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Abstract

We study the ground state properties of a one-dimensional liquid3He–4He mixture interacting via a hard-core repulsive
potential at zero temperature. We use the self-consistent field approach to calculate the ground state partial structure factors, the
effective interactions between the species, and collective modes. Our results are in qualitative agreement with more sophisticated
approaches. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ng and Singwi [1] in a series of papers have
studied a model Fermi liquid interacting via a hard-
core repulsive potential within the self-consistent field
approach. This simple model remarkably reproduced
some key features of both the normal and spin-
polarized liquid3He providing insight into the nature
of strongly coupled Fermi systems. These calculations
along with some earlier reports [2] have shown that the
self-consistent field method of Singwi, Tosi, Land, and
Sjölander (STLS) [3] which was originally devised to
treat the short-range correlation effects in Coulomb
liquids is also capable of handling systems interacting
via short-range potentials. We have recently extended
the approach of Ng and Singwi [1] to study a boson–
fermion mixture and found that our results are in
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good qualitative agreement with realistic3He–4He
mixtures [4].

In this work we apply the self-consistent field
method of Ng and Singwi [1] to a boson–fermion mix-
ture interacting via a repulsive hard-core potential in a
one-dimensional (1D) system. Our main motivation is
to study the 1D liquid3He–4He mixture since a di-
lute solution of3He atoms in liquid4He form a fas-
cinating quantum liquid as an example of interact-
ing boson–fermion mixture [5]. There has been some
experimental interest in 1D quantum liquids follow-
ing the suggestion [6] and subsequent realization [7,8]
of confining He in carbon nanotubes. On the theo-
retical side, the ground state properties of 1D liq-
uid 4He have recently been investigated by the varia-
tional hypernetted-chain calculations [9] and quantum
Monte Carlo methods [10,11].

Our primary aim in this Letter is to see how well the
ground state properties of a one-dimensional boson–
fermion mixture, and in particular liquid3He–4He
mixtures are described within the STLS approxima-
tion scheme and a simple model interaction. For this
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purpose we employ a hard-core repulsive potential.
Even though the model potential is far too simplistic
our approach is microscopic in that the realistic helium
potential can be incorporated. The self-consistent field
method (or the STLS approximation) renormalizes the
bare hard-core potentials to yield reasonable ground
state structure factors. We find that the STLS method
provides a reasonable qualitative description of liquid
3He–4He mixtures which may be useful in the analysis
of static and dynamical properties. Static structure fac-
tors and collective modes can be qualitatively correctly
described by a simple hard-core interaction model.

2. Model and theory

The two-component generalization of the STLS the-
ory is based on the approximation that the fluctua-
tions in the density (of a given component) within
the linear response theory is written asδnα(q,ω) =∑
β χαβ(q,ω)V

ext
β , whereχ̃ is the density–density re-

sponse matrix, andV ext
α is the external perturbing

field. In the self-consistent field approach of Singwi
et al. [3] the response of the system to an external po-
tential is expressed as

(1)δnα = χ0
α(q,ω)

[
V ext
α +

∑
β

V eff
αβ (q)δnβ

]
,

whereχ0
α(q,ω) is the response of the non-interacting

αth component. Combining the above equations, we
obtain the STLS expression for the density–density
response function of the two-component system
χ−1
αβ (q,ω) = [χ0

α(q,ω)]−1δαβ − V eff
αβ (q). The effec-

tive interparticle interactions within the STLS scheme
are related to the pair-distribution functionsgαβ(z)
by [1,2]

(2)V eff
αβ (z)=−

∞∫
z

dz′ gαβ(z′)
dV

dz′
,

whereV (z) is the bare potential which we take to
be the same between all species. We consider a hard-
core potential of the formV (z)= V0 θ(a0− z), where
a0 is the hard-core radius andV0 is the strength of
the potential (for purely hard-core potential, we let
V0 → ∞). The Fourier transform of the effective
potential isV eff

αβ (q) = 2V0gαβ(a0)sin(qa0)/qa0. We

determine the unknown quantitiesgαβ(a0), using the
pair-distribution functions

gαβ(z)= 1+ 1

(nαnβ)1/2

(3)×
∫
dq

2π
eiqz

[
Sαβ(q)− δαβ

]
,

in which the static partial structure factors are ex-
pressed in terms of the fluctuation–dissipation theorem

(4)Sαβ(q)=− 1

π(nαnβ)1/2

∞∫
0

dωχαβ(q, iω),

where χαβ(q,ω) are the density–density response
functions. Choosingr = a0 in the above equations one
obtains a set of non-linear equations for the unknown
quantitiesV0gαβ(a0) which are the multi-component
generalization of the similar expressions considered
by Ng and Singwi [1]. The self-consistent field method
has the same general structure as the random-phase
approximation (RPA) with bare interactions replaced
by effective interactions.

3. Results and discussion

We now specialize to a 1D system of two-compo-
nent (boson–fermion) mixture. The total number of
particles in the sample with lengthL is given by
N = NB + NF , in terms of the number of bosonic
and fermionic particles, and the corresponding particle
density isN/L= n= nB + nF . Denoting the fraction
of fermions in the mixture byx, we havenF = xn and
nB = (1− x)n. We scale all lengths by the hard-core
radiusa0, and the energies by the effective Rydberg
1/(2µa2

0) (we takeh̄ = 1) whereµ=mFmB/(mF +
mB) is the reduced mass. For convenience the density
is expressed in terms ofn0 = 1/(2a0). For fermions
in the mixture we also define the Fermi wave vector
kF a0= (π/4)x(n/n0).

We have solved the above set of equations for the
unknown parametersV0gαβ(a0) in the limit V0 →
∞ (purely hard-core potential) for various densities
n/n0, and fermion fractionx. We illustrate our re-
sults for x = 0.05 (dotted lines) andx = 0.1 (solid
lines) in Fig. 1. The density dependence ofV0gαβ(a0)

is smooth and shows a broad peak aroundn/n0∼ 0.7.
Although at low density all coefficientsV0gαβ(a0)
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Fig. 1. The density dependence of the coefficientsV0gαβ(a0) for

a strictly hard-core potential (V0→∞) at the3He mole fraction
x = 0.05 (dotted lines) andx = 0.1 (solid lines).

seem to vanish, around the peak region we have
V0g44(a0) > V0g34(a0) > V0g33(a0). An interesting
observation is that the behavior ofV0gαβ(a0) is largely
independent of the3He mole fraction in the range
0.001< x < 0.1. In our previous calculations [4] for
higher-dimensional systems, we had found noticeable
x-dependence. To relate our dimensionless results to
the physical situation, we takea0 ≈ 2.2 Å and ob-
tain n0 ≈ 0.23 Å−1. Using the recent Monte Carlo
simulations [10,11] and hypernetted-chain [9] calcu-
lation results we take the equilibrium density to be
n= 0.036 Å−1 which givesn/n0 = 0.16 for the den-
sity of the liquid mixture. On the other hand, the crys-
tallization density is not precisely defined. The peak
region in Fig. 1 indicates the development of an or-
dered phase as we shall show in the following. Thus,
we usen/n0= 0.16 and 0.7 to describe the liquid and
more ordered phases, respectively.

In Fig. 2 we show our results for the static structure
factorsSαβ(q) for the3He–4He mixture. The general
behavior of the structure factors atx = 0.05 and at two
different densitiesn/n0 = 0.16 and 0.7 are depicted
in Figs. 2(a) and (b), respectively. We observe that
at the equilibrium density the mixture appears to be
rather structureless, a behavior quite different than

Fig. 2. (a) The partial static structure factors for liquid3He–4He
mixture atx = 0.05 andn/n0= 0.16. The solid, dashed, and dotted
lines indicateS44(q), S33(q), and S34(q), respectively. (b) The
same forn/n0 = 0.7.

the situation in 3D. Structure builds up as the system
moves towards a more ordered phase, a large peak
in S44(q) develops aroundqa0≈ 4. When we compare
our results forSαβ(q) with those of Krotscheck and
Miller [9] we find reasonable qualitative agreement,
which shows that the basic features of 1D helium
mixtures may be qualitatively understood within a
simple hard-core interaction model. We note, however,
that the calculations of Krotscheck and Miller [9]
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Fig. 3. The partial pair-distribution functiong44(z) in a 1D liquid
3He–4He mixture atx = 0.05. The solid and dotted lines indicate
n/n0= 0.7 and 0.16, respectively.

pertain to a single3He impurity in a fluid of 4He
particles. Furthermore, the weakx-dependence of
the coefficientsV0gαβ(a0) suggests that the structure
factors in 1D helium mixtures will not depend strongly
on the 3He concentration, again a situation rather
different than in 3D.

Fig. 3 displays the pair-distribution functiong44(z)

at two different densities. At the equilibrium density
(n/n0 = 0.16) the g44(z) is a monotone function
without any oscillatory character. As the density is
increased, oscillations in the pair-distribution function
set in. The overall behavior ofg44(z) is similar to
the case in pure4He as calculated by Krotscheck and
Miller [9] and Boninsegni and Moroni [10].

The collective excitations are determined by solving
for the roots of the determinant of the dynamic
response matrix

1− V eff
33 (q)χ

0
3(q,ω)− V eff

44 (q)χ
0
4(q,ω)

+ [V eff
33 (q)V

eff
44 (q)−

(
V eff

34 (q)
)2]

(5)× χ0
3(q,ω)χ

0
4(q,ω)= 0.

We analyze the collective excitations of the liquid
3He–4He mixture within the mean-spherical approx-
imation [5] (MSA) for the3He component, which is
known to yield reliable results in 3D. In the MSA, the

particle–hole continuum and the collective mode of a
Fermi system (described by the usual Lindhard func-
tion) is replaced by a single effective collective mode
excitation. More specifically, the non-interacting re-
sponse of3He atoms is given by

(6)χ0
3,MSA(q,ω)=

2n3ε
(3)
q

(ω+ iη)2− [ε(3)q /S0(q)]2
,

whereε(3)q = q2/2m3 andS0(q) is the Hartree–Fock
static structure factor. Using the response function of
the non-interacting Bose systems given by

(7)χ0
4(q,ω)=

2n4ε
(4)
q

(ω+ iη)2− [ε(4)q ]2
,

in Eq. (5), we obtain the collective mode energies

(8)

ω1,2(q)=
[

1

2
(ψ33+ψ44)

± 1

2

[
(ψ33−ψ44)

2+ 4ψ34
]1/2]1/2

,

where ψ33 = [ε(3)q /S0(q)]2 + 2n3ε
(3)
q V eff

33 , ψ44 =
[ε(4)q ]2 + 2n4ε

(4)
q V eff

44 , and ψ34 = 2n3ε
(3)
q 2n4ε

(4)
q ×

[V eff
34 ]2. We note that free-particle energiesε(4)q =

q2/2m4 for the 4He component are used in the non-
interacting Bose response function, unlike the Feyn-
man spectrum which contains the structure factor in
the single-particle dispersion relation. The MSA is
similar to the binary-boson approximation [12] in
which the3He response functionχ0

3(q,ω) is approx-
imated by the Bogoliubov form as for4He compo-
nent. In Fig. 4 we show the collective modes within
the MSA for liquid3He–4He mixture atx = 0.05, and
three different densities. We find two discrete modes
which may be associated with the3He and4He com-
ponents. At equilibrium density, the collective modes
have free-particle like character. This is mainly be-
cause atn/n0 = 0.16, the effective interactions are
very small. Such a behavior for 1D liquid4He was also
noted by Krotscheck and Miller [9]. As the density in-
creases a phonon–roton (pr) branch corresponding to
4He atoms (upper curves), and a second branch corre-
sponding to3He atoms (lower curves) develop. These
modes in the smallq region can be identified as zeroth
and second sound modes associated with the collective
3He and4He excitations, respectively [5]. The3He ex-
citations at higher density show a dip similar to the
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Fig. 4. The collective modes of a 1D liquid3He–4He mixture at
x = 0.05 andn/n0 = 0.16 (solid lines),n/n0 = 0.5 (dashed lines),
andn/n0 = 0.7 (dotted lines).

roton minimum which can be regarded as a mode cou-
pling effect. It is expected that relaxing the MSA and
using the 1D Lindhard function forχ0

3(q,ω) in solv-
ing the collective mode equation, will not affect our
results for smallq .

It is important to note that a weak attactive inter-
action can lead to a dimerized phase of3He atoms as
first pointed out by Bashkin [13]. Our purely repul-
sive interaction model does not consider this possibil-
ity. A more elaborate approach using HNC approxima-
tion by Krotscheck and Miller [9] shows the formation
of bound state of two3He atoms in the liquid mixture.

4. Summary

We have extended the model Fermi liquid inter-
acting with hard-core repulsive potential problem of
Ng and Singwi [1] to a mixture of boson–fermion
system in 1D. The self-consistent field method with
this model interaction is capable of describing quali-
tatively the main static and dynamic properties of 1D

liquid 3He–4He mixtures. We have found that the over-
all properties of the mixture are reasonably well ac-
counted for in the range of densities describing a liq-
uid phase in equilibrium and a high density ordered
phase. Interestingly, the structure factors show very lit-
tle dependence on the3He concentration. The collec-
tive modes of the mixture show rather different behav-
ior depending on the density which would be interest-
ing to explore experimentally.
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