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ABSTRACT

RECOGNITION OF OCCUPATIONAL THERAPY
EXERCISES FOR CEREBRAL PALSY

Mehmet Faruk Ongun

M.S. in Computer Engineering

Advisor: Uğur Güdükbay

September 2018

Depth camera-based virtual rehabilitation systems are gaining traction in occu-

pational therapy for approaching patients with cerebral palsy. When developing

such a system, a domain specific exercise recognition method is vital. In order

to design a successful gesture recognition solution for this specific purpose, some

obstacles needs to be overcome, namely; detection of gestures that are not re-

lated to the defined exercise set and recognition of incorrect exercises that are

performed by the patients to compensate for their lack of ability. A combination

of solutions, that are based on hidden Markov models, targeting aforementioned

obstacles are proposed and elaborated on. The proposed solution works for upper

extremity functional exercises and critical compensation mistakes together with

restrictions for classifying these mistakes are determined with the help of occupa-

tional therapists. Afterwards, we first aim to eliminate the undefined gestures by

designing two models that produce adaptive threshold values. Then, we utilize

specific negative models based on an approach named feature thresholding and

train them specifically for each exercise to distinguish the compensation mistakes.

We conducted various tests using our method in a laboratory environment un-

der the supervision of occupational therapists and presented the results of our

proposed approach.

Keywords: gesture recognition, cerebral palsy, occupational therapy, hidden

markov model, exercise recognition, depth camera, virtual rehabilitation.
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ÖZET

SEREBRAL PALSİ HASTALIĞINA YÖNELİK
ERGOTERAPİ EGZERSİZLERİNİN TANINMASI

Mehmet Faruk Ongun

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Uğur Güdükbay

Eylül 2018

Serebral palsili hastaların rehabilitasyonuna yönelik olarak ergoterapistler

tarafından derinlik kamerası tabanlı sanal rehabilitasyon uygulamalarının kul-

lanımı ilgi çekmekte olan bir yaklaşımdır. Bu tip bir sistem geliştirirken, hedefle-

nen alana özel bir egzersiz tanıma yönteminin kullanılması oldukça önemlidir. Bu

amaca yönelik, başarılı bir hareket tanıma çözümü geliştirmek için bazı problem-

lerin aşılması gerekmektedir. Bu problemler kısaca egzersiz kümesinde tanımlı ol-

mayan hareketlerin tespit edilerek dikkate alınmaması ve hastalar tarafından fizik-

sel olarak yetersiz oldukları egzersizlerde bu eksiklerini telafi etme amacıyla yanlış

bir şekilde tamamladıkları egzersizlerin hatalı olarak tanınabilmesidir. Saklı

Markov model tabanlı olarak geliştirilen bir çözümler bütünü bahsedilen bu sorun-

lara çözüm olarak sunulmuştur. Geliştirilen çözüm üst ekstremite fonksiyonel

egzersizleri ile çalışmaktadır. Çözümümüz, ilk olarak tanımlı olmayan hareketleri

uyarlanmış eşik değeri üretebilmek üzere tasarlanan modeller aracılığıyla tespit

ederek, elemektedir. Sonraki adımda ise ergoterapistler tarafından belirlenen

telafi hataları ve bu hataların sınıflandırılabilmesi için gerekli kısıtlar kullanılarak

öznitelik eşikleme adını verdiğimiz yöntem üzerinde çalışan özel negatif modeller

aracılığıyla bu telafi hatalarının tespiti sağlanır. Geliştirilen yönteme yönelik

çeşitli testler uzman ergoterapistlerin gözetimi altında ve laboratuvar ortamında

tamamlanmış ve elde edilen sonuçlar sunulmuştur.

Anahtar sözcükler : hareket tanıma, serebral palsi, ergoterapi, saklı markov

model, egzersiz tanıma, derinlik kamerası, sanal rehabilitasyon.
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Chapter 1

Introduction

1.1 Motivation and Scope

Cerebral Palsy (CP) is a neurological disorder caused by a non-progressive brain

injury or malformation that occurs while the child’s brain is under development.

CP affects body movement, muscle control, muscle coordination, muscle tone,

reflex, posture, balance and cognitive skills. In most cases, it impacts fine motor

skills, gross motor skills, and sensory skills. The effects of Cerebral Palsy are

long-term, not temporary. The injury and damage to the brain are permanent.

The brain does not heal as the way other parts of the body might. On the

other hand, associative conditions may improve over time. Rehabilitation, which

includes physical and/or occupational therapy, is among the main intervention

methods to promote, maintain and restore the physical well-being of CP patients.

There are various approaches to CP rehabilitation. Virtual reality (VR) based

rehabilitation is one of the current approaches. VR-based approaches mainly aim

children both because it is effective to perform these exercises in the early ages and

because they are often put into practice as serious games to make them more at-

tractive and less boring for children. The emergence of depth cameras to be used

in schools and homes made it possible to capture the movements of the patients
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and promoted the use of these type of cameras in virtual rehabilitation [5]. How-

ever, for CP patients, exercising games targeting the general population proved

problematic in some aspects. First of all, these patients sometimes lack the abil-

ity to perform some moves properly and complete the game. They may also have

cognitive disabilities that cause them to perform unrelated/undefined moves and

sometimes requires therapists to step in, which causes the game engine to try and

recognize these movements that are out of context. Thus, playing/performing

regular exercising games are not practical in this case.

Another problem is the compensation mistakes that are made by the patients

during exercises. When the patients have insufficient muscle strength or muscle

control, they try to complete the movement by using some other muscles and/or

joints, e.g., twisting, bending their elbows during a shoulder exercise. These

incorrect exercises are definitely not desired by the therapists.

The solution we provide for the described problems is to develop a gesture

recognition system that is designed specifically for cerebral palsy patients. First

of all, it should be able to distinguish the movements that are not related to the

content of the application from the defined exercises. Secondly, it should be able

to detect and capture the compensation mistakes that are done by the patients.

Hence, the scope of this work to provide a gesture recognition solution to be used

in virtual rehabilitation applications for children with cerebral palsy.
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1.2 Contributions

The two contributions of this thesis are as follows.

• We propose two alternative methods, called universal negative model and

universal positive model, which enable the detection of non-gesture patterns

by producing an adaptive threshold value.

• We examine the problem of detecting small mistakes made by the patients

to compensate their lack of ability, control, and strength, and devise a new

approach in order to enhance the gesture recognition accuracy in such a

case.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives some needed back-

ground information on gesture recognition, occupational therapy, and cerebral

palsy. In Chapter 3 we describe the base structure of our solution. Chapter 4

focuses on detecting non-gesture patterns and Chapter 5 is mainly about recog-

nizing compensation mistakes. Chapter 6 presents the experimental method and

results. Chapter 7 concludes and describes future research possibilities.
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Chapter 2

Background and Related Work

We elaborate on the related work on gesture recognition approaches and occupa-

tional therapy exercises, specifically for Cerebral Palsy.

2.1 Gesture Recognition

Gesture recognition is among the fundamental research areas related to human-

computer interaction. It is concerned with recognizing meaningful expressions of

motion by a human. These motions may include hands, arms, head and/or body.

The applications of gesture recognition are manifold [6]:

• medical rehabilitation (e.g., physiotherapy, occupational therapy),

• human activity recognition,

• sign language recognition,

• virtual reality,

• forensic identification, and

• lie detection.

4



Over the years, various methods have been used for gesture recognition. How-

ever, Support Vector Machines (SVMs), Dynamic Time Warping (DTW), Ad-

aboost, and Hidden Markov Models (HMMs) are the ones that are most com-

monly used in the works that are similar to ours [7].

Regarding SVMs, it should be pointed out that, regular SVMs are capable of

classifying a total of two classes, causing the researchers to use multiclass SVMs

when more than two gestures are present in the vocabulary. It is stated [8] that

approaches that use SVMs perform gesture recognition by classifying single frame

gestures or poses, not temporal data. One instance that multiclass SVMs are used

together with Kinect is by Biswas et al. [9]. In their study, gestures are classified

using only single frames and histograms of depth values in that frame. A similar

research in [10] also makes use of single frames when recognizing gestures by

SVM.

Bloom et al. [11] use AdaBoost in an unconventional set of gestures, gaming

action dataset. They state that they choose AdaBoost specifically for the problem

at hand. Nevertheless, compared to the other gesture recognition methods, this

approach shows a relatively poor performance because of its unique set of gestures.

DTW is another method that gives successful results on gesture recognition.

The approach of Sempena et al. [12] is one example of DTW used with depth data

for gesture recognition. They claim to have a high success rate. However, they

mainly used the method for recognizing repetitive and simple human activities

like running and waving. An advantage of DTW is that it is a time-invariant

algorithm.

We choose HMMs as gesture recognition approach in our study. Before moving

onto examining the method in detail, the reasoning behind this choice needs to

be explained. It is clear that comparing studies that use different approaches

does not give accurate information because of the differences in the datasets used

in these studies. Because of that, research that compares different algorithms

using the same set of gestures are inspected thoroughly. Bicego et al. [13] com-

pare 14 different approaches to recognition and the data presented shows that the
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most successful methods are HMM-based methods. Another survey by Suarez et

al. [14] emphasize the high classification rate and prevalence of HMM-based solu-

tions in gesture recognition. HMMs are also extensively studied in sign language

recognition, which is similar to exercise recognition in principle. Comparing the

HMM solutions with alternatives in sign language recognition also pictures HMM

as a successful approach.

It should be noted that HMM is not argued to be the best approach for gesture

recognition. In essence, our assertion is that considering the literature that shows

HMM as a successful and relatively consistent model [8] for gesture recognition

that can be implemented under certain conditions as a time-invariant method [15],

e.g., DTW by taking advantage of the Viterbi algorithm, we conclude that HMM

is a gesture recognition method that we can successfully apply to the problem at

hand.

2.1.1 Hidden Markov Models

An HMM is a doubly-stochastic process with an underlying stochastic process

that is not observable (it is hidden), but it can only be observed through another

set of stochastic processes that produce the sequence of observed symbols. The

observation symbols could be discrete like a coin toss or continuous like speech,

gesture, and so on [16].

In order to explain the concept of the HMM, we give a simple coin toss example.

Consider yourself in a room with a curtain in front of you. On the other side of

the curtain, a coin toss process is performed and you can only see the result of it

as heads (H) or tails (T). H and T are the observation symbols. The underlying

mechanism that produces H or T is not known to you, which is composed of

hidden states.

The model in Figure 2.1 demonstrates how an HMM can be constructed to

represent such a coin toss experiment. In the model there are two states, each

representing a single coin; one is fair and the other one is biased towards H.
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Figure 2.1: A model that corresponds to the tossing of two different coins.

Again, these are the symbols that you can observe. The model has 0.5 transition

probability between these two states with the possibility to stay in the same state.

It can be assumed that another random process (e.g., another fair coin toss) is

used to decide which coin to flip each time and also another one to decide which

state to begin with at the start of the experiment. When the state is chosen the

result obtained is the one you see behind the curtain. The model notation for a

discrete observation HMM is given in Table 2.1.

Table 2.1: The summary of notations.

Notations Explanations

T the length of the observation sequence
N the number of states in the model S = {S1, S2, . . ., SN}
M the number of observation symbols V = {V1, V2, . . ., VM}
A=[aij] the state transition probability distribution
B=[bj(m)] the observation symbol probability distribution
Π = [πi] the initial state distribution

7



Using the model, an observation sequence, O = O1, O2, . . ., OT , is generated

as follows:

1. Choose an initial state q1 according to Π

2. Set t = 1

3. Choose Ot according to bqt(m), the symbol probability distribution

4. Choose qt+1 according to aqtqt+1

5. Set t = t+ 1; return to step 3 if t < T ; otherwise, terminate the procedure.

We use the compact notation Λ = (A, B, Π) to represent an HMM. The

specification of an HMM involves the choice of the number of states, N , the

number of discrete symbols M, and the specification of the three probability

densities A, B, and Π.

2.1.1.1 The Three Problems for HMMs

In order for HMMs to be useful in real-world applications, there are three funda-

mental problems that need to be addressed [17]. These problems are as follows:

• Problem 1 : Given the observation sequence O = O1, O2, . . . , OT and the

model Λ = (A, B, Π), how do we compute P(O | Λ).

• Problem 2 : Given the observation sequence O = O1, O2, . . . , OT , how do

we determine an optimal state sequence Q = q1, q2, . . . , qT .

• Problem 3 : How do we select the appropriate model parameters Λ = (A,

B, Π) to maximize the value of P(O | Λ).

Problem 1 is the problem that we solve to classify the given observation se-

quence. We do this by computing the probability of the model producing the
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sequence of observations at hand. The answer to this problem and the computed

probability can be viewed as the score of the model. If we have the solution

to Problem 1, we can compute the probability of producing the observation se-

quence, compare each model based on their score and choose the model with the

best score.

In Problem 2, which is a typical estimation problem, the aim is to specify a

hidden state sequence that is optimal for the observation sequence. Nevertheless,

there are various possible optimality criteria that could be utilized to solve this

problem and as a result, the choice of the criterion has significant effects on the

results. The recovered hidden state sequence is typically used to examine the

model structure and get the intended information such as the behavior of the

individual states.

Problem 1 is the testing problem for our model and Problem 3 is actually the

one that should be handled beforehand because it is the training problem. The

way Problem 3 is solved in an application of HMM, actually defines the success

of the application. In this stage, we try to find out the best possible parameters

that optimally adapt the model to the provided training sequences.

2.1.1.2 Solutions to the Three HMM Problems

When an observation sequence O = O1, O2, . . ., OT is given, there can be NT

different state sequence Q = q1, q2, . . ., qT . In that case, P(O | Λ) can be

computed as follows [18]:

P (O | Λ) =
∑

P (O, Q | Λ), (2.1)

which is clearly not a computationally-efficient solution. This procedure is called

the forward-backward procedure and it is used in HMM computations. It is an

iterative procedure and makes use of the dynamic programming principles. The

forward procedure in simple terms is as follows [18]:

9



The initiation of the forward probabilities with the joint probability of qi and

initial observation O1.

α1(i) = P (o1 | q1 = Si,Λ)P (q1 = Si) (2.2)

α1(i) = πibi(o1), t = 1, i = 1, 2, . . . , N (2.3)

The next iteration is computed as

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(ot+1), j = 1, 2, . . . , N (2.4)

The desired calculation of P(O | Λ):

P (O | Λ) =
N∑
i=1

αT (i) (2.5)

The backward procedure is as follows [18]:

βT−1(i) =
N∑
j=1

aijbj(oT ), i = 1, 2, . . . , N (2.6)

βt(i) =
N∑
j=1

aijbj(ot+1)βt+1(j), i = 1, 2, . . . , N (2.7)

P (O | Λ) =
N∑
i=1

β1(i)πibi(o1) (2.8)

As we pointed out, there are various choices for the optimality criterion that

will be used when solving Problem 2. Hence, there are different ways to solve the

problem. One possible approach is to evaluate each state individually and choose
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the most likely ones. This approach provides us with the maximized set of correct

states. However, this computation has a fundamental problem; this procedure

does not take into account the probability of state transitions that cannot be

made between states i and j (aij = 0). Because of that the Viterbi algorithm

is used to overcome this problem [19]. The Viterbi algorithm is very similar to

the forward-backward procedure; the difference is when considering the state at

time t, instead of taking into account of all possible preceding states, the Viterbi

algorithm only uses the state with the highest probability.

Finally, in order to solve problem three, which is the training problem, an ex-

pectation maximization process, the Baum-Welch algorithm is used [17]. Another

approach to this problem is the Viterbi Path Counting method [20]. However,

the Baum-Welch algorithm is much more studied and common in the literature

and we selected it because of its popularity.

2.1.1.3 Types of Hidden Markov Models

There are various options when it comes to designing the model for the HMM

approach [18]. The most popular three types of HMMs are as follows:

• Ergodic model : A model in which it is possible to reach any state from any

other state (see Figure 2.2).

• Left-to-right model : A model in which a state can only be reached from the

preceding states. These types of models inherently impose a temporal order

and thus widely used in speech and gesture recognition (see Figure 2.3).

• Parallel left-to-right model : Similar to the Left-to-Right model, except that

it has several paths through the states (see Figure 2.4).
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Figure 2.2: Ergodic Hidden Markov Model

Figure 2.3: Left-to-Right Hidden Markov Model

Figure 2.4: Parallel Left-to-Right Hidden Markov Model
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2.1.1.4 Literature on Using Hidden Markov Models

To the best of our knowledge, even though there is not any research that concen-

trates on the recognition of the erroneous exercises practiced by the patients as

we do in this study, there are many pieces of research on human activity and/or

exercise recognition with HMM.

Lu et al. [1] propose an HMM-based method using Kinect RGB-D camera.

Figure 2.5 gives the overview of their method. They extract the joint information

using the depth data provided by the camera and then generate histogram data of

joint locations. (with the spherical coordinate system) In order to overcome the

continuous observation symbol problem, they utilize vector quantization which

makes it possible to use discrete HMM. They tested their proposed approach

with their own dataset and also used the dataset MSR Action 3D provided by

Microsoft to compare their performance with other approaches. It is claimed in

the work that the proposed method outperforms the works that have been carried

out before their publication.

Yang et al. [21] focus on hand gesture recognition primarily and thus involves

the segmentation of hand from RGB data before HMM. They do not use depth

cameras. The features selected for recognition are hand position, velocity, size,

and shape. Another problem they have dealt with is data aligning problem. It

is mainly the time-variance problem and the method they utilized is a simple

aligning algorithm. It is asserted that with the use of various features together

in recognition, they managed to increase the recognition performance.

Uddin et al. [2, 22] propose an HMM-based approach that also uses histogram

data. However, both silhouette and joint data are determined as features for

different setups and a comparison is made between them. It is pointed out that

their approach gives better results using joint-based features. It is also important

that joint angles and not locations used in this research and judging by the

experimental results it is one of the better approaches on gesture recognition

with HMM. Type of HMM in this work is the Left-to-Right Model because of

its temporal nature. The problem requirements in these researches are similar to
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Figure 2.5: The overview of the method proposed in [1].

ours in this thesis and their methodology provides a good baseline approach for

dealing with gesture recognition. The framework of their recognition system is

presented in Figure 2.6.

2.2 Occupational Therapy

We focus on the recognition of occupational therapy exercises. Hence, having a

better knowledge of the domain of occupational therapy together with its goals

and application areas is significant in order to have a complete understanding of

the work presented.

In simple terms, occupational therapy is a sub-branch of physiotherapy, that

focuses on the daily activities of the patients. Even though occupational therapy

practitioners use similar exercises for the rehabilitation of the patient, in terms

of context and the evaluation of these exercises, it has different characteristics.

According to the practice framework published by The American Occupational
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Figure 2.6: The framework of the recognition system proposed in [2].

Therapy Association; occupational therapy aims to enhance the daily lives of in-

dividuals and groups in homes, schools, workplaces, and so on by utilizing the

everyday life activities in the therapy. Occupational therapists provide devel-

opment in body functions, body structures, motor skills, processing, and social

interaction skills by putting their knowledge of the transactional relationship

among the person and occupations the person is engaged into use and creating

an occupation-based intervention plan with the aim of successful social participa-

tion. Because occupational therapists aim the end result of participation, when

needed, they manage and modify the environment and objects within to increase

engagement of the person. Habilitation, rehabilitation, promotion of health and

wellness for people with needs related or unrelated to their disability are the

objectives of occupational therapy services [23].

Rehabilitation exercises are one of the tools that are being used by occupational
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therapy practitioners in various different cases. The target audience for occupa-

tional therapy includes all age groups from children to seniors and many different

types of disorders, namely: cerebral palsy, stroke, and Parkinson’s among many

others [24].

Taking advantage of the latest technologies is not uncommon in occupational

therapy. Especially in recent years, using virtual therapy and/or augmented

reality applications in therapy sessions gained traction. Wentao et al. [25] use

robotic therapy practices for cerebral palsy patients. In order to train the virtual

therapist (robot), they use HMM as a pattern recognition method.

However, with the emergence of RGB-D cameras that are more commercially

available, gesture recognition based on data obtained from RGB-D cameras be-

came one of the main focus areas [5]. One can find extensive research on the

subject of rehabilitation with gesture recognition that is done in cooperation

with therapists. These works are mainly on the subject of how these new types

of rehabilitation practices benefit the patients.

Chang et al. [26] propose a Kinect-based upper limb rehabilitation system for

cerebral palsy patients. Based on their experimental work, they argue that the

system they devised managed to increase the motivation of the test subjects and

also facilitated an improvement on the success-rate of the exercises. In another

publication, Chang et al. [27] test a similar system on young adults and get similar

successful results with regards to the rehabilitation of patients.

Another research by Pedraza et al. [28] describes a Kinect-based virtual reality

system and claims to improve patient mobility, aerobic capacity, strength, coor-

dination, and flexibility. Examining the existing research on this area shows that

using pattern recognition for occupational therapy has the potential to produce

beneficial results for patients.

16



2.2.1 Cerebral Palsy

Cerebral Palsy (CP) is a well-studied neurologic condition beginning in early

childhood when the child’s brain is still developing. The condition is non-

progressive and persistive through the lifespan. The term CP includes several

different types of disorders caused by disturbances in the developing brain which

results in activity, mobility, sensation and cognition problems [29].

CP could be classified according to the way motor skills are affected which also

indicates which part of the brain is damaged: spastic, dyskinetic or ataxic. An-

other type of classification is dictated by the location of impairment. Quadriplegia

is when both arms and legs are affected, diplegia defines the patients with impair-

ment at both legs and hemiplegia is when one arm and one leg on the same body

side is affected, as a result of brain damage that affects one hemisphere [30, 31].

Gross Motor Function Classification System (GMFCS) and Manual Ability

Classification System (MACS) are two classification standards that are used the

differentiate patients according to the severity of impairment. We focused on

children that need the occupational therapy exercises to improve their ability to

complete their daily activities and also able or expected to be able to perform

the exercises correctly. Another requirement was the ability to stand because

otherwise, the tracking accuracy of the depth camera reduces dramatically. As a

result, children that are classified in level 1 or 2 of GMFCS and in level 2 or 3 of

MACS are targeted during our study.

2.2.2 Exercise Set

The depth camera shows better performance when capturing the upper extrem-

ities and the patients often need to sit, lay down or hold onto something when

performing the lower extremity exercises which also reduces the camera’s accu-

racy. Because of these reasons, the chosen exercises for the purpose of this thesis

are upper extremity functional exercises. These moves focus on the movement
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of arms, specifically shoulder and elbow joints. These exercise groups are con-

sidered important by the occupational therapist because the better use of upper

extremities affects the daily lives of the patient greatly.

From the group of upper extremity functional exercises, five main gestures

were selected: shoulder flexion (180o), shoulder abduction (90o), shoulder external

rotation, elbow flexion and extension combined and PNF pattern of all other four

movements combined. The features determined for each exercise is given below.

• Shoulder flexion: the shoulder angle on the X-Z plane, the shoulder angle

on the Y-Z plane,the elbow angle on the X-Z plane, the elbow angle on the

Y-Z plane, and the body angle on Y-Z plane.

• Shoulder abduction: the shoulder angle on the X-Y plane, the shoulder

angle on the X-Z plane, the elbow angle on the X-Y plane, the elbow angle

on the X-Z plane, the head angle on the X-Y plane, and the body angle on

the X-Y plane.

• External rotation: the shoulder angle on the X-Y plane, the shoulder angle

on the X-Z plane, the elbow angle on the X-Y plane, the elbow angle on

the X-Z plane.

• Elbow flexion-extension: the shoulder angle on the X-Y plane, the shoulder

angle on the X-Z plane, the elbow angle on the X-Y plane, the elbow angle

on the X-Z plane, the head angle on the X-Y plane, and the body angle on

the X-Y plane.

• Combined PNF pattern: the shoulder angle on the X-Y plane, the shoulder

angle on the X-Z plane, the elbow angle on the X-Y plane, the elbow angle

on the X-Z plane, the head angle on the X-Y plane, and the body angle on

the Y-Z plane.
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Figure 2.7: Shoulder flexion: starting position (1), arm is raised 180o from the
front while keeping the elbow angle as 180o (2), and the end position (3).

Figure 2.8: Shoulder abduction: starting position (1), arm is raised 90o from the
side while keeping the elbow angle as 180o (2), and the end position (3).

Figure 2.9: External rotation: starting position (1), arm is raised from the side
while keeping the elbow and shoulder angles as 90o (2), the arm is rotated using
only the shoulder joint (3), the arm is rotated back (4), and end position (5).
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Figure 2.10: Elbow flexion and extension: starting position (1), the arm is raised
to the side while keeping the elbow straight and the shoulder angle as 90o (2), the
elbow is flexed to 60o (3), the elbow is extended back (4), and the end position (5).

Figure 2.11: Combined PNF pattern: starting position (1), arm is raised diago-
nally while keeping the diagonal movement line straight (2), and back to the end
position (3).
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Figure 2.12: Kinect v1.

2.3 Depth Cameras

Microsoft Kinect R©is developed by Microsoft and PrimeSense under the project

name “Project Natal” as a consumer-grade RGB-D camera [32]. Kinect v1 is

first released in November 2010 and Kinect for Windows SDK is released in

2012 [32]. Even though Kinect was released as a game controller for Xbox, it is

used in a variety of areas. In addition to Microsoft SDK, some other open source

APIs are also released like OpenKinect and OpenNI. The emergence of Kinect

originated numerous studies and developers to work on projects/researches that

utilize Kinect.

Kinect mainly provides the depth data along with the RGB data. However,

together with the Microsoft Software Development Kit (SDK) or any other open-

source Application Programmer’s Interface (API), the body silhouette and the

skeleton data (joint coordinates) can be obtained.
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Figure 2.13: Kinect v2.

2.3.1 Kinect v1 and Kinect v2

So far, two versions of Kinect are present: v1 and v2. While the first version

makes use of the structured light method, version 2 utilizes the time-of-flight

technology. It is claimed that v2 generates better results than v1, both by the

producer (Microsoft) and by the research community, e.g., [33]. Table 2.2 provides

a technical comparison of the features of Kinect v1 and v2.

Table 2.2: The comparison of Kinect v1 and v2.

Kinect v1 Kinect v2

RGB Camera (pixel) 640 × 480 or 1280 × 1024 1920 × 1080
Depth camera (pixel) 640 × 480 512 × 424
Max depth distance (m) 4.0 4.5
Min depth distance (m) 0.8 0.5
Horizontal FOV (degrees) 57 70
Vertical FOV (degrees) 43 60
Skeleton joint defined 20 26
Full skeleton tracking 2 6
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2.3.2 Kinect in Rehabilitation

Kinect has been used in many different areas, such as gaming, 3D reconstruction,

and motion capture. However, what we are concerned about here is the use of

Kinect in rehabilitation and exercise recognition. The research shows that it is

used in many different disorders such as Parkinson’s, Cerebral Palsy, and stroke

patients.

Clark et al. [34] examine the validity of Kinect for postural control assessment

and compare it against marker-based 3D motion capture cameras that provide

precise measurements. They conducted tests of functional reach and timed stand-

ing balance methods. Their results show that Kinect is able to provide reliable

data when compared to professional motion capture systems. They conclude

that Kinect can be used in clinical screening programs for a wide range of patient

populations.

The research presented in [35] analyses the reliability and validity of Kinect in

functional assessment activities, which we are also concerned with, and compares

it with stereophotogrammetry methods. They designed tests for four different

joints: shoulder, elbow, hip and knee and the results presented suggests that in

lower body exercises it is determined that Kinect behaves relatively poorly but

presents reliable results in upper-limb exercises compared to stereophotogramme-

try technology. These results confirm our choice of using Kinect and determining

upper-body rehabilitation activities in our dataset.

In [3] and [36], Kinect is assessed for use for the rehabilitation of people with

Parkinson’s disease and stroke disorders, respectively. Their work also shows that

Kinect provides significant results compared to the professional systems and are

reliable to use in a rehabilitation context. A comparison of Kinect data and a

research-grade motion capture system OptiTrack can be seen in Figure 2.14.
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Figure 2.14: The comparison of the OptiTrack motion capture system and the
coordinate data provided by Kinect [3].

2.4 Definition of the Setup

Our aim is to propose an exercise recognition system that specifically targets the

requirements of the occupational therapists. In our setup, when a cerebral palsy

patient is required to perform a specific exercise, the system should be able to

• eliminate the unrelated gestures that are done by the subject during the

exercise session and not count them as correct or incorrect exercises and

• recognize the compensation mistakes of that specific gesture and count them

as incorrect exercises.

The goal is not to distinguish exercises from each other, but to distinguish the
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compensation mistakes for the specified exercise. Hence, each time the patients

are directed to perform one predetermined exercise and during the session all

the gestures performed are either: non-gestures (gestures that are defined in

our exercise set but not the predetermined exercise are also classified as non-

gestures), the correct version of the predetermined exercise, or incorrect version

of the predetermined exercise.

Tables 2.3 and 2.4 show how many times each patient performed the gestures

for validation and training set, respectively. In the training set, the number

of incorrect exercises are much higher, that is because there are five different

compensation mistakes defined for each exercise. The correctness of each gesture

is determined by the supervising occupational therapists.

The patients that performed the exercises are chosen so that they are able to

perform the exercises without direct physical assistance so that Kinect can provide

more stable data and also abrupt movement changes like stopping, accelerating

or decelerating during the exercise could be prevented. It should also be noted

that when recording the gestures a basic normalization is done, i.e., we fixed the

number of frames recorded for each gesture by sampling the frames.
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Table 2.3: The validation set. The columns are Shoulder Flexion (SF), Shoulder
Abduction (SA), External Rotation (ER), Elbow Flexion and Extension (EFE),
combined PNF pattern (PNF), and Nongesture (NG). T and F stand for the
correct and incorrect versions of each exercise, respectively.

Patients SF SA ET EFE PNF NG
T/F T/F T/F T/F T/F

Patient #1 5/5 5/5 5/5 5/5 5/5 10
Patient #2 5/5 5/5 5/5 5/5 5/5 10
Patient #3 5/5 5/5 5/5 5/5 5/5 10
Patient #4 5/5 5/5 5/5 5/5 5/5 10
Patient #5 5/5 5/5 5/5 5/5 5/5 10
Patient #6 5/5 5/5 5/5 5/5 5/5 10

Total 30/30 30/30 30/30 30/30 30/30 60

Table 2.4: The training set. The columns are Shoulder Flexion (SF), Shoulder
Abduction (SA), External Rotation (ER), Elbow Flexion and Extension (EFE),
combined PNF pattern (PNF), and Nongesture (NG). T and F stand for the
correct and incorrect versions of each exercise, respectively. Because the training
set for nongestures are not performed by the six patients, the NG values for them
are left blank.

Patients SF SA ET EFE PNF NG
T/F T/F T/F T/F T/F

Patient #1 30/150 30/150 30/150 30/150 30/150
Patient #2 30/150 30/150 30/150 30/150 30/150
Patient #3 30/150 30/150 30/150 30/150 30/150
Patient #4 30/150 30/150 30/150 30/150 30/150
Patient #5 30/150 30/150 30/150 30/150 30/150
Patient #6 30/150 30/150 30/150 30/150 30/150

Total 150/900 150/900 150/900 150/900 150/900 1120
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Chapter 3

Gesture Recognition Model

In this chapter, we describe our baseline method for gesture/exercise recognition.

The focus of the design will be the unique characteristics of the problem at

hand and the resulting solution is intended to have the ability to recognize and

differentiate different upper-body exercises. Various problems regarding feature

selection, model structure, scaling problem, and continuous observation symbols

are addressed in detail and the solutions are elaborated in depth.

It is important to note the different requirements of the problem and not to

suggest a classical activity recognition approach here. It is specifically empha-

sized in [11] that when the recognition problem has untraditional aspects and

the devised system does not provide tailored solutions to these, experiments can

present diminished results in terms of recognition accuracy. The framework of

the proposed solution is given in Figure 3.1.
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Figure 3.1: The framework of the proposed solution
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Our framework first takes the frames from the depth camera as input and

processes the skeleton data provided by the camera’s SDK. When the starting

position is detected, we record the data at each frame as the gesture data until

we detect the end position. Afterward, we process the gesture data using the

universal negative model to see if it is a non-gesture (see Chapter 4). If the gesture

is defined in the exercise set, we apply feature thresholding to the collected data

(see Chapter 5). We then process the manipulated data using different negative

models to detect compensation mistakes (see Chapter 5). Finally, if no mistake

is detected, we classify the gesture as a correct gesture.

3.1 Feature Selection

Feature selection for the recognition task is one of the most significant steps in

gesture recognition. Some studies used various sets of features within the same

system and the results are drastically different between them [22].

The first thing to determine for feature selection is the data source for our

approach. Because Kinect RGB-D camera is used as hardware, we have two

different sources of data: silhouette and skeleton (joint) data.

The silhouette data is widely used in activity recognition systems. However,

compared to joint data, use of HMM with silhouette data is relatively uncom-

mon. In [37], activity data is classified using nearest neighbor matching. The

recognition features and body shape and gait position during walking activity.

Zhang et al. [38] utilize a Bag-of-3D points approach for recognition. This is

another example of non-HMM gesture recognition. Bobick et al. [39] propose a

successful recognition approach that uses modified silhouette data with a non-

HMM method. As stated before, the research in [22] uses silhouette with HMM

but the skeleton data shows up to 84% performance gain. Hence, it can be con-

cluded that the silhouette data is not suitable for use with Hidden Markov Models

whereas other approaches give better results. Further inspection makes it evident

that recognition using silhouette data generally used for daily activity recognition

29



instead of gestures like rehabilitation exercises. These findings suggest that the

use of joint data is more suitable to our problem at hand.

MS Kinect provides joint data in 3D space. The joint data also has its uses

in the literature on gesture recognition. Xia et al. [1] examine various different

approaches with joint data. It is possible to utilize joint locations, joint motions

and/or joint angles as features. Campbell et al. [15] examine the advantage and

disadvantages of each type of joint data. They focused on features’ shift-invariant

and rotation-invariant properties. It is argued that when joint locations are used,

the approach becomes vulnerable to expected coordination shifts in 3D space

and also the rotations of the subjects. When joint angles are used, the system

becomes shift/coordinate-invariant, however, it is still affected by rotations in

space. Thus, they propose the use of joint motion (i.e., derivative of location

or angle) as a shift-invariant and rotation-invariant feature set. However, one

disadvantage of using derivatives is that it depicts the same gestures performed

in different speeds as different gestures, naturally. We can also say that it causes

the loss of speed-invariance property.

Coordinate shifts are important in our problem because the position of the

subject relative to the camera is not always the same. Also, the body metrics of

each patient is also different. This makes it appropriate to choose a shift-invariant

feature set. However, rotation-invariance is not needed in this case. Because

depending on the gesture in our dataset, the subject directly faces the camera or

stands perpendicular to it during training and recognition phases. These shreds

of evidence suggest that using joint angles have no disadvantages with regards to

shift and rotational variance in our case and also provides the Viterbi algorithm

with time warping behavior [15].

Another requirement for joint angle feature is that it is important for the eval-

uation of occupational therapy exercises because the correctness of each gesture

is generally decided by the joint angles [24]. As a result, we chose different joint

angles or their 2D projections for each different gesture in our dataset. For each

gesture, the requirements and standards for the gesture are taken into account

and the joints that should be tracked for the gesture to be classified accordingly
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is determined by the occupational therapy researchers.

3.1.1 Feature Count

We choose the features for each gesture with the expertise of an occupational

therapist according to the nature of the exercise. However, it is also necessary to

determine or limit the number of features as shown in other similar studies.

In order to determine the number of features, a series of test are conducted. In

this stage, gestures that are not defined in our exercise set or incorrect exercises

are not taken into consideration. The tests are conducted as a multi-class classi-

fication problems where we try to distinguish each of the five exercises from each

other. Each exercise is performed a total of 20 times by three different subjects.

These performances are recorded so that for each feature count we can use the

same data. The results show that after reaching three as the feature count, we

are able to get reasonable results over 0.80 F1 score. Using four, five and six

features provide results over 0.91, four feature being the highest at 0.96 F1 score.

However, four features could be insufficient when trying to distinguish incorrect

gestures from the correct ones. As a result, it is determined that the feature count

should be between four and six, even though four is the highest. The graph that

shows the test results are depicted in Figure 3.2.

3.2 Hidden Markov Model Structure

HMMs have different types and the structure of each type dictates the recognition

property of the model devised. Our choice of model type is a Left-to-Right model.

It is already stated that the inherent temporal structure of Left-to-Right model

makes it useful for recognition problems that have temporal data like gesture and

speech recognition.
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Figure 3.2: The graph depicting the feature count versus F1 score.

The choice of model type is not sufficient to define our model structure. An-

other point that needs addressing is the number of states. There is no set-in-stone

approach for deciding the number of states and states being hidden states are the

reason for it. One should consider the properties of the recognition problem con-

cerned and determine the state count accordingly. However, one thing to pay

attention is that when the training data size is constant, increasing the state

count result in declined performance [17]. Hence, one needs to find the min-

imum count of states to represent the gesture. Although the states in HMM

are not a direct representation of frames or time intervals of the gesture, they

tend to produce observation symbols showing similar feature properties. When

we analyze our gesture set, each gesture starts with a “resting pose” [15], then

the related upper-limb reaches a starting point and reaches the final pose before

taking the same route back to resting pose. This process implies four stages of

gesture (excluding resting poses at the beginning and end): rest-to-start, start-

to-final, final-to-start, and start-to-rest. Thus, we designed our model with four

states between one start and one end states, a total of six states. The difference

between start and end states is that they have no self-transitions (see Figure 3.3).
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Figure 3.3: The proposed HMM structure.

As it is seen from Figure 3.3 each state can also “skip” the state that supersedes

it. These transitions are added to account for possible missing parts/frames of

the gesture. The research also shows that HMM has the capability to learn to

skip several states entirely, resulting gestures with 4-5-6 state modeled using a

6-state structure [15]. The initial state transition probabilities are uniformly

distributed [17].

3.3 Scaling Problem

Scaling is a commonly occurring problem in HMM applications. The reason is

that the state and observation transition probabilities tend to reach zero geomet-

rically fast. Hence, a scaling technique is needed to avoid mathematical under-

flow [16]. One basic solution proposed in [17] is to use a scaling coefficient for

both transitions. Nonetheless, there is no straightforward method of determining

the scaling factor. Another solution provided by Mann [40] uses a numerically

stable HMM implementation that also updates all relative computation formulas

for the transition probabilities.

The method mainly uses natural logarithms of each probability value instead

of their floating point representations. In order to achieve this functionality, we

created a variable type called “DoubleLN” and implemented all mathematical

operations (summation, multiplication, division, exponential operations, and so

on). The functions of HMM, namely the forward procedure, the backward pro-

cedure, the Viterbi algorithm, and the Baum-Welch algorithm, are updated as

explained in [40].
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3.4 Continuous Hidden Markov Model

Hidden Markov Models discussed and examined in Chapter 2 are mainly dis-

crete HMM solutions. In discrete HMM, observation symbols are discrete values.

Nonetheless, especially in gesture recognition the natural properties of gestures

are not discrete but continuous. This case also elaborated in [16] and two different

solutions proposed in order to extend discrete HMMs to continuous HMMs. Both

solutions involve the introduction of mixture densities, Gaussian M-component

mixture densities and Gaussian autoregressive M-component mixture densities.

We preferred the latter for our solution.

Another solution that can be applied to continuous observation symbols is us-

ing vector quantization. This method removes the need for a continuous HMM

and transforms the observation data into discrete values. However, during quanti-

zation loss of precision in observation data is inevitable and may cause a decrease

in the recognition precision. Thus, we chose to extend the discrete HMM solution

to the continuous HMM.

A comprehensive solution presented in [18] with regards to continuous HMMs.

The updated computation formulas for observation densities, state transition

probabilities and Baum-Welch parameters could be seen in the same study as

well.
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Chapter 4

Detection of Non-gesture

Patterns

As expanded on in previous chapters, HMM generates the recognition result by

comparing the likelihoods of all trained models and selecting the one with the

highest value. This approach works in contexts that all the input data is known

to be within the predetermined set of gestures. However, when it is possible to

have inputs that are not related to any gesture trained, like studies in [41], [39]

and [42], HMM does not function as intended. Even though the input is not in

any way related to the dataset, HMM picks the model with the highest probability

and naturally, this phenomenon causes problems.

The problem we are dealing with also has a similar context. Despite our pre-

determined dataset with both correct and incorrect gesture performances, it is

always expected from a subject to perform a gesture that is entirely unrelated.

Subject walking in/out of Kinect’s field of view, resting between exercises, ther-

apists interventions are examples of such situations. Thus, we need to propose

solutions to overcome this disadvantage of HMM.

Specifying a constant threshold value does not work because the likelihoods

of the models fluctuate altogether depending on the input properties, the length
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of the observation sequence being one of them [39, 43]. Therefore, a mechanism

should be devised that would produce an adaptive threshold value. This objective

could be achieved by another model or models that generate a threshold value

based on the input gesture. The ideal threshold value for a correct gesture would

be less than that of the corresponding model and would be greater than that of

all other models when a non-gesture is given as input. We have two solutions

that could provide us with adaptive threshold values that are close to the ideal:

universal negative model and universal positive model. We also compared the

performance of our two methods with the performance of the threshold model

proposed by Lee and Kim [4].

4.1 Universal Negative Model

The universal negative model is the concept of having a trained weak hidden

Markov model that encapsulates all gestures that are not included in our dataset.

Hereby, it is expected that when the observation sequence is a non-gesture, the

model with the maximum likelihood would be the universal negative model. It

can also be considered as another model competing with our gesture models with

the distinction of representing multiple gestures.

During the training session, we directed a total of five subjects to perform

various random gestures in front of Kinect for eight hours. The gestures included

possible gestures that can be performed in the subjects’ daily lives and in possible

recognition scenarios. The length, speed and the number of joints used in gestures

were not restricted during the training session. The only restriction was that none

of the gestures should be similar to the ones we have in our dataset. A total of

1120 gestures were recorded for the training of the universal negative model. Only

one model is used for all of the correct gestures in our dataset.

The model designed for the universal negative model can be seen in Figure 4.1.

We used a parallel left-to-right model [17]. It is essentially a left-to-right model

that obeys all state transition probabilities of linear left-to-right models. Its
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Figure 4.1: The structure of the universal negative model.

difference is that it actually is a cross-coupled connection of two parallel left-to-

right models. We decided to use such a model because the gestures in the training

set do not have well-defined properties, so it was not possible to generate a linear

left-to-right model that fits the general properties. More importantly; because

we used many different gestures for the training of this model, even though none

of them was part of our original exercise set, the model was generating high

likelihoods even for defined gestures. Thus, we needed a more fitting model

and the parallel left-to-right structure we implemented with more hidden states

delivered the desired results. The intuition behind the choice of a parallel model

is to be able model the movements of left and right arm separately.

4.2 Universal Positive Model

The universal positive model is a loosely fit model for the superset of all gestures

in the dataset. Its premise is to generate a probability that is smaller than that

of the correct gesture model for a given gesture, but larger than for a non-gesture

motion. In simple terms, one can think of this model as the average model of

all other models. Thus, when the gesture given to the system is defined in the

dataset as a correct or faulty gesture, it will generate a likelihood value that is less

than the corresponding model. When the given input is a non-gesture, because it
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is a weak model, it is expected to fit better into the non-gesture than the dataset

models. However, if it behaves exactly like an averaging model, it is possible

for this approach to generate values that is always less than some model in our

dataset.

As stated, for this approach to work; the model should be a loosely-fitted

model. Hence, we used the same type of HMM structure that we used for our

defined exercise gestures (see Figure 3.3). It should be noted that we didn’t use

just one model for all types of gestures. Each gesture is recognized using one

correct and several faulty gesture models, i.e., negative models (see Chapter 5).

We trained a separate universal positive model for each separate gesture.

4.3 Threshold Model

The threshold model is proposed by Lee and Kim [4]. It is also an HMM-based

technique for detection of non-gestures. The purpose of the approach is similar to

the one we have in the universal positive model. It is a weak model for all trained

gestures in the dataset. The difference of the threshold model with our universal

models is that it is not actually a trained model, but rather a “generated” model.

We have used the same training samples for the gestures in the dataset at once

to train a universal positive model. However, in their proposal, they used the

training data not as a whole to train their threshold model. They first trained

their gesture models separately and after all of the gestures are trained, the

hidden states from each gesture model, with their self-transition and observation-

transition probabilities fixed, are taken and all bonded together in the threshold

model. In order to provide complete transitivity, it is designed as an ergodic

model. Although, it should be stated; it is possible that using an ergodic model

could create some disadvantage because it does not have the temporal property

that left-to-right models have. This disadvantage is critical because it is what

makes this approach work on theory.
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Figure 4.2: A simplified structure of the threshold model [4].

The objective is that because the threshold model will have all the states of

the corresponding model, it will also be able to match the positive input gesture.

However, the specifically trained model will have a better fit because it represents

the temporal relation between the states better whereas the threshold model is

an ergodic model.

One potential weakness of the threshold model is that naturally it has a large

number of states and that causes huge performance loss in terms of processing

speed. In order to overcome this weakness, they reduced the number of states

based on relative entropy, which has been used as a measure of the distance

between two probability distributions [4, 44]. Because we do not need to dif-

ferentiate gestures from each other and we aim to capture the mistakes in each

gesture, we do not have a large number of models in each run. Hence, we did not

need to carry out such a reduction in the implementation of the threshold model.

It might be expected that while threshold model, having the same states as the

correct model will generate a reasonable likelihood, it is also possible that when

a non-gesture is not at all probable with any combination of the states in the
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threshold model, it could give again a similar value like an average of the trained

gestures. We suspect that problems could arise in cases where there are not many

trained models, like in our case. The results provided in the study demonstrates

great success in determining the non-gesture motions for the dataset used.

4.4 Comparison

In Tables 4.1-4.6, we observe that the universal negative model and the threshold

model have similar performances overall; the universal negative model having a

higher F1 score in some exercises while the threshold model having higher scores in

others. The precision and recall values are also similar, so it can be concluded that

these methods perform in a similar manner when creating an adaptive threshold

value. However, it should be noted that the performance of the universal negative

model depends on the training set. Under different conditions, reproducing the

same results may not be possible.

The universal positive model performs poorly compared to the other two ap-

proaches. The precision value of the universal positive model is lower than those

of the universal negative and threshold models, however, it is close to them. Nev-

ertheless, the real difference is in the recall value. One can also observe that

the number of false-negatives is much higher in the universal positive model for

each gesture, hence, it leads to a significantly low recall value. This could be

explained by the universal positive model having a temporal structure like the

actual gesture models. One thing that gives the threshold model an advantage is

its ergodic structure which makes the gesture models to have higher likelihoods

for correct gestures. However, because the universal positive model also has a

temporal structure (left-to-right model) it sometimes generates higher probabili-

ties for defined gestures than the gesture models, and as a result, producing false

negatives.
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Table 4.1: The comparison of the models for shoulder flexion.

TP FN TN FP Precision Recall F1 Score

Universal negative 51 9 58 2 0.9623 0.8500 0.9027
Universal positive 41 19 52 8 0.8367 0.6833 0.7523
Threshold 53 7 56 4 0.9298 0.8833 0.9060

Table 4.2: The comparison of the models for shoulder abduction.

TP FN TN FP Precision Recall F1 Score

Universal negative 54 6 56 4 0.9310 0.9000 0.9153
Universal positive 45 15 55 5 0.9000 0.7500 0.8182
Threshold 53 7 58 2 0.9636 0.8833 0.9217

Table 4.3: The comparison of the models for external rotation.

TP FN TN FP Precision Recall F1 Score

Universal negative 59 1 60 0 1.0000 0.9833 0.9916
Universal positive 39 21 49 11 0.7800 0.6500 0.7091
Threshold 53 7 57 3 0.9464 0.8833 0.9138

Table 4.4: The comparison of the models for elbow flexion and extension.

TP FN TN FP Precision Recall F1 Score

Universal negative 60 0 60 0 1.0000 1.0000 1.0000
Universal positive 47 13 54 6 0.8868 0.7833 0.8319
Threshold 56 4 56 4 0.9333 0.9333 0.9333

Table 4.5: The comparison of the models for combined PNF pattern.

TP FN TN FP Precision Recall F1 Score

Universal negative 49 11 52 8 0.8596 0.8167 0.8376
Universal positive 43 17 51 9 0.8269 0.7167 0.7679
Threshold 55 5 52 8 0.8730 0.9167 0.8943

Table 4.6: The overall comparison of the models.

TP FN TN FP Precision Recall F1 Score

Universal negative 273 27 286 14 0.9512 0.9100 0.9302
Universal positive 215 85 261 39 0.8465 0.7167 0.7762
Threshold 270 30 279 21 0.9278 0.9000 0.9137
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Chapter 5

Improved Accuracy for Incorrect

Exercises

We examined a variety of approaches that focus on gesture recognition. The

gestures in the dataset of those works consisted of different gestures that do not

usually resemble each other. We, in our dataset, also have 5 different occupational

therapy exercises. However, as stated in previous chapters, our purpose is not

differentiating these gestures from one another. For each gesture, we also have

several types of “incorrect” gestures that are actually versions of the same gesture

that is performed in an undesired way. These mistakes are determined by the

therapists and according to their guidance, added to our dataset. So, the aim of

this study to differentiate each gesture from their “incorrect” versions.

Because of the nature of this problem, traditional gesture recognition ap-

proaches may not perform well. This problem has some unique properties and

in works that also have such characteristics, the results of traditional methods

are found to be relatively poor [11]. A more tailored method needs to be engi-

neered in order to achieve improved accuracy in differentiating these correct and

incorrect gestures.
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We propose two different methods as a solution: feature thresholding and nega-

tive models. The solution of the negative model is actually built upon the solution

of the feature thresholding. In order to understand the significance and contribu-

tion of negative models, one needs to comprehend the reasoning behind feature

thresholding.

5.1 Feature Thresholding

The feature set for each gesture is determined with the help of extensive testing

under the supervision of occupational therapists. The features that would define

the gesture in the best way possible and provide the best differentiation are cho-

sen. However, the goal is to differentiate each gesture from its incorrect versions,

not from other gestures. As a result, another issue we focus on when determining

the features is the characteristics of these incorrect gestures.

For each gesture, the most common and most undesired mistakes were catego-

rized by the occupational therapists and the joint angles that best defines these

mistakes were identified. In this way, the joint angles and the critical values

that should or should not be exceeded by the patient are determined for every

incorrect gesture version.

The number of features that we use is restricted to be between four and six.

The four features (two shoulder angles and two elbow angles) are often necessary

and sufficient to define each gesture. Nevertheless, when the type of compensation

moves and resulting incorrect gestures are examined, extra features need to be

added.

Because CP patients often suffer from muscle stiffness, they try to compensate

for this stiffness by activating (flexing, extending) other muscles in their body.

Because we focus on upper extremity exercises, the compensation tendencies, and

common mistakes are defined by the therapists as a result of performing each

exercise with CP patients. When performing upper extremity exercises, three
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main compensation techniques come up: bending the body forward or backward,

bending the neck to activate the upper shoulder muscles, and bending the elbow

for shoulder exercises. Hence, additional to the elbow and shoulder angles, the

body and head angles are also added to the feature set of each exercise so that

we can catch the incorrect gestures.

There are two types of restrictions that define a gesture as an incorrect one

apart from being classified as a non-gesture:

• Type 1 : Moving a joint that should stay fixed more than a specified value.

For instance, when performing the shoulder flexion exercise; the elbow angle

on the X-Z plane should stay between 15o and -15o and the shoulder angle on

the X-Z plane between 75o and 105o. These two movements, i.e., moving the

shoulder forward or bending the elbow, take the tension from the shoulder

muscles that should complete the exercise and make the exercise ineffective.

Similar restrictions also exist for the body and head angles on different

exercises.

• Type 2 : Not reaching or exceeding a target angle. For the shoulder flexion

exercise, the shoulder angle on the Y-Z plane should reach a value between

75o and 105o at its peak point, stay there for a period of time and then

decrease. The real target value is 90o where the 15o tolerance value is

determined considering the inaccuracy of the depth camera.

What we do for these restrictions is that we modify the input value for these

features. For Type 1 restrictions, the feature value is not gradually changing

during the exercise, like elbow angle on the X-Z plane for the shoulder flexion.

In this case, we modify it so that it is TRUE when staying in the range specified

and FALSE when it is not. For Type 2 restrictions, the feature value is naturally

changing throughout the exercise, like shoulder angle on the X-Y plane for shoul-

der abduction. For these types of features, we record the real value of the angle

until it reaches the target point. When the target point is reached we change

the data to a value that is not a defined angle in our system (out of the range
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between -360o and 360o) and fix it until the real value exceeds the range or falls

below it.

5.2 Negative Models

Negative models are basically new models that represent the incorrect gestures.

The idea is similar to the Universal Negative Model explained in Chapter 4.1.

The difference is that the training set for these models consist of specific gestures

together with feature thresholding. These models are trained using determined

compensation mistakes as training set and using the same features as the correct

gesture model. Type 1 and Type 2 restrictions are also applied during the training

and recognition to increase accuracy. There are two types of negative models we

propose: fault specific negative model and gesture-specific negative model.

5.2.1 Fault-specific Negative Model

Fault-specific gesture model is actually the basic application of the negative model

concept. In this approach, a separate model is trained for each different compen-

sation mistake. The downside of this is that the computational cost is increased

as the number of the types of mistakes increases.

We compared fault specific negative model to the baseline solution that does

not use any specific negative model other than the universal negative model. The

only possible scenario for baseline solution to classify a compensation mistake

is by classifying it as a non-gesture. Hence, the sum of false negative and true

negative for each gesture equals to non-gesture count.

The results presented in Tables 5.1-5.6 show the superiority of fault-specific

negative model in terms of accuracy. Because the baseline solution, which is

similar to gesture recognition solutions that are used in generic exercise recogni-

tion problems, is not designed specifically to solve the problem of small mistakes;
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such a difference in accuracy is expected. One can see that the baseline solution

performs better in terms of recall value. This is because the baseline solution

classifies most of the incorrect gestures as correct gestures and false positives are

not taken into account when calculating recall. However, the objective of the

fault specific approach is to reduce false positives, and in that case, the precision

value is very important for comparison.

5.2.2 Gesture-specific Negative Model

The difference of gesture-specific negative model is that it encapsulates all types

of mistakes related to one exercise in a single model for each different exercise.

The reason we applied this approach is to increase processing speed. Even though

we did not have the number of mistakes to decrease the performance greatly in

our tests, such a solution could be needed for different exercises or patient types.

The gesture-specific negative model is compared to the baseline solution in the

same way as the fault-specific negative model (see Tables 5.7-5.12). The results

show us that the gesture-specific negative model performs better than the baseline

solution in terms of precision and F1 Score. The baseline solution has a better

recall value overall, but as it is explained in previous parts. the recall value is not

significant in this case.

5.2.3 Comparison

When we compare the results of these two approaches, we see that the fault-

specific negative model generates better results than the gesture-specific negative

model. This is because the gesture-specific model has different gestures in its

training set. The rationale for the usage of the gesture-specific approach was to

reduce the computational burden. While only one extra model is calculated for

the gesture-specific model, the fault-specific model requires as many models as

the number of defined mistakes.
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Table 5.1: The fault-specific negative model and the baseline solution for shoulder
flexion.

TP FN TN FP Precision Recall F1 Score

Baseline solution 24 6 9 21 0.5333 0.8000 0.6400
Fault-specific model 23 7 22 8 0.7419 0.7667 0.7541

Table 5.2: The fault-specific negative model and the baseline solution for shoulder
abduction.

TP FN TN FP Precision Recall F1 Score

Baseline solution 25 5 4 26 0.4902 0.8333 0.6173
Fault-specific model 25 5 21 9 0.7353 0.8333 0.7813

Table 5.3: The fault-specific negative model and the baseline solution for external
rotation.

TP FN TN FP Precision Recall F1 Score

Baseline solution 29 1 4 26 0.5273 0.9667 0.6824
Fault-specific model 27 3 26 4 0.8710 0.9000 0.8852

Table 5.4: The fault-specific negative model and the baseline solution for elbow
flexion and extension.

TP FN TN FP Precision Recall F1 Score

Baseline solution 26 4 2 28 0.4815 0.8667 0.6190
Fault-specific model 25 5 24 6 0.8065 0.8333 0.8197

Table 5.5: The fault-specific negative model and the baseline solution for com-
bined PNF pattern.

TP FN TN FP Precision Recall F1 Score

Baseline solution 27 3 10 20 0.5745 0.9000 0.7013
Fault-specific model 24 6 22 8 0.7500 0.8000 0.7742

Table 5.6: The fault-specific negative model and the baseline solution for all
exercises cumulatively.

TP FN TN FP Precision Recall F1 Score

Baseline solution 131 19 29 121 0.5198 0.8733 0.6517
Fault-specific model 124 26 115 35 0.7799 0.8267 0.8026
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Table 5.7: The gesture-specific negative model and the baseline solution for shoul-
der flexion.

TP FN TN FP Precision Recall F1 Score

Baseline solution 24 6 9 21 0.5333 0.8000 0.6400
Gesture-specific model 22 8 19 11 0.6667 0.7333 0.6984

Table 5.8: The gesture-specific negative model and the baseline solution for shoul-
der abduction.

TP FN TN FP Precision Recall F1 Score

Baseline solution 25 5 4 26 0.4902 0.8333 0.6173
Gesture-specific model 23 7 18 12 0.6571 0.7667 0.7077

Table 5.9: The gesture-specific negative model and the baseline solution for ex-
ternal rotation.

TP FN TN FP Precision Recall F1 Score

Baseline solution 29 1 4 26 0.5273 0.9667 0.6824
Gesture-specific model 25 5 20 10 0.7143 0.8333 0.7692

Table 5.10: The gesture-specific negative model and the baseline solution for
elbow flexion and extension.

TP FN TN FP Precision Recall F1 Score

Baseline solution 26 4 2 28 0.4815 0.8667 0.6190
Gesture-specific model 21 9 19 11 0.6563 0.7000 0.6774

Table 5.11: The gesture-specific negative model and the baseline solution for
combined PNF pattern.

TP FN TN FP Precision Recall F1 Score

Baseline solution 27 3 10 20 0.5745 0.9000 0.7013
Gesture-specific model 22 8 23 7 0.7586 0.7333 0.7458

Table 5.12: The gesture-specific negative model and the baseline solution for all
exercises cumulatively.

TP FN TN FP Precision Recall F1 Score

Baseline solution 131 19 29 121 0.5198 0.8733 0.6517
Gesture-specific model 113 37 99 51 0.6890 0.7533 0.7197

48



Chapter 6

Evaluation and Results

We proposed improvements to conventional gesture recognition methods in order

to provide a better solution to the problem at hand. In previous chapters, we

compared our proposed solutions to state-of-the-art approaches and the baseline

solutions and presented the resulting data. In this chapter, we focus on the overall

results of our proposed solution and present the results of using our solution in

occupational therapy.

The results of the test sessions are provided in Chapters 4 and 5. We describe

the method we used when conducting the tests here. During our study, constant

testing with occupational therapists and CP patients took place. Our target users

were hemiplegic CP patients that are classified in levels 1 or 2 of GMFCS and in

levels 2 or 3 of MACS standards. Six children with CP between the ages of 7 and

12 were chosen for performing the exercises.

A total of six detailed testing sessions were completed in a span of 24 weeks.

Each session lasted 45-60 minutes. The results presented in Chapters 4 and 5

belong to the last session. Previous sessions are performed for different reasons:

restricting the number of features, selecting features, defining compensation mis-

takes, tracking the children’s progress, and so on.

By means of collecting the data for all six sessions, we are able to observe the
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patients’ performance and evaluate the overall benefits of our solution. Never-

theless, it should be noted that the results obtained here do not prove that the

improvements to their performance is solely the result of using our solution. Dur-

ing this phase, these children were continuing their conventional rehabilitation

programs and were also having exercise sections in related facilities. Restricting

their rehabilitation program to our solution is not possible and creating control

groups having similar levels of complications is demanding medically and also

requires special permissions.

We use the success rate to evaluate children’s progress during this study. It is

simply the ratio of correctly performed exercises to all gestures performed by the

children. A parallel study conducted by occupational therapist used a different

method to measure the progress of children. Dynamic Occupational Therapy

Cognitive Assessment for Children (DOTCA-Ch) is used to assess children. All

data were collected strictly anonymously by an experienced therapist who was

blind to the treatment protocol. DOTCA-Ch also evaluates the child’s cognitive

state.

The pre-intervention scores of DOTCA-Ch were 3.81 ± 2.26 in orientation,

5.27 ± 2.09 in motor control and 15.72 ± 8.51 in visuomotor construction. After

the last session is completed, the orientation score was improved to 5.09 ± 2.15,

motor control was at 6.09 ± 1.77 and visuomotor construction was 18.54 ± 7.77.

These measures show a significant statistical difference in performance. It should

be noted that the cognitive abilities are also taken into account.

Figure 6.1 shows the improvement in children’s success rates when performing

the determined five exercises. The presented data are the cumulative result of

all children. A gradual increase is observed for all five exercises, PNF pattern

showing the least improvement.
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(a) (b)

(c) (d)

(e)

Figure 6.1: The success rate graph for (a) shoulder flexion, (b) shoulder abduc-
tion, (c) external rotation, (d) elbow flexion and extension, and (e) combined
PNF pattern.
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Chapter 7

Conclusions and Future Research

Directions

We propose a new approach that makes it possible to use gesture recognition

for occupational therapy exercises with children with cerebral palsy. In order

to differentiate gestures that are not defined exercises, which is an important

problem in our case considering the cognitive impairments of the children, we

proposed an alternative method called universal negative model and universal

positive model. The purpose of these methods is to generate an adaptive threshold

model. We were able to get similar results compared to a successful method

in the literature. We also proposed various solutions for capturing the exercise

mistakes done by the patients in order compensate for their lack of muscle control

and muscle strength. These incorrect exercises generally resemble the original

exercise and thus classified as a correct exercise by traditional gesture recognition

algorithms. With the help of our new approach, it is possible to get reasonable

results compared to the conventional approach.

Because this is not a problem that is dealt with before by other studies it is not

possible to make a direct comparison. Other approaches focus on other aspects

of gesture recognition whereas we focus on capturing the compensation mistakes.

However, the effects of our approach on children’s motor control and orientation
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progress are examined and a significant improvement is observed.

A very basic method to separate the time frames of each gesture from one

another is implemented. We used the starting and ending poses of each gesture

for this purpose. As future work, a sliding-window based method could be used

for better results. Recent developments in deep learning methods show that these

approaches could be utilized. Adapting the solutions we proposed to deep neural

network approaches could be a good research direction in the future.
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