

as L(Δ̃
(N )
t ) → L(Δt ) weakly. Then, we have

lim
N→∞

∣
∣
∣
∣

∫

Bt×P(Bt )
TN (b,Δ)L(b̃N1 (t), Δ̃(N )

t )(db, dΔ)

−
∫

Bt×P(Bt )
TN (b,Δ)L(b̃N1 (t), δΔt )(db, dΔ)

∣
∣
∣
∣

≤ lim
N→∞

∫

Bt

∣
∣
∣
∣

∫

P(Bt )
TN (b,Δ)L(Δ̃

(N )
t |b̃N1 (t))(dΔ|b)

−
∫

P(Bt )
TN (b,Δ)L(δΔt )(dΔ)

∣
∣
∣
∣L(b̃N1 (t))(db)

≤ lim
N→∞ E

[

E

[∣
∣TN (b̃N1 (t), Δ̃(N )

t ) − TN (b̃N1 (t),Δt )
∣
∣
∣
∣
∣
∣b̃

N
1 (t)

]]

≤ lim
N→∞ E

[

sup
F∈F

∣
∣F(Δ̃

(N )
t ) − F(Δt )

∣
∣
]

= 0.

This completes the proof.
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37. Moon J, Başar T (2015) Discrete-time decentralized control using the risk-sensitive performance criterion

in the large population regime: a mean field approach. In: ACC 2015. Chicago, pp 4779–4784
38. Parthasarathy K (1967) Probability measures on metric spaces. AMS Bookstore
39. Rhenius D (1974) Incomplete information in Markovian decision models. Ann Statist 2:1327–1334
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