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Abstract

We study the ground state properties of a one-dimensional li¢fdie-*He mixture interacting via a hard-core repulsive
potential at zero temperature. We use the self-consistent field approach to calculate the ground state partial structure factors, th
effective interactions between the species, and collective modes. Our results are in qualitative agreement with more sophisticate
approachesl 2000 Elsevier Science B.V. All rights reserved.

PACS:67.60.-g; 67.40.Db

1. Introduction good qualitative agreement with realistitie-*He
mixtures [4].
In this work we apply the self-consistent field
Ng and Singwi [1] in a series of papers have method of Ng and Singwi [1] to a boson—fermion mix-
studied a model Fermi liquid interacting via a hard- ture interacting via a repulsive hard-core potential in a
core repulsive potential within the self-consistent field one-dimensional (]_D) system_ Our main motivation is
approach. This simple model remarkably reproduced to study the 1D liquid®He—*He mixture since a di-
some key features of both the normal and spin- |ute solution of*He atoms in liquid*He form a fas-
polarized liquid®He providing insight into the nature  cinating quantum liquid as an example of interact-
of strongly coupled Fermi systems. These calculations jng boson—fermion mixture [5]. There has been some
along with some earlier reports [2] have shown that the experimental interest in 1D quantum liquids follow-
self-consistent field method of Singwi, Tosi, Land, and ing the suggestion [6] and subsequent realization [7,8]
Sjélander (STLS) [3] which was originally devised to  of confining He in carbon nanotubes. On the theo-
treat the short-range correlation effects in Coulomb retical side, the ground state properties of 1D lig-
liquids is also capable of handling systems interacting uid “He have recently been investigated by the varia-
via short-range potentials. We have recently extended tional hypernetted-chain calculations [9] and quantum
the approach of Ng and Singwi [1] to study a boson— Monte Carlo methods [10,11].
fermion mixture and found that our results are in Our primary aim in this Letter is to see how well the
ground state properties of a one-dimensional boson—
fermion mixture, and in particular liquidHe-*He
* Corresponding author. mixtures are described within the STLS approxima-
E-mail addresstanatar@fen.bilkent.edu.tr (B. Tanatar). tion scheme and a simple model interaction. For this
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purpose we employ a hard-core repulsive potential. determine the unknown quantitigss (ao), using the

Even though the model potential is far too simplistic pair-distribution functions

our approach is microscopic in that the realistic helium

potential can be incorporated. The self-consistent field gug(z) =1+ — 5

method (or the STLS approximation) renormalizes the (g p)

bare hard-core potentials tq yield reasonable ground % / d_qeiqz [Saﬁ @) —8a,3], A3)

state structure factors. We find that the STLS method 27

provides a reasonable qualitative description of liquid in which the static partial structure factors are ex-

3He-*He mixtures which may be useful in the analysis pressed in terms of the fluctuation—dissipation theorem

of static and dynamical properties. Static structure fac-

tors and collective modes can be qualitatively correctly 1 .

described by a simple hard-core interaction model. Sap(q) = _W /dw Xap (g, 1), )
0

oo

where xqp(q,w) are the density—density response
2. Model and theory functions. Choosing = ag in the above equations one
obtains a set of non-linear equations for the unknown
The two-component generalization of the STLS the- quantitiesVogep (ao) which are the multi-component
ory is based on the approximation that the fluctua- generalization of the similar expressions considered
tions in the density (of a given component) within by Ng and Singwi [1]. The self-consistent field method
the linear response theory is written &g, (¢, w) = has the same general structure as the random-phase
> p Xap(q, ®) V§Xt, wherey is the density—density re-  approximation (RPA) with bare interactions replaced
sponse matrix, and/®" is the external perturbing by effective interactions.
field. In the self-consistent field approach of Singwi
et al. [3] the response of the system to an external po-

tential is expressed as 3. Results and discussion
Si — Xo(q’w)[vextJr Veﬁ(q)an ] 1) We now special?ze to a 1D system of two-compo-
¢ ¢ ¢ Xﬁ: o g nent (boson—fermion) mixture. The total number of

particles in the sample with length is given by
wherex (¢, ») is the response of the non-interacting N = Ny + N, in terms of the number of bosonic
ath component. Combining the above equations, we and fermionic particles, and the corresponding particle
obtain the STLS expression for the density—density density iSN/L =n =np + nr. Denoting the fraction
response function of the two-component system of fermions in the mixture by, we have:r = xn and
Xap (@ @) = [x2(q. )1 g — VEN(q). The effec-  np = (1— x)n. We scale all lengths by the hard-core
tive interparticle interactions within the STLS scheme radiusag, and the energies by the effective Rydberg

are related to the pair-distribution functiogss(z) 1/(2W(2)) (we takes = 1) whereu =mpmp/(mp +
by [1,2] mp) is the reduced mass. For convenience the density
00 is expressed in terms afy = 1/(2ap). For fermions
dv in the mixture we also define the Fermi wave vector
Veff _ —/d / ’ 2L 2
op =7 | 42 e @ krao= (u/4x (/o).

< We have solved the above set of equations for the
where V(z) is the bare potential which we take to unknown parameter§pgag(ag) in the limit Vo —
be the same between all species. We consider a hard-oc (purely hard-core potential) for various densities
core potential of the forn¥ (z) = Vo6 (ag — z), where n/no, and fermion fractionx. We illustrate our re-
ao Iis the hard-core radius andy is the strength of  sults forx = 0.05 (dotted lines) and = 0.1 (solid
the potential (for purely hard-core potential, we let lines) in Fig. 1. The density dependencelggqs (ao)
Vo — o0). The Fourier transform of the effective is smooth and shows a broad peak arouywh ~ 0.7.
potential isngf(q) = 2Vogup(ao) sin(qao) /qao. We Although at low density all coefficient$ogqs (ao)
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Fig. 1. The density dependence of the coefficierigqg (ag) for
a strictly hard-core potentialVg — oo) at the 3He mole fraction
x = 0.05 (dotted lines) and = 0.1 (solid lines).

seem to vanish, around the peak region we have
Vogaa(ao) > Vogsa(ao) > Vogaa(ao). An interesting
observation is that the behavior@g,s(ao) is largely
independent of théHe mole fraction in the range
0.001< x < 0.1. In our previous calculations [4] for
higher-dimensional systems, we had found noticeable

x-dependence. To relate our dimensionless results to

the physical situation, we takey ~ 2.2 A and ob-
tain no ~ 0.23 A~1. Using the recent Monte Carlo
simulations [10,11] and hypernetted-chain [9] calcu-
lation results we take the equilibrium density to be
n = 0.036 A~1 which givesn/ng = 0.16 for the den-
sity of the liquid mixture. On the other hand, the crys-
tallization density is not precisely defined. The peak
region in Fig. 1 indicates the development of an or-
dered phase as we shall show in the following. Thus,
we usen/ng=0.16 and 0.7 to describe the liquid and
more ordered phases, respectively.

In Fig. 2 we show our results for the static structure
factorsSyps(¢) for the 3 He-*He mixture. The general
behavior of the structure factorsxat 0.05 and at two
different densities:/ng = 0.16 and 0.7 are depicted
in Figs. 2(a) and (b), respectively. We observe that
at the equilibrium density the mixture appears to be
rather structureless, a behavior quite different than
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Fig. 2. (a) The partial static structure factors for liqiHe-*He
mixture atx = 0.05 andn/ng = 0.16. The solid, dashed, and dotted
lines indicate Sa4(¢), S33(¢), and S34(q), respectively. (b) The
same fom /ng = 0.7.

the situation in 3D. Structure builds up as the system
moves towards a more ordered phase, a large peak
in Sa4(g) develops aroungag ~ 4. When we compare
our results forS.g(q) with those of Krotscheck and
Miller [9] we find reasonable qualitative agreement,
which shows that the basic features of 1D helium
mixtures may be qualitatively understood within a
simple hard-core interaction model. We note, however,
that the calculations of Krotscheck and Miller [9]
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Fig. 3. The partial pair-distribution functiogys(z) in a 1D liquid
SHe-4He mixture atr = 0.05. The solid and dotted lines indicate
n/ng=0.7 and 0.16, respectively.

pertain to a singleéHe impurity in a fluid of *He
particles. Furthermore, the weak-dependence of
the coefficientsVogups (ao) suggests that the structure
factorsin 1D helium mixtures will not depend strongly
on the 3He concentration, again a situation rather
different than in 3D.

Fig. 3 displays the pair-distribution functign(z)
at two different densities. At the equilibrium density
(n/no = 0.16) the ga4(z) is a monotone function
without any oscillatory character. As the density is
increased, oscillations in the pair-distribution function
set in. The overall behavior of44(z) is similar to
the case in purHe as calculated by Krotscheck and
Miller [9] and Boninsegni and Moroni [10].

The collective excitations are determined by solving
for the roots of the determinant of the dynamic
response matrix

1- V& @) xSq, ) — Vel x2(g, )
+ [Vl @ Vel @) - (vEf@)?]
x x5(q, ®)x(q, ) =0. (5)

We analyze the collective excitations of the liquid
3He-*He mixture within the mean-spherical approx-
imation [5] (MSA) for the3He component, which is

known to yield reliable results in 3D. In the MSA, the
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particle—hole continuum and the collective mode of a
Fermi system (described by the usual Lindhard func-
tion) is replaced by a single effective collective mode
excitation. More specifically, the non-interacting re-

sponse ofHe atoms is given by

2n36153)
(@+in)? —[ef? /So(@)12
whereeff) = ¢?/2m3 and So(q) is the Hartree—Fock

static structure factor. Using the response function of
the non-interacting Bose systems given by

2n4e(§4)

(@+im?2— V]2
in Eqg. (5), we obtain the collective mode energies

(6)

0
X3,MSA(CI, w) =

x3(q, ) = (7)

1
w1,2(q) = [5(1#33 + Y44)

1 2 1/2 1/2
+ E[(I/f33—¢44) + 4ir34 } . (8

where y33 = [/ /S0(q)1? + 2nze” VSN,
[6;4)]2 + 2n46(§4) Vf){f , and Y34 = 21’!36(;3)21’146(;4) X
[V??f]z. We note that free-particle energieé‘” =
g2/2m4 for the *He component are used in the non-
interacting Bose response function, unlike the Feyn-
man spectrum which contains the structure factor in
the single-particle dispersion relation. The MSA is
similar to the binary-boson approximation [12] in
which the®He response functiomg(q, ) is approx-
imated by the Bogoliubov form as fdfHe compo-
nent. In Fig. 4 we show the collective modes within
the MSA for liquid®He—*He mixture atx = 0.05, and
three different densities. We find two discrete modes
which may be associated with tAele and*He com-
ponents. At equilibrium density, the collective modes
have free-particle like character. This is mainly be-
cause ati/no = 0.16, the effective interactions are
very small. Such a behavior for 1D liqufthe was also
noted by Krotscheck and Miller [9]. As the density in-
creases a phonon-roton (pr) branch corresponding to
“He atoms (upper curves), and a second branch corre-
sponding to®He atoms (lower curves) develop. These
modes in the smal} region can be identified as zeroth
and second sound modes associated with the collective
3He and*He excitations, respectively [5]. THele ex-
citations at higher density show a dip similar to the

Va4 =
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Fig. 4. The collective modes of a 1D liquHe-*He mixture at
x =0.05 andn/ng = 0.16 (solid lines)n/ng = 0.5 (dashed lines),
andn/ng = 0.7 (dotted lines).

roton minimum which can be regarded as a mode cou-

pling effect. It is expected that relaxing the MSA and
using the 1D Lindhard function foxg(q, ) in solv-
ing the collective mode equation, will not affect our
results for small;.

It is important to note that a weak attactive inter-
action can lead to a dimerized phase’die atoms as
first pointed out by Bashkin [13]. Our purely repul-
sive interaction model does not consider this possibil-
ity. Amore elaborate approach using HNC approxima-
tion by Krotscheck and Miller [9] shows the formation
of bound state of twdHe atoms in the liquid mixture.

4. Summary

We have extended the model Fermi liquid inter-
acting with hard-core repulsive potential problem of
Ng and Singwi [1] to a mixture of boson—fermion
system in 1D. The self-consistent field method with
this model interaction is capable of describing quali-
tatively the main static and dynamic properties of 1D
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liquid 3He-*He mixtures. We have found that the over-
all properties of the mixture are reasonably well ac-
counted for in the range of densities describing a lig-
uid phase in equilibrium and a high density ordered
phase. Interestingly, the structure factors show very lit-
tle dependence on th#e concentration. The collec-
tive modes of the mixture show rather different behav-
ior depending on the density which would be interest-
ing to explore experimentally.
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