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a b s t r a c t 

Consider a three-level non-capacitated location/pricing problem: a firm first decides which facilities to 

open, out of a finite set of candidate sites, and sets service prices with the aim of revenue maximization; 

then a second firm makes the same decisions after checking competing offers; finally, customers make 

individual decisions trying to minimize costs that include both purchase and transportation. A restricted 

two-level problem can be defined to model an optimal reaction of the second firm to known decision of 

the first. 

For non-metric costs, the two-level problem corresponds to Envy-free Pricing or to a special Net- 

work Pricing problem, and is APX -complete even if facilities can be opened at no fixed cost. Our focus 

is on the metric 1-dimensional case, a model where customers are distributed on a main communica- 

tion road and transportation cost is proportional to distance. We describe polynomial-time algorithms 

that solve two- and three-level problems with opening costs and single 1 st level facility. Quite surpris- 

ingly, however, even the two-level problem with no opening costs becomes N P -hard when two 1 st level 

facilities are considered. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

In this paper, we consider a multi-level location and pric-

ing problem. More precisely, we model location, pricing and pur-

chase policies of several decision-makers as a Stackelberg game

( Stackelberg, 1952 ), formulate a consequent three-level optimiza-

tion problem and describe methods for its solution under various

assumptions. The model has applications in sectors where compa-

nies are considering candidate locations for opening a new service

point as well as a pricing policy for capturing clients from an ex-

isting competitor. 

In the proposed setting, we have a discrete market (finite set C

of n customers) where a company (Firm A) wants to choose sites

and prices for the service offered at its facilities so as to maximize

revenue. When making its choice, Firm A has to consider that, at

a second level, another company (Firm B) will offer the same ser-

vice and, seeking to maximize its own utility, will react to Firm A

by opening new facilities (possibly at fixed costs) and setting the

relevant service prices. Both firms have finally to take into account

that, at a third level, customers in C will choose the facilities where
∗ Corresponding author. 
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o get serviced by minimizing the sum of service price and general

ccess cost. In applications, access costs can either be metric, that

s, proportional to a distance somehow defined, or general non-

etric. A metric assumption is normally reasonable when the cost

eflects transport, but also when it measures the distance, in terms

f features, between the product/service offered by the firm and

he one required by the customer. 

When dealing with location and pricing, we assume negligible

ariability of prices, opening costs and demand in the planning

orizon. If this is not the case, the strategic decision on location

hould be withdrawn from the tactical one on pricing. An appro-

riate setting, then, is when Firm A first places its facilities, then

irm B places its own ones, then prices are set by firms simultane-

usly: this leads to quite a different model that is not considered

ere. Also multi-echelon, multi-service, finite capacities can be en-

isaged as in classical location problems, but are not addressed

ere. Rather, as in many spatial competition models, we focus on

he case in which both facilities and customers are distributed along

 line . This assumption has two faces: first, it describes real situa-

ions where potential production or retail sites, as well as clients,

re distributed with a linear topology along a main communication

oad; secondly, it shows how a simple assumption on the number

f competing facilities can unexpectedly mark the boundary be-

ween “easy” and “hard” problems. 

https://doi.org/10.1016/j.ejor.2019.08.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.08.042&domain=pdf
mailto:claudio.arbib@univaq.it
mailto:mustafap@bilkent.edu.tr
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Our contribution is twofold: 

(i) On one hand, we focus on difficult two-level problems with

Firm B reacting to prices of Firm A given in advance. We eas-

ily see ( Section 3.3 ) that the non-metric problem is APX -

complete, although it can be approximated in polynomial

time within a factor O (log ( n )); here we show ( Theorem 13

of Section 6 ) that the metric problem remains N P -hard

even for markets scattered on a line, no opening costs for

Firm B, and Firm A holding two facilities only. 

(ii) On the other hand, we provide a polynomial-time algorithm

for the three-level metric problem on the line, where Firm

B may bear opening costs and makes its decision after A,

which in turn holds one facility only ( Section 5 ); simpler al-

gorithms are devised for the two-level cases with or with-

out opening costs. When Firm A holds more than one fa-

cility, a polynomial-time algorithm can easily be devised for

the two-level metric problem with opening costs and a con-

stant number of facilities scattered on the line ( Corollary 3

of Section 4 ). 

The paper is organized as follows. A review of literature is

rovided in Section 2 . General assumptions are introduced and

iscussed in Section 3 , along with the general statement of the

wo- and three-level problems. Special properties of the one-

imensional metric case, with a short algorithmic digression, are

escribed in Section 4 . The case in which Firm A holds a single

acility is then tackled in Section 5 , and illustrated with two exam-

les. Section 6 treats the case in which Firm A has more than one

acility. Conclusions are then drawn in Section 7 . 

. Literature review 

Location problems lie firmly in the OR domain, but complete-

ess of presentation of the problem requires to consider also its

nterface with two fields: theoretical economics (in particular, spa-

ial competition) and computer science (envy-free pricing). 

In theoretical economics, models of spatial competition among

rms have a long tradition that dates back to the seminal work

f Hotelling ( Hotelling, 1929 ). This is a fruitful setting for analyz-

ng location and pricing policies in an oligopolistic market that

s often distributed on a line, see e.g. ( Fischer, 2002; Perez &

elegrin, 2003; Pinto & Parreira, 2015; Teraoka, Osumi, & Hohjo,

003 ) and the references therein. However, most of those models

oncentrate on conditions for a price equilibrium, whereas practi-

al situations often call for a focus on optimal decisions, and on

he complexity of their computation. In fact, the common assump-

ion of complete information does not imply that information can

asily be sorted out; in turn, the existence of an equilibrium does

ot mean that the relevant prices can easily be computed. More

n general, computation deserves interest in view of the increas-

ng role of information technology in commerce and logistics. As

 matter of fact, getting good decisions from information entails

osts (to collect and validate data, construct and compare models,

ompute results, etc.) to which firms are normally sensitive. And a

ractical question on computation arises even if one is not concen-

rated on equilibrium: for example when Firm A has already made

 (possibly sub-optimal) decision, and one is interested in the op-

imal reaction of Firm B. 

Computational complexity is actually the focus of a closely re-

ated problem: Envy-free Pricing , originally introduced in the area

f theoretical computer science ( Guruswami et al., 2005 ). Here, a

etailer wants to sell a set of items, for which potential buyers have

ersonal valuations or reserve prices. 

An envy-free assignment of product items to buyers requires

hat the items obtained by every buyer be purchased at a price
ot larger than her/his valuation, and each buyer’s welfare (differ-

nce between product value and price) be the largest possible. Un-

er this condition, the problem of finding prices maximizing the

eller’s revenue is known to be APX -hard even for unit-demand

idders, that is when each buyer wishes to buy at most one item. 

As explained in Section 3.3 , our two-level problem corre-

ponds to the unit-demand envy-free pricing problem tackled in

uruswami et al. (2005) . Fernandes, Ferreira, Franco, and Schouery

2016) investigate connections of this problem with Network Pric-

ng ( Heilporn, Labbé, Marcotte, & Savard, 2010b ), compare mixed-

nteger linear programming formulations for the non-metric case,

nd provide an instance generator. Heilporn, Labbé, Marcotte, and

avard (2010a,b) introduced network pricing problems that, as we

ill see in Section 3.3 , include our two-level problem as a spe-

ial case. In Heilporn, Labbé, Marcotte, and Savard (2011) , the same

uthors present a related problem that consists in selecting profit

aximizing tolls on a clique subset of a multicommodity trans-

ortation network: a linear mixed-integer programming formula-

ion is proposed, and then strengthened via effective valid inequal-

ties, some of which define facets. All these models (and ours) are

ndebted to Labbé, Marcotte, and Savard (1988) , and set a two-level

tackelberg game where the leader is a firm that tries to enter a

arket with given fares, and the clients are its followers. 

The main difference between most network or envy-free pricing

odels and ours is that, in our case, access costs or reserve prices

ossess metric properties . These properties are clearly reasonable as

ong as costs derive from transportation. Note however that met-

ics may not only be introduced to relate logistics to physical dis-

ances: in modeling actors’ behaviour, for instance, one may wish

o measure the difference between desired and available product

ttributes. To quote an example, Crama et al. ( Crama, Hansen, &

aumard, 1995 ) address the complexity of the Product Positioning

roblem. It consists in choosing the attributes (not prices, though)

f a new product so as to maximize its market share, i.e., to attract

 maximum number of customers: a customer group switches to a

ew product if its attributes are closer, with respect to a metric, to

he customers’ ideal than those of the product currently chosen. 

A recent contribution on envy-free pricing is however closely

elated to the present work and can be found in Chen, Ghosh,

nd Vassilvitskii (2011) , where Metric Substitutability is con-

idered. Both items ( = facilities) and customers are located at

very node of a symmetric graph: thus a customer in a node has

o decide whether buying an item at the residence place, paying

o substitution cost, or at another place, paying a cost for the

ubstitution. Substitution cost is modeled as a distance between

ustomer and item position, and therefore is metric; customer

aluation instead depends on customer position only. Moving to

ur terms, customers’ valuations can then be viewed as the price

t which a competitor sells the item in the residence location.

ote that this price does not depend on the competitor location.

n our case instead, the competitors lie in some position, and the

ost to purchase their service depends on that position. Due to

his difference, our problem is N P -hard even for a simple path

opology and regardless of customers’ valuations (even the same

or all customers: in fact, minimizing price plus access cost, each

ustomer maximizes its utility), while the problem in Chen et al.

2011) can be solved in polynomial time. 

References Chen et al. (2011) ; Fernandes et al. (2016) ; Heilporn

t al. (2010a, 2010b, 2011) ; Labbé et al. (1988) , as well as Berglund

nd Kwon (2014) ; Karakitsiou and Migdalas (2017) ; Tóth and

ovács (2016) and many others dealing with pricing under equilib-

ium conditions, share a methodological vein typical of OR, namely

ne oriented towards problem resolution. Some OR papers focus

n competitive facility location but base customers behaviour just

n distance and not on price, see e.g. ( Gentile, Pessoa, Poss, &

oboredo, 2018 ) and references therein. These and even simpler
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two-level optimization problems are all N P -hard in general, but

special assumptions or solution properties are often investigated,

leading sometimes to encouraging computational results (for a

general view on sequential competitive location the reader can

refer to Eiselt (1997) ; Kress and Pesch (2012) ). 

Three-level problems are considerably harder in practice than

two-level ones ( Blair, 1992; Jeroslow, 1985 ); maybe this explains

why relatively little work can be found in the literature, despite

the indubitable interest. Several important studies, that we do not

quote here, can be found in a bibliographical survey ( Vicente &

Calamai, 1994 ). Papers are mainly devoted to applications, ranging

from supply-chain management ( Xu, Meng, & Shen, 2013 ) to power

network defence ( Yao, Edmunds, Papageorgiou, & Alvarez, 2007 )

or energy generation and transmission ( Jin & Ryan, 2014; Street,

Moreira, & Arroyo, 2014 ). Among theoretical papers, we quote the

pioneering single-follower linear problem in Bard (1984) , and the

multi-follower linear problem in Han, Lu, Hu, and Zhang (2015) . In

the latter, decision levels are arranged in a tree structure, with a

single top-level leader and multiple middle- and bottom-level fol-

lowers. The followers at the same level compete with one another

in a non-hierarchical relation, thus their decisions do not tend to a

Stackelberg equilibrium but to a Nash one (if any). 

On one hand, our three-level case is simpler than ( Han et al.,

2015 ) not only because the middle-level contains a single firm,

but also because — unlike ( Han et al., 2015 ) — bottom-level fol-

lowers do not compete with each other. On the other hand, our

case is more complex as the top- and middle-level objectives are

not linear but bilinear forms in the relevant decision variables. An

implicit three-level location problem similar to ours is studied in

Fischer (2002) : the main difference lies in prices, which unlike our

case are discriminatory and in one model are adjusted afterwards

according to a Nash equilibrium; a second difference is in the re-

sult, that is focused on models and heuristics rather than on exact

algorithms and complexity. 

3. General assumptions and problem statement 

In the following we let F A , F B , respectively, denote the poten-

tial sites where firms A and B already hold or can place a facility

to sell a product or a service; we set | F k | = m k , F = F A ∪ F B , | F | = m,

and consider a discrete market distribution C, | C| = n, namely a fi-

nite numerable set of customers potentially interested in being ser-

viced from the facilities opened in F . Firms and customers are as-

sumed rational , in the sense that each actor seeks to maximize

its own utility, and non-cooperative . Prior to problem statement

( Section 3.3 ), in Sections 3.1 and 3.2 we specify the rules according

to which firms’ and customers’ decisions are made. 

3.1. Firms’ decisions 

A two-level facility location problem is a location problem where

decisions are made according to an uncooperative Stackelberg

game between Firm B and a set C of customers. The game is se-

quential : the firm makes its decision first — i.e., decides which

facility k ∈ F B ⊂ F to open and at which price π k to offer the ser-

vice; then the customers make their own decision, according to

local convenience. To exclude monopoly, facilities in F A = F − F B are

owned by a competitor, Firm A, that sells the same service at

known prices. Prices can differ from place to place but are non-

discriminatory , that is, the same price π k is asked from any of the

clients served by facility k . Firm B’s objective is to maximize its

own utility — that is the total value of the service sold to cus-

tomers — regardless of the decisions of followers, who in turn aim

at optimizing their individual criteria. 

Levels can be added to the model, increasing its complexity. So,

in a three-level facility location problem Firm A and Firm B with
andidate sites F A , F B are in a leader-follower relation. Both firms

im at maximizing utility and operate with perfect knowledge

f the other firm’s objective, the customers’ preferences, and the

pace of potential reactions. In particular, and unlike some tradi-

ional spatial competition models ( P-P, Mayer, & J-F, 2008 ), each

rm is assumed to know in advance whether a price π k is con-

enient or not for customer i . The firms’ decision sequence is as

ollows: 

1. First Firm A (the leader) decides which facilities to open in F A ,

and at what price to offer their services. 

2. Then Firm B (the middle follower) decides which facilities to

open in F B and at what price to offer the service, playing a

follower role vs. the top-level leader, and a leader role vs. the

bottom-level followers, i.e., the customers. 

Actors’ rationality implies that no firm would accept a sub-

ptimal solution, in particular one with negative utility. In the

odels considered here, it can be shown in particular that no neg-

tive price can improve a firm’s performance, so we do not lose

enerality by supposing 

ssumption 1 ( π k ≥ 0 for all k ∈ F ) . We already observed that firms

ehaviour is non-cooperative . We stress this issue by a specific as-

umption that uses the notion of vector dominance: a price vector

dominates another π ′ if πk ≤ π ′ 
k 

for all k and πk < π ′ 
k 

for at

east one k . Then 

ssumption 2. Firms are not allowed to artificially increase prices.

ore precisely, among all optimal solutions, each firm is obliged

o choose a non-dominated one. 

Assumption 2 is compliant with the existence of an authority

hat regulates competition and prevents monopolies, as well as

ith general markets freely accessible by new operators. Its role

ill be better clarified in Section 3.2 . 

After firms have made their decisions, customers make their

wn choices according to the assumptions described next. 

.2. Customers’ decisions 

User preference is quite a common way of disciplining bottom-

evel followers’ behaviour, see ( Hansen, Kochetov, & Mladenovi ́c,

004 ): each customer holds a list that ranks the sites of F from the

ost to the least preferred and, after the firms’ decision, prioritizes

he facility with the highest rank among those opened. If prefer-

nce is defined after a measurable parameter d i 
k 

that depends on

ustomer i and facility k (e.g., the cost of reaching the facility) then

e speak of measurable preference . In this case, the list of customer

 ranks the facilities from the smallest to the largest d i 
k 

(with a

pecified tie-breaking rule in case of equally preferred facilities). A

easurable preference is metric if d i 
k 

fulfills the metric axioms of

on-negativity, identity, symmetry, and sub-additivity. Otherwise

t is non-metric . Notice that sub-additivity ( d i 
k 

≤ d 
j 
i 
+ d k 

j 
for all i , j ,

 ∈ C ∪ F ) requires d i 
k 

defined not only for i ∈ C and k ∈ F , but for any

 , k ∈ C ∪ F . 

The metric axioms are often fulfilled by such measures as the

eaching cost. In this case, the space where firms and customers

perate is either linear (often reduced to the closed interval [0,1],

ee ( Hotelling, 1929; Pinto & Parreira, 2015; Teraoka et al., 2003 ))

r bi-dimensional (generally IR 2 ( Fischer, 2002 )). More in general,

owever, d i 
k 

can be derived from any norm ‖ . ‖ applied to a vector

air in IR p . As suggested in Crama et al. (1995) , vectors describe

ither user requirements r i or service features f k along p different

imensions: in this way, for example, d i 
k 

= ‖ r i − f k ‖ measures the

istance between service offered at k and user i expectations. 

In the problems dealt with here, no preferred order among

acilities is a-priori given, but additional costs (for access,
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ransportation, or adaptation to requirements etc.) are considered:

s in Heilporn et al. (2010a,b) ; Hotelling (1929) ; Pinto and Parreira

2015) , these costs are borne by customers, that is, we suppose

hat d i 
k 

measures the cost customer i must add to service price π k 

n order to reach the facility, or cover the gap between offer and

xpectation. Thus, 

ssumption 3. Customer i — that has complete information on

oth types of costs — accords its preference to the facility k that

inimizes, among those opened by the firms, the sum πk + d i 
k 
. 

Two more assumptions regulate tie-breaking on customers de-

isions: 

ssumption 4. If facility j ∈ F A and facility k ∈ F B offer service to i

t the same total cost π j + d i 
j 
= πk + d i 

k 
, then customer i prefers k .

In other words, the assumption reflects a pessimistic perspec-

ive of Firm A. This is not a limit of the two-level model: it

an in fact be shown that the optimal utility of Firm B under

ssumption 4 differs by an arbitrarily small ε > 0 from that ob-

ained with the assumption reversed in favour of Firm A. 

It is convenient to explain the joint role of

ssumptions 2 ( Section 3.1 ) and 4 by an example: suppose

hat Firms A and B operate, respectively, facility 1 and 2 at re-

iprocal distance 1, and that a single customer is located on the

egment joining the two facilities at distance ( = cost) d > 

1 
2 from

acility 1. Then, in force of Assumption 4 , for Firm B to capture

he customer it is sufficient to set π2 + (1 − d) = π1 + d, that is,

2 = π1 + 2 d − 1 . In the worst case for Firm B we have π1 = 0 ,

nd Firm B utility is 2 d − 1 > 0 . But Firm A is indifferent to any

rice π1 ≥ 0, because by Assumption 4 it results in no utility in

ny case: so, should Assumption 2 not hold and co-operation be

llowed, Firm B utility would be unbounded. 

The case in which a client obtains the service from two facilities

f the same firm at the same total cost is regulated by supposing

hat the client prefers the closest facility: 

ssumption 5. If d i 
j 
< d i 

k 
and both facilities j and k in F A (or both

n F B ) offer service to i at the same total cost π j + d i 
j 
= πk + d i 

k 
,

hen customer i prefers j . 

Note that this assumption is optimistic for both firms A and

 because it means that, if total costs are equal, the customer

hooses the facility with highest price. We remark that an opposite

ehaviour would not alter mathematical properties of the prob-

em, since also in this case, under a pessimistic assumption, an ε-

erturbation of a price vector, for an arbitrarily small ε > 0, would

nsure an amount of revenue arbitrarily close to the optimistic set-

ing. 

.3. Problem statement 

Let c k be the cost of opening a facility at k ∈ F B . From now on,

hen indexing a parameter, facilities will be denoted at subscripts

nd customers at superscripts. 

Firm A (Firm B) decision variables are 

x k : binary, set to 1 if a facility is opened in site k ∈ F A ( k ∈ F B ),

0 otherwise; 

π k : real, price applied to any customer served by facility k ∈ F A 
( k ∈ F B ). 

Customers’ decision variables are 

y i 
k 
: binary, set to 1 if customer i ∈ C gets service from k ∈ F , 0

otherwise. 

A two-level problem models the reaction of Firm B to the deci-
ion of Firm A: π
roblem 1. Given prices π j , j ∈ F A , find values of x k and π k ∈ IR ,

 ∈ F B , that maximize Firm B total utility: 

 (x , π, y ) = 

∑ 

k ∈ F B 
x k 

∑ 

i ∈ C 
πk y 

i 
k −

∑ 

h ∈ F B 
c k x k 

ubject to 

k ∈ �k , x k ∈ { 0 , 1 } k ∈ F B (1)

 

i = arg min 

y i 

{ ∑ 

h ∈ F 
(πh +d i h ) y 

i 
h : 

∑ 

h ∈ F 
y i h = 1 , 0 ≤ y i h ≤x h , h ∈ F 

} 

i ∈ C 

(2) 

�k indicates a general set of positive real numbers corre-

ponding to feasible prices. The feasible region of Firm B is R B =
1 × · · · × �m B 

× { 0 , 1 } m B , and the inducible region of Problem 1 is

 B × Y , where Y ⊆{0, 1} mn is the so-called rational reaction set of the

ustomers described by (2) . 

bservation 1. We can suppose F A ∩ F B = ∅ : by Assumption 4 , if

wo facilities share a site and offer identical prices, then Firm A

s ruled out (if the assumption is pessimistic for Firm B, any price

k > 0 of Firm A is beaten by πk − ε). 

bservation 2. In the non-metric case we lose no generality by

epresenting the top-level facilities as a single dummy facility 0

ith price π0 = 0 . In fact, one can set d i 
0 

= min k ∈ F B { πk + d i 
k 
} for

ll i ∈ C . Adopting this simplification in the metric case will not

reserve metric properties as sub-additivity is of course no longer

uaranteed. 

bservation 3. For c k = 0 , Problem 1 is a special case of the net-

ork pricing problem tackled in Heilporn et al. (2010b) and of sev-

ral pricing problems in marketing ( Heilporn et al., 2010a ), and is

quivalent to the APX -complete Unit Demanded Envy-free Pric-

ng problem ( Guruswami et al., 2005 ) defined as follows: client

 has a reservation price r i 
k 

for service in a facility k that exhibit

rice π k , and wishes to choose a k that maximizes the difference

 

i 
k 

− πk (provided that it is ≥ 0); on the other hand, the seller

ishes to maximize the profit �k ∈ F n k π k , where n k indicates the

umber of clients served by facility k . To transform this problem

nto ours, it suffices to choose ˆ r i > max k { r i k } and set d i 
k 

= ̂  r i − r i 
k 
.

hen, client i objective is equivalent to min k ∈ F { πk + ̂  r i − r i 
k 
} , that is

in k ∈ F { πk + d i 
k 
} . 

The three-level problem, in general, regards Firm A as a leader

hat chooses sites and prices facilities while taking Firm B optimal

eaction into account. However, we do not insist here on site se-

ection because the two-level problem is already APX -hard with

 single competing facility in the non-metric case, and is N P -hard

ith two competing facilities in the metric case on the line, as we

ill show in Section 6 . Therefore, in the formulation of the three-

evel problem we assume c j = 0 (and then x j = 1 ) for all j ∈ F A . 

roblem 2. Find values for y i 
j 
, π j , j ∈ F A , i ∈ C , that maximize Firm

 total utility 

 (π, y ) = 

∑ 

j∈ F A 

∑ 

i ∈ C 
π j y 

i 
j 

ubject to 

j ∈ � j j ∈ F A (3) 

k = arg max { B (x , π, y ) : (1) , (2) } k ∈ F B . (4) 

x ,π, y 
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Fig. 1. Example of customer partitioning after a price assignment. 

Table 1 

Sample problem with | C| = 13 and | F | = 5 . 

Facilities Customers 

Index k Position p k Price π k Index i Position p i 

−2 −11 12 −7 −14 

−1 −5 11 −6 −13 

0 0 8 −5 −12 

1 6 13 −4 −10 

2 10 10 −3 −7 

−2 −6 

−1 −4 

1 1 

2 2 

3 5 

4 7 

5 9 

6 11 
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4. Metric properties on the line 

From this section on we will focus on the case where facilities

and customers are located in a metric space and d i 
k 

is the distance

between customer i and facility k . The space is 1- dimensional , thus

representable as a straight line on which a reference (origin) is de-

fined: call p k the position (abscissa) of facility k , and p i that of cus-

tomer i . In this case, for any t = 1 , 2 , . . . , ∞ , the L t -norm defines

the distance between customer i and facility k as 

d i k = 

∣∣p k − p i 
∣∣. 

Consistently with notation, the distance between facilities (cus-

tomers) i and j is denoted as d ij (as d ij ). Facility sites are distinct

and ranked so that p j < p k , p j ≤ p k for j < k . Recall ( Observation 2 )

that metric properties are generally not retained when ascribing

the facilities of Firm A to a single dummy facility 0. 

To fix ideas, consider the situation depicted in Fig. 1 and sum-

marized in Table 1 . Triangles below the horizontal line represent

customers, those over the line represent facilities: one, coloured

red and indexed 0, belongs to firm A; the others, coloured blue,

belong to firm B. Facilities in F and customers are progressively
B 
umbered from left to right, with negative indexes to the left

f facility 0 and positive to its right: in the example we e.g.

ee p −1 = −5 , p 3 = 5 , d 02 = 10 , d 2 −1 = 6 , d 25 = 7 . The piecewise lin-

ar function gives the minimum cost borne by a customer in any

oint of the line, and its local minima correspond to facility prices.

Remember ( Assumption 3 ) that client i prefers a facility that

inimizes πk + d i 
k 

in F . One can then use a plot like in Fig. 1 to

ssign customers to facilities for any given set of prices π k , k ∈ F ,

nd then observe 

roposition 1. Let k ∈ F , and i < j be two customers that use facility

. Then, any customer h for which i < h < j also uses facility k. 

Thus, for any price vector, each facility will serve exactly one

nteger interval [ i , j ] of customers indexes on the line. In the ex-

mple of Table 1 and Fig. 1 , facility −2 serves interval [ −7 , −4] ; fa-

ility −1 , interval [ −3 , −1] ; facility 0, interval [1,3]; facility 1 serves

o customer and facility 2 the remaining ones. Note that customer

1 is assigned to facility −1 and not to 0 due to Assumption 4 . 

Moreover, one observes the following property: 

roposition 2. Let π be any price vector, k ∈ F and i be a customer

erved by k. Then a facility l placed between i and k does not serve

ny customer. 

roof. If a facility l is placed between i ∈ C and k ∈ F , then d i 
k 

=
 kl + d i 

l 
. Since i is served by k , Assumption 3 requires in general

k + d i 
k 

≤ πl + d i 
l 
; then d kl ≤ πl − πk . For any client j , we know by

ub-additivity that d 
j 

k 
− d 

j 

l 
≤ d kl . Combining the two inequalities

e get: 

 

j 

k 
− d j 

l 
≤ d kl ≤ πl − πk ⇒ πk + d j 

k 
≤ πl + d j 

l 
, (5)

f k ∈ F A , l ∈ F B , then l does not serve any customer. Other-

ise, Assumptions 4 , 5 require πk + d i 
k 

< πl + d i 
l 

and the second of

5) holds strict, leading to the same conclusion. �

From now on, for a given price vector π , we will indicate as [ λk ,

k ] ( λ = left, ρ = right) the range of customer indexes served by

acility k , when such range is non-empty. The number of customers

n the range [ λk , ρk ] is given by n k = ρk − λk + 1 for ρk λk > 0, and

 = ρ − λ otherwise. 
k k k 
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A set Y of pairs in C × F is an assignment of customers to facil-

ties if ik ∈ Y ⇒ i j �∈ Y for any j � = k ; in other words, Y is identified

y the incidence vector (y 1 , . . . , y n ) defining a feasible customer

hoice. Consider the following notion: 

efinition 1. An assignment Y is stable if there exists a price vec-

or π such that πk + d i 
k 

≤ π j + d i 
j 

for all ik ∈ Y and j ∈ F . 

Let 

 = max 
j,k ∈ F,i ∈ C 

{ d i j − d i k } . 
hen a nice consequence of Definition 1 and Proposition 1 is 

orollary 3. In the metric 1-dimensional case Problem 1 can be

olved in O (n | F |−1 | F | 3 log (| F | ) log (d| F | )) time, that is in polynomial

ime for a fixed number of facilities. 

roof. Given a stable assignment Y , let Y k = { ik ∈ Y : i ∈ C} for any

 ∈ F . An optimal price for this assignment is an optimal solution

o the linear program 

ax B Y (π ) = 

∑ 

k ∈ F B 
| Y k | πk (6) 

πk − π j ≤ d i j − d i k ∀ j ∈ F , ik ∈ Y 

πk ≥ 0 ∀ k ∈ F B . 

Note that if Y is stable with | Y k | = 0 for some k , then (6) has in-

nite optimal solutions, because π k can take infinite values with-

ut changing the utility value: we call minimal an optimal solu-

ion of (6) that has π k minimum for all such k , and point out that

nly minimal solutions are compliant with Assumption 2 . Note also

hat allocations that are optimal for (6) are all equivalent from the

iewpoint of the revenue guaranteed by the corresponding prices,

ee ( Arbib, Kara ̧s an, & Pınar, 2017 ). Problem 1 can then be solved

y enumerating the assignments Y of C to F and solving problem

6) for each of them. By Proposition 1 , those assignments are as

any as the partitions of the integer interval [1 , . . . , n ] into | F | sub-

ntervals, i.e. O (n | F |−1 ) . Moreover, problem (6) is the dual of a min

ost flow problem, and d is the largest capacity in any of these

roblems. Thus (6) is solvable in O (| F | 3 log (| F |)log ( d | F |)) by Tarjan’s

lgorithm ( Tarjan, 1997 ). �

. One-dimensional metric problem, | F A | = 1 

We next describe an efficient algorithm for two- and three-

evel one-dimensional metric problems, limiting our attention to

he case in which Firm A has just one facility , denoted by 0. Our

otation is as in Fig. 1 : 

• Firm A facility is placed on the origin of the line, that is, p 0 = 0 .
• Firm B can choose among m B facility sites (for simplicity of no-

tation, we set m B = m ); those to the right (to the left) of 0 are

numbered with positive (negative) integers, starting from 1 and

increasing from left to right (from −1 and decreasing from right

to left). 
• Similarly, customers to the right (to the left) of 0 are numbered

with positive (negative) integers, starting from 1 and increasing

from left to right (from −1 and decreasing from right to left). 

To solve the problem, we observe a property of isolation at op-

imality that derives from the following two results. 

emma 4. (Isolation) Let −1 (let 1) denote the first facility opened

y Firm B on the left (on the right) of facility 0, and let π ∈ IR m be

 vector of prices for F B . If π is optimal, then any customer i with

 

i ≥ p 1 or p i ≤ p −1 will be served by a facility owned by Firm B. 

roof. Suppose by contradiction that π is optimal and that a cus-

omer i located at p i ≥ p is served by the competing facility 0
1 
 Fig. 2 ). But ( Assumptions 3 and 4 ) i served by 0 means π1 + d i 
1 

>

0 + d i 
0 
. Since p i ≥ p 1 , the distance between i and 0 is d i 

0 
= p 1 + d i 

1 
,

ence the cost inequality is rewritten 

1 > π0 + p 1 . (7) 

nequality (7) implies that, according to the optimal price vector

, facility 1 serves no clients. But reducing π1 to π̄1 = π0 + p 1 ,

ustomer i will instead use facility 1, so increasing Firm B utility

y at least p 1 : this contradicts the optimality of π . Symmetrically,

he reasoning is repeated for customers i for which p i ≤ p −1 . �

While Lemma 4 establishes the destiny of customers out of

(p −1 , p 1 ) under an optimal pricing, a question arises on what hap-

ens to those in (p −1 , p 1 ) . In fact, we can prove that π−1 and π1 

re barrier prices for all the other facilities in F B : 

emma 5. (Barrier) Let π ∈ IR m be a price vector for F B . If π is op-

imal, then no facility k > 1 ( k < −1 ) will serve clients to the left (to

he right) of 0. 

roof. Suppose by contradiction that facility k > 1 serves a cus-

omer j < 0 ( Fig. 3 , left). Since k is to the right of 1 and the metric

s on a line, d 
j 

k 
= d 1 k + d 

j 
1 
, and since k serves j we also have π1 >

k + d 1 k ≥ πk + d i 
k 

− d i 
1 

(sub-additivity) for any customer i , mean-

ng that facility 1 serves no customers. But then Firm B can serve

 (and all other customers to the left of 1 possibly served by k ) at

 higher price by setting π̄1 = πk + d 1 k , not affecting the service

osts of all other customers. This contradicts the optimality of π
 Fig. 3 , right). The case k < −1 is symmetric. �

For ease of presentation, we first illustrate ( Section 5.1 ) an al-

orithm to solve the simpler case of Problem 1 with no opening

osts, and then ( Section 5.2 ) extend it to the case c k ≥ 0. Next

e focus on Problem 2 , by first considering zero opening costs

 Section 5.3 ) and then ( Section 5.4 ) the more general case with

on-negative opening costs. 

.1. Problem 1 with | F A | = 1 and c k = 0 

Here we consider the case in which the cost c k of opening fa-

ility k is 0 for any k ∈ F B . In the following, we let r k (let l k ) de-

ote the index of the first customer to the right (to the left) of

 ∈ F B : for example, in Fig. 1 we have l −2 = −5 , l −1 = −2 , r 1 = 4 . As

nnounced, we first describe how to solve Problem 1 , and then ex-

end the solution to Problem 2 : thus we initially suppose π0 given.

e also begin with two ground cases, where facility 0 is respec-

ively placed to the left or to the right of all the sites in F B . 

Let us first look at the left ground case , and consider the left-

ost facility in F B , that is 1. If facility 1 sets π1 = π0 + p 1 , then

irm B will offer service to every customer to its right at the

ame cost as A: so the entire range [ r 1 , n ] can be served by Firm

 at price π1 . However, by reducing π1 , one can enable Firm B

o serve customers to the left of facility 1, so possibly increasing

ts revenue. Not only this decision involves the customers to the

eft of 1, but also all the prices in F B , and a compromise is to

e sought. For instance, with facility 2 coming into play, Firm B

an increase the gain by letting 2 cover the interval [ r 2 , n ] at a

rice higher than that fixed by facility 1: the corresponding gain is

(π2 − π1 )(n + 1 − r 2 ) . 

In general, it is convenient to express the profits of Firm B in

erms of price differences between consecutive facilities. To this

im, define 

πk = 

{
π1 if k = 1 

πk − πk −1 if k > 1 . 
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Fig. 2. Proof of Lemma 4 . 

Fig. 3. Proof of Lemma 5 . 
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By the Isolation Lemma 4 , the number of customers that use facil-

ity k is: 

n k = λk +1 − λk , 

where we recall that λk indicates the index of the leftmost cus-

tomer served by k (we write for uniformity λm +1 := n + 1 and, if

facility k serves no customer, λk +1 = λk ). With this notation, we

can rewrite the objective function: ∑ 

k ∈ F B 
n k πk = 

∑ 

k ∈ F B 
( n + 1 − λk ) 	πk = (n + 1) πm 

−
∑ 

k 

λk 	πk . (8)

The generic term of the right-hand summation (8) only depends

on 	π and λ . One can prove the following: 
k k s  
heorem 6. If π is a vector of optimal prices then r k −1 ≤ λk ≤ r k , for

ll k = 1 , . . . , m . 

roof. Suppose by contradiction j = λk < r k −1 . Hence, being r k −1 

he first customer on the right of k − 1 , j lies on the left of k − 1 .

nd since the metric is on a line, d 
j 

k 
= d 

j 

k −1 
+ p k − p k −1 . If k serves

 , Assumption 5 implies the strict inequality πk + d 
j 

k 
< πk −1 + d 

j 

k −1 
,

hat is 

k −1 − πk > p k − p k −1 = d k −1 ,k . (9)

ut for any i ∈ C we have 

k −1 + d i k −1 > πk + d k −1 ,k + d i k −1 ≥ πk + d i k , 

here the first inequality derives from (9) and the second from

ub-additivity. Hence k − 1 serves no customers. But then one can
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ncrease Firm B utility setting πk −1 = πk + p k − p k −1 , serving j at

 − 1 at a price higher than that of k , and so contradict the opti-

ality of π . 

Now let us suppose j = λk > r k and distinguish two cases. 

If k does not serve any customer, λk = λk +1 . Since by

emma 4 all the customers to the right of facility 1 are served by

acilities owned by Firm B, r k is served by a facility l to the left of

 with price πl < πk + p k − p l . But, setting πk = πl + p k − p l , facil-

ty k serves r k at a higher price, so increasing the firm utility and

ontradicting the optimality of π . 

If instead k serves at least one customer, it surely serves j = λk ,

hich by definition is the leftmost customer served by k . Because

k > r k , r k is not served by k but by k − 1 . Therefore 

k −1 + d 
r k 
k −1 

< πk + d 
r k 
k 

. 

umming d r k λk to both members we then obtain 

k −1 + d 
λk 

k −1 
< πk + d 

λk 

k 
, 

hat is, k − 1 serves λk too: a contradiction. In conclusion, neither

k < r k −1 , nor λk > r k , therefore r k −1 ≤ λk ≤ r k . �

Theorem 6 gives a lower and an upper bound to the value that

k can take in an optimal solution. Now, for the largest possible

alue of 	π k , two cases can occur depending on λk : 

• If λk = r k , price π k must verify the restriction: 

πk + p λk − p k ≤ πk −1 + p λk − p k −1 . 

Thus: 

	πk ≤ p k − p k −1 . (10) 

• If r k −1 ≤ λk < r k , the restriction on π k to guarantee that k

serves customer λk is: 

πk + p k − p λk ≤ πk −1 + p λk − p k −1 . 

Thus: 

	πk ≤ 2 p λk − p k − p k −1 . (11)

From Theorem 6 we also know that, in an optimal solu-

ion, r k −1 ≤ λk ≤ r k (consider that, if facility k serves no customer,

k +1 = λk ). We then conclude: 

roposition 7. The optimal values of 	π k do not bind one another,

nd can independently be determined from the positions of facilities

nd customers. 

To find an optimum price vector π ∗ it is then sufficient to cal-

ulate, independently for each k ∈ F B , the index λ∗
k 

that maximizes

he k th term of the sum (8) . In formulæ, according to (10), (11) : 

∗
k = arg max 

t 

{
(n + 1 − t)(2 p t − p k − p k −1 ) : t ∈ { r k −1 , r k −1 + 1 , ..., l k } 
(n + 1 − t)(p k − p k −1 ) : t = r k 

}
, 

(12) 

π ∗
k = 

{
2 p λ

∗
k − p k − p k −1 if r k −1 ≤ λ∗

k 
< r k 

p k − p k −1 if λ∗
k 

= r k < r k . 
(13) 

Optimal prices are then immediately derived as 

∗
k = π ∗

k −1 + 	π ∗
k , (14) 

ith initial value π ∗
0 

= π0 , and the whole computation requires

 (m + n ) steps. Prices are symmetrically computed in the right

round case with l k in place of r k and ρk in place of λk . 

In the following, we say that facility h ∈ F rules out facility k ∈ F

f a client in any point of the line is more conveniently served by

 than by k (recalling Assumptions 4 , in a metric case this means

≤ π − d for h ∈ F , k ∈ F ). 
h k hk B A 
In case F B contains both facilities to the left and to the right

f 0, optimal prices can be separately computed for the left and

ight ground cases only if π0 = 0 . To tackle π0 > 0, we resort to

he Barrier Lemma 5 , according to which the customers lying in

 p −1 , p 1 ] (e.g., customers −1 , 1 , 2 , 3 in Fig. 1 ) are contended by fa-

ilities −1 , 0 and 1 only. In an optimal solution, one out of three

ases occurs: in one, facility 1 (facility −1 ) does not capture clients

o the left (to the right) of the competitor; in the remaining two,

he competitor is ruled out either by facility 1 or by −1 . Note that

hen facility 1 (facility −1 ) rules out the competitor in this way, in

n optimal solution we have πk = π0 − d 0 k ≥ 0 . Should this price

e negative, in fact, facility k would get a negative contribution

rom all the customers it serves, and moreover the contribution

f all the customers served by the other facilities of F B would be

educed by | π1 |: thus it is preferable for facility k to set π1 = 0 .

n optimum assignment to {−1 , 0 , 1 } of the customers lying in

 p −1 , p 1 ] is then found in O (m + n ) time by separately considering

hese three cases, and then choosing the best solution: 

1. Neither facility 1 nor −1 rule out the competitor: in this case,

check all λ1 ∈ [1, r 1 ] and ρ−1 ∈ [ l −1 , −1] . This requires O ( n ) time.

2. The competitor is ruled out by facility −1 , which happens by

setting π−1 = π0 − | p −1 | . Then choose λ1 to maximize π1 (n r −
λ1 + 1) + π−1 (λ1 − 1) , where n r denotes the number of cus-

tomers to the right of facility 0 and 

π1 = 

{
p 1 if λ1 = r 1 
2 p λ1 − p 1 otherwise. 

Also this step requires O ( n ) time. 

3. The competitor is ruled out by facility 1: this situation is sym-

metric to the previous. 

Then, combining the formulae (12)–(14) for the left ground case

ith the equivalent for the right ground case, we can again find π ∗

n further O ( m ) steps. 

.2. Problem 1 with | F A | = 1 and c k ≥ 0 

The left (as well as the right) ground case of Problem 1 with

on-zero fixed costs can be solved by dynamic programming or,

quivalently, as a longest ( s , t )-path on a complete directed acyclic

raph. In fact, the k th term of objective function (8) depends only

n: the position of facility k , that of the rightmost facility h open

n the left of k , and the positions of the customers that lie be-

ween r h and r k (analogous of Theorem 6 ). Since each term can be

aximized independently, one can compute the maximum utility

 jk generated by opening k when j is the rightmost facility opened

y B to the left of k . Call w sk the utility generated by k when no

acility of B is opened to the left of k ; then both w jk and w sk can

e computed in O ( n ) steps through: 

 jk = 

{ 

max i =1 , ... ,r k 
{ (π0 + f (i ))(n + 1 − i ) } − c k if j = s 

max i = r j , ... ,r k { ( f (i ) − p j )(n + 1 − i ) } − c k if j ∈ F B 
0 if k = t, 

(15) 

here 

f (i ) = 

{
2 p i − p k if i < r k 
p k if i = r k . 

(16) 

Now define a graph G = (F B ∪ { s, t} , E) , where jk ∈ E if and only

f p j < p k , or j = s, or k = t . Arc jk is weighted by w jk and, by the

eights definition, the weight of an ( s , t )-path P ⊆E of G equals the

ptimal revenue obtained when firm B opens the facilities repre-

ented by the nodes touched by P . 

With an approach similar to Section 5.1 , the two ground cases

an be composed in order to find an optimal solution for the gen-

ral case in which F has elements on both the left and the right of
B 
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Fig. 4. Digraph used to solve Problem 1 in the numerical example. 

Table 2 

Computation of weights for arcs ( s , 1), ( s , 2) and (1,2). 

Computation for ( s , 1) 

Index i Expression: first of (15) Numerical value 

1 (π0 + 2 p 1 − p 1 )(n + 1 − 1) (10 + 2 − 6)6 = 36 

2 (π0 + 2 p 2 − p 1 )(n + 1 − 2) (10 + 4 − 6)5 = 40 

3 (π0 + 2 p 3 − p 1 )(n + 1 − 3) (10 + 10 − 6)4 = 56 

4 (π0 + p 1 )(n + 1 − 4) (10 + 6)3 = 48 

Result: w s, 1 = 56 − 20 = 36 

Computation for ( s , 2) 

1 (π0 + 2 p 1 − p 2 )(n − 1 + 1) (10 + 2 − 10)6 = 12 

2 (π0 + 2 p 2 − p 2 )(n − 2 + 1) (10 + 4 − 10)5 = 20 

3 (π0 + 2 p 3 − p 2 )(n − 3 + 1) (10 + 10 − 10)4 = 40 

4 (π0 + 2 p 4 − p 2 )(n − 4 + 1) (10 + 14 − 10)3 = 42 

5 (π0 + 2 p 5 − p 2 )(n − 5 + 1) (10 + 18 − 10)2 = 36 

6 (π0 + p 2 )(n − 6 + 1) (10 + 10)1 = 20 

Result: w s, 2 = 42 − 5 = 37 

Computation for (1,2) 

4 (2 p 4 − p 2 − p 1 )(n r − 4 + 1) (14 − 6 − 10)3 = −6 

5 (2 p 5 − p 2 − p 1 )(n r − 5 + 1) (18 − 6 − 10)2 = 4 

6 (p 2 + p 1 )(n r − 6 + 1) (10 − 6)1 = 4 

Result: w 1 , 2 = 4 − 5 = −1 
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0. More precisely, one can guess all the O ( m 

2 ) facility pairs opened

next to Firm A facility in an optimal solution, compute for each

pair the optimal prices, and then decide which other facilities to

open as described above. Now G has O ( m 

2 ) arcs and — as previ-

ously seen — n basic steps are required to compute arc weights;

moreover, finding the longest ( s , t )-path requires a number of steps

linear in the number of arcs, that is O ( m 

2 ): hence the ground case

is solved in O ( m 

2 n ) steps. To solve the general problem, the ground

cases must be solved for each facility pair, so an optimal solution

is found in O ( m 

4 n ) elementary steps. 

Simple numerical example . We use data from Table 1 and Fig. 1 .

When Firm B bears opening costs, the solution of Problem 1 re-

quires to construct a weighted digraph G as explained in Section

5.2 . Graph G has a node per Firm B facility, plus a source node s

and a sink node t , see Fig. 4 . Here we suppose π0 = 10 , and that

opening facilities 1, 2 costs c 1 = 20 , c 2 = 5 , respectively. 

Using formulae (15), (16) we first obtain the graph weights

w s,t = w 1 ,t = w 2 ,t = 0 . According to (15) , the weight w s,k of arc ( s ,

k ) is computed by subtracting c k from 

max 
i =1 , ... ,r k 

{ (π0 + f (i ))(n + 1 − i ) } , 
where f (i ) = 2 p i − p 1 for i ≤ 3 and f (i ) = p 1 for i = 4 . Table 2

shows the explicit computation of the terms within brackets for

the three arcs ( s , 1), ( s , 2), (1, 2) (maxima in boldface). With these

weights, the longest ( s , t )-path of G is {( s , 2), (2, t )}. This means

that in an optimal solution Firm B will only open facility 2, getting

a revenue of 37. 

5.3. Problem 2 with | F A | = 1 and c k = 0 

For any given price π0 set by Firm A, the results of Section

5.1 enable us to find an optimal price vector π ∗ for Firm B. 

With zero opening costs, facility 1 (facility −1 ) serves the first

customer on its right (left), if any (Isolation Lemma). 
Suppose to know (as by an oracle) that λ is the leftmost cus-

omer captured by facility 1 in an optimal solution of Problem 2 .

onditioned to this fact, the maximum utility B λ
1 
(π0 ) locally ob-

ained by facility 1 is then 

 

λ
1 (π0 ) = 

{ 

(n 

r − λ + 1)(π0 + p 1 ) if λ = r 1 
(n 

r − λ + 1)(π0 + 2 p λ − p 1 ) if 1 ≤ λ < r 1 
(n 

r + | λ| )(π0 − p 1 ) if λ < 0 , 

(17)

here n r denotes the number of customers to the right of facil-

ty 0. Similarly, we obtain the utility B 
ρ
−1 

(π0 ) locally obtained by

acility −1 conditioned to capture ρ as the rightmost customer: 

 

ρ
−1 

(π0 ) = 

{ 

(n l − | ρ| + 1)(π0 + | p −1 | ) if ρ = l −1 

(n l − | ρ| + 1)(π0 + 2 | p ρ | − | p −1 | ) if l −1 < ρ ≤ −1 

(n l + ρ)(π0 − | p −1 | ) if ρ > 0 , 

(18)

here n l denotes the number of customers to the left of facility 0).

roblem 2 can be solved by enumerating the O ( n 2 ) pairs λ, ρ of

ustomers closest to 0 and possibly served by 1 and −1 , respec-

ively. For each pair, one can easily find the value of π0 that max-

mizes the utility of Firm A with B i 
1 
, B i −1 

conditioned as explained

bove, and then select the best: 

ax 
π0 

(λ + | ρ| − 2) π0 (19)

B i 1 (π0 ) ≤ B λ1 (π0 ) λ � = i, 1 ≤ i ≤ r 1 

B i −1 (π0 ) ≤ B 
ρ
−1 

(π0 ) ρ � = i, l −1 ≤ i ≤ −1 

B i −1 (π0 ) + B i +1 
1 (π0 ) ≤ B λ1 (π0 ) + B 

ρ
−1 

(π0 ) 1 ≤ i < r 1 or l −1 ≤ i ≤ −2 

π0 ≥ 0 . 

The meaning of (19) is that Firm A seeks a price π0 ≥ 0 that

orces Firm B to an optimum where λ (resp., ρ) is the leftmost

resp., the rightmost) customer served by facility 1 (resp., −1 ).

he first two constraints impose that any other choice i for the

eftmost or rightmost customer would not result in a revenue

mprovement for the relevant facility. The remaining constraints

mpose that Firm B does not rule Firm A out of market by cap-

uring customer i with facility −1 and customer i + 1 with facility

. Note that, according to the Barrier Lemma 5 , the prices π ∗
k 

dopted for | k | � = 1 by Firm B in order to maximize its utility

epend on π ∗
1 , π

∗
−1 only through the system of differences (14) ,

nd therefore do not influence the optimal price for Firm A. 

In case problem (19) is infeasible for all λ, ρ pairs, two cases

ccur for any π0 : either Firm A is ruled out because π0 violates a

onstraint in the third set, or π0 < 0. In both cases, the maximum

evenue of Firm A is evidently 0. Note that, in case π0 violates

onstraints in the first or second set, one can take the most vio-

ated of those constraints and exchange ρ or λ with i , so getting a

easible problem. 

roposition 8. For | F A | = 1 , c k = 0 and any values of p i , p k ,

roblem 2 is bounded from above. 

roof. In case Firm A serves no customers, as observed its utility

s 0. We have to prove the claim for any λ> 1 or ρ < −1 for which

roblem (19) has a feasible solution. Assume λ> 1. In this case, π0 

ust verify B 1 
1 
(π0 ) ≤ B λ

1 
(π0 ) . Then 

n 

r (π0 + 2 p 1 − p 1 ) ≤ (n 

r − λ + 1)(π0 + 2 p λ − p 1 ) if λ < r 1 
n 

r (π0 + 2 p 1 − p 1 ) ≤ (n 

r − λ + 1)(π0 + p 1 ) if λ = r 1 . 

or λ< r 1 , the constraint is fulfilled if and only if 

0 ≤ 2 n 

r (p λ − p 1 ) 

(λ − 1) 
+ p 1 − 2 p λ
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Table 3 

Utility of facilities 1 , −1 as a function of π0 . 

Computation for facility 1 

Index λ Expression: (17) Numerical value 

−1 B −1 
1 

(π0 ) = (n r + | λ| )(π0 − d 0 1) B −1 
1 

(π0 ) = 7(π0 − 6) 

1 B 1 1 (π0 ) = (n r − λ + 1)(π0 + 2 p λ − p 1 ) B 1 1 (π0 ) = 6(π0 − 4) 

2 B 2 1 (π0 ) = (n r − λ + 1)(π0 + 2 p λ − p 1 ) B 2 1 (π0 ) = 5(π0 − 2) 

3 B 3 1 (π0 ) = (n r − λ + 1)(π0 + 2 p λ − p 1 ) B 3 1 (π0 ) = 4(π0 + 4) 

4 B 4 1 (π0 ) = (n r − λ + 1)(π0 + p 1 ) B 4 1 (π0 ) = 3(π0 + 6) 

Computation for facility −1 

Index ρ Expression: (18) Numerical value 

−2 B −2 
−1 

(π0 ) = (n l − | ρ| + 1)(π0 + | p −1 | ) B −2 
−1 

(π0 ) = 7(π0 + 3) 

−1 B −1 
−1 

(π0 ) = (n l − | ρ| + 1)(π0 + 2 | p ρ | − | p −1 | ) B −1 
−1 

(π0 ) = 6(π0 + 5) 

1 B 1 −1 (π0 ) = (n l + ρ)(π0 − | p −1 | ) B 1 −1 (π0 ) = 8(π0 − 5) 

2 B 2 −1 (π0 ) = (n l + ρ)(π0 − | p −1 | ) B 2 −1 (π0 ) = 9(π0 − 5) 

3 B 3 −1 (π0 ) = (n l + ρ)(π0 − | p −1 | ) B 3 −1 (π0 ) = 10(π0 − 5) 

w

π
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0  

λ 0  
hile for λ = r 1 if and only if 

0 ≤ 2 n 

r (p 1 − p 1 ) 

(λ − 1) 
− p 1 . 

n both cases π0 is bounded and utility of Firm A cannot be in-

reased without bound. 

The case ρ < −1 is dealt with by the same argument, consider-

ng constraint B −1 
−1 

(π0 ) ≤ B 
ρ
−1 

(π0 ) . �

Simple numerical example . The problem is solved by first

ewriting formulae (17) and (18) and then solving (19) for

ll possible ρ , λ pairs (see Section 5.3 ). In our case the

, λ pairs are { (−1 , 1) , (−1 , 2) , (−1 , 3) , (−1 , 4) , (−2 , 1) ,

(−2 , 2) , (−2 , 3) , (−2 , 4) } . The utility of facilities 1 and −1 ,

omputed in this way as a function of π0 , is indicated in Table 3 .

hen, for each possible ( ρ , λ), we compute the maximum price

hat makes ρ and λ optimal for Firm B (in boldface), and the

orresponding revenue for Firm A. 

• (−1 , 1) → no client for Firm A. Revenue of Firm A = 0. 
• (−1 , 2) → 1 client for Firm A { 

7 π0 + 21 ≥ 6 π0 + 30 ⇒ π0 ≥ 9 

5 π0 − 10 ≥ 6 π0 − 24 ⇒ π0 ≤ 14 

5 π0 − 10 ≥ 4 π0 + 16 ⇒ π0 ≥ 26 

Infeasible. 
• (−1 , 3) → 2 clients for Firm A ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

7 π0 + 21 ≥ 6 π0 + 30 ⇒ π0 ≥ 9 

4 π0 + 16 ≥ 6 π0 − 24 ⇒ π0 ≤ 20 

4 π0 + 16 ≥ 5 π0 − 10 ⇒ π0 ≤ 26 

4 π0 + 16 ≥ 3 π0 + 18 ⇒ π0 ≥ 2 

11 π0 + 37 ≥ 13 π0 − 12 ⇒ π0 ≤ 24 , 5 

11 π0 + 37 ≥ 13 π0 − 50 ⇒ π0 ≤ 43 , 5 

11 π0 + 37 ≥ 13 π0 − 29 ⇒ π0 ≤ 33 

11 π0 + 37 ≥ 13 π0 − 32 ⇒ π0 ≤ 24 , 5 

π0 = 20 . Revenue of Firm A = 20 · 2 = 40 . 
• (−1 , 4) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

7 π0 + 21 ≥ 6 π0 + 30 ⇒ π0 ≥ 9 

3 π0 + 18 ≥ 6 π0 − 24 ⇒ π0 ≤ 14 

3 π0 + 18 ≥ 5 π0 − 10 ⇒ π0 ≤ 14 

3 π0 + 18 ≥ 4 π0 + 16 ⇒ π0 ≤ 2 

12 π0 + 39 ≥ 13 π0 − 12 ⇒ π0 ≤ 51 

12 π0 + 39 ≥ 13 π0 − 50 ⇒ π0 ≤ 89 

12 π0 + 39 ≥ 13 π0 − 29 ⇒ π0 ≤ 68 

12 π0 + 39 ≥ 13 π0 − 32 ⇒ π0 ≤ 71 

Infeasible. 
• (−2 , 1) → 1 client for Firm A {
6 π0 + 30 ≥ 7 π0 + 21 ⇒ π0 ≤ 9 

6 π0 − 24 ≥ 5 π0 + 10 ⇒ π0 ≥ 14 

Infeasible. 
• (−2 , 2) → 2 clients for Firm A { 

6 π0 + 30 ≥ 7 π0 + 21 ⇒ π0 ≤ 9 

5 π0 + 10 ≥ 6 π0 + 24 ⇒ π0 ≤ 14 

5 π0 + 10 ≥ 4 π0 + 16 ⇒ π0 ≥ 26 

Infeasible. 
• (−2 , 3) → 3 clients for Firm A ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

6 π0 + 30 ≥ 7 π0 + 21 ⇒ π0 ≤ 9 

4 π0 + 16 ≥ 6 π0 − 24 ⇒ π0 ≤ 20 

4 π0 + 16 ≥ 5 π0 − 10 ⇒ π0 ≤ 26 

4 π0 + 16 ≥ 3 π0 + 18 ⇒ π0 ≥ 2 

10 π0 + 46 ≥ 13 π0 − 12 ⇒ π0 ≤ 19 , 3 

10 π0 + 46 ≥ 13 π0 − 50 ⇒ π0 ≤ 32 

10 π0 + 46 ≥ 13 π0 − 29 ⇒ π0 ≤ 25 

10 π0 + 46 ≥ 13 π0 − 32 ⇒ π0 ≤ 27 

π0 = 9 . Revenue of Firm A = 9 · 3 = 27 . 
• (−2 , 4) → 4 clients for Firm A ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

6 π0 + 30 ≥ 7 π0 + 21 ⇒ π0 ≤ 9 

3 π0 + 18 ≥ 6 π0 − 24 ⇒ π0 ≤ 14 

3 π0 + 18 ≥ 5 π0 − 10 ⇒ π0 ≤ 14 

3 π0 + 18 ≥ 4 π0 + 16 ⇒ π0 ≤ 2 

12 π0 + 48 ≥ 13 π0 − 12 ⇒ π0 ≤ 60 

12 π0 + 48 ≥ 13 π0 − 50 ⇒ π0 ≤ 98 

12 π0 + 48 ≥ 13 π0 − 29 ⇒ π0 ≤ 77 

12 π0 + 48 ≥ 13 π0 − 32 ⇒ π0 ≤ 80 

π0 = 2 . Revenue of Firm A = 2 · 4 = 8 . 

The price that maximizes Firm A utility is π0 = 20 ; Firm B will

hen react according to the model developed. 

.4. Problem 2 with | F A | = 1 and c k ≥ 0 

Let us finally focus on Problem 2 when Firm B bears opening

osts. The problem calls for finding an optimal price π0 for Firm A

t facility 0, taking all possible reactions of Firm B into account. 

In Section 5.2 we saw that the revenue B (.) of Firm B can be

xpressed as the length of a longest ( s , t )-path in a directed acyclic

raph G , the nodes of which (apart from the origin s and the

estination t ) denote the facilities in F B . On the other hand, in

ection 5.1 we showed that Firm A affects (via π0 ) the revenue

f Firm B only by affecting the prices settled at the two facilities,

1 and −1 , that are adjacent to facility 0. 

The basic difference in this case is that, because of opening

osts, we do not know in advance which facilities will be open in

he optimal reaction of firm B . Notice however that π0 only affects

he weights of the edges outgoing from s , see formula (15) . Now,

ince G is acyclic, for any u � = s the length w (u ) of the longest ( u ,

 )-path of G does not depend on π0 . As a consequence, it is possi-

le to compute the length of the longest path as a function of π0 ,

nd consequently the optimal revenue achievable by B, as the min-

mum of polynomially many linear functions of π0 . For any facility

air, then, we can as well express by linear constraints on π0 the

onditions under which the pair is adjacent to 0 and opened by B

n its optimal reaction. 

Formally speaking, let κ be the first facility open to the right of

, and λ be the leftmost customer served by κ . For any given κ ,

, we can express the dependence on π of the optimal revenue
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of Firm B that derives from the facilities to the right of Firm A as

follows: 

B 

λ
κ (π0 ) = 

{ 

(n 

r − λ + 1)(π0 + p κ ) + w (κ) if λ = r κ
(n 

r − λ + 1)(π0 + 2 p λ − p � ) + w (κ) if 1 ≤ λ < r 1 
(n 

r + | λ| )(π0 − p κ ) + w (κ) if λ < 0 . 

Similarly, let � be the first facility open to the left of 0, and ρ be

the rightmost customer served by � . For any given � , ρ , the analo-

gous of the previous expression is 

B 
ρ
� (π0 ) = 

{ 

(n l − | ρ| + 1)(π0 + | p � | ) + w (� ) if ρ = l � 
(n l − | ρ| + 1)(π0 + 2 | p ρ | − | p � | ) + w (� ) if l � < ρ ≤ −1 

(n l + ρ)(π0 − | p � | ) + w (� ) if ρ > 0 . 

As in Section 5.3 , problem (19) , we can compute the optimal rev-

enue of Firm A by finding, for all possible κ , � , λ, ρ , the maxi-

mum π0 (if one exists) that induces the corresponding Firm B so-

lution: 

max 
π0 

(λ + | ρ| − 2) π0 (20)

B i h (π0 ) ≤ B λκ (π0 ) λ � = i, κ � = h, 1 ≤ i ≤ r κ , h > 0 

B i h (π0 ) ≤ B 
ρ
� (π0 ) ρ � = i, � � = h, l � ≤ i ≤ −1 , h < 0 

B i j (π0 ) + B i +1 
h 

(π0 ) ≤ B λκ (π0 ) + B 
ρ
� (π0 ) 1 ≤ i < r 1 , j < 0 , h > 0 

B i −1 
j 

(π0 ) + B i h (π0 ) ≤ B λκ (π0 ) + B 
ρ
� (π0 ) l −1 < i, ≤ 1 j < 0 , h > 0 , 

where the former two constraint classes impose the guess on r k 
and l k (i.e., the first customer to the right and to the left of k ∈ F B );

the latter, that λ and ρ are the first two facilities opened by B

to left and to the right of 0. The algorithm makes a guess for all

open facility pairs adjacent to 0, and all possible number of cus-

tomers served by 0 on its left and on its right, for a total amount

of O ( m 

2 n 2 ) guesses. Problem (20) has just one variable and m 

2 n

linear constraints, so for fixed κ , � , λ, ρ , an optimal price is found

in O ( m 

2 n ) steps. Then the overall complexity of the method is

O ( m 

4 n 3 ). 

6. One-dimensional metric problem, | F A | > 1 

Although apparently much simpler than Problem 1 introduced

in its general form in Section 3.3 , the one-dimensional case is still

hard to solve. In this section we illustrate a reduction from 0-1

Knapsack . Let 

max 
n ∑ 

i =1 

v i z i (21)

n ∑ 

i =1 

w i z i ≤ w 

z i ∈ { 0 , 1 } i = 1 , . . . , n, 

with v i , w i ∈ IR + , be an instance K of 0-1 Knapsack . With no loss

of generality, assume 
∑ n 

i =1 v i = 1 , and let W = 1 + 2 
∑ n 

k =1 (n − k +
1) w k . Associate with K the following metric 1-dimensional in-

stance P of Problem 1 : 

• Firm A holds two facilities 0 , n + 2 placed at the extremes of an

interval I = [ p 0 , p n +2 ] of the real axis, with 

p 0 = 0 p n +2 = 2(W + w ) , 

and offer the service at prices π0 = πn +2 = 0 
• Firm B holds n + 1 facilities. The first n are placed in I at posi-

tions 

p k = p k −1 + v k + 2(n − k + 1) w k 

for k = 1 , . . . , n : in particular, p n = W . Facility n + 1 is placed at

position p n +1 = W + 2 w . 
• There are n + 1 customers. The first n are placed at positions

p i = p i − w i . Customer n + 1 is placed at p n +1 = p n +1 . 

Fig. 5 shows the construction. Let π ∗ ∈ IR n +1 be an optimal price

ector. The following properties hold: 

emma 9. Under π ∗, facility n + 1 serves customer n + 1 and no

ther customers. 

roof. First suppose by contradiction that facility n + 1

erves a customer i ≤ n . By construction, p i < p i ≤ p n , and by

roposition 1 facility n serves no customers. This means

hat π ∗
n > π ∗

n +1 
+ p n +1 − p n . Since n is closer than n + 1

o the customers with index smaller than n , by setting

n = π ∗
n +1 + p n +1 − p n , facility n could serve all clients j such that

 ≤ j ≤ n without changing the service costs of any customer, and

hus increasing the objective function by (p n +1 − p n )(n − i + 1) :

his contradicts the assumption of π ∗ optimal. Therefore, n + 1

oes not serve any customer i ≤ n . 

Let us now suppose by contradiction that n + 1 serves no cus-

omer at all. Then customer n + 1 could be served by either ( i )

acility n + 2 , or ( ii ) a facility i ≤ n . In case ( i ) it is sufficient

 Assumption 4 ) to set πn +1 = p n +2 − p n +1 = W to make facility

 + 1 appealing for n + 1 , so increasing Firm B revenue without

ecreasing the service costs of any other client (and consequently

he relevant prices). Similarly, in case ( ii ) facility n + 1 becomes ap-

ealing for customer n + 1 as soon πn +1 = p n +1 − p i ; by doing so,

he firm’s revenue is increased by the same amount as in case ( i ).

hus, the optimality of π ∗ is contradicted in either cases. �

emma 10. Suppose that, under π ∗, facility k serves at least one

ustomer and let λk denote the leftmost customer served by k. Then

k = k or λk = k + 1 . 

roof. Let us first prove that λk ≥ k . Indirectly, suppose that λk =
 < k . We know by construction that p i < p k −1 < p k . Then by

roposition 2 facility k − 1 does not serve any client. But then, set-

ing πk −1 = πk + p k − p k −1 , facility k − 1 could serve client i with-

ut decreasing the serving cost of any other client, and increasing

he objective function by at least p k − p k −1 . This contradicts the

ptimality of π ∗. 

Let us prove now that λk ≤ k + 1 . Suppose by contradiction

hat λk = i > k + 1 . Then facility k does not serve client k + 1 , so

et k + 1 be served by facility l . If l is left of facility k , then by

roposition 2 , k does not serve any client (in particular, it does

ot serve i ). If instead l ≥ k + 1 is right of facility k , then again

y Proposition 2 p l > p i (if not, because facility k serves i , l would

erve no client). Thus 

 

i 
k = | p k − p i | > | p k − p k +1 | = d k +1 

k 
, 

 

k +1 
l 

= | p l − p k +1 | > | p l − p i | = d i l . 

ince l serves client k + 1 , prices must verify 

l − πk ≤ d k +1 
k 

− d k +1 
l 

< d i k − d i l . 

his implies that client i is not served by k . So in both cases the

ypothesis λk = i is contradicted. �

To exemplify Lemma 10 , see Fig. 5 and observe that λ1 =
 , λ2 = 2 , λ4 = 4 . 

Summarizing, in the assignment induced by an optimal π facil-

ty n + 1 serves only n + 1 ( Lemma 9 ). Moreover the optimal price

xed by facility n + 1 does not decrease the serving cost of any

lient. Therefore, the serving costs of the first n clients are influ-

nced by the price fixed by the first n facilities only: then we can

ompute the revenues from the first n facilities by expression (8) ,

s we do for a single competing facility ( Section 5.1 ). 
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Fig. 5. Instance of Problem 2 associated with an instance of 0-1 Knapsack . 
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The next lemma characterizes the feasible solutions of knapsack

roblem K. 

emma 11. Let Y be an assignment of C to F , and π ∗ the associated

inimal optimum price. Then the set 

 = { k : λk = k } 
dentifies a feasible solution of problem K if and only if customer n +
 is assigned (to facility n + 1 ) at price π ∗

n +1 = W . 

roof. Since d n +1 
n +1 

= | p n +1 − p n +1 | = 0 and π ∗ is minimal, π ∗
n +1 

ust be equal to the minimum between the serving costs of fa-

ilities n and n + 2 : 

∗
n +1 = min { π ∗

n + d n +1 
n , πn +2 + d n +1 

n +2 } = min { π ∗
n + 2 w, W } . (22)

et us now consider the prices fixed by the other facilities in an

ptimal solution. Note that Firm A facility n + 2 is not competitive

or the customers lying to the left of the middle point W + w . So

or k ≤ n the optimal prices π ∗
k 

are determined as without facility

 + 2 , and we can express them using (8), (13) . Lemma 10 then

llows us to say 

∗
k = 

{
π ∗

k −1 
− p k −1 + p k − 2 w k if λk = k 

π ∗
k −1 

− p k −1 + p k otherwise. 
(23) 

Unfolding (23) we obtain 

∗
n = 

n ∑ 

k =1 

[ p k − p k −1 − 2 w k z k ] = W − 2 

n ∑ 

k =1 

w k z k , (24)

here z k is equal to 1 if λk = k and 0 otherwise. In other words, z

s the incidence vector of S . On the other hand, by (22) we know

hat π ∗
n +1 

= W if and only if π ∗
n + 2 w ≥ W, that after (24) yields

 n 
k =1 w k z k ≤ w, that is z feasible for K. �

By (24) , the optimal price (22) becomes 

∗
n +1 = min 

{ 

W + 2 

( 

w −
n ∑ 

k =1 

w k z k 

) 

, W 

} 

. (25) 

emma 12. Let π ∗ be an optimal vector of prices, then π ∗
n +1 

= W . 
roof. Using (23) , let us evaluate the difference in terms of rev-

nue of the k -th term of (8) in the cases λk = k and λk � = k . 

(n − k + 1)(p k − p k −1 − 2 w k ) − (n − k )(p k − p k −1 ) 

= p k − p k −1 − 2 w k (n − k + 1) = v k . 

sing (8) , we can write the revenue from the facilities � = n + 1 as

n 
 

k =1 

( n + 1 − λk ) 	π ∗
k = 

n ∑ 

k =1 

[(n − k )(p k − p k −1 ) + v k z k ] (26)

here z k is equal to 1 if λk = k and 0 otherwise. Let us now in-

lude the contribution of facility n + 1 , and suppose by contradic-

ion π ∗
n +1 

< W . From Lemma 11 this happens only if 
∑ n 

k =1 w k z k >

 . Combining (25) and (26) we can compute the total revenue: 

 (π ∗) = 

n ∑ 

k =1 

(n − k )(p k − p k −1 ) + 

n ∑ 

k =1 

v k z k + W + 2 

( 

w −
n ∑ 

k =1 

w k z k 

) 

≤
n ∑ 

k =1 

(p k − p k −1 )(n − k ) + 

n ∑ 

k =1 

v k z k + W − 2 

≤
n ∑ 

k =1 

(p k − p k −1 )(n − k ) + W − 1 . (27) 

he first passage derives from being w, w k , z k ∈ IN, and therefore
 n 
k =1 w k z k ≥ w + 1 . The second, because by assumption 

∑ n 
k =1 v k =

 . 

Let us now consider an optimal price vector π̄ subject to λk � = k

or all k . The relevant revenue can be computed by (26) setting

 k = 0 for all k , and adding W to the result (in fact, z k = 0 is feasi-

le for K, and we can therefore apply Lemma 11 to compute π̄n +1 ):

 ( ̄π) = 

n ∑ 

k =1 

(n − k )(p k − p k −1 ) + W. (28)

Comparing (27) and (28) we then see the optimality of π ∗

ontradicted. �

heorem 13. Problem 1 is N P -hard even for the case of one-

imensional metric, c = c = 0 and | F | = 2 . 
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Proof. Summarizing the results stated so far: 

• Lemma 12 ensures that, in an optimal price vector, πn +1 = W . 
• From Lemma 11 , we know that this happens only if z is feasible

for K
• Consequently, the objective function takes the form: 

n ∑ 

k =1 

(p k − p k +1 )(n − k ) + 

n ∑ 

k =1 

v k z k + W. 

• Since p k , n , k and W are constant, to find an optimal π is

equivalent to find a feasible solution z of K that maximizes∑ n 
k =1 v k z k , that is, an optimum of K. �

7. Conclusions 

In this paper, we undertook an investigation of a Stackelberg

pricing/location model strictly related to network and envy-free

pricing problems. Two firms A and B compete along a line on

determining prices to attract customers, who bear additional

transportation costs and make rational access decisions after

observing market prices. The leader firm, A, decides prices in its

facilities first. Then the follower firm, B, decides both the sites

where to open a facility and the relevant service prices, to which

customers finally react by choosing a facility to receive service

from. 

We considered the particular case of metric transportation costs

on a line, and concentrated on the computational complexity and

numerical solvability of the optimization problems faced by the

agents rather than on conditions for the existence of equilibrium.

We established that maximizing the utility of B is N P -hard even

with two levels, no opening costs and just two opponent facili-

ties held by A and offering service at known fixed costs. For a sin-

gle opponent facility, the problem is instead solvable in polynomial

time with three levels and fixed opening costs. 

An investigation of the two-dimensional case will be the sub-

ject of a subsequent study. In this case, the indifference point —

i.e., the point where, for a given price vector, a customer bears

the same cost for service from two different facilities — evolves

into a line or a more complex set: for example, under L 2 -norm,

a hyperbola whose axis passes by the facility positions. In this

case the function c(α, β) = min k ∈ F { πk + 

√ 

(αk − α) 2 + (βk − β) 2 }
expressing the cost borne by a customer in position ( α, β) ∈ IR 2 is

obtained by composition of right circular conic surfaces pointed in

( αk , βk , π k ) ∈ IR 3 . Even the analysis for a single facility in F A ap-

pears then quite complicated. For instance, an interesting question

would be whether the Barrier Lemma can or not be extended in

IR 2 . Possible research might however consider dynamic program-

ming to solve special cases. 
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