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ABSTRACT 

RISK ESTIMATION BY MAXIMIZING AREA UNDER 

RECEIVER OPERATING CHARACTERISTICS CURVE 

WITH APPLICATION TO CARDIOVASCULAR 

SURGERY 

 
Murat Kurtcephe 

M.S. in Computer Engineering 
Supervisor: Prof. Dr. H. Altay Güvenir 

June 2010 
 
 

 Risks exist in many different domains; medical diagnoses, financial markets, 

fraud detection and insurance policies are some examples. Various risk 

measures and risk estimation systems have hitherto been proposed and this 

thesis suggests a new risk estimation method. Risk estimation by maximizing 

the area under a Receiver Operating Characteristics (ROC) curve (REMARC) 

defines risk estimation as a ranking problem. Since the area under ROC curve 

(AUC) is related to measuring the quality of ranking, REMARC aims to 

maximize the AUC value on a single feature basis to obtain the best ranking 

possible on each feature. For a given categorical feature, we prove a sufficient 

condition that any function must satisfy to achieve the maximum AUC. 

Continuous features are also discretized by a method that uses AUC as a metric. 

Then, a heuristic is used to extend this maximization to all features of a dataset. 

REMARC can handle missing data, binary classes and continuous and nominal 

feature values. The REMARC method does not only estimate a single risk value, 

but also analyzes each feature and provides valuable information to domain 

experts for decision making. The performance of REMARC is evaluated with 

many datasets in the UCI repository by using different state-of-the-art 

algorithms such as Support Vector Machines, naïve Bayes, decision trees and 
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boosting methods. Evaluations of the AUC metric show REMARC achieves 

predictive performance significantly better compared with other machine 

learning classification methods and is also faster than most of them. 

 

 In order to develop new risk estimation framework by using the REMARC 

method cardiovascular surgery domain is selected. The TurkoSCORE project is 

used to collect data for training phase of the REMARC algorithm. The 

predictive performance of REMARC is compared with one of the most popular 

cardiovascular surgical risk evaluation method, called EuroSCORE. 

EuroSCORE is evaluated on Turkish patients and it is shown that EuroSCORE 

model is insufficient for Turkish population. Then, the predictive performances 

of EuroSCORE and TurkoSCORE that uses REMARC for prediction are 

compared. Empirical evaluations show that REMARC achieves better prediction 

than EuroSCORE on Turkish patient population.  

 

Keywords: Risk Estimation, AUC Maximization, AUC, Ranking, 

Cardiovascular Operation Risk Evaluation 



 
iv 

ÖZET 

RECEIVER OPERATING CHARACTERTICS EĞRĐSĐ 

ALTINDAK Đ ALANI MAKS ĐMĐZE EDEREK RĐSK 

TAHM ĐNĐ VE KARDĐYOVASKÜLER CERRAHĐ 

UYGULAMASI 

 

Murat Kurtcephe 
Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. H. Altay Güvenir 
Temmuz 2010 

 
 

 Risk birçok farklı alanda mevcuttur; tıbbi tanı, finansal piyasalar, 

dolandırıcılık tespiti ve sigorta poliçeleri bunların birkaçıdır. Çeşitli risk 

ölçütleri ve risk tahmin sistemleri bugüne kadar önerildi ve bu tez yeni bir risk 

tahmini yöntemi sunmaktadır. Receiver Operating Characteristics (ROC) eğrisi 

altındaki alanı maksimize ederek risk tahmin yöntemi (REMARC), risk tahmini 

bir sıralama sorunu olarak tanımlar. ROC eğrisi altındaki alan (AUC) değeri 

sıralama kalitesini ölçme ile ilgili olduğundan, REMARC tek bir öznitelik 

üzerinde en yüksek AUC’yi elde ederek her öznitelik üzerinde mümkün 

olabilecek en iyi sıralamayı sağlamayı hedeflemetedir. Verilen bir kategorik 

öznitelik için, herhangi bir risk yordamının en yüksek AUC’yi elde etmek için 

sağlaması gereken şartın ne olduğunu ispatladık. Sayısal öznitelikler de ölçüt 

olarak AUC’yi kullanan bir yöntemle ayrıklaştırılmıştır. Sonra, sezgisel bir 

yaklaşımla AUC’nin maksimize eldilmesi tüm veriseti üzerine genişletilmiştir. 

REMARC eksik verileri, ikili sınıfları, sürekli ve kategorik öznitelikleri 

işleyebilir. REMARC yöntemi sadece risk değeri tahmin etmekle kalmaz aynı 

zamanda her bir öznitelik üzerinde analiz yapar ve karar verme esnasında alan 

uzmanlarına değerli bilgiler sağlar. REMARC’ın performansı, UCI veriseti 

deposundan elde edilen birçok veri seti ile support vector machine naïve Bayes, 

decision trees (karar ağaçları) ve boosting (arttırma) yöntemleri gibi modern 



 
v 

algoritmalar kullanılarak değerlendirilmiştir. AUC ölçütüyle yapılan 

değerlendirmeler göstermektedir ki REMARC diğer birçok makina öğrenmesi 

yönteminden önemli derecede daha iyi tahmin performansına sahiptir ve diğer 

yöntemden çoğundan daha hızlı çalışmaktadır. 

 Kardiyovasküler cerrahi alanı, REMARC yöntemi ile yeni risk tahmini 

çerçevesi oluşturmak amacıyla seçilmiştir. TurkoSCORE projesi, REMARC 

algoritmasının öğrenme aşaması için veri toplamak amacıyla kullanıldı. 

REMARC’ın tahmin performansı, en popüler kardiyovasküler cerrahi riski 

değerlendirme yöntemlerinden biri olan EuroSCORE ile karşılaştırıldı. 

EuroSCORE Türk hastalar üzerinde değerlendirildi ve EuroSCORE modelinin 

Türk nüfusü için yeterli olmadığı gösterildi. Sonra, EuroSCORE ve tahmin için 

REMARC kullanan TurkoSCORE’un tahmin performansı karşılaştırldı. 

Deneysel değerlendirmeler göstermektedir ki REMARC Türk hasta 

popülasyonunda EuroSCORE’a göre daha iyi tahmin performansı 

göstermektedir. 

 

Anahtar Kelimeler: Risk Tahmini, AUC azamileştirme, AUC, Sıralama, 

Kardiyovasküler operasyon risk değerlendirmesi  
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Chapter 1  
 

 

Introduction 
 

 

 

 

 

 

Accurate prediction of risk is essential for life. Avoiding or being aware of risks 

in domains such as finance or medicine can save money and lives, respectively. 

The main motivation behind the research on risk-prediction systems is to 

improve system performance to avoid unwanted events or negative 

consequences. 

 

 This thesis proposes a new risk measure and a supervised machine learning 

algorithm to estimate the values of this measure. The algorithm, learning from 

training instances, develops a mode of the domain based on receiver operating 

characteristics (ROC) analysis, so that the area under ROC curves (AUC) of 

ordering the instances will be maximized [1]; hence, the algorithm is called Risk 

Estimation by Maximizing the Area under ROC Curve (REMARC). 

 

 Specific risk estimation methods have been developed for finance [2] 

medicine [3, 4] and insurance [5] to name some examples. Some methods are 

dependent on statistical models while some are based on machine learning 

algorithms. The machine learning algorithms are usually classification 
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algorithms that can associate a certainty factor with their classification. The 

certainty factor for a predicted unwanted case is taken as the value of risk. 

 

 The word “risk” is generally taken to mean “an unwanted situation” [6]. 

Although these unwanted cases may be severe, their likelihood of occurrence is 

usually rare. Therefore, datasets for such domains usually are unbalanced and 

the costs of misclassification are not symmetric. Classification algorithms that 

aim to maximize accuracy are not suitable for such unbalanced datasets [7, 8, 9]. 

Instead, an alternative metric called AUC, proposed by Bradley, is the 

evaluation metric to maximize [10]. AUC has important features such as 

insensitivity to class distribution and cost distributions [10, 11, 9], which make it 

suitable for risk domains.  

 

 In risk domains, representing the risk score as a real value between 0 and 1 

may not be sufficient, and even misleading; relatively ordering instances in 

terms of risk values may be much more informative. For example, instances can 

be located on a single dimension, where the safest cases are on one side and the 

riskiest cases are on the other side. Since it has been shown by Hanley and 

McNeil that AUC is able to qualify ranking instances, maximizing AUC also 

leads to the best ranking [1]. Recent research on maximizing AUC by Toh et al. 

[12] and Rakotomamonjy also shows the importance of ranking instances [13]. 

 

 The REMARC method is not able to handle continuous data without 

preprocessing. All continuous features should be discretized first. In this thesis 

in addition to the REMARC method, a discretization method called Maximum 

Area under ROC curve based Discretization (MAD) is proposed.  

 

 The main contributions of the REMARC algorithm can be shown in three 

different ways. First, we show the conditions a risk scoring function must 

possess in order to achieve maximum AUC for a single feature dataset case. 

Second, the maximization of AUC is extended over the whole dataset by using a 
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simple heuristic, which also depends on AUC’s metric. Lastly, the human 

readable model formed by REMARC helps domain experts by indicating what 

features and how their particular values affect the risks. 

 

 Cardiovascular surgery domain is selected as a test domain for REMARC. 

There are important reasons behind this choice. First of all, risk evaluation 

methods are being used in order to inform cardiac patients properly about the 

mortality risk of surgery by taking into consideration risk factor of patients. The 

predictions obtained by using these methods are also valuable for monitoring the 

surgical care and checking the surgical quality with the accepted norms. Since 

the patients risk factors are taken into consideration, operative mortality can be 

used as a measure of surgical quality. Therefore, different machine learning 

approaches have been proposed to predict mortality risks of patients undergoing 

cardiovascular surgeries [14, 15, 16, 17]. 

 

 EuroSCORE risk model is learned by using nearly 20 thousand patients from 

128 hospitals in eight European countries [14]. EuroSCORE method has been 

used in Turkish cardiovascular surgery departments in order to assess mortality 

risk of patients. Validation of EuroSCORE has been analyzed in countries 

outside of Europe [18, 19]. According to these researches, there exist crucial 

differences between the patient populations across the nations. As a result, the 

EuroSCORE risk prediction model is not validated in some patient populations. 

Therefore, in this thesis the evaluation of EuroSCORE model on Turkish 

patients is analyzed. After analyzing EuroSCORE model on Turkish population, 

the predictive performance of REMARC used in TurkoSCORE system is 

compared with EuroSCORE. Since REMARC performs better than 

EuroSCORE, the REMARC algorithm is proposed as a new cardiovascular 

surgery risk estimation system. 

 

 In the next chapter, literature summary about the risks, risk domains, ROC, 

AUC, AUC maximization, discretization are given. Chapter 3 covers the 
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theoretical background of the REMARC method, implementation details and 

empirical evaluation of REMARC. In Chapter 4, REMARC is applied to 

cardiovascular surgery domain and compared by EuroSCORE model. Finally, 

Chapter 5 concludes with some directions for future work.  



 
5 

 

 

 

Chapter 2  
 

 

Background 
 

 

 

 

 

 

In this chapter, the background information needed to understand the concepts in 

the following chapters is provided. The risk subject is investigated in detail. The 

ROC and AUC subjects are given since they are essential in REMARC. AUC 

maximization subject is discussed in this chapter, as well. Discretization subject 

is also investigated in order to provide background information for the MAD 

method. 

2.1 Risks 
 

 

 

Risk has always been a normal occurrence. Risks such as a complication from 

surgery, a fraudulent financial transaction, a firm going into financial distress 

and an e-mail being spam are all part of today’s world. Giddens claims that the 

ideas of risk and responsibility are closely linked in a risk society, and suggests 

that legal theorists and practitioners should also concern themselves with the 

idea and reality of risk [6]. The word “risk” is commonly used in daily life, 

because of its popularity in the media, however, a formal definition is needed. 
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2.1.1 Definitions of Risk 
 

Hansson gives five definitions of risk commonly used in different disciplines 

[20]. Hansson’s third definition is the most suitable for defining the risk used in 

this thesis: “The probability that an unwanted event may or may not occur”. For 

example, the risk of a credit card transaction being fraudulent is 17%. 

2.1.2 Risk Domains 
 

Risk implies an unwanted situation. In medicine, mortality and morbidity are 

two unwanted situations. In finance, money loss and bankruptcy are examples. 

Since the consequences of these situations are crucial, in order to avoid them 

extensive research continues on this subject. As an example, it is possible to find 

books written on specific domains such as process management systems risk 

estimation [21]. 

 

 According to Shishkin and Savkov some of the most popular commercial risk 

analysis tools for financial domains are “Risk Watch” (www.riskwatch.com, 

USA) and “Commercial Risk Analysis and Management Methodology- 

CRAMM” (www.cramm.com) [22]. Other than the commercial tools, concepts 

such as Value-At-Risk (VAR) and other models can be found in literature [2], 

[23]. Stoyan et al. provide a survey on stochastic models for risk estimations 

[24]. Recently, Ferrari and Paterlini proposed a new risk estimation method that 

claims a better performance than VAR [25]. 

 

 In medicine, a risk scoring system based on logistic regression for 

cardiovascular surgery is proposed by Roques et al. [26]. Other scoring systems 

for the same domain also exist [3, 27]. A recent study by D'Agostino et al. 

shows that some of these scoring systems [4] use Cox regression methods, 

which is proposed by Cox [28]. 
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2.1.3 Risk Estimation in Machine Learning 
 

Risk estimation is not yet a major subarea of machine learning literature. 

Classification algorithms, which are able to output the confidence or probability 

of classification results, can be used to approximate risk estimation. 

 

 In a risk estimation system, a risk function that assigns higher values to risky 

instances than safer instances is crucial. In such a system, risk will be computed 

as a real value between 0 and 1, where 1 indicates the definite risk while 0 

represents the safest situation. However, the absolute value of this risk score is 

also very important for the user. Assume risk() is a function that returns a real 

number between 0 and 1 as the estimation of the risk. Another risk function, 

risk’(), defined as ()risk , also returns a value between 0 and 1. Both of these 

functions will rank the instances in the same order, although their absolute risk 

values are different. 

 

 On any dataset gathered from a risk domain, two classes should be 

determined in order to distinguish a risky situation from a safe one. In this 

thesis, we will define these class labels as p (positive, unwanted class) and n 

(negative, safe class). For example, in a loan dataset, the class label p indicates a 

default, while label n indicates that the loan amount has been paid back. 

 

 Machine learning techniques have been applied to different domains in order 

to predict risk. In medicine, Colombet et al. evaluated three different machine 

learning algorithms in order to predict cardiovascular surgery risk [29]. Biagioli 

et al. used Bayesian models to predict risks in coronary artery surgery 

operations [30] and Gamberger et al. evaluated machine learning results on a 

heart database [31]. Financial domains have also taken advantage of machine 

learning algorithms. Galindo and Tamayo evaluated machine learning and 

statistical methods in order to predict credit risks [32]. Kim proposed a financial 

time series prediction system by using a support vector machine (SVM) [33] and 
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Min and Lee tried to predict bankruptcy risk by using optimal kernel functions 

for SVM [34]. However, to the best of our knowledge, a risk estimation system 

that aims to maximize the AUC metric has never been proposed. The ROC 

curves and AUC metric will be examined in detail before explaining the 

REMARC method. The next section elaborates on the features of ROC and 

AUC and their appropriateness for this thesis. 

2.2 ROC, AUC and AUC maximization 
 

 

 

Since their application to machine learning, ROC graphs and the AUC metric 

have become popular; AUC is used in evaluating machine learning algorithms 

and as a learning criterion. We explain the properties that make AUC a better 

metric than accuracy and discuss the existing research on AUC maximization. 

2.2.1 Receiver Operating Characteristics (ROC) 
 

The first application of ROC graphs dates back to World War II, where they 

were used to analyze radar signals [35]. Since then, they have been used in areas 

such as signal detection and medicine [36, 37, 38]. The first application to 

machine learning is done by Spackman [39]. According to Fawcett’s definition, 

the ROC graph is a tool that can be used to visualize, organize and select 

classifiers based on their performance [9]. It has become a popular performance 

measure in the machine learning community after it has been realized that 

accuracy is often a poor metric to evaluate classifier performance [40, 41, 11]. 

 

 The ROC literature is more established to deal with binary classification (two 

classes) problems than multi-class ones. At the end of the classification phase, 

some classifiers simply map each instance to a class label (discrete output). 

Some classifiers are able to estimate the probability of an instance belonging to 

a specific class such as naïve Bayes or neural networks (continuous valued 

output, also called score). Classifiers produce a discrete output represented by 

only one point in the ROC space, since only one confusion matrix is produced 
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from their classification output. Continuous-output-producing classifiers can 

have more than one confusion matrix by applying different thresholds to predict 

class membership. In this thesis, all instances with a score greater than the 

threshold are predicted to be p class and all others are predicted to be n class. 

Therefore, for each threshold value, a separate confusion matrix is obtained. The 

number of confusion matrices is equal to the number of ROC points on an ROC 

graph. With the method proposed by Domingos, it is possible to obtain ROC 

curves even for algorithms that are unable to produce scores [42]. 

 

 ROC space is two dimensional space with a range of (0.0, 1.1) on both axes. 

In ROC space the y-axis represents the true positive rate (TPR) of a 

classification output and the x-axis represents the false positive rate (FPR). 

 

 To calculate TPR and FPR values, the definitions of the elements in the 

confusion matrix must be given. The structure of a confusion matrix is shown in 

Figure 2.1. True positives (TP) and false positives (FP) are the most important 

elements of the confusion matrix for ROC graphs. For each threshold value, TP 

is equal to the number of positive instances (those that have been classified 

correctly) and FP is equal to the number of negative instances (those that have 

been misclassified). 

 

  Actual Class 
  p n 

p TP  FP  

Predicted  
Class 

n FN  TN  

Column Totals: P N 

Figure 2.1 ROC curves of the REMARC method with TurkoSCORE risk factors 
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 TPR and FPR values are calculated by using Eq. 2.1. In this equation N is the 

number of total negative instances and P is the number of total positive 

instances. 

PTPTPR /=  

FFPFPR /=  

Eq. 2.1  

 

 As mentioned above, the classifiers producing continuous output can form a 

curve since they are represented by more than one point in the ROC graph. To 

draw the ROC graph, different threshold values are selected and different 

confusion matrices are formed. 

 

 By varying the threshold between -∞ and +∞ , an infinite number of ROC 

points can be produced for a given classification output. However, this operation 

is computationally costly and it is possible to form the ROC curve more 

efficiently with other approaches. 

 

 As proposed by Fawcett, in order to calculate the ROC curve efficiently, 

classification scores are sorted in an increasing order first [9]. Starting from -∞ , 

each distinct score element is taken as a threshold; TPR and FPR values are 

calculated using Eq. 2.1. 

 

 As an example, assume that the score values for test instances and actual 

class labels for a toy dataset are given in Table 2.1. The ROC curve for this toy 

dataset is shown in Figure 2.2. In this figure, each ROC point is given with the 

threshold value used to calculate it. In a dataset with S distinct classifier scores, 

there are S+1thresholds including -∞  and the same number of ROC points. 

Since there are eight distinct score values in this toy dataset, there are nine ROC 

points. With this simple method it is possible to calculate the ROC curve in 

linear time. 
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Class Label n n n p p n p p p 

Score -7 -3 0 0 4 7 8 10 11 

Table 2.1 A Toy dataset given with hypothetical scores 

 

 

Figure 2.2 ROC graph of the given toy dataset in Table 1 including the y=x line in order to show 
random performance. 

 

 It is possible to divide the ROC space into three regions: the region above 

y=x line, the area below y=x line and the points on the y=x line. The points on 

y=x line represent random performance. As an example, a classifier that has a 

point on (0.6,0.6) guesses the positive class 60% correctly, however it also has a 

60% false positive rate. The points above the y=x line are those belonging to the 

classifiers that have an acceptable trade-off between the positive and negative 

classes; similarly, the points below the y=x line correspond to an unacceptable 

classification performance. A classifier’s ROC point below the diagonal line can 

be negated by simply inverting the decision criteria of the classifier, replacing 

all p class labels with n class labels and vice versa. According to Flach and Wu 
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classifiers below the diagonal have valuable information, but they are not able to 

use it [43]. 

2.2.2 Area under the ROC Curve (AUC) 
 

ROC graphs are useful to visualize the performance of a classifier but a scalar 

value to compare classifiers is needed. In the literature, Bradley proposes the 

area under the ROC curve as a performance measure [10]. According to the 

AUC measure, the classifier with a higher AUC value performs better in 

general. A classifier can be outperformed by another classifier in some regions 

of ROC space, for some specific threshold values, even though the classifier, 

which has larger AUC, is better than the other. 

 

 The ROC graph space is a one-unit square. The highest possible AUC value 

is 1.0, which represents the perfect classification. In ROC graphs a 0.5 AUC 

value means random guessing has occurred and values below 0.5 are not 

realistic as they can be negated by changing the decision criteria of the classifier. 

 

 The AUC value of a classifier is equal to the probability that the classifier 

will rank a randomly chosen positive instance higher than a randomly chosen 

negative instance. Hanley and McNeil show that this is equal to the Wilcoxon 

test of ranks [1]. 

2.2.3 Why AUC is More Proper than Accuracy 
 

 There are several reasons why we chose AUC as a learning criterion in this 

thesis. The first reason is the independence of the decision threshold of the AUC 

metric. Since the risk estimation methods are not actual classifiers, unless a 

threshold is fixed it is not possible to calculate an accuracy value. As mentioned 

in Section 2.1.3, the first task of a risk estimation method is ranking instances 

correctly. Since AUC has the ability to measure the quality of ranking, it is 

better than accuracy metric on this basis. 
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 Another reason regards the discrimination power of the accuracy and AUC 

metrics. Bradley was the first author to question the applicability of accuracy 

metrics in classifier algorithms and to recommend the use of AUC instead [10]. 

Provost et al. also questioned the applicability of accuracy metrics in 

classification algorithms and suggested ROC analysis as a powerful alternate 

tool [41]. Rosset claimed that even if the goal is to maximize accuracy, AUC 

may be better than empirical error for discriminating between models [44]. The 

formal proof of the superiority that AUC has over accuracy is later given by 

Huang and Ling [11]. In their work, the authors showed that AUC is a 

statistically consistent and more discriminating metric than accuracy. These 

works clearly show the discriminatory power of the AUC metric. 

 

 Skewed (unbalanced) datasets is another reason to prefer AUC as a metric. 

This situation occurs when the difference between class priors is high. Risk 

areas such as medicine [45, 8] and fraud detection [46] are examples of skewed 

datasets. For example, a classifier that predicts all instances as negative even 

though a few of the instances achieve very high accuracies is misleading [13]. In 

addition, class distribution can change over time. For example, if in a financial 

crisis a large number of banks claim bankruptcy, this can change class 

distribution drastically. In order to solve such problems, AUC, which is 

insensitive to class distributions, is preferred. 

 

 Lastly, misclassification costs cannot be determined for most risk domains. 

As noted above, skewed datasets are common in real life. In a domain with 

unbalanced class distribution, when the true misclassification cost is higher than 

implied by the distribution of training set examples, this situation becomes 

problematic [47]. Since AUC is also insensitive to misclassification cost, it is 

preferred in this thesis [48]. 
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2.2.4 AUC Maximization 
 

Most classification algorithms are designed to maximize accuracy (or error rate). 

Since accuracy is a classification performance criterion, algorithms that 

maximize it give better predictive performance. However, because of the 

aforementioned drawbacks to the accuracy metric for some domains, AUC has 

become more popular. It has been shown that maximizing accuracy does not 

lead to maximizing AUC [49, 50]. As a result, new algorithms maximizing AUC 

have been proposed. 

 

 Some approximation methods to maximize the global AUC value have been 

proposed by researchers [51, 50, 52]. Ferri et al. proposed a method to locally 

optimize AUC in decision tree learning [53], and Cortes and Mohri proposed 

boosted decision stumps [49]. To maximize AUC in rule learning, several new 

algorithms have been proposed [54, 55, 56]. A nonparametric linear classifier 

based on the local maximization of AUC was proposed by Marrocco et al. [57]. 

A ROC-based genetic learning algorithm has been proposed by Sebag et al. [7]. 

Marrocco et al. used linear combinations of dichotomizers for the same purpose 

[58]. Freund et al. gave a boosting algorithm combining multiple rankings [59]. 

Cortes and Mohri showed that this approach also aims to maximize AUC [49]. 

A method by Tax et al. that weighs features linearly by optimizing AUC has 

been proposed and applied to the detection of interstitial lung disease [8]. 

Ataman et al. advocate an AUC-maximizing algorithm with linear programming 

[60]. Rakotomamonjy suggested rank optimizing kernels for SVMs to maximize 

AUC [13]. Ling and Zhang compare AUC-based Tree-Augmented Naïve Bayes 

(TAN) and error-based TAN algorithms; the AUC-based algorithms are shown 

to produce more accurate rankings [61]. More recently, Calders and Jaroszewicz 

proposed a polynomial approximation of AUC to optimize it efficiently [62]. 

Linear combinations of classifiers are used to maximize AUC in biometric 

scores fusion in Toh et al. [12]. Han and Zhao propose a linear classifier based 

on active learning, which maximizes AUC [63]. 
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2.3 Discretization 
 

 

 

Discretization methods aim to find the cut-points that form the intervals in the 

process of discretization. A continuous attribute is then treated as a discrete 

attribute whose number of intervals is known on the continuous space.  

 

 Liu et al. categorized discretization algorithms on four axes [64]. These 

categories include supervised vs. unsupervised, splitting vs. merging, global vs. 

local, and dynamic vs. static.  

 

 Simple methods such as equal-width or equal-frequency binning algorithms 

do not use class labels for instances during the discretization process [65]. These 

methods are called unsupervised discretization methods. To improve the quality 

of the discretization, methods that use class labels are proposed; they are 

referred to as supervised discretization methods. Splitting methods take the 

given continuous space and try to divide it into small intervals by finding proper 

cut-points, whereas merging methods handle each distinct point on the 

continuous space as an individual candidate for a cut-point and merges them into 

larger intervals. Some discretization methods process localized parts of the 

instance space during discretization. As an example, the C4.5 algorithm handles 

numerical values by using a discretization (binarization) method that is applied 

to localized parts of the instance space [66, 67]; these methods are called local 

methods. Methods that use the whole instance space of the attribute to be 

discretized are called global methods. Dynamic discretization methods use the 

whole attribute space during discretization and perform better on data with 

interrelations between attributes. Conversely, static discretization methods 

discretize attributes one by one and assume that there are no interrelations 

between attributes. According to the categories defined above, MAD is a 

supervised, merging, global, and static discretization method. 
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 Splitting discretization methods usually aim to optimize measures such as 

entropy [68, 69, 70, 71, 72], which aims to obtain pure intervals, dependency 

[73] or accuracy [74] of values placed into the bins. On the other hand, the 

merging algorithms proposed so far use the chi-square statistic [75, 76, 77]. As 

far as we know, the ROC Curve has never been employed in the discretization 

domain. 
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Chapter 3  
 

 

REMARC 
 

 

 

 

 

 

This chapter presents detailed information about the REMARC method. First of 

all, a brief introduction to REMARC is given. Then, the risk function designed 

for categorical features to maximize AUC and the details of the MAD method 

and its application to REMARC is given. The REMARC method and its 

implementation are detailed. Finally, in the empirical evaluations REMARC 

method is compared with other machine learning on real life datasets and results 

are discussed. 

3.1 REMARC Introduction 
 

 

 

REMARC is a risk estimation method designed to maximize the AUC metric. 

The REMARC algorithm reduces the problem of finding a risk function for the 

whole set of features into finding a risk function for a single categorical feature, 

and then combines these functions to form one risk function covering all 

features. We will show here that it is possible to determine risk functions that 

achieve the maximum AUC for a single categorical feature. REMARC 

discretizes the numerical features by an algorithm called MAD, proposed by 
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Kurtcephe and Guvenir [78]. The MAD method discretizes a continuous feature 

in a way that results in a categorical feature by maximizing the AUC. 

 

 For a given query, REMARC outputs a real value r in the range of [0,1] as 

the estimated risk of being the unwanted state. This r value is roughly the 

probability that the query instance will be in the p class. It is only a rough 

estimate of probability, since it is very likely that no other instance with exactly 

the same feature values has been observed in the training set. The REMARC 

algorithm determines this estimated probability by computing the weighted 

average of probabilities computed on single features. The weight of a feature is a 

linear function of its AUC value calculated by the risk estimates for each 

instance in the training set. A higher value of AUC for a feature is an indication 

of its higher relevance in determining the class label. 

3.2 Single Categorical Feature Case 
 

 

 

A categorical feature has a finite set of choices. Let V = {v1, v2, … vn } be a 

categorical feature and vi  be a categorical value that feature V can take. The 

dataset D is a set of instances represented by a vector of n values and class label 

as <v,c>, where v∈V and c∈ {p,n} 

 

Given a dataset D with a single categorical feature whose value set is V = {v0, 

v1,…, vn}, a risk function r: V → [0,1] can be defined to rank the values in V. 

According to this risk function, a value vi comes after a value vj if and only if  

r(vi) > r(vj); hence r defines a partial ordering on the set V. A pair of consecutive 

values vi and vi+1 defines a ROC point Ri on the ROC space. The coordinates of 

the point Ri are (FPRi, TPRi). 

 

Theorem 1: Let D be a dataset with a single categorical feature whose value set 

is V = {v0, v1, …, vn}. Let r: V → [0,1] be the risk function that orders the values 

of V, as vi+1 comes after vi if r(vi+1) > r(vi), for all values of 0≤i<n. If the values 
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of the risk function for two consecutive values vi and vi+1 are swapped, then the 

only change in the ROC curve is that the ROC point corresponding to the vi and 

vi+1 values moves to a new location so that the slopes of the line segments 

adjacent to that ROC point are swapped. 

 

Proof: The slope of the line segment between two consecutive ROC points Ri 

and Ri+1 is 
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 Further replacing 1++= iii TPPTP and 1++= iii NPNFP , where Pi is the number 

of p-labeled instances with value vi, and Ni is the number of n-labeled instances 

with value vi. 
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 With this change, only the ROC point Ri at (FPRi, TPRi) is replaced with a 

new ROC point R’i at (FPR’i, TPR’i). The slopes of the new line segments 
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 Replacing the new count values with the old ones, 

1' += ii ss and ii ss =+1' are obtained.                                                                        ■ 

 

 For example, consider the dataset given below: 

 D={(a,n), (b,p), (b,n), (b,n), (b,n), (c,p), (c,p), (c,n), (c,n), (d,p), (d,p), (d,n)}, 

where V = {a, b, c, d}. If a risk function r orders the values of V as r(a) < r(b) < 

r(c) < r(d), the ROC curve shown in Figure 3.1a will be obtained. On the other 

hand, if the rankings of values b and c are swapped, the ROC curve shown in 

Figure 3.1b will be obtained. A similar technique was used earlier by Flach and 

Wu to create better prediction models for classifiers [43]. 

 

 

Figure 3.1 Effect of swapping the risk values of two feature values 

 

 Theorem 1 shows how concavities in a ROC curve can be removed, resulting 

in a larger AUC. The next question is how to form the convex ROC curve. The 

following theorem sets the necessary and sufficient condition for risk functions 

to satisfy so that their ROC curves are convex. 

 

Theorem 2: Let D be a dataset with a single categorical feature that takes values 

from the set V = {v0, v1, …, vn}. Let r: V  → [0,1] be the risk function that orders 

the values of V, as vi+1 comes after vi if r(vi+1) > r(vi) for all values of 0≤i<n. In 

order for the ROC curve of the ordering by r to be convex, the following 

condition must be satisfied: 
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where Pi is the number of p-labeled instances with value vi, and Ni is the number 

of n-labeled instances with value vi. 

 

Proof: In order for the ROC curve to be convex, the slopes of all line segments 

connecting consecutive ROC points starting from the ROC point (1,1) must be 

non-decreasing. 

 

Figure 3.2 Relation between the slopes of two consecutive line segments in a convex ROC curve 

 

 Therefore, the condition for a convex ROC curve is  
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By definition, 
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 Therefore, according to Theorem 2, any risk function r that assigns a higher 

value to vi+1 than to vi when 
i

i

i

i

N

P

N

P ≥
+

+

1

1 , for all values of V, will result in a 

convex ROC curve. For example, a risk function defined as 
i

i
i N

P
vr =)( will 

result in a convex ROC curve. 

 

Theorem 3. Let D be a dataset with a single categorical feature whose value set 

is V = {v0, v1, …, vn}. Ignoring the ineffective ROC points that lie on a line, 

there exists exactly one convex ROC curve. 

 

Proof: Since there exists only one possible ordering of values of V that satisfies 

the condition given in Theorem 1, there exists only one convex ROC curve.      ■ 

 

The general assumptions for risk estimation problems are given in Eq. 3.3: 
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Eq. 3.3 

 

 Although the dataset is guaranteed to have at least one instance with class 

label p and one instance with label n, it is possible that for some values of i, Ni 

may be 0. In such cases the risk function defined above will have undefined 

values. In order to avoid such problems, the risk can be defined as 
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Eq. 3.4 
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 The same arithmetic operations can be applied in the reverse direction to 

show that 

if 
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 Since, if both Pi and Ni are 0 for some i, the corresponding value vi can be 

completely removed from the dataset 0
0

>+∀
<≤

ii
ni

NPi , and this risk function is 

defined for all values of i. 
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 The risk function ( )ii

i
i NP

P
vr

+
=)(  has another added benefit in that it is 

simply the probability of the p label among all instances of value vi, which is 

easily interpretable. 

 

Corollary: For a dataset D with a single categorical feature whose value set is 

V = {v0, v1, …, vn}, the risk function defined as ( )ii

i
i NP

P
vr

+
=)(  gives the 

maximum possible AUC. 

 

 Therefore, the REMARC algorithm uses ( )ii

i
i NP

P
vr

+
=)(  as the risk function 

for categorical features. 

3.2.1 The Effect of the Class Label Choice on a Fea ture’s AUC 
 

 In order to calculate the P and N values one of the classes should be labeled 

as p and the other class as n, but one can question the effect this choice has on 

the AUC value. It is possible to show that the AUC value of a categorical feature 

is independent from the choice of class labels by using the value from the 

Wilcoxon-Mann-Whitney statistics. 

 

 In Eq. 3.5, the AUC formula based on the Wilcoxon-Mann-Whitney statistics 

is given. P is the number of instances that have the p class label and N 

represents the number of n-class-labeled instances. The set Dp represents the p-

labeled instances and Dn represents the n-labeled instances. An element 

belonging to Dp set, which is Dpi, is the ranking of the i th instance, which is 

labeled p. Inversely, an element belonging to Dn set, such as Dni, is the ranking 

of the i th instance, which is labeled n. 
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 The dividend part of the AUC formula in Eq. 3.5 counts the number of p-

labeled instances for each element of the Dp set whose ranking is higher than 

any element of the Dn set. Then, AUC is calculated by dividing this summation 

by the multiplication of the p-labeled and n-labeled elements. 

 

 The effect of the class label choice on the AUC calculation should be 

investigated. First of all, it is straightforward that the divisor part of the AUC 

formula is independent of class choice. Then, assume that the risk score 

ii

i
i NP

P
r

+
=  is used on the D dataset and Dp and Dn sets are formed. Let ni be the 

number of n-labeled instances whose ranking is lower than the i th element of the 

Dp set and let r i be the score assigned to this element. When the classes are 

swapped, the new risk value r ’
i is equal to 1- r i. With this property all instance 

scores are negated. However, negating scores does not change the relative 

ranking but inverses it. So, the AUC formula in Eq. 3.5, which calculates AUC 

depending on the ranking of the instances, is independent of the class-label 

decision when the proper risk scoring is used. 

 

3.2.2 An Example Toy Dataset 
 

Assume that a toy training dataset with a single categorical feature is given in 

Table 3.1. In order to calculate the AUC value of this particular feature, risk 

values are needed. The risk values are calculated by the proposed risk function. 
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The sorted version of the dataset according to the risk estimates is given in Table 

3.2. The AUC value of this feature is calculated by using Eq. 3.1. The P value is 

7 and the N value is 6. The AUC value is 82.0
6*7

5.34 = . In order to calculate this 

AUC value, for each p-labeled instance all n-labeled instances whose risk 

(ranking) is smaller or equal should be counted. When the class labels are 

swapped the risks are also swapped. The sorted version of the swapped toy 

dataset is given in Table 3.3. Since the relative ranking of the instances does not 

change the new AUC value is also 82.0
7*6

5.34 = . 

 

Class 
Label 

n n p n n p n p p n p p p 

Feature 
Value a a a a b b b c c c d d d 

Table 3.1 Toy training dataset with one categorical feature 

 

Risk 0.25 0.25 0.25 0.25 0.33 0.33 0.33 0.66 0.66 0.66 1.00 1.00 1.00 
Class 
Label 

  n n p n n p n p p n p p p 

Feature 
Value a a a a b b b c c c d d d 

Table 3.2 Training datasets risk values are calculated and instances are sorted in ascending order 

 

Risk 0.0 0.0 0.0 0.33 0.33 0.33 0.66 0.66 0.66 0.75 0.75 0.75 0.75 
Class 
Label 

n n n n n p p n p p p n p 

Feature 
Value 

d d d c c c b b b a a a a 

Table 3.3 Negated version of the training dataset. The risk values are calculated again and 
instances are sorted in ascending order 

3.3 Handling Continuous Features 
 

 

 

Having found the necessary and sufficient conditions for the risk function for a 

categorical feature to result in the maximum possible AUC, the next problem is 

to determine a mechanism for handling the continuous features. An obvious and 

trivial risk function maps any real value seen in the training set with the class 
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value p to 1 and any real value with the class value n to 0. This risk function 

will result in the maximum possible value for AUC, which is 1.0. However, 

such a risk function will over fit the training data, and will be undefined for 

unseen values of the feature, which are very likely to be seen in the query 

instance. So, our first requirement for a risk function for a continuous feature is 

that it must be defined for all possible values of that continuous feature. A 

straightforward solution to this requirement is to discretize the continuous 

feature by grouping all consecutive values with the same class value to a single 

categorical value; the cut off points can be set to the middle point between 

feature values of differing class labels. The risk function, then, can be defined 

using the risk function given in Eq. 3.4 for categorical features. Although this 

would result in a risk function that is defined for all values of a continuous 

function, it would still suffer from the over fitting problem. In order to overcome 

this problem, the REMARC algorithm makes the following assumption: 

 

Assumption 1: The risk values are either non-increasing or non-decreasing for 

the increasing values of a continuous feature. 

 

 Although there exist some features in real-world domains that do not satisfy 

this assumption, in the datasets we examined this assumption is satisfied in 

general. 

 

 This assumption is also consistent with the interpretations of the values of 

continuous features in many real-world applications. For example, in a medical 

domain, a high value of fasting blood glucose is an indication for a high risk of 

diabetes. On the other hand, low fasting blood glucose is an indication of a risk 

for another heath problem, called hypoglycemia. 

3.3.1 The MAD Method 
 

The REMARC algorithm requires all features to be categorical. Therefore, the 

continuous features in a dataset need to be categorized. The aim of a 
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discretization method is to find the proper cut-points in order to categorize a 

given continuous feature. After the discretization process a continuous feature is 

treated as a discrete feature whose number of intervals is known on the 

continuous. 

 

 The MAD method is designed to maximize the AUC value by checking the 

ranking quality of values of a continuous feature. The MAD algorithm given in 

Kurtcephe and Guvenir is defined for multi-class datasets [78]. A special version 

of the MAD method, called MAD2C and defined for two-class problems, is used 

in REMARC. 

 

 In order to measure the ranking quality of a continuous feature, the instances 

are sorted in ascending order. Sorting is essential for all discretization methods 

in order to produce unambiguous intervals. After the sorting operation, feature 

values are used as hypothetical score values and the ROC graph of the feature is 

drawn. The AUC of the ROC curve shows the overall ranking quality of the 

continuous feature. In order to obtain the maximum AUC value, only the points 

on the convex hull must be selected. The minimum number of points that form 

the convex hull is found by eliminating the points that cause concavities on the 

graph. In each pass, the MAD method compares the slopes in the order of the 

creation of the hypothetical lines, finds the junction points (cut-points) that 

cause concavities and eliminates them. This process is repeated until there is no 

concavity on the graph. The points left on the graph are the cut-points, which 

will be used to discretize the feature. 

 

 It has been proven that the MAD method finds the cut-points and the AUC 

value of the feature independently from the class choice. It is shown that the cut-

points found by MAD never separate two consecutive instances of the same 

class. This is an important property, as it shows that a discretization method 

works properly. The implementation details, formal proofs and empirical 

evaluation of MAD can be found in Kurtcephe and Guvenir [78]. 
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3.3.2 A Toy Dataset Discretization Example 
 

It is possible to visualize the discretization process by using the MAD method. 

A toy dataset for the discretization is given in Table 3.4. After the sorting 

operation, the ROC points are formed. This ROC graph is given in Figure 3.3. 

Since the risk values are either non-increasing or non-decreasing for the 

increasing values of a continuous feature, two ROC graphs are formed. As can 

be seen in Figure 3.3 one of these graphs is below the diagonal line since the 

risk is increasing with increasing values of the continuous feature. 

 

Class 
Value 

n n p n n p n p p n p p p 

F1 1 2 3 4 5 6 6 7 8 9 10 11 12 

Table 3.4 A toy dataset for visualizing MAD in two-class problems. The name of the attribute to 
be discretized is F1 

 

 

Figure 3.3 Visualization of the ROC points in a two-class discretization. 

 



 
30 

 The first pass of the MAD method is shown in Figure 3.4. All points below or 

on the diagonal are ignored since they have no positive effect on the 

maximization of AUC. Then the points causing concavities are eliminated. 

MAD converged to the convex hull in one pass for this example. The points left 

on the graphs are the discretization cut-points. 

 

 

Figure 3.4 Final cut-points after the first pass of convex hull algorithm 

3.4 REMARC Algorithm 
 

 

 

The training phase of the REMARC algorithm is given in Figure 3.5. In the 

training phase all continuous features are discretized. In order to discretize 

continuous features, MAD2C, which is shown on the fifth line of Figure 3.5, is 

used. Risk values are calculated for each value of a given categorical feature 

(discretized continuous features are included). In this step, the risk function 

defined in Eq. 3.4 is used in order to obtain the optimal ranking for categorical 

features. Then, training instances are sorted according to the risk values 
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calculated in the previous step. Since the risk function used by REMARC 

always results in a convex ROC curve, the AUC is always equal to or greater 

than 0.5. Therefore, the REMARC algorithm learns a weight wi for a feature fi as 

2*)5.0( −= fAUCw  Eq. 3.6 

 The ROC curve of an irrelevant feature is simply a diagonal line from (0,0) to 

(1,1), with 5.0=AUC . The weight function in Eq. 3.6 assigns 0 to such 

irrelevant features in order to eliminate them. The risk values and weights of the 

features are stored for the testing phase. 

 

1 :REMARCTrain (trainSet[M][N]) // Includes M features and N train 
instances 
2 :   Begin  
3 :      for i=0 to M-1 
4 :         if(isContinuous(trainSet[i])); 
5 :            cutPoints=MAD2C(trainSet[i][0..N-1]); 
6 :            numericalValuesToCatVal(cutPoints,trainSet[i]); 
7 :         risks[i]<-computeCategoricalRisk(trainSet[i][0..N-1]); 
8 :         sortInstancesByRisk(trainSet[i][0..N-1]); 
9 :         aucValues[i]<-computeAUC(trainSet[i][0..N-1]); 
10:         featureWeights[i]=(aucValues[i]-0.5)*2; 
11:      end 
12:   end 

Figure 3.5 Algorithm of the REMARC method’s training phase. 

 

 The testing phase of the REMARC method is straightforward, as for each 

feature, the risk value corresponding to the value of the feature in the test 

instance is used. Then the risk of this feature is weighted by its weight, which is 

calculated in the training phase. The computation of the risk for a query instance 

q is in Eq. 3.7. The maximization of AUC for whole dataset is a challenging 

problem. Cohen et al. showed that the problem of finding the ordering that 

agrees best with a learned preference function is NP-Complete [79]. This 

weighting mechanism is used as a simple heuristic in order to extend this 

maximization over the whole feature set. 
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Eq. 3.7 

 

where )|( fqpP is the probability of q being p-labeled, given that the value of 

feature f in q is qf, and fw is the weight of the feature f, calculated by using Eq. 

3.6 

 Finally, in order to obtain the weighted average, all risk and weight values are 

summed and final risk is calculated by dividing the cumulative. 

 

1 :REMARCTest (testInstance[M][1]) 
2 :   Begin 
3 :      for i=0 to M-1 
4 :         oneFeatureRisk= risks[i][testInstace[i][0]]; 
5 :         totalRisk+= oneFeatureRisk * featureWeights[i]; 
6 :         totalWeight+= featureWeights[i]; 
7 :      end    
8 :      return totalRisk/totalWeight; 
9:   end 

Figure 3.6 Testing phase algorithm of the REMARC method 

 

 The time complexity of the MAD algorithm is given as O(n2), where n is the 

number of training instances. After discretizing the numerical features the time 

complexity of the REMARC algorithm is O(m*vlgv+n), where m is the number 

of features and v is the average number of values per feature. As a result, 

REMARC is bounded by the MAD algorithm’s time complexity. 

3.5 Interpretation of the REMARC Predictive 
Model 
 

 

 

As mentioned above, the REMARC method does not only provide risk 

estimation as a single real value, but the predictive model used in order to 
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estimate risk can provide useful information to domain experts. A high weight 

value indicates that the corresponding feature is a highly effective risk factor in 

the given domain. Domain experts may choose to ignore features with low 

weights, potentially reducing the cost of record keeping. 

 

 Some of the categorical features are formed by discretizing continuous 

features. For example, age can be discretized into child, youth, adult and elderly. 

Assume that the impression of the feature age is investigated on a risky domain, 

such as medicine. The intervals should be chosen carefully since they can affect 

a system’s predictive performance. The domain experts can provide this 

information. However, there can be experimental domains where this knowledge 

is not applicable. The MAD method used in REMARC learns the proper 

intervals in order to maximize AUC during the training phase. These intervals 

also report the risks associated with each interval. For example, consider a 

dataset that contains an age feature and a class label that indicates the presence 

of a new disease. The MAD method will find the distinct age groups in terms of 

this disease and the REMARC method will determine the risk for each age 

group. 

 

 The choice of class label during risk estimation has no effect on the feature 

weights. However, the risk function used by REMARC depends on this choice 

directly, as shown in Section 4.1, so in order to interpret risk scores correctly 

one must pay attention to the class label that represents the unwanted situation. 

Otherwise, risk scores can be misleading. 

3.6 Empirical Evaluations 
 

 

 

In order to maximize AUC the theoretical background of the REMARC method 

is given. In order to support the theoretical background with empirical results 

two different experiments are conducted. First, REMARC is compared with 26 

different machine learning algorithms on an AUC basis. Then, since there can be 
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domains where the predictive models have to trained often, running times of the 

algorithms are also measured. 

 

 The real-life datasets are provided by the UCI machine learning repository 

(Frank and Asuncion 2010) and are two-class problems [80]. Ten datasets are 

selected from risk domains such as medicine and finance. The properties of the 

datasets are given in Table 3.5. 

 

Dataset Name # Instances 
# Continuous 
 Attributes 

#Categorical 
Attributes 

# Dataset 
 Abbreviations 

Australian 690 6 8 A 
Bupa 345 6 0 B 
Crx 653 9 6 C 
Heart (Statlog) 270 7 6 H1 
Hypothyroid 3164 7 18 H2 
Mammographic Masses 961 1 5 M 
Pima-Diabetes 768 8 0 P 
Sick-Euthyroid 3163 7 18 S1 
SPECTF 267 44 0 S2 
Wisconsin-Breast 569 30 0 W 

Table 3.5 Properties of the datasets used in the empirical evaluations of the REMARC algorithm 

 

 In order to perform the comparisons, 26 different classification algorithms are 

selected from the WEKA software package [81]. Only the algorithms that able 

to produce continuous output (confidence on the class decision) are selected. As 

mentioned above, the ROC graphs of algorithms producing continuous output 

are meaningful. Since REMARC is a non-parametric method, none of the 

classifiers is optimized for each dataset. All classifiers are used with default 

settings of WEKA for the sake of fairness. The SVM is taken from the LIBSVM 

package provided in WEKA [82]. 

3.6.1 Predictive performance 
 

Researchers reported that some of the algorithms that aim to maximize AUC do 

not obtain significantly better AUC values than the ones designed to maximize 
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accuracy [49, 63]. Therefore, it is important to show that REMARC can 

outperform accuracy-maximizing algorithms statistically significantly. 

 

Algorithms/Datasets A B C H1 H2 M P S1 S2 W Average 
REMARC 0.923 0.659 0.931* 0.904* 0.986 0.901* 0.827 0.942 0.857* 0.986 0.892 
AdaBoostM1+ 0.922 0.737 0.926 0.888 0.990* 0.895 0.804 0.966 0.801 0.985 0.891 
Class.ViaRegr.+ 0.918 0.727 0.918 0.882 0.990* 0.896 0.827 0.986* 0.763 0.989* 0.890 
Bagging+ 0.918 0.755* 0.910 0.872 0.980 0.888 0.822 0.972 0.795 0.977 0.889 
ADTree+ 0.917 0.705 0.925 0.880 0.988 0.887 0.802 0.979 0.803 0.984 0.887 
Logistic+ 0.912 0.714 0.915 0.900 0.970 0.893 0.831* 0.956 0.801 0.972 0.886 
MultiC.Classifier+ 0.912 0.714 0.915 0.900 0.970 0.893 0.831* 0.956 0.801 0.972 0.886 
AODE+ 0.928* 0.540 0.930 0.904* 0.989 0.900 0.823 0.963 0.820 0.988 0.879 
NaiveBayes++ 0.895 0.641 0.900 0.897 0.977 0.895 0.816 0.920 0.850 0.980 0.877 
BayesNet+ 0.920 0.540 0.928 0.901 0.989 0.899 0.818 0.959 0.825 0.986 0.876 
ThresholdSelector+ 0.904 0.699 0.916 0.898 0.969 0.892 0.826 0.956 0.686 0.969 0.871 
MultiBoostAB+ 0.908 0.673 0.908 0.865 0.988 0.886 0.790 0.955 0.709 0.981 0.866 
DecisionTable+ 0.917 0.574 0.910 0.883 0.989 0.876 0.801 0.971 0.678 0.972 0.857 
FT++ 0.898 0.721 0.853 0.824 0.943 0.874 0.751 0.907 0.752 0.984 0.851 
LWL++ 0.911 0.643 0.909 0.839 0.955 0.886 0.775 0.942 0.674 0.948 0.848 
FilteredClassifier++ 0.899 0.540 0.893 0.836 0.958 0.863 0.794 0.949 0.683 0.939 0.835 
REPTree++ 0.879 0.666 0.871 0.824 0.963 0.846 0.768 0.957 0.631 0.924 0.833 
PART++ 0.867 0.645 0.853 0.785 0.966 0.882 0.778 0.954 0.652 0.937 0.832 
Att.Sel.Classifier++ 0.869 0.584 0.875 0.801 0.952 0.867 0.786 0.914 0.624 0.938 0.821 
END++ 0.865 0.648 0.877 0.777 0.940 0.868 0.758 0.939 0.593 0.939 0.821 
OrdinalC.Classifier++ 0.865 0.648 0.877 0.777 0.940 0.868 0.758 0.939 0.593 0.939 0.821 
J48 (C4.5) ++ 0.865 0.648 0.877 0.777 0.940 0.868 0.758 0.939 0.593 0.939 0.821 
VFI++ 0.913 0.562 0.910 0.871 0.782 0.836 0.550 0.755 0.853 0.946 0.798 
DecisionStump++ 0.833 0.572 0.848 0.688 0.951 0.788 0.696 0.936 0.623 0.886 0.782 
IBk++ 0.801 0.634 0.798 0.743 0.766 0.799 0.648 0.752 0.592 0.947 0.748 
RBFNetwork++ 0.732 0.509 0.787 0.835 0.581 0.786 0.642 0.676 0.641 0.755 0.694 
SVM-RBF++ 0.628 0.609 0.602 0.509 0.952 0.872 0.518 0.735 0.466 0.760 0.655 

Table 3.6 The comparison of the predictive performance of REMARC algorithm with other 
algorithms on AUC metric. 10 datasets are used during evaluation. Algorithms marked with ++ 

are outperformed by REMARC method with a statistically significant difference Algorithms 
marked with + are outperformed by REMARC on average with no significant difference. AUC 

values marked with * are the best AUC values for that dataset (Higher results better) 

 

 A stratified ten-fold cross validation is employed to calculate AUC values for 

each datasets. As shown in Table 3.6, the REMARC method outperformed all 

algorithms on the average AUC. A paired t-test is used to decide whether the 

differences on averages are significant. According to the paired t-test on a 95% 

confidence level (the same level will be used for other t-tests) REMARC 
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statistically significantly outperforms 15 of the 26 machine learning algorithms 

on the average AUC. These algorithms include naïve Bayes, decision trees (part, 

C4.5) and SVM with a RBF kernel. REMARC outperformed the other 11 

algorithms, as well, but the differences between the averages for these 

algorithms are not statistically significant. 

 

 One important point should be mentioned about the SVMs. As seen in Table 

3.6, SVM has the worst predictive performance among all the classification 

algorithms because of the absence of parameter tuning. However, as mentioned 

before none of the algorithms is tuned for best predictive results. 

 

 The classification algorithms such as logistic (multinomial logistic regression 

model) and classification via regression achieve high AUC values. As 

mentioned above, these models are highly used in the domain of medicine, and 

in this work their predictive performance is validated. 

 

 The second classifier with the highest AUC was the Adaboost method. Since 

it is an ensembling algorithm, it uses a base classifier (default DecisionStump in 

WEKA). We believe that the performance of REMARC can be further improved 

by using an ensembling algorithm, as then, a statistically significant difference 

can be obtained. 

3.6.2 Running Time 
 

The REMARC method is designed to be simple, effective and fast. It handles 

categorical features close to the linear time. MAD requires more time since it 

uses sorting. Theoretically, REMARC seems fast, but empirical experiments 

must be conducted to support this claim. 

 

 The overall running times of the training phase of 25 different algorithms are 

calculated. The running times of all algorithms are measured using java virtual 

machines’ CPU time and hundreds of results are averaged (to be objective). The 
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SVM algorithm is not included in the running times section since WEKA uses 

an outside library for this algorithm. However, it takes seconds for SVM to 

complete the training phase, so it is much slower than REMARC. The results of 

the overall running time for the other algorithms are shown in Table 3.7. 

 

Algorithms/Datasets A B C H1 H2 M P S1 S2 W Average 
VFI-- 16* 5* 17* 9* 104* 12* 14* 111* 23* 31* 34 
DecisionStump-- 24 9 23 11 113 17 30 116 43 105 49 
NaiveBayes-- 30 11 29 18 164 30 37 154 61 102 64 
AODE-- 53 16 52 27 352 40 56 350 113 280 134 
BayesNet-- 49 17 52 28 425 54 60 393 81 244 140 
REPTree- 77 33 80 33 395 105 136 569 124 185 174 
FilteredClassifier- 119 16 107 48 462 86 116 858 155 265 223 
J48 (C4.5)- 160 75 153 81 635 147 181 1283 256 378 335 
Att.Sel.Classifier- 173 31 159 99 761 201 162 867 419 496 337 
REMARC 106 37 94 49 1131 128 164 1117 191 470 349 
OrdinalC.Classifier+ 162 79 150 83 681 177 197 1380 255 378 354 
END+ 236 119 218 126 880 219 254 1563 333 460 441 
RBFNetwork++ 404 136 348 148 1057 367 280 1149 712 620 522 
PART++ 416 102 511 193 865 230 248 2023 684 473 574 
AdaBoostM1++ 302 132 296 156 1584 302 394 1579 475 1135 635 
MultiBoostAB++ 318 133 297 164 1614 317 388 1622 477 1140 647 
MultiC.Classifier++ 991 79 1175 125 3698 239 226 3656 473 963 1163 
Logistic++ 1014 74 1215 124 3720 261 257 3667 472 935 1174 
ADTree++ 689 276 645 469 3149 579 973 3536 1562 2717 1459 
Ibk+ 172 33 169 35 7365 233 153 7465 124 222 1597 
Bagging++ 740 295 727 295 4484 636 961 6904 1070 1718 1783 
ThresholdSelector++ 1695 137 2032 227 6442 429 387 6346 1118 2028 2084 
DecisionTable++ 1582 156 1699 434 10824 411 635 11498 1183 2526 3095 
Class.ViaRegr. ++ 5340 1355 5573 1143 9943 3912 3593 15598 2218 2662 5134 
FT++ 4705 847 4879 927 14834 2856 2230 30959 1796 2324 6636 
LWL+ 2094 376 1940 412 52652 2360 2652 52887 1414 6919 12370 

Table 3.7 The comparison of the average running time performance of REMARC algorithm with 
other algorithms (in ms) . 10 datasets are used during evaluation. Algorithms marked with ++ 

symbol are outperformed by REMARC method on running time basis with a statistically 
significant difference. Algorithms marked with -- symbol outperformed REMARC method on 

running time basis with a statistically significant difference. + marked algorithms are 
outperformed by REMARC on average and – marked algorithms outperform REMARC on 

average with no significant difference. AUC values marked with * are the best AUC values for 
that dataset (Lower results better) 

 

 REMARC outperforms 12 different algorithms significantly according to a 

paired t-test on a running-time basis. These outperformed methods are shown by 
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the ++ symbol on Table 3.7. Five algorithms outperformed REMARC 

statistically significantly. These algorithms are shown with a -- symbol.  The 

differences between the other seven methods on the table and REMARC are not 

significant. 
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Chapter 4  
 

 

 

TurkoSCORE: Turkish System for 
Cardiac Operative Risk Evaluation 
 

 

 

 

 

 

In this chapter, the REMARC method is applied to the cardiovascular surgery 

domain. The data is gathered from the TurkoSCORE system. Detailed 

information about TurkoSCORE project is given in this chapter. The 

EuroSCORE project, which is one of the most popular risk evaluation systems 

in cardiac surgery, is evaluated on TurkoSCORE dataset that contains data about 

the cardiovascular operations performed in some hospitals in Turkey. The 

properness of EuroSCORE risk model on Turkish patient population is 

investigated. In empirical evaluation section, EuroSCORE and REMARC are 

compared by using a dataset that consist of EuroSCORE features on AUC basis. 

In order to propose a new risk estimation framework specially designed for 

Turkish patients, most likely risk factors (highly discriminative) are identified 

and filtered by consultant surgeons. Then, the performance of REMARC 

algorithm is investigated on this dataset. 
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4.1 The TurkoSCORE Project 
 

 

 

One of the major aims of the TurkoSCORE project is to construct a risk 

estimation system in order to predict the early mortality in patients undergoing 

cardiovascular surgeries in Turkey on the basis of objective risk factors [83]. 

 

 The TurkoSCORE project includes a database system for storing 

cardiovascular surgical patient’s data in Turkey. A variety of parameters 

including personal, preoperative, postoperative, follow up and mortality have 

been recorded in this project. The aim of the project is not only finding risk 

factors of the patient and estimating mortality risk of patients but also collecting 

shared information about the Turkish cardiac patients nationwide. A web 

application is designed in this project allowing doctors enter their patient data 

online. The same web application is also used by doctors in order to monitor, 

search, and print the health profile of their patients.  

 

 The TurkoSCORE project also aims to lead the cardiovascular research by 

supplying a wide range of data collected from different institutions. Currently, 

Cardiovascular Surgery Department of Ankara University, Acıbadem Hospital 

and Ankara Atatürk Hospital are supplying data for TurkoSCORE. More 

detailed information about the structure of the TurkoSCORE database can be 

found in Tunca [83]. 

4.2 EuroSCORE 
 

 

 

In Europe, a model called the European System for Cardiac Operative Risk 

Evaluation (EuroSCORE) has been developed and commonly used by European 

cardiovascular surgeons. This system predicts the risk of operative mortality 

during surgery or 30-days after the surgery. This prediction is based on the 
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values of some parameters measured before operation. In the development of 

EuroSCORE, North American and European risk model studies were 

investigated [14]. Initially, as candidate risk factors, 68 preoperative and 29 

operative parameters were selected. The risk factors, which are most likely 

useful, are identified and selected by consultant surgeons. However the selected 

risk factors were very similar to those in other American studies. The definitions 

of these factors were simplified in EuroSCORE. In order to learn the model used 

in EuroSCORE, nearly 20 thousand patients were gathered from 128 hospitals in 

eight European counties (Germany, France, UK, Italy, Spain, Finland, Sweden 

and Switzerland)  

 

 The potential risk factors are analyzed and their effect on risk estimation is 

investigated. Some of these risk factors were eliminated in order to obtain a 

better predictive model. As a result, seventeen risk factors were found useful for 

calculating the early mortality risk of a cardiovascular surgery. The details of 

these risk factors can be found in [14].  

 

 The first scoring system proposed in EuroSCORE is called Additive 

(Standard) scoring. Additive scoring is designed by using the β  coefficients as 

weights for each risk factor. During the calculation of Additive EuroSCORE, the 

weights are summed together according to the existence of a risk factor for a 

patient. However, after some validation studies of Additive EuroSCORE on 

other cardiac datasets outside of Europe, the deficiency of Additive scoring is 

noted. Since the Additive EuroSCORE can sometimes underestimate the risk in 

very high risk patients, logistic regression based scoring system, called Logistic 

EuroSCORE is proposed. The logistic β  coefficients and the formula of this 

scoring system can be found in [26]. 
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4.3 EuroSCORE Validation on Turkish Patients 
 

 

In this section, firstly, prevalence of risk factors in Turkish patient population 

and EuroSCORE patient population is compared. Since the EuroSCORE scoring 

system is trained by using European patient population, any difference between 

populations can affect the performance of EuroSCORE on Turkish population. 

 

 Definitions of some risk factors were not identical with EuroSCORE 

definition. Therefore, some approximations were made in order to complete the 

analysis. These approximations are listed in the, Table A.1, Appendix A. 

 

 Statistical analysis of risk factor prevalence is performed by using chi-square 

test for categorical values and unpaired t-test for continuous values. P values 

less that 0.05 is considered as significant  

 

 Currently, there are 9451 patients in TurkoSCORE database. In this thesis 

8018 patients are used. These patients are selected from the ones whose 

EuroSCORE values and EuroSCORE parameters are complete. This selection 

was necessary since most of the analysis is based on EuroSCORE parameters 

and values. 

4.3.1 Demographic results 
 

There were significant differences between Turkish and European cardiac 

patient populations. The prevalence of risk factors for both populations is given 

in Table 4.1. When patient related factors are investigated, it is seen that the 

Turkish cardiac patient population is younger on average. There exist 

significantly more patients in Turkish population whose age is less than 60 and 

fewer patients in any other age interval. Turkish patients have higher incidence 

of chronic pulmonary disease and active endocarditis. Fewer patients in Turkish 

population have extracardiac arteriopathy and previous cardiac surgery. Critical 

preoperative state is more likely to be present in Turkish patients than European 
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patients. In cardiac related factors, Turkish patients are more likely to have 

unstable angina LV function, moderate dysfunction and recent myocardial 

infraction.  

 

Risk factor Turkish  
prevalence (%) 

(n=8018) 

EuroSCORE 
prevalence (%) 

(n=19030) 

P-value 

      Patient Related Factors 
Age    
      Mean 59.49 years 62.5 years <0.001 
      Standard deviation 12.02 years 10.7 years  
      <60 years 46.9 33.2 <0.001 
       60—64 years 17.3 17.8 0.325 
       65—69 years 16.6 20.7 <0.001 
       70—74 years 13.1 17.9 <0.001 
       75+ years 6.1 9.6 <0.001 
Female 28.6 27.8 0.325 
Chronic pulmonary disease 13.4 3.9 <0.001 
Extracardiac arteriopathy 8.6 11.3 <0.001 
Neurological disease 1.3 1.4 0.181 
Previous cardiac surgery 4.1 7.3 <0.001 
Serum creatinine >200 mmol/l 1.9 1.8 0.515 
Active endocarditis 3.2 1.1 <0.001 
Critical preoperative state 9.0 4.1 <0.001 
      Cardiac Related Factors 
Unstable angina LV function 9.8 8.0 <0.001 
Moderate dysfunction 29.9 25.6 <0.001 
Severe dysfunction 5.3 5.8 0.103 
Recent myocardial infarction 23.5 9.7 <0.001 
Pulmonary hypertension 1.9 2.0 0.565 
      Operation Related Factors 
Emergency 4.3 4.9 0.035 

(<0.05) 
Other than isolated CABG 23.0 36.4 <0.001 
Surgery on thoracic aorta 3.7 2.4 <0.001 
Postinfarct septal rupture 0.1 0.2 0.069 

Table 4.1 Prevelances of risk factors in Turkish and EuroSCORE population. The risk factors 
that have significant difference are shown in bold face. EuroSCORE prevelance values are taken 

from Roques et al. [84] 

 

Operation related factors such as emergency or other than isolated coroner artery 

bypass grafting (CABG) have less prevalence in Turkish population than 

European. Also Turkish patients are more likely to have surgery on thoracic 

aorta than European patients. All these differences are statistically significant. 

There are no significant differences in the prevalence of the risk factors sex, age 
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interval between 60 and 64, neurological disease, serum creatinine, pulmonary 

hyper tension, severe dysfunction and postinfarct septal rupture. 

4.3.2 Model Calibration and Discrimination 
 

The EuroSCORE values of 8018 patients are used in this section. Predicted 

mortality is both calculated using Additive and Logistic EuroSCORE. Then, 

observed and predicted mortality of the patients compared with 95% confidence 

intervals. These analysis are done for both whole cohort and isolated CABG 

cohort. Chi-square statistics is employed for measuring the difference between 

the observed and predicted mortality over risk sections. 

 

 For entire cohort, 157 deaths are observed in 8018 patients, 1.96% overall 

mortality rate is calculated. The Additive EuroSCORE predicted 2.98% 

mortality rate (P < 0.001 vs. observed) and 3.17% mortality rate (P < 0.001 vs. 

observed) is predicted by Logistic EuroSCORE. As shown in Table 4.2, both 

scoring systems overestimated mortality at each risk tertile. The predictive 

performances of both models are fair with 0.76 AUC value. The ROC curves are 

given in Figure 4.1. 

 

 Patients (deaths) 

Observed 
mortality  

rate (%95 CI) 

Predicted 
mortality  

rate (%95 CI) 
EuroSCORE additive  
   0-3 (Low risk) 5164   (39) 0.76% (0.52-0.99) 1.52% (1.49-1.55) 
   4-6 (Medium risk) 2186   (65) 2.97% (2.26-3.69) 4.78% (4.75-4.82) 
   7+ (High risk) 668     (53) 7.93% (5.88-9.98) 8.33% (8.20-8.47) 

Total  8018 (157) 1.96% (1.65-2.26) 2.98% (2.93-3.03) 
 

EuroSCORE logistic  
   Low Risk 2673   (16) 0.60% (0.31-0.89) 1.07% (1.06-1.08) 
   Medium Risk 2673   (26) 0.97% (0.60-1.34) 1.99% (1.76-2.22) 
   High Risk 2672 (115) 4.30% (3.53-5.07) 6.45% (6.22-6.68) 

Total  8018 (157) 1.96% (1.65-2.26) 3.17% (3.08-3.26) 

Table 4.2 Predicted and observed mortality by EuroSCORE risk level for whole cohort. In 
logistic EuroSCORE analysis, patients are divided into three approximately equal risk quintiles  
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Figure 4.1 ROC curves for both Logistic and Standard EuroSCORE for whole cohort. In logistic 
EuroSCORE analysis, patients are divided into three approximately equal risk quintiles 

. 

 Patients (deaths) 

Observed 
mortality  

rate (%95 CI) 

Predicted 
mortality  

rate (%95 CI) 
EuroScore additive  
   0-3 (Low risk) 4042 (18) 0.45% (0.24-0.65) 1.54% (1.50-1.57) 
   4-6 (Medium risk) 1681 (31) 1.84% (1.20-2.49) 4.77% (4.73-4.81) 
   7+ (High risk) 448   (30) 6.70% (4.38-9.01) 8.12% (7.98-8.25) 

Total  6171 (79) 1.28% (1.00-1.56) 2.89% (2.84-2.95) 
 

EuroScore logistic  
   Low Risk 2057 (11) 0.53% (0.22-0.85) 1.06% (1.05-1.07) 
   Medium Risk 2057   (8) 0.39% (0.12-0.66) 1.95% (1.74-2.16) 
   High Risk 2057 (60) 2.92% (2.19-3.64) 5.77% (5.56-5.99) 

Total  6171 (79) 1.28% (1.00-1.56) 2.93% (2.84-3.02) 

Table 4.3 Predicted and observed mortality by EuroSCORE risk level for isolated CABG cohort 

 

 Of 6171 patients undergoing isolated CABG, 79 deaths are observed, 1.28% 

overall mortality is calculated The Additive EuroSCORE predicted 2.89% 

mortality rate (P < 0.001 vs. observed) and 2.93% mortality rate (P < 0.001 vs. 

observed) is predicted by Logistic EuroSCORE. As shown in Table 4.3, both 
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scoring systems overestimated mortality at each risk tertile except the additive 

model in highest risk decile. The predictive performances of both models are 

fair with 0.77 AUC value for Additive and 0.76 for Logistic EuroSCORE. The 

ROC curves for both scoring systems are given in Figure 4.2 

 

 

Figure 4.2 ROC curves for both Logistic and Standard EuroSCORE for isolated CAGB cohort 

4.4 Comparison of REMARC and EuroSCORE 
 

 

In the previous section, it is shown that the patient population, which is used in 

the training phase of EuroSCORE, is considerably different than Turkish cardiac 

patients. Since REMARC is proposed as a new scoring system for Turkish 

cardiac patients, it is essential to show that REMARC can predict early mortality 

risk better than EuroSCORE by using only EuroSCORE parameters. 

 

 In this section only the predictive performance of EuroSCORE and 

REMARC will be compared on AUC basis. The calibration of REMARC model 

is not available since the Turkish patient dataset is not large enough to create a 

validation set. As mentioned above some of the definitions of risk factors in 
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EuroSCORE are not identical with TurkoSCORE dataset. Therefore, the 

approximations given in Table A.1 are used in this section, as well.  

 

 There exist 9451 patients in the TurkoSCORE database currently. However, 

the number of patients whose EuroSCORE values are complete is 8018. The 

ROC curves for Additive and Logistic EuroSCORE are calculated over whole 

dataset, since EuroSCORE has a trained model. However, REMARC must be 

trained and test on the same dataset. Therefore, ten-fold cross-validation is 

employed in order to obtain the ROC curve. 

 

 

Figure 4.3 ROC curves for both Logistic EuroSCORE, Standard EuroSCORE and REMARC 
with EuroSCORE risk factors 

 

Then, the AUC values are calculated using only the EuroSCORE risk factors. 

The AUC value for REMARC is 0.79 and 0.76 for both Additive and Logistic 

EuroSCOREs. The ROC curves for REMARC and EuroSCOREs can be found 

in Figure 4.3. Since the higher AUC represent better predictive performance, 

REMARC risk estimation method outperforms both EuroSCORE scoring 

systems over Turkish population. 
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4.5 REMARC Based Cardiovascular Risk 
Estimation System  
 

 

According to the analysis done in the Section 4.4, REMARC performs better 

prediction than EuroSCORE by using only the risk factors used in EuroSCORE 

model. These risk factors are specially selected for the European surgeons by 

analyzing European patient population. Since REMARC enables domain experts 

to investigate discriminative ability of each feature by providing AUC values, 

EuroSCORE parameters are analyzed in this thesis, as well. Table B.1, 

Appendix B shows the AUC values of each EuroSCORE parameter. According 

to the AUC values of features, most of the features are predicting well except 

other than isolated CABG and postinfarct septal rupture features. 

 

 There exist 190 preoperative and 16 operative candidate risk factors in 

TurkoSCORE database [83]. In order to find the discrimination ability of each 

feature REMARC is used. The whole dataset (9451 patients) is used since the 

training phase of the REMARC ignores missing values. As a result, the AUC 

values for each feature (weights) are calculated. Most likely risk factors to be 

useful are identified by consultant cardiac surgeons in Cardiovascular Surgery 

Department, Ankara University by considering these weights. The risk factors 

whose AUC values are too close to 0.5 (irrelevant risk factors) and the risk 

factors that has few number of instances (more than %90 is missing) are 

eliminated. The risk factors left after these eliminations are shown in Table B.2, 

Appendix B. 

 

 After selecting the most important features, a new dataset with 28 features 

and 9451 instances is formed. The testing phase of REMARC is robust to 

missing values, as well. However, there exist some instances in the dataset most 

features are missing. In order to investigate the effect of missing values on AUC 

a simple experiment is conducted. 26 different datasets are formed. The first 

dataset, called dataset0, included only the instances which has no (0) missing 



 
49 

features (a complete dataset). The last dataset, called dataset25, is formed from 

the instance which can have 25 missing features (at most) of 28. Table 4.4 is 

formed by using these 26 datasets in REMARC program. During this analysis 

ten-fold cross validation is employed. 

 

Dataset 
Names  # Instances  # P # N 

REMARC 
AUC 

Additive 
AUC 

Logistic 
AUC 

Dataset 0 3584 59 3525 0,80 0,74 0,74 
Dataset 1 5620 102 5518 0,83 0,76 0,77 
Dataset 2 6871 127 6744 0,83 0,77 0,77 
Dataset 3 7916 153 7763 0,80 0,76 0,76 
Dataset 4 8179 166 8013 0,81 0,76 0,76 
Dataset 5 8263 166 8097 0,81 0,76 0,76 
Dataset 6 8315 167 8148 0,81 0,76 0,76 
Dataset 7 8353 168 8185 0,81 0,76 0,76 
Dataset 8 8394 170 8224 0,80 0,76 0,76 
Dataset 9 8433 171 8262 0,80 0,76 0,76 

Dataset 10 8476 174 8302 0,80 0,76 0,76 
Dataset 11 8745 180 8565 0,80 0,76 0,76 
Dataset 12 8773 181 8592 0,80 0,76 0,76 
Dataset 13 8787 182 8605 0,80 0,76 0,76 
Dataset 14 8816 182 8634 0,80 0,76 0,76 
Dataset 15 8988 185 8803 0,80 0,76 0,76 
Dataset 16 9055 186 8869 0,80 0,76 0,76 
Dataset 17 9086 187 8899 0,80 0,76 0,76 
Dataset 18 9201 190 9011 0,80 0,76 0,76 
Dataset 19 9225 191 9034 0,80 0,76 0,76 
Dataset 20 9236 191 9045 0,80 0,76 0,76 
Dataset 21 9244 191 9053 0,79 0,76 0,76 
Dataset 22 9311 191 9120 0,79 0,76 0,76 
Dataset 23 9322 191 9131 0,79 0,76 0,76 
Dataset 24 9334 191 9143 0,79 0,76 0,76 
Dataset 25 9336 191 9145 0,79 0,76 0,76 

Table 4.4 26 Different datasets are formed by eliminating the instances with missing values. 
Dataseti contains at most i many missing features from 28 features Number of instances, p, n 

values and AUC values are given. AUC values of the REMARC algorithm are calculated by ten-
fold cross validation 

 

 According to the Table 4.4, the number of missing features is increases, 

naturally the number of instances increases, as well. The relationship between 

number of missing features and number of instances is given in Figure 4.4. 

According to this figure, the complete dataset (dataset0) has relatively low 
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number of instances compared to other datasets. The graphic get stabilized after 

dataset3.  
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Figure 4.4 Number of missing values over different datasets, which contains different number of 
missing features 

 

 Another important aspect of this experiment is analyzing the AUC values 

over missing features. As mentioned above, the more missing features allowed, 

the more instances can be used in the training phase and it is expected that the 

model learned from more instances will perform better prediction. However, 

when instances with highly missing features are used in test phase, this noise 

will cause decrement in the predictive performance. Therefore, it is essential to 

choose the dataset which gives highest AUC value with relatively high number 

of instances. As shown in Figure 4.5, dataset1 and dataset2 has the same AUC 

value, 0.83. According to Table 4.4, dataset2 has higher number of instances 

(6871) than dataset1 (5620). As a result, in order to build the final predictive 

model dataset2 will be used in this section.  
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Figure 4.5 The distribution of AUC values obtained by ten-fold cross validation over 26 
different datasets 

 

 As seen in Figure 4.5, the predictive performance of REMARC varies 

between 0.79 and 0.83. Therefore, it is possible to say that REMARC is a robust 

algorithm even with highly missing data.  

 

 After the performance optimizing experiment is done, 6871 (dataset2) 

patients of 9451 are selected. The EuroSCORE AUC values are recalculated 

again for these 6871 patients (0.77 for additive and logistic). The ROC curves of 

the REMARC and EuroSCORE Additive and Logistic are given in Figure 4.6. 

The AUC value of the REMARC method with TurkoSCORE parameters is 0.83. 
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Figure 4.6 ROC curves of the REMARC method with TurkoSCORE risk factors 

 

 As a result, REMARC achieved higher performance with the TurkoSCORE 

risk factors when compared with the EuroSCORE factors (0.83 vs 0.79). 

REMARC also outperformed EuroSCORE Additive and Logistic on AUC basis 

(0.83 vs 0.77 on whole cohort).  

 

 In order to propose REMARC as a risk estimation system, the weights of risk 

factors and risk values are needed for each risk factor. Therefore, all instances in 

the selected dataset are used in the training phase to learn the weights and the 

rules. The weights of the risk factors are shown in Table B.3 of Appendix B. 

The knowledge learned by REMARC comprises the weights of features and the 

risk scores for each feature value, is shown in Table B.4 in the same appendix.  
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Chapter 5  
 

 

 

Conclusion and Future Work 
 

 

 

 

 

 

In this thesis, we gave a discussion of risk in real-life domains. Different risk 

domains are analyzed and some of the methods used specially in these domains 

are given. Then we showed how the risk estimation problem can be modeled as 

a two-class classification problem in machine learning. 

 

 We argued the effectiveness of a method that maximizes accuracy, for a risk 

estimation method. We proposed an AUC-based method instead of accuracy and 

presented important features of AUC, such as insensitivity to class distribution 

and error cost, as being statistically more consistent and discriminating. Then, 

we summarized the different methods proposed so far designed to maximize 

AUC. 

 

 Aiming to maximize AUC, we proposed a risk estimation method called 

REMARC. We have shown that for a categorical feature there is only one 

ordering that gives the maximum AUC. Then we showed the sufficient and 

necessary condition for a risk function to achieve this ordering. As a result, we 

proposed a risk function that finds the maximum possible AUC on one 

categorical feature. Aiming to maximize AUC, we handled the continuous 
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features using the MAD method, as it can discretize a continuous variable. Then 

we used these AUC values as weights in computing the risk scores as weighted 

averages of feature value risks. With this simple heuristic we averaged all 

feature risk values in order to achieve maximum AUC over the whole dataset. 

 

 We present the characteristics of the REMARC risk prediction model and 

how it should be interpreted. REMARC’s prediction model is easy to understand 

and interpret by domain experts. 

 

 After supporting the theoretical background, we compared REMARC with 26 

different algorithms. According to empirical evaluation, REMARC significantly 

outperformed 15 algorithms on an AUC basis and 13 algorithms on a time basis. 

It also outperformed all algorithms on the average AUC and 17 of them on an 

average time basis. 

 

 Cardiovascular surgery domain is selected as a test domain for REMARC. 

The data required are gathered from TurkoSCORE database. REMARC is 

compared one of the most popular cardiac surgery risk evaluation system, called 

EuroSCORE. Before this comparison, since EuroSCORE model is based on 

European cardiac patient population, demographic differences between the 

European and Turkish patients are investigated. Then, the validation of 

EuroSCORE model is performed on Turkish patient population. The calibration 

and discrimination of EuroSCORE model on Turkish cardiac patients are 

researched and it is shown that EuroSCORE model is not proper for Turkish 

patient population. Finally, EuroSCORE model and REMARC is compared. 

REMARC outperformed EuroSCORE on AUC basis by using the EuroSCORE 

risk factors on Turkish patient population. Then, the predictive performance of 

REMARC by using TurkoSCORE features is investigated. A REMARC based 

risk estimation system is proposed. 
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 As a future work, REMARC can be compared with other risk methods and 

methods designed to maximize AUC. In order to improve the performance of 

REMARC, ensembling methods can be employed. Since there exists no 

validation dataset on TurkoSCORE database, the validation of the model is left 

as a future work. Since REMARC outperformed EuroSCORE even with 

EuroSCORE risk factors, the application of the REMARC method to European 

patient dataset, which is used in EuroSCORE project, can be an interesting 

future direction. 

 

 To conclude, a fast and highly predictive risk estimation method is proposed 

in this thesis. A simple yet effective predictive model, it is understandable by 

domain experts and will be useful for the machine learning community. The 

properties of this method are shown by applying it to the cardiovascular surgery 

domain. 
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Risk Factor in EuroSCORE  Approximation in TurkoSCORE 
Age Yaş 
Sex Cinsiyet 

Chronic pulmonary disease 
Kronik Obstrüktif Akciğer Hastalığı (KOAH) 
(Orta KOAH, Ciddi KOAH) 

Extracardiac arteriopathy Periferik Arter Hastalığı 

Neurological dysfunction 
Serebrovasküler Hastalık (CVA, Non-invaziv  
karotis incelemesinde çapta %70'den fazla daralma) 

Previous cardiac surgery Operasyon insidansı (Redo kardiyak cerrahi) 

Serum creatinine 

Son Preoperatif Kreatinin Düzeyi (Kreatinin 1.5 - 
2.26 mg/dL, 
Kreatinin > 2.26 mg/dL ) 

Active endocarditis 

Đnfektif Endokardit (Pozitif kan kültürü ile infektif 
endokardit öntanısı, 
Ekokardiyografide vejetasyon veya görüntüleme 
yöntemleri ile  
endokardit öntanısı, Prostetik kapak endokarditi  ) 

Critical preoperative state 

Kritik Preoperatif Durum (VT / VF,Preoperatif 
Resüsitasyon,  
Preoperatif IABP, Preoperatif respirator, Preoperatif 
akut renal yetmezlik, 
Preoperatif inotrop gereksinimi) 

Unstable angina 
Unstabil Angina (CCS4C, CCS4D) veya 
Ameliyat öncesi stabil Angina Pektoris (CCS4) 
Moderate: Sol Ventrikül Ejeksiyon  
fraksiyonu kategorik (Grade II) 

LV dysfunction 
Poor: Sol Ventrikül Ejeksiyon 
 fraksiyonu kategorik (Grade III veya Grade IV) 

Recent myocardial infarct Operasyon öncesi geçirilmiş MI (< 3 ay) 
Pulmonary hypertension Sistolik pulmoner arter basıncı değeri ( mmHg ) > 60 
Emergency Operasyon Önceliği (Acil veya Salvaj) 

Other than isolated CABG 

Koroner arter bypass cerrahisi dışında veya 
alternatif 
olarak yapılan ameliyatlar: Kapak Cerrahisi, Kalp 
Nakli  
Kardiyak Tümör, Sol Ventrikül Anevrizma Onarımı, 
Batista operasyonu, Sol Ventrikül Restorasyon, 
Kök Hücre Đmplantasyonu, Transmiyokardiyal laser 
revaskülarizasyon 
Atrial septal defekt (ASD) Onarımı, Konjenital diğer 
defektlerin onarımı 
Aritmi cerrahisi Radyo-Frekans veya microwave 
Ablasyon, 
Kardiyak kist hidatik eksizyonu 

Surgery on thoracic aorta Aort Cerrahisi 
Postinfarct septal rupture Ventriküler septal defekt/rüptür Onarımı 

Table A.1 TurkoSCORE approximations 
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Appendix B 
 

 

TurkoSCORE 
 

 

 

 

EuroScore Risk Factor 
Feature 
AUC 

Age 0.674 
Sex 0.553 
Chronic pulmonary disease 0.581 
Extracardiac arteriopathy 0.542 
Neurological dysfunction 0.558 
Previous cardiac surgery 0.554 
Serum creatinine 0.606 
Active endocarditis 0.542 
Critical preoperative state 0.640 
Unstable angina 0.578 
LV dysfunction 0.607 
Recent myocardial infarct 0.617 
Pulmonary hypertension 0.740 
Emergency 0.640 
Other than isolated CABG 0.507 
Surgery on thoracic aorta 0.543 
Postinfarct septal rupture 0.503 

Table B.1 AUC values of EuroSCORE risk factors 
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# 
Risk Factor AUC of Risk 

Factor Weight 

1 Ameliyat öncesi dispne 
(NYHA klasifikasyonuna göre) 

0.688 0.376 

2 Yaş 0.668 0.336 
3 Operasyon Önceliği  0.634 0.268 

4 Sol Ventrikül Ejeksiyon fraksiyonu 
kategorik  0.612 0.224 

5 Son Preoperatif Kreatinin Düzeyi  0.610 0.220 
6 Ameliyat öncesi stabil Angina Pektoris 0.599 0.198 
7 BMI 0.588 0.176 
8 Konjestif Kalp Yetmezliği 0.580 0.160 

9 Kronik Obstrüktif Akciğer Hastalığı 
(KOAH GOLD Sınıflaması) 

0.578 0.156 

10 Diabetes Mellitüs 0.562 0.124 
11 Hemodinamik Status  0.561 0.122 
12 Preoperatif inotrop gereksinimi bulunması 0.558 0.116 
13 Serebrovasküler Hastalık 0.558 0.116 
14 Cinsiyet 0.555 0.110 

15 Operasyon insidansı (Redo kardiyak 
cerrahi)  0.555 0.110 

16 Geçirilmiş MI Sayısı 0.548 0.096 
17 Ritm statusu  0.548 0.096 
18 Aort Cerrahisi olacak 0.546 0.092 
19 Renal Yetmezlik 0.540 0.080 
20 Kapak Cerrahisi olacak 0.540 0.080 

21 Periferik Arter Hastalığı 
(Serebrovasküler hastalık hariç) 

0.539 0.078 

22 Preoperatif akut renal yetmezlik 
(anürü veya oligüri, 10 ml/saat) 

0.530 0.060 

23 Koroner Bypass Cerrahisi Olacak 0.526 0.052 
24 Preoperatif IABP takılmış olması 0.524 0.048 

25 Aritmi cerrahisi Radyo-Frekans 
veya microwave  Ablasyon olacak 

0.522 0.044 

26 Sol Ventrikül Anevrizma Onarımı olacak 0.514 0.028 
27 Hipertansiyon kategorik 0.514 0.028 
28 Karotis Cerrahisi olacak 0.511 0.022 

Table B.2 TurkoSCORE selected features and AUC values of each feature. AUC values are 
calculated by using ten-fold cross validation 
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# Risk Factor 
AUC of Risk 

Factor Weight 
1 AmeliyatOncesiDispne 0.729 0.457 
2 Yas 0.683 0.366 
3 Onceligi 0.637 0.273 
4 Ameliyat öncesi stabil Angina Pektoris 0.626 0.252 

5 Sol Ventrikül Ejeksiyon fraksiyonu 
kategorik  0.617 0.234 

6 Kronik Obstrüktif Akciğer Hastalığı 
(KOAH GOLD Sınıflaması) 

0.610 0.220 

7 BMI 0.605 0.210 
8 Konjestif Kalp Yetmezliği 0.604 0.209 
9 Son Preoperatif Kreatinin Düzeyi  0.597 0.193 

10 Preoperatif inotrop gereksinimi bulunması 0.582 0.163 
11 Serebrovasküler Hastalık 0.570 0.139 
12 Ritm statusu  0.560 0.120 

13 Operasyon insidansı (Redo kardiyak 
cerrahi)  0.557 0.114 

14 Diabetes Mellitüs 0.554 0.107 
15 Aort Cerrahisi olacak 0.552 0.104 
16 Hemodinamik Status  0.550 0.099 

17 Periferik Arter Hastalığı 
(Serebrovasküler hastalık hariç) 

0.545 0.089 

18 Kapak Cerrahisi olacak 0.545 0.089 
19 Cinsiyet 0.540 0.079 
20 Renal Yetmezlik 0.533 0.067 
21 Geçirilmiş MI Sayısı 0.530 0.060 
22 Koroner Bypass Cerrahisi Olacak 0.530 0.059 
23 Preoperatif IABP takılmış olması 0.526 0.051 

24 Preoperatif akut renal yetmezlik 
(anürü veya oligüri, 10 ml/saat) 

0.525 0.051 

25 Aritmi cerrahisi Radyo-Frekans 
veya microwave  Ablasyon olacak 

0.525 0.050 

26 Hipertansiyon kategorik 0.515 0.030 
27 Karotis Cerrahisi olacak 0.513 0.026 
28 Sol Ventrikül Anevrizma Onarımı olacak 0.512 0.025 

Table B.3 TurkoSCORE selected features and AUC values of each feature. AUC values are 
calculated by using whole dataset as training set (6871 patients) 
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Knowledge Learned By REMARC: 

 

Cinsiyet: AUC=0,540 Weight=0,079 

K: Risk=0,0236, #cases=1953 

E: Risk=0,0165, #cases=4914 

 

Yas: AUC=0,683 Weight=0,366 

88.5..90.0: Risk=1,0000, #cases=1 

1.0..15.0: Risk=0,0769, #cases=26 

<1.0: Risk=0,0769, #cases=13 

79.5..88.5: Risk=0,0638, #cases=94 

78.5..79.5: Risk=0,0408, #cases=49 

76.5..78.5: Risk=0,0376, #cases=133 

68.5..76.5: Risk=0,0348, #cases=1292 

67.5..68.5: Risk=0,0242, #cases=207 

66.5..67.5: Risk=0,0186, #cases=215 

63.5..66.5: Risk=0,0170, #cases=706 

58.5..63.5: Risk=0,0166, #cases=1148 

55.5..58.5: Risk=0,0100, #cases=698 

15.0..55.5: Risk=0,0071, #cases=2264 

90.0<: Risk=0,0000, #cases=3 
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BMI: AUC=0,605 Weight=0,210 

15.41631..16.014544: Risk=1,0000, #cases=3 

16.014544..20.173252: Risk=0,0375, #cases=160 

20.173252..23.120625: Risk=0,0347, #cases=663 

37.912354..53.550346: Risk=0,0336, #cases=119 

23.120625..25.23634: Risk=0,0172, #cases=1049 

25.23634..26.511805: Risk=0,0166, #cases=845 

26.511805..28.3771: Risk=0,0162, #cases=1295 

28.3771..29.6875: Risk=0,0148, #cases=743 

29.6875..37.912354: Risk=0,0121, #cases=1811 

53.550346<: Risk=0,0000, #cases=23 

<15.41631: Risk=0,0000, #cases=11 

 

AmeliyatOncesiAnjinaPektoris: AUC=0,626 Weight=0,252 

4: Risk=0,0365, #cases=631 

0: Risk=0,0326, #cases=429 

1: Risk=0,0226, #cases=1415 

3: Risk=0,0164, #cases=1521 

2: Risk=0,0105, #cases=2844 

 

AmeliyatOncesiDispne: AUC=0,729 Weight=0,457 

4: Risk=0,1190, #cases=168 

3: Risk=0,0448, #cases=1005 

2: Risk=0,0166, #cases=2654 

1: Risk=0,0061, #cases=2951 
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KojestifKalpYetmezligi: AUC=0,604 Weight=0,209 

1: Risk=0,0851, #cases=388 

0: Risk=0,0145, #cases=6394 

 

HemodinamikStatus: AUC=0,550 Weight=0,099 

3: Risk=0,2500, #cases=16 

2: Risk=0,1778, #cases=45 

1: Risk=0,0175, #cases=5657 

 

PreStatus3: AUC=0,526 Weight=0,051 

TRUE: Risk=0,2059, #cases=34 

FALSE: Risk=0,0176, #cases=6837 

 

PreStatus5: AUC=0,525 Weight=0,051 

TRUE: Risk=0,0889, #cases=90 

FALSE: Risk=0,0175, #cases=6781 

 

PreStatus6: AUC=0,582 Weight=0,163 

TRUE: Risk=0,0618, #cases=469 

FALSE: Risk=0,0153, #cases=6402 

 

DM: AUC=0,554 Weight=0,107 

5: Risk=0,1333, #cases=15 

4: Risk=0,0257, #cases=505 

2: Risk=0,0220, #cases=318 

0: Risk=0,0189, #cases=4187 

3: Risk=0,0123, #cases=1221 

1: Risk=0,0000, #cases=6 
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HipertansiyonHikayesi: AUC=0,515 Weight=0,030 

2: Risk=0,1538, #cases=13 

1: Risk=0,0188, #cases=3246 

0: Risk=0,0176, #cases=3577 

 

KOAH: AUC=0,610 Weight=0,220 

5: Risk=0,2857, #cases=7 

2: Risk=0,0938, #cases=64 

4: Risk=0,0714, #cases=14 

1: Risk=0,0577, #cases=104 

3: Risk=0,0356, #cases=872 

0: Risk=0,0140, #cases=5787 

 

RenalYetmezlik: AUC=0,533 Weight=0,067 

2: Risk=0,1333, #cases=45 

1: Risk=0,1000, #cases=30 

0: Risk=0,0163, #cases=6668 

3: Risk=0,0000, #cases=1 

 

SonPreopKreatinin: AUC=0,597 Weight=0,193 

3: Risk=0,1136, #cases=88 

2: Risk=0,0549, #cases=164 

1: Risk=0,0404, #cases=371 

0: Risk=0,0157, #cases=5336 
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PeriferikArterHastalik: AUC=0,545 Weight=0,089 

4: Risk=0,1667, #cases=6 

6: Risk=0,0480, #cases=333 

1: Risk=0,0174, #cases=115 

0: Risk=0,0169, #cases=6285 

3: Risk=0,0000, #cases=1 

5: Risk=0,0000, #cases=5 

2: Risk=0,0000, #cases=3 

 

SerebrovaskulerHastalik: AUC=0,570 Weight=0,139 

4: Risk=0,1667, #cases=12 

6: Risk=0,1538, #cases=26 

1: Risk=0,1111, #cases=9 

2: Risk=0,0474, #cases=274 

3: Risk=0,0333, #cases=60 

7: Risk=0,0280, #cases=143 

0: Risk=0,0157, #cases=6230 

5: Risk=0,0000, #cases=3 

 

MISayisi: AUC=0,530 Weight=0,060 

3: Risk=0,0545, #cases=55 

2: Risk=0,0222, #cases=405 

1: Risk=0,0199, #cases=2061 

0: Risk=0,0170, #cases=4175 
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RitmStatus: AUC=0,560 Weight=0,120 

6: Risk=0,3333, #cases=3 

2: Risk=0,3333, #cases=3 

1: Risk=0,0428, #cases=421 

0: Risk=0,0153, #cases=5821 

3: Risk=0,0000, #cases=3 

7: Risk=0,0000, #cases=5 

4: Risk=0,0000, #cases=1 

5: Risk=0,0000, #cases=1 

 

SolVentrikulEjeksiyonFraksiyonu: AUC=0,617 Weight=0,234 

4: Risk=0,2000, #cases=5 

3: Risk=0,0472, #cases=318 

0: Risk=0,0460, #cases=239 

2: Risk=0,0205, #cases=1950 

1: Risk=0,0123, #cases=4143 

 

Onceligi: AUC=0,637 Weight=0,273 

3: Risk=0,1667, #cases=36 

2: Risk=0,0664, #cases=256 

1: Risk=0,0459, #cases=567 

0: Risk=0,0130, #cases=6005 

 

Insidans: AUC=0,557 Weight=0,114 

5: Risk=0,5000, #cases=2 

3: Risk=0,0959, #cases=73 

2: Risk=0,0521, #cases=211 

1: Risk=0,0164, #cases=6534 

4: Risk=0,0000, #cases=14 
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OperasyonGrup0: AUC=0,530 Weight=0,059 

TRUE: Risk=0,0294, #cases=681 

FALSE: Risk=0,0173, #cases=6190 

 

OperasyonGrup1: AUC=0,545 Weight=0,089 

TRUE: Risk=0,0606, #cases=264 

FALSE: Risk=0,0168, #cases=6607 

 

OperasyonGrup3: AUC=0,552 Weight=0,104 

TRUE: Risk=0,0667, #cases=270 

FALSE: Risk=0,0165, #cases=6601 

 

OperasyonGrup4: AUC=0,513 Weight=0,026 

TRUE: Risk=0,1000, #cases=40 

FALSE: Risk=0,0180, #cases=6831 

 

KardiakProsedur1: AUC=0,512 Weight=0,025 

TRUE: Risk=0,0476, #cases=105 

FALSE: Risk=0,0180, #cases=6766 

 

KardiakProsedur9: AUC=0,525 Weight=0,050 

TRUE: Risk=0,0842, #cases=95 

FALSE: Risk=0,0176, #cases=6776 

Table B.4 Knowledge learned by using REMARC on TurkoSCORE dataset 
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