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ABSTRACT

RE-IDENTIFICATION OF INDIVIDUALS IN GENOMIC
DATA-SHARING BEACONS VIA ALLELE INFERENCE

Nora von Thenen

M.S. in Computer Engineering

Advisor: A. Ercument Cicek

October 2017

Genomic datasets are often associated with sensitive phenotypes. Therefore, the

leak of membership information is a major privacy risk. Genomic beacons aim to

provide a secure, easy to implement, and standardized interface for data sharing

by only allowing yes/no queries on the presence of specific alleles in the dataset.

Previously deemed secure against re-identification attacks, beacons were shown

to be vulnerable despite their stringent policy. Recent studies have demonstrated

that it is possible to determine whether the victim is in the dataset, by repeatedly

querying the beacon for his/her single nucleotide polymorphisms (SNPs). In this

thesis, we propose a novel re-identification attack and show that the privacy

risk is more serious than previously thought. Using the proposed attack, even if

the victim systematically hides informative SNPs (i.e., SNPs with very low minor

allele frequency -MAF-), it is possible to infer the alleles at positions of interest as

well as the beacon query results with very high confidence. Our method is based

on the fact that alleles at different loci are not necessarily independent. We use

the linkage disequilibrium and a high-order Markov chain-based algorithm for the

inference. We show that in a simulated beacon with 65 individuals from the CEU

population, we can infer membership of individuals with 95% confidence with only

5 queries, even when SNPs with MAF less than 0.05 are hidden. This means,

we need less than 0.5% of the number of queries that existing works require, to

determine beacon membership under the same conditions. We further show that

countermeasures such as hiding certain parts of the genome or setting a query

budget for the user would fail to protect the privacy of the participants under

our adversary model.

Keywords: beacon, genome privacy, re-identification attack.
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ÖZET

GENOM VERİSİ PAYLAŞAN BEACON
SİSTEMLERİNE KARŞI ALEL ÇIKARIMI YAPAN

KİMLİK TESPİTİ ATAKLARI

Nora von Thenen

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: A. Ercüment Çiçek

Ekim 2017

Genom veri setleri genellikle hassas fenotipler ile ilişkilidirler. Bu nedenle bir

kişinin veri setinde olduğunun anlaşılması büyük bir mahremiyet riskidir. Bea-

con sistemleri veri paylaşımı için güvenli, kolay kurulabilir ve standardize bir

arayüz sunmayı amaçlar. Bu sistemler sadece kendilerine sorulan, belli alellerin

veri setinde olup olmadığına dair evet/hayır sorularını cevaplarlar. Bu kısıtlayıcı

prosedür nedeniyle kimlik tespiti ataklarına karşı güvenilir oldukları düşünülen

beacon sistemlerinin, risk taşıdığı gösterilmiştir. Yakın zamandaki çalışmalar,

bir kişinin veri setinde olup olmadığını anlamanın, beacon sistemlerini bu kişinin

nokta mutasyonları ile defalarca sorgulayarak mümkün olabilecegini göstermiştir.

Bu tezde özgün bir kimlik tespiti saldırısı tanımlanmakta ve riskin önceden

düşünüldüğünden daha büyük olduğu gösterilmektedir. Bu saldırı ile, saldırıya

uğrayan kişinin tanımlayıcı mutasyonları gizlenmiş olsa bile, bu aleller çıkarım

yolu ile bulunabilir ve beacon sisteminin verdiği cevaplar yüksek güven ile tah-

min edilebilir. Algoritma, farklı pozisyonlardaki alellerin bağımsız olmamasını

temel alarak çalışır ve linkaj dengesizliği ile yüksek seviye Markov zinciri kul-

lanmaktadır. 65 Avrupalı (CEU) bireyi içeren beacon sistemi simülasyonunda,

sadece 5 sorgu ile bir kişinin veri setinde olup olmadığını %95 güvenilirlik ile

belirleyebilieceğimiz gösterilmiştir (minör alel frekansı 0.05’ten küçük olan olan

mutasyonlar sistematik olarak gizlendiğinde bile). Bu rakam, diğer metotların

gerek duyduğu sorgu sayısının %0.5’ına denk gelmektedir. Son olarak, literatürde

önerilmiş olan, genom verisinin bazı bölgelerinin saklanması ya da kişi başına

bir sorgu bütçesi atanması gibi savunma metotlarının da bizim modelimizde

katılımcıların mahremiyetini korumakta yetersiz kaldığı gösterilmiştir.

Anahtar sözcükler : beacon, genom mahremiyeti, kimlik tespit saldırısı.
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Chapter 1

Introduction

Exciting times are on the horizon for the genomics field with the announcement

of the precision medicine initiative [4] which was followed by the $55 million

funding by NIH for the sequencing of a million individuals and AstraZeneca’s

project of sequencing two million individuals [5]. Even though such million-sized

genomic datasets are invaluable resources for research, sharing the data is a big

challenge due to re-identification risk. Several studies in the last decade have

shown that removal of personal identifiers from genomic data is not enough and

that individuals can be re-identified using allele frequency information [6, 7, 8, 9,

10].

Genomic data-sharing beacons (referred to as beacons from now on) are the

gateways that let users and data owners exchange information without -in theory-

disclosing any personal information. A user who wants to apply for access to the

dataset can learn whether individuals with specific alleles of interest are present

in the beacon through an online interface. More specifically, the user submits a

query, asking whether a genome exists in the beacon with a certain nucleotide at

a certain position, and the beacon answers “yes” or “no” (Figure 1.1). Beacons

are easy to set up systems that provide very restricted access to the stored data.

The Beacon Project is an initiative by the Global Alliance for Genomics and

1



                
            

Do you have the 
allele ´A´ at 

position ´1278379´ 
on chromosome 

´1´?

                
            

´Yes´

Beacon

User

Figure 1.1: System Model of a Beacon Query

Health (GA4GH) which creates policies to ensure standardized and secure shar-

ing of genomic data. Beacons were considered safe as allele frequencies are not

involved in the query result and the binary answers for allele presence seem far

from being informative for an attack. However, in 2015, Shringarpure and Bus-

tamante introduced a likelihood-ratio test (LRT) that predicts if an individual

is in the beacon or not, by repeatedly querying the beacon for single nucleotide

polymorphisms1 (SNPs, an example is shown in Figure 1.2) of the victim (dubbed

1Single Nucleotide Polymorphisms are DNA variations that commonly occur within a popu-
lation. If an individual has two different alleles at one SNP position, that position is referred to
as a heterozygous position. One allele generally occurs more frequently and is therefore called
the major allele, the less frequent allele is referred to as the minor allele.
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the SB attack) [1]. The method does not use the allele frequencies and can com-

pensate sequencing errors. They show that they could re-identify an individual in

a beacon with 65 European individuals from the 1000 Genomes Project [11] with

250 queries (with 95% confidence). In their scheme, both the queries posed and

the answers received from the beacon are assumed to be independent, therefore

the hypothesis is tested based on a binomial test. Very recently, the work by

Raisaro et al. showed that if the attacker has access to the MAFs of the pop-

ulation, s/he can sort the victim’s SNPs and query the SNPs starting from the

one with the lowest MAF (dubbed the Optimal attack) [2]. SNPs are DNA vari-

ations that commonly occur within a population as shown in Figure 1.2. Unlike

the SB attack, queries are not random in this case. As low MAF SNPs are more

informative, Raisaro et al. show that fewer queries are needed to re-identify an

individual. Furthermore, Raisaro et al. proposed countermeasures against re-

identification attacks such as adding noise to the beacon results and assigning a

budget to beacon members which limits the number of informative queries that

can be asked on each member.

In this thesis, we introduce two new inference-based attacks that (i) carefully

select the SNPs to be queried and predict query results of the beacon, and (ii) infer

hidden or missing alleles of a victim’s genome. First, we show that if the queried

locus is in linkage disequilibrium2 (LD) with others, it is enough to query for that

particular allele, as the attacker can infer the answers of the other alleles with high

confidence [12]. We refer to this method as the QI-attack (query inference attack).

Second, we introduce the GI-attack (genome inference attack) which recovers

hidden parts of a victim’s genome by using a high-order Markov chain [13].

We show that in a simulated beacon with 65 European individuals (CEU)

from the HapMap Project [14], our QI-attack requires 282 queries and our GI-

attack requires only 5 queries on average to re-identify an individual, whereas the

SB attack requires 19,525 queries and the Optimal attack requires 415 queries,

2Linkage disequilibrium (LD) is a measure to show how correlated two SNPs are. If two
SNPs have a high LD value, they are likely to be inherited together [13]. Generally, SNPs
that are close to each other on the DNA sequence are correlated, as the DNA is inherited in
chunks rather than single positions. The LD value can be used to calculate the correlation of
two specific nucleotides at two loci (SNP positions).
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all at the 95% confidence level when the victim’s SNPs with MAFs < 0.03 are

hidden. Therefore, the attacker models presented here can efficiently work when

certain regions in the genome of the victim are systematically hidden as a security

countermeasure. The number of queries required by the SB and the Optimal

attacks substantially increase as more SNPs are concealed, while the GI-attack

still requires only a few queries on average. Finally, we show that the QI-attack

can still re-identify individuals despite the stringent query budget countermeasure

proposed by [2] and the beacon censorship countermeasure proposed by [1].

Genome 1

Genome 2
SNP

Figure 1.2: Single Nucleotide Polymorphism DNA variations that commonly oc-
cur within a population.

We demonstrate that the beacons are more vulnerable than previously thought

and that the proposed countermeasures in the literature still fail to protect the

privacy of the individuals. The contributions of this thesis can be summarized as

follows:

• By inferring query results and alleles at certain positions, we show that it is

possible to significantly decrease the number of required queries compared

to other attacks in the literature [1, 2].

• We show that beacons are vulnerable even under a weaker adversary model,

in which informative parts of a victim’s genome are concealed (such as all

4



SNPs with an MAF less than a threshold).

• We discuss the feasibility and the effectiveness of the proposed countermea-

sures in the literature and show that using the presented attack models, the

participants are still under risk.

In this thesis, we will firstly give a literature review and present the related

works of this field. Then, we will describe the two main algorithms that this

thesis is based on in more detail (Chapter 2). In Chapter 3, we will present the

methodology of the first proposed attack and in Chapter 4, we will show the

methodology of the second proposed attack. Finally, we will present the results

in Chapter 5 and discuss the results of this thesis in Chapter 6.
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Chapter 2

Related Work

In this chapter, we will first give an overview of existing works in the field of

genomic privacy and SNP correlations. In Section 2.1, we will introduce the

attack proposed by Shringarpure and Bustamante in 2015 (referred to as SB

attack) [1]. Raisaro et al. proposed an extended version of the SB attack [2],

which we will introduce in Section 2.2 (referred to as Optimal attack).

By developing a statistical test in 2008, Homer et al. showed how the DNA of

an individual can be identified within a complex genomic mixture, even if only

0.1% of the DNA in the mixture belongs to that individual. For their experi-

ments, Homer et al. used high-density SNP genotyping microarray data [6]. In

2009, Jacobs et al. introduced a likelihood-ratio test that could determine whether

an individual is part of a genome-wide association study (GWAS) and in which

group, i.e. case or control that individual is. For their method, they only needed

the genome of the individual and the genotype frequencies of each of the groups.

Furthermore, previous works in the field of genomics and privacy have shown

that it is possible to increase the success of genomic re-identification attacks by

including linkage disequilibrium information of SNPs into the attacker model.

Namely, Wang et al. showed in 2009 that individuals can be re-identified by us-

ing (i) publicly available SNP-to-disease correlation information, and (ii) SNPs

in linkage disequilibrium (LD) [15]. To protect the genomic data used in medical

6



tests and personalized medicine Ayday et al. proposed a privacy-preserving dis-

ease susceptibility test (PDS) in 2013, which also includes LD information [16].

In 2013, Humbert et al. showed how LD can be used to build a framework to

reconstruct the genomes of relatives from the genome of one family member [12].

To protect the privacy of individuals in genomic studies, Sankararaman et al. de-

veloped the tool SecureGenome that can determine SNPs in LD and outputs the

SNPs that can be exposed without endangering the dataset members’ privacy [7].

Nevertheless, these works have not considered the power of high-order correlation

within the genome (e.g., instead of pairwise correlations).

Using high-order correlations instead of pairwise LD correlations has already

been studied by Gorelick et al. (2004) [17], Kim et al. (2008) [18] and Feng et al.

(2008) [19]. In 2015, Samani et al. presented an inference attack that is based on

high-order SNP correlations by using a high-order Markov chain [13].

As mentioned above, beacon servers are open to re-identification attacks and

therefore put their members’ privacy at risk. The following subsections 2.1 and

2.2 explain the two latest proposed re-identification attacks in more detail.

2.1 Shringarpure and Bustamante’s Attack

In 2015, Shringarpure and Bustamante showed they can re-identify a person and

reveal phenotype information with high accuracy by querying a beacon 250 times

using real genotype data (SB attack). The likelihood-ratio test (LRT) proposed

by Shringarpure and Bustamante is based on the “yes” responses of the queried

beacon using a target’s VCF1 file [1]. Their work uses the same attacking strategy

as Homer et al. in 2008, which concentrates on heterozygous positions of the

victim to be re-identified [6]. That is, querying only SNPs with two different

alleles in a position by only considering bi-allelic SNP positions (e.g. “AT”). The

queried SNPs are picked randomly from the victim’s heterozygous SNP positions.

The null hypothesis (H0) refers to the query genome being not in the beacon

1Variant Call Format (VCF) is a file format to store the SNP data of an individual.
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database. Under the alternative hypothesis (H1) the query genome is a member

of the beacon. Thus, an ideal response sequence to prove membership of the

victim would be expected to consist of only positive responses of the beacon, such

as: x1 = x2 ... = xn = 1, where xi represents the response of the beacon to query

i, n is the number of queries and 1 corresponds to a ”yes” response. However,

due to possible differences between a person’s sequence in the beacon and the

copy at hand, Shringarpure and Bustamante introduced δ, which represents the

probability of such an error. The log-likelihood under the null hypothesis has

been defined as shown in Equation 2.1.

LH0(R) =
n∑
i=1

xilog(1−DN) + (1− xi)log(DN), (2.1)

where R is the response set and DN the probability that no individual in the

beacon has the queried allele at that position. xi is the answer of the beacon to

the query at position i (1 for yes, 0 for no), and n is the total number of posed

queries. Accordingly, the log-likelihood of the alternative hypothesis has been

stated as shown in Equation 2.2.

LH1(R) =
n∑
i=1

xilog(1− δDN−1) + (1− xi)log(δDN−1), (2.2)

where DN−1 represents the probability of no individual except from the queried

person having the same SNP. δ represents a possible sequencing error. By com-

bining both hypotheses, Shringarpure and Bustamante define the log-likelihood

ratio test (LRT) as shown in Equation 2.3.

Λ = LH0(R)− LH1(R). (2.3)

The LRT statistic can be written as shown in Equation 2.4.

Λ = nB + C

n∑
i=1

xi, (2.4)

where B and C are defined as B = log(DN/δDN−1) and C = log(δDN−1(1 −
DN/DN(1 − δDN−1)), respectively. Figure 2.1(a) illustrates the model for this

attack.

8



2.2 Optimal Attack

The Optimal attack introduced by Raisaro et al. (2016) [2] is an extension to the

work of Shringarpure and Bustamante. It also integrates publicly available minor

allele frequency (MAF) information into the attackers background knowledge.

In this attack, the victim’s SNPs are sorted with respect to their MAFs. The

beacon is queried accordingly, starting from the first heterozygous SNP with the

lowest MAF. The methodology is visualized in Figure 2.1(b). In this setting,

the computations of DN−1 and DN depend on the position i and change at each

iteration as shown in Equations 2.5 and 2.6.

Di
N−1 = (1− fi)2N−2, (2.5)

Di
N = (1− fi)2N , (2.6)

where fi represents the MAF of the SNP at position i. Accordingly, Λ is deter-

mined by Equation 2.7.

Λ =
n∑
i=1

log

(
Di
N

δDi
N−1

)
+log

(
δDi

N−1(1−Di
N)

Di
N(1− δDi

N−1)

)
xi

=
n∑
i=1

log(δ−1(1− fi)2) + log

(
δ

(1− fi)2
1− (1− fi)2N

1− δ(1− fi)2N−2

)
xi

(2.7)
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Figure 2.1: Models of the four attacker models (a) SB attack [1], (b)
Optimal attack [2], (c) QI-attack and (d) GI-attack. Upper-case letters
represent the major allele at a SNP position and the lower-case letters the cor-
responding minor allele. The SB attack randomly selects the minor allele from
heterozygous SNP positions of the victim and queries those. The Optimal attack
first sorts the heterozygous SNPs with respect to their MAF and queries for the
minor alleles starting with the lowest frequency. Depending on the threshold
t, SNPs with an MAF < t are hidden and not available to the attacker. The
QI-attack is identical to the Optimal attack but extends it by inferring beacon
answers using correlations between SNP pairs. The GI-attack infers the hidden
SNPs using a high-order Markov chain and queries the beacon for the minor
alleles of those positions.
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Chapter 3

Query Inference Attack

For the QI-attack, the attacker incorporates pairwise SNP correlations in order to

infer beacon responses. That is, beacon responses for SNPs which are correlated

to a queried SNP, are inferred. The attacker uses the LD value of a SNP pair to

calculate the correlation of two minor alleles at two loci. The probability of two

minor alleles at two loci occurring together can be calculated as p2q2, where p2

is the minor allele frequency of SNP A (with minor allele a) and q2 is the minor

allele frequency of SNP B (with minor allele b). This probability can increase

or decrease if SNP A and SNP B are in LD. If their LD value increases the

likelihood of the two minor alleles occurring together the term D is added to the

probability. This can be calculated as follows; Pr(ab) = p2q2 + D (as shown in

Table 3.1), where D resembles the strength of the correlation of the two SNPs

and is determined as D =
√
r2(q1q2p1p2).

Table 3.1: Relationship between Linkage Disequilibrium (LD) measured by D
between the SNPs A and B and their allele frequencies.

Pr(A) = p1 Pr(a) = p2

Pr(B) = q1 p1q1 +D p2q1 −D

Pr(b) = q2 p1q2 −D p2q2 +D

11



Algorithm 1: Stepwise procedure of the QI-attack, where AFs are the allele
frequencies, S is the set of candidate SNPs to be queried and n the number
of queries.

Require: VCF file, AFs, LD scores
Read victim’s VCF file
Identify heterozygous SNP positions S of the victim
Sort S based on MAFs (ascending order)
for all SNPi in S do

if SNPi is member of SNP network then
Get neighbors of SNPi in SNP network
Get cluster representative
Query Beacon for cluster representative
Infer response for neighboring SNPs

else
Query Beacon for SNPi

end if
end for

On this basis, the attacker constructs a SNP network that uses weighted,

directed edges between SNPs in high LD (see Figure 3.1). The weight corresponds

to the probability of the two minor alleles that are in LD occurring together. The

probability of two minor alleles of two loci that are not in LD occurring together

is equal to p2q2, where p2 is the minor allele frequency of SNP A (with minor

allele a) and q2 is the minor allele frequency of SNP B (with minor allele b). If

A and B are in an LD relationship, the LD score between them increases the

probability of two major or two minor alleles in these loci occurring together. As

shown in Table 3 this leads to the formula: Pr(ab) = p2q2+D, where D resembles

the LD i.e. the strength of the correlation of the two SNPs. D is calculated as

follows: D =
√
r2(q1q2p1p2), where q1 and p1 are the major allele frequencies and

r2 is a measure of LD. Furthermore, D′ is needed, since it determines whether D

is subtracted or added to the probability of two minor allele occurring together.

D′ > 0.5 implies D is added, whereas D′ < 0.5 leads to a subtraction of D. In

order to ensure high correlation between the SNPs, only LD relationships between

SNP pairs with an r2 value of more than 0.7 were considered.

Figure 2.1(c) illustrates the model for this attack. First, the attacker selects

the SNPs to be queried. This step is identical to the Optimal attack and leads to

12



a set of candidate SNPs S to be queried, starting from the lowest MAF SNPi. As

a second step, the attacker determines the neighbors of each SNP to be queried in

the SNP network. If the neighboring SNPs of SNPi are in the SNP network and

belong to the selected SNPs in S, the attacker can directly infer the query answers

the beacon would have returned without posing a query for the neighboring SNPs.

The steps of the attack are shown in Algorithm 1.

rs6461994

rs10250444

rs7785994

rs4722663rs12234397                 
            

                
            

                
            

                
            

0.97307

0.90413

0.97558

0.98772

Figure 3.1: An example SNP network, containing of 5 nodes (i.e. SNPs). The
SNP network is a directed graph, where the edges resemble the correlation. This
example shows a completely connected graph, not all SNP subnetworks are com-
pletely connected.

The null hypothesis is then given as in Equation 3.1.

LH0(R) =
n∑
i=1

(
xilog(1−Di

N) + (1− xi)log(Di
N)

+
m∑
j=1

γxilog(1−Dj
N) + γ(1− xi)log(Dj

N)

)
,

(3.1)

where, n is the number of posed queries, m is the number of neighbors that can

be inferred for each posed query xi and γ corresponds to the confidence of the

inferred answer, obtained from the SNP network.
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LH1(R) =
n∑
i=1

(
xilog(1− δDi

N−1) + (1− xi)log(δDi
N−1)

+
m∑
j=1

γxilog(1− δDj
N−1) + γ(1− xi)log(δDj

N−1)

) (3.2)

Accordingly, Equation 3.2 shows the alternative hypothesis. Λ is then calcu-

lated as shown in Equation 3.3.

Λ =LH0(R)− LH1(R)

=
n∑
i=1

(
xilog(1−Di

N) + (1− xi)log(Di
N)

+
m∑
j=1

γxilog(1−Dj
N) + γ(1− xi)log(Dj

N)

)

−
[ n∑
i=1

(
xilog(1− δDi

N−1) + (1− xi)log(δDi
N−1)

+
m∑
j=1

γxilog(1− δDj
N−1) + γ(1− xi)log(δDj

N−1)

)]

=
n∑
i=1

(
xilog

(
1−Di

N)

1− δDi
N−1)

)
+(1− xi)log

(
Di
N

δDi
N−1

)

+
m∑
j=1

γxilog

(
1−Dj

N)

1− δDj
N−1)

)
+γ(1− xi)log

(
Dj
N

δDj
N−1

))

=
n∑
i=1

(
log

(
Di
N

δDi
N−1

)
+log

(
δDi

N−1(1−Di
N)

Di
N(1− δDi

N−1)

)
xi

+
m∑
j=1

log

(
Dj
N

δDj
N−1

)
+log

(
δDj

N−1(1−D
j
N)

Dj
N(1− δDj

N−1)

)
γxi

)

(3.3)

By eliminating unnecessary queries, this attacker model can require less queries

to the server than the Optimal attack by achieving the same response set.
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           Scenario
Adversary
+ Background

Scenario 
1

t = 0

Population of 
victim

Population of 
victim, 

corresponding 
MAF

Population of 
victim, 

corresponding 
MAF & LD

SB  attack

Optimal attack

QI - attack

Population of 
victim,

corresponding 
MAF,

High-Order 
Correlation

GI - attack

Scenario 
2

t > 0

AA

AT

AA

CT

GG

CC

TT

GT

CC

CC

TA

TT

AT

AA

CT

GG

CC

TT

GT

CC

GC

Figure 3.2: Four attacker models: SB attack [1], Optimal attack [2], QI-attack,
and GI-attack and their background knowledge for two scenarios are shown. In
the first scenario t = 0 and in the second scenario t > 0, where t is the threshold
up to which SNPs of the victim with an MAF < t are hidden as a countermeasure.
In Scenario 1, the attacker has access to the full genome of the victim (no hidden
SNPs). In Scenario 2, SNPs with an MAF < t are hidden and the attacker has
partial access to the genome of the victim.
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Chapter 4

Genome Inference Attack

Individuals may publicly share their genomes by taking necessary precautions,

such as hiding their sensitive SNP positions with MAFs < t (i.e. Scenario 2

in Figure 3.2). The GI-attack performs allele inference to recover hidden SNP

positions and infers alleles at the victim’s hidden loci. Note that, Scenario 1 is

not applicable to the GI-attack, since in that scenario, the attacker can access

SNPs with low MAFs. The attacker uses a high-order Markov chain to model

SNP correlations as described by Samani et al. [13]. The SNPs are represented

as 0, 1, or 2 depending on the number of minor alleles at the specific position of

the genome. That is, major homozygous, heterozygous, and minor homozygous,

respectively.

Figure 2.1(d) illustrates the model of this attack. Threshold t determines up

until which value SNPs on the victim’s genome are hidden. The attacker then

infers SNP positions with MAF < t that are not available in the victim’s VCF file.

Based on the victim’s genome sequence, the attacker calculates the likelihood of

the victim having a heterozygous position at the chosen position SNPi as shown

in Equation 4.1.

Pk(SNPi) = P (SNPi|SNPi−1, SNPi−2, ..., SNPi−k), (4.1)

where k is the order of the Markov chain. In order to use a high-order Markov

chain to infer hidden SNPs, genome sequences from public sources such as the
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Table 4.1: Comparison of different values for k (order of the high-order Markov
chain). # of same markers shows how many markers that were inferred by the
Markov chain were also asked in the Optimal attack. Distance to real response
shows the amount of queries the inferred response differs from the Optimal at-
tack’s response (on average). # of people not inferred shows the amount of people
that could not be inferred for that k.

k # of same markers distance to real response # of people not inferred

3 13 0.6 2
4 15 0.62 1
5 14 0.79 5

1000 Genomes project or HapMap can be used to train the model. Accordingly,

Samani et al. define the kth-order model as shown in Equation 4.2.

Pk(SNPi) =

(
0 if F (SNPi−k,i−1) = 0
F (SNPi−k,i)

F (SNPi−k,i−1)
if F (SNPi−k,i−1) > 0 ,

(4.2)

where F (SNPi,j) is the frequency of occurrence of the sequence that contains

SNPi to SNPj. The SNPs are ordered according to their physical positions on

the genome. The model compares the SNPs in SNPi,j which are prior to SNPi

on the genome sequence, to the same SNP positions in the training dataset.

If the training set contains other genomes with the same SNP sequence and

these sequences are followed by a heterozygous position, we can calculate the

probability of SNPi being heterozygous for our victim. As an example, the

victim’s 4th-order SNP sequence is [AA, AT, CC, TT]. We would now like to

determine whether the following SNPi, that is hidden in the VCF file at hand,

is likely to be a heterozygous position. We identify other genomes in the training

dataset with the same sequence and compute the frequency of this sequence being

followed by a heterozygous position. That is, [AA, AT, CC, TT] → [AG]. As a

result, we can determine the probability of the four SNPs being followed by a

heterozygous position, which we can use to query the beacon.

If the calculated likelihood of the victim having a heterozygous position is high

enough (in this case equal to 1), the attacker queries the beacon for the inferred

SNP position, starting from the SNP with the lowest MAF. Algorithm 2 gives
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a stepwise overview of the attack. The value of k is determined empirically as

explained in Section 5.1.

Algorithm 2: Stepwise procedure of the GI-attack, where AFs are the allele
frequencies, S is the set of candidate SNPs to be queried and n the number
of queries

Require: VCF file, AFs, anonymized publicly available VCF files from the
same population
Read victim’s VCF file
Identify heterozygous SNP positions S of the victim
Sort S based on MAFs (ascending order)
Identify hidden SNP positions S ′

for all SNPi in S ′ do
if SNPi can be inferred then

Query Beacon for SNPi
end if

end for
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Chapter 5

Results

5.1 Experimental Set-Up

In this chapter, we first show our results for the four attacker models with data

from the HapMap project [14] on a simulated beacon and on 9 existing bea-

cons from the beacon-network API1 (namely: Known VARiants, Broad Institute,

1000 Genomes Project, Cafe CardioKit, Wellcome Trust Sanger Institute, NCBI,

ICGC, AMPLab, 1000 Genomes Project phase 3) using a person from the per-

sonal genomes project (PGP) [3]. By only giving presence information about

alleles at certain positions of the genome, beacons seemed to be a safe way to

share sensitive genomic information.

For our attacks, we consider two scenarios as shown in Figure 3.2. In the first

scenario, the attacker has access to the full2 genome of the victim as shown in

Scenario 1. In Scenario 2, the attacker only has limited access to the genome, as

the victim has systematically hidden sensitive SNP positions as a countermeasure.

In Section 5.2, we evaluate the performance of the four attacks on a beacon

1http://www.beacon-network.org
2In this case “full” means that a part of the DNA of the victim (e.g. one chromosome) is

available without systematically hidden SNP positions with low MAFs.
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40 Case Individuals

45 Other Beacon Members

20 Control Individuals that 
are Beacon Members

Beacon

Figure 5.1: Experiments with a simulatd beacon with 65 members (blue and red).
40 individuals who build the case set (orange) and are not in the beacon and 20
individuals (red) who build up the control set and are beacon members.

with 65 people from the Utah Residents with Northern and Western European

Ancestry (CEU) population of the HapMap dataset and 40 additional people of

the same population also from the HapMap dataset [14]. In order to test the

beacon for both hypotheses, we used 60 individuals to test, of which 20 were

members of the beacon (control set) and 40 were not in the beacon (case set)

as illustrated in Figure 5.1. We decided to use the CEU population, because

previous works (SB attack [1] and Optimal attack [2]) have also been evaluated

on this population. The LD values, allele frequencies, and genotype data were

obtained from the CEU dataset of the HapMap project [14].

For the GI-attack, we use a 4th-order Markov chain. We chose k = 4 empir-

ically, as it depends on the dataset that is used to train the model. As shown

in Table 4.1, we considered (i) the number of markers that were inferred by the

GI-attack and also asked by the Optimal attack, (ii) the euclidean distance be-

tween the number of queries needed by the Optimal attack and the GI-attack for

all tested individuals and (iii) the number of people whose SNPs could not be
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(a)     (b)

Figure 5.2: (a) Close-up of the power curves, where number of queries < 10.
(b) Power curves of the Optimal attack [2], the QI-attack, and the GI-attack for
different thresholds of t on a beacon with 65 members constructed with individuals
from the CEU dataset of the HapMap project. t indicates the threshold up to
which SNPs with an MAF < t are hidden as a countermeasure.

inferred due to too much missing data. We tested values for k = 3 to 5 to prevent

over-fitting of the model, as our training set consists of only 100 individuals from

the CEU population of the HapMap [14] dataset. Accordingly, we determined

k = 4 as the best performing Markov chain for our dataset.

In order to test our methods on existing beacons in Section 5.3, we used the

beacon-network API3 operated by GA4GH Beacon Network and one individual

from PGP (Person’s id: PGP180/hu2D53F2) [3]. The beacons can return an

empty response, that is, the beacon has no information at that position, a “no”-

response and a “yes”-response. We consider two cases for the evaluation of the

query results. In the first case, an empty answer is treated as a “no” (results

shown in Table 5.2(2)), in the second case an empty answer is not treated as a

“no”, as it is also possible that the beacon has a different copy of the victim’s

3http://www.beacon-networg.org
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Table 5.1: Number of queries needed to re-identify individuals for the SB at-
tack [1], the Optimal attack [2], the QI-attack, and the GI-attack for different
thresholds of t on a Beacon with 65 members constructed with individuals from
the CEU dataset of the HapMap project. t indicates the threshold up to which
SNPs with an MAF < t are hidden. As the GI-attack concentrates on inferring
hidden parts of the genome, we do not compute the case t = 0 (nothing is hidden)
for the GI-attack.

# of queries

t SB attack Optimal attack QI-attack GI-attack

0 1,418 3 3 NA
0.03 19,525 270 160 2
0.05 56,759 1,495 1,031 2

genome (results shown in Table 5.3(3)).

5.2 Re-identification on a simulated Beacon

The power curves for the Optimal, the QI-attack and the GI-attack are calculated

with false positive rate α = 0.05 as shown in Figure 5.2 and the number of

queries needed to receive the first negative response are shown in Table 5.1. We

empirically build the null hypothesis using the 40 people who are not in the

beacon and calculate Λ as stated for the different attacks in the corresponding

sections. We reject the null hypothesis when Λ < tα. Similar to Raisaro et al. [2],

we determine tα from the null hypothesis with α = 0.05. tα is recalculated at

each query. The power 1− β is then the proportion of Λ < tα for all individuals

in the control set.

The performance of the attacks is significantly affected by threshold t of hidden

SNPs. As t is increased only more common SNPs are available to the attacker

which means that the likelihood of another individual in the beacon having the

same allele increases. We queried the simulated beacon for each of the 40 in-

dividuals in the case set, where the SB attack was not able to receive a “no”
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response within 100,000 queries, (i) for 4 people when SNPs with an MAF < 0.04

were hidden and (ii) for 12 people when SNPs with an MAF < 0.05 were hidden.

Therefore, it was not possible to build the null hypothesis and reach 100% power.

The Optimal and the QI-attack require a significantly higher number of queries to

build the null hypothesis for increasing t. The GI-attack successfully determined

the correct status for all 40 individuals despite the high threshold of t with only

a few queries.

The SB attack requires the highest number of queries (1,400 - 56,800). The QI-

attack requires 30% less number of queries on average compared to the Optimal

attack. The GI-attack requires only 5 queries for all tested thresholds of t.

Compared to the monotonically increasing behavior of the power curves for

the Optimal attack, the power curve for the QI-attack shows a zig-zag behavior.

The reason for the zig-zag behavior of the power is the difference in the number

of inferred queries per posed query for those individuals without a “no” response.

Note that, Λ decreases significantly for a large number of inferred queries. As

tα is determined empirically, tα can also decrease which let’s the power drop.

Nevertheless, when the null hypothesis is built and all necessary case individuals

received a sufficient amount of “no” responses, the value of tα stabilizes and the

power reaches 100%. Please see Figure A.1 and Figure A.2 in Appendix A for

example distributions of Λ under both hypotheses.

5.3 Re-identification on Existing Beacons

We selected an individual from the Personal Genomes Project (PGP) (Person’s

id: PGP180/hu2D53F2) [3] as the victim. For the QI-attack, we used the same

SNP network as for the simulated beacon in Section 5.2 that is based on the CEU

population of HapMap. To determine if the person is a member of the beacons,

we applied the SB attack as ground truth. Therefore, the null hypothesis (the

individual is not in the beacon) is rejected if p value < 0.05. The p value is
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calculated as P (x ≥ k;x binomial(n, 1 − DN))). The tested individual had a p

value of 1 and is therefore not a member of any of the beacons. Furthermore, the

meta data of the Kaviar beacon does not show our individual as a member.

Our experiments on existing beacons are shown in Table 5.2, where empty

responses are ignored and in Table 5.3, where empty answers are considered as

“no” responses. For 6 of the 9 tested beacons, we were able to determine that the

victim is not a member of the beacons. For the Known VARiants (Kaviar), the

Cafe CardioKit and the NCBI, it was not possible within 1,000 queries (Table

5.2). For the second case in Table 5.3, we could not detect the correct membership

status for only 1 of the 9 beacons. As the large Kaviar beacon contains over 70,000

individuals, we only received “yes” responses within 1,000 queries. Overall, we

observed that the experiments on real beacon support our findings from Section

5.2. That is, the Optimal and the QI-attack need more queries as t increases,

the GI-attack is stable over all thresholds and the QI-attack requires less queries

than the Optimal attack.

Unlike all other beacons, the 1000 Genome Project beacon requires less queries

for re-identification as t is increased. One possible explanation is that the victim’s

SNPs are being sorted based on the CEU population’s allele frequencies and SNPs

that we query are not necessarily the rarest in the queried beacon. Furthermore,

The SNP Network used here is also based on the CEU population and therefore,

does not include all SNPs of the victim’s genome.

The GI-attack performed as expected, that is constant over the two tested

thresholds of t and outperformed the Optimal attack [2] as well as the QI-attack

for t > 0. For the 1000 Genomes Beacon the GI-attack requires the same amount

of queries as the other attacks, as the number of queries needed are already very

low.

In order to analyze the robustness of the GI-attack, we used a different training

dataset to train the high-order Markov chain. The case and control individuals

are the same as in the results shown above, that is from the CEU population.

The high-order Markov chain was trained on the 77 individuals from the HapMap
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Table 5.2: Number of queries required to receive a “no” within 1000 queries to
existing beacons using an individual from PGP [3] when t = {0, 0.03, 0.05} for
the Optimal attack [2], the QI-attack, and the GI-attack. Here, empty answers
are not considered as a “no” response.

Beacon Name Optimal attack QI-attack GI-attack
t 0|0.03|0.05 0|0.03|0.05 0.03|0.05

Known VARiants −| − |− −| − |− −|−
Broad Institute 2|2|2 2|2|2 1|1

1000 Genomes Project 4|3|2 4|3|2 3|3
Cafe CardioKit −| − |− −| − |− −|−
Wellcome Trust
Sanger Institute 1|1|1 1|1|1 1|1

NCBI −| − |− −| − |− −|−
ICGC 1| − |− 1| − |− 1|1

AMPLab 20|45|73 20|40|73 39|39
1000 Genomes
Project phase 3 20|130|250 20|116|250 48|48

Table 5.3: Number of queries required to receive a “no” within 1000 queries to
existing beacons using an individual from PGP [3] when t = {0, 0.03, 0.05} for
the Optimal attack [2], the QI-attack, and the GI-attack. Here, empty answers
are considered as a “no” response.

Beacon Name Optimal attack QI-attack GI-attack
t 0|0.03|0.05 0|0.03|0.05 0.03|0.05

Known VARiants −| − |− −| − |− −|−
Broad Institute 1|1|1 1|1|1 1|1

1000 Genomes Project 4|3|2 4|3|2 3|3
Cafe CardioKit 1|1|1 1|1|1 1|1
Wellcome Trust
Sanger Institute 1|1|1 1|1|1 1|1

NCBI 1|1|1 1|1|1 1|1
ICGC 1|1|1 1|1|1 1|1

AMPLab 20|45|73 20|40|73 39|39
1000 Genomes
Project phase 3 20|130|250 20|116|250 48|48
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dataset “Mexican ancestry in Los Angeles” (MEX) and k = 4.

The GI-attack required 4 more queries to reach 100% power compared to the

case when the correct population is used for training. However the power curves

are similar as can be seen in Figure 5.3.

Figure 5.3: The GI-attack for t = 0.03 with the high-order Markov chain trained
on the victim’s population (CEU) in comparison to the high-order Markov chain
trained on a different population (here MEX) from the HapMap dataset.
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Chapter 6

Discussion

Recent works by Shringarpure and Bustamante [1] and Raisaro et al. [2] have

shown in 2015 and 2016, respectively that beacon servers fail to protect their

members’ privacy as successfully as previously thought. As beacons are often as-

sociated with a certain phenotype, the membership identification of an individual

could leak sensitive phenotype information. Therefore, they proposed counter-

measures to better protect the beacon members privacy.

In this thesis, we have shown that a small number of queries suffices to detect

beacon membership with high confidence, even if data owners and the members of

data-sharing platforms apply countermeasures to improve the security standards

of the underlying datasets. By including publicly available information such as

MAF, LD, and anonymized VCF files (from e.g. HapMap [14] or 1000 Genomes

Project [11]) into the attacker model, these countermeasures can be overcome.

Therefore, existing countermeasures fail to protect the sensitive genomic datasets.

Since the density and the size of the SNP network determines how many an-

swers can be inferred with one query, the success of our QI-attack significantly

depends on the structure of the underlying SNP network. The larger and denser

the network becomes, the more query responses can be inferred. To reduce the
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inference error of the query inference that the QI-attack performs, we only in-

cluded SNP pairs that are in strong LD (i.e. r2 > 0.7). Lowering this threshold

would lead to more edges in the SNP network, and therefore to more inferred

queries, yet at the same time increasing the inference error.

The GI-attack shows that even if genomes do not contain any SNPs with low

MAFs, the individual’s privacy is not ensured, as it is possible to infer these

positions from publicly available datasets (e.g. HapMap [14] or 1000 Genomes

Project [11]). As shown in Section 5.3, the GI-attack still performs as good, even

when the attacker trains the high-order Markov chain on a different population

than the victim’s.

As it can be seen in Section 5.2, in Table 5.2 and in Table 5.3, our experiments

on (i) simulated and (ii) existing beacons show that as t increases the SB attack

[1], the Optimal attack [2] and the QI-attack require more queries to detect beacon

membership, where the GI-attack is stable over all tested thresholds of t. Overall,

our attacks require less queries than existing attacks (SB attack [1] and Optimal

attack [2]). Additionally, Table 5.2 shows that for existing beacons the number

of queries needed increases as t increases (Table 5.1).

Shringarpure and Bustamante, 2015 discussed different countermeasures, such

as (i) increasing the beacon size, (ii) sharing only small genomic regions, (iii)

using single population beacons, (iv) not publishing the metadata of a beacon,

and (v) adding control samples to the beacon dataset [1]. Lately, Aziz et al., 2017

proposed two algorithms which are based on randomizing the response set of the

beacons with the goal of protecting beacon members’ privacy while maintaining

the efficacy of the beacon servers [20]. Raisaro et al., 2016 have analyzed the

behavior of the beacon when applying three different countermeasures [2]. First,

they propose the beacon should only respond “yes” for an allele it contains more

than one time. That is, the allele in that position occurs at least two or three

times. The second countermeasure adds noise to the responses of the beacon

and therefore answers “no” instead of “yes” to some queries. However, this

countermeasure significantly reduces the utility of the dataset and is unacceptable

for researchers working on beacons. Instead, the beacon could return an empty
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answer. Lastly, Raisaro et al. proposed a query budget as a countermeasure. That

is, every member of the beacon is assigned with a certain budget that is reduced

if a query to the beacon matches one of their SNP positions. As an example, if a

user queries the beacon for allele A in position 1000 of chromosome 21, then the

budget of every member with an allele A in that position is reduced. The amount

of the budget reduction is determined based on the risk of the query, where the

lower the allele frequency of the queried allele is, the higher the risk becomes.

The budget is calculated as bi = log(p), where Raisaro et al. use p = 0.05. The

risk then is calculated as ri = −log(1−Di
N). If the budget of a beacon member

is depleted, the beacon stops including the member into the beacon responses.

An attacker using the QI-attack can use SNP correlations to overcome this

budget countermeasure. Assuming the attacker is trying to identify beacon mem-

bership of the victim, by using the Optimal attack, a beacon applying the bud-

get countermeasure would start returning false responses, which would lead to

a wrong conclusion by the attacker. For instance, in our simulated beacon as

described in Section 5.3, an attacker needs 7 queries to determine beacon mem-

bership of the victim (individual “NA12272” of the HapMap project [14]), the

beacon would start giving false responses after 6 queries as the budget would be

depleted. By using the QI-attack, an attacker would only need 5 queries to de-

termine beacon membership of the victim. Therefore, this countermeasure does

not always protect beacon members’ privacy. Accordingly, a query budget that

is merely based on the SNPs’ MAFs and that does not consider SNP correlations

would fail to protect an individual’s privacy. An attacker using the QI-attack

would not exhaust the budget, but still be able to determine the victim’s beacon

membership.

29



Chapter 7

Conclusion

Throughout the course of this thesis, we showed that beacons are sensitive to re-

identification attacks. We showed that by including allele frequencies and SNP

correlations into the attacker models, the number of queries needed to invade the

beacon members’ privacy can be significantly reduced. Additionally, we showed

that countermeasures that do not consider the MAFs and correlations of SNPs

fail to protect the beacon members’ privacy. Furthermore, even if individuals ap-

ply countermeasures before releasing their genome, such as systematically hiding

SNPs with low MAFs, their privacy still could be at stake. As a future work, we

therefore need to develope countermeasures that include SNP correlations and

allele frequency information to protect sensitive genomic data.
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Appendix A

LRT - Power Calculation

The power 1−β of the LRT is determined by the proportion of control individuals

for which we can reject the null hypothesis, that is Λ < tα. The threshold tα is

found by building the null hypothesis with the 40 case individuals where α = 0.05.

For each individual and query xi we calculate the value of Λ. As t increases

the power of the QI-attack shows a zig-zag behavior unlike the Optimal attack

and the GI-attack. That is because, as t increases, more queries are needed to

determine beacon membership, and more SNPs are in inferred in the QI-attack.

The more neighbors a posed query can infer from the SNP network, the more

extreme the value of Λ changes.

Figure A.1 shows, for three example case and three example test individuals,

how Λ steadily decreases for the control individuals and clearly increases for

“no” responses of the case individuals (i.e. at queries 24, 26 and 84). For the

Optimal attack Λ decreases by a similar value for all individuals that receive a

“yes” response, as only one query is asked and the queries have similar MAFs.

Therefore, if Control 1 had a lower Λ value at query x10 than Case 2, Case 2

will not have a lower Λ value than Control 1 for the following queries, unless

Control 1 receives a “no” response (which leads to a significant increase in Λ but

is highly unlikely for an individual in the control set). On the contrary, Figure
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A.2 shows an irregular behavior of Λ, that is Λ does not steadily decrease as it

could be observed for the Optimal attack. This can be explained by the different

amount of neighbors in the SNOP network that can be inferred at the different

loci. Considering Control 1 and Case 2 again, Control 1 can have a lower Λ value

than Case 2 for query position x10. Nevertheless, if query x11 of Case 2 has a

high amount of neighbors to be inferred from x11 and the inferred responses are

all “yes” responses, the Λ value of Case 2 decreases significantly and is now lower

than the Λ value of Control 1 for x11, as x11 of Control 1 had less neighbors in

the SNP network.

Figure A.1: Example Λ distributions for 3 of the 40 case and 3 of the 20 control
individuals of the experiments with a simulated beacon in Section 5.2 for the
Optimal attack.

Figure A.2: Example Λ distributions for 3 of the 40 case and 3 of the 20 control
individuals of the experiments with a simulated beacon in Section 5.2 for the
QI-attack.
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