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Abstract 

DECOHERENCE IN OPEN QUANTUM SYSTEMS: A 
REALISTIC APPROACH 

Kerim Savran 
PhD in Phvsics 

" 
Supervisor: Assoc. Prof. Tuğrul Hakioğlu 

J anuaı-y 2006 

Dccolıercnce nıcdıanisnıs of opcıı quantum systems ın intcractioıı with an 

cnvironırıcntal bath is invcstigat.cd using the master equation formalism. VViddy 

used two-level approximation is questioned. 

It has been shown that decoherence has different behavior in short and long 

time regimes. In short times, decoherence mechanisms, relaxahon, dephasing 

and leakage shmv a Gaussian-like behavior, whereas in the long time regime, 

they have exponential-like bdıavior as predicted by the Markov approxinıation. 

The non-ncgligiblc cffccts of the non-resonant transitionsin the short time regime 

is observed tu be more destructive in tenm·ı of decoherence, than the long time 

resona.nt transitions. ~/Iultilevel effects are also investigatecl in order to question 

the validity of the two-level approximation. It has been observed that the higher 

levels above the qubit subspace have signifıcant eliec-Ls in decoherence ratcs. 

Tlıerefore, the assumptions of the two-levcl approxiınation are proved to be 

irrclcvant •vith the validity of the two-lcvcl approximation. The rcliahility analysis 

of the Born-Oppenheimer approximation, which is the only approxiınation used, 

is also been explainecL 
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Finally, the outcome of the driving fields, >vhich are tools for the manıp

ulation of quantum systems, for a multilevel opcıı quantıım system has been 

dcınonstratcd. IL has bccn slıuwn that. Rabi oscillations cannot be obscrvcd in a 

mıılti-lcvclcd system as snıoothly as in a two-lcvclcd syst.em. 

Keywords: Decoherence, Master Equalion Formalism, Non-resonant Tran

sitions, ı'vlultilcvcl SysLems, Twc}-lcvcl Approximation, I3orn

Oppenheimer Approxiınation, Rabi Oscillations. 
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. 
AÇIK KUVANTUM SISTEMLERDE UYUMSUZLUK: . . 

GERÇEKÇI BIR YAKLAŞlM 

Kerim Savran 
Fizik Doktora 

Te~ Yöneticisi: Assoc. Prof. Tuğrul Hakioğlu 
Ocak 2006 

Çevresel bir rezervuar ilc etkileşimele olan açık kuvantunı sistemlerindeki 

uyumsuzluk mekanizmalan ana denklem formalizmi kullanılarak incelendi. 

Yaygın olarak kullanılan iki-seviye yaklaşıldığı sorgulandı. 

U_yumsuzluğun kısa ve uzun zaman bölgelerinde farklı davranışlar gösterdiği 

gösterildi. Kısa zamanlarda uyumsuzluk mekanizmaları, dunılma, eqevre k..-ı,ybı ve 

sızıntı, Gaussal-benzeri bir davranış gösterirken, uzun zamanlarda 1/Iarkov 

yakla.jıklığının öngördüğü sekilde üstcl davranış gösteriyorlar. Kısa zamanlardaki 

ihmal cdilcmcyccck rezonant olmayan gcçi~lcrin, uyumsuzluk koııusıında uzun 

zamanlardaki rezarıant geçişlerden daha yıkıcı oldugu gözleınlendi. 1 ki seviye 

yakla.~ıklığırıın geçerliliğini sorgulamak için çok-seviye etkileri de incelendi. Kubit 

alt-uzayının üstündeki enerji seviyelerinin uyumsuzluk zamanları üzerinde önemli 

etkileri olduğu gözlemlendi. Dolayısıyla, iki-seviye yakla.şıklığı için öngörülen 

varsayıınların, yakla§ıklığın geçerliliği ilc ilgili olmadığı gösterildi. Kullanılan tck 

yakla§ıklık olan Born-Oppenheimer yaklaşıklığının da güvenilirlik analizi yapıldı. 

Son olarak, kuvantum sistemlerin ınanipıılasyonıında kullanılan sürücü alan-

ların çok seviyeli açık kuvantum sistemlerindeki sonuçları gösterildi. Çok 
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seviyeli sistemlerde Rabi salınımlarının iki seviyeli sistemlerdeki kadar kolay elde 

edilemeyeceği gözlendi. 

Anahtar 

sözcükler: Kuva.nLum Uyumsuzluk, Ana. Denklem Forma.lizmi~ Rezo

nant Olmayan Geçi§ler, Çok Seviyeli Sistemler, İki Seviye 

Yaklcı§ıklığı, Born-Oppenheimer Yakla§ıklığı, Ra.bi Salınımla.rı. 

V ll 



Acknow ledgement 

I would like to express my deepest gratitude to Assoc. Prof. Tuğrul Hakioğlu 

for his supervision during research, guidance and understanding throughout this 

thesis. 

I like to thank to all my friends in physics department, as they kept my 

morale up all the time. I also like to express my thanks to Haldun Sevinçli for 

the discussions on the last chapter. 

I am also grateful for the improvements on my text made by Assoc. Prof. 

Ulrike Salzner and Çağrı Öztürk. 

Last but not the least, I would like to thank my family for their never ending 

support. 

vi ii 



Contents 

Abstract 

O zet 

Acknowledgement 

Contents 

List of Figures 

List of Tables 

1 1 nt roduction 

2 Methods and models 

2.1 I\:Iaster equation forınalisın 

2.1.1 Schrödinger picture 

2.1.2 Heisenberg picture 

2.L1 Interaction pieturc 

2.1.4 Dccohercncc in master cquation approach 

2.2 Approxirnations .............. . 

2.2.1 Born-Oppenheinıer approximation . 

2.2.2 Tvw-level system approximation . 

2.2.3 Rotating ·wa.ve approximation 

2.2.4 Markov approxima.tioıı .... 

ıx 

. 
lV 

Vl 

vii i 

ıx 

X ll 

XIX 

ı 

4 

5 

5 

6 

7 

8 

10 

10 

12 

13 

10 



2.2.S A general application 

2. 3 l\:Iodels . . . . . . . . . . . 

2.:3.1 Spin-boson model . 

2.:3.2 Central spin model 

2.3.:3 Rlocl1-Redfield model . 

2.3.4 Lindblad formalisın . . 

3 Superconducting systems and the Josephson effect 

3.1 .Josephson effect .................. . 

3.1.1 The R.CS.J model ............. . 

3.1.2 .Josephson eiTecL in the prcscnec of magnetic 11ux . 

3.2 SQUID dcviccs . 

3.2.1 dc-SQUID 

:3.2.2 rf-SQUID 

:3.2.3 SQUTD-El\if field model. 

4 Noise and decoherence of the system 

4.1 Decolıerence in SQ UID-E.:vi fieldmodel 

4.2 Spectral dependencies 

4.2.1 

4.2.2 

4.2.3 

4.2.4 

4.2.5 

4.2.() 

Temperature . . 

O hmic dependencies 

Cut-off frequency 

Spectral center . 

Spectral widtlı . 

Spectral amplit.ude 

5 Effects of Noise Parameters in Decoherence 

.5.1 Decolıerence rates at slıort and long times 

.5.2 1\·'lultilevel efl'ects 

5.2.1 Leakage . 

5.3 NonresonanL e1Iec:Ls 

5.:3.1 Short-tinıe bclıavior . 

X 

18 

22 

22 

24 

25 

27 

29 

29 

30 

3~1 

35 

36 

37 

:38 

45 

46 

54 

55 

60 

60 

62 

64 

65 

68 

70 

73 

75 

76 

77 



5.3.2 Long-time behavior . . . . . . . . . . . . . . . 

5.4 Limit.alions of the I3onı-Oppenheinıer approximation 

6 Driving fields in the realistic system-environment model 

6.1 Rabi oscillations ......... . 

6.2 

6.1.1 The dfect of higlıer lcvds 

6.1.2 The cffcct of the cnvironmcnt. 

6.1.3 Expected outcorne of realistic Rabi oscillations . 

NOT gate simulation 

7 Conclusions 

A The analysis of the compensating term 

B Proof of the reality and positivity of A (G) 

C N um erical code 

Xl 

80 

82 

87 
88 

89 

91 

92 

95 

99 

101 

105 

107 



List of Figures 

3. ı The effective circuit used in the RCSJ model. 

3. 2 The tilted-washboard potential for I/ Ico = 0.1. 

3. 3 A circular ring with two Josephson junctions. The dotted lines 

3ı 

32 

indicate the cantour for the integration. . . . . . . . . . . . . . . . 34 

3. 4 A rf-SQUID coupled to a rf circuit with mutual inductance 

coupling M. . . . . . . . . . . . . . . . . . . . . . . . . . 38 

3. 5 A rf-SQUID coupled to an electromagnetic field with mutual 

inductance coupling M. There is also an external fiux <I>x effecting 

the SQUID ring. 

3. 6 The potential and low lying energy eigenvalues, for a specific single 

degenerate case. Here the parameters are (3 "':' 1.6ı6 and 1 "':' 1. 753. 

The axes are normalized and dimensionless. 

3. 7 The potential and low lying energy eigenvalues, for a specific 

double degenerate case. Here the parameters are (3 "':' O. 772 and 

39 

43 

1 "':' 2.ı87. The axes are normalized and dimensionless. . . . . . . 44 

4. ı The dipole matrix elements defining the transitions from ground 

and first excited state for a specific single degenerate case. Here 

the parameters are (3 "':' 1.6ı6 and 1 "':' 1. 753. Here, the potential 

wells are symmetric with !f!x = 0.5 . . . . . . . . . . . . . . . . . . 47 

4. 2 The dipole matrix elements defining the transitions from ground 

and first excited state for a specific single degenerate case. Here 

the parameters are (3 "':' 1.6ı6 and 1 "':' 1. 753. Here, the potential 

wells are asymmetric with !f!x = 0.6 . . . . . . . . . . . . . . . . . 48 

X ll 



4. 3 The variation of the spectral functioıı I (w) versus w and v for 

-1 .::=; ı; .::=; 1 and pa.rametrized as A/T = 10, SO, 100 from the 

inncrmost to the outcrmost sıırfaccs respectively. . . . . . . . . . . 51 

4. 4 The variation of the spectral hınction I (w) versus w for Lorcntzian 

spectrum. Tn (a), E= 0.5 and w0 = 4 are fixecl parameters whereas 

A changes. Tn (b), E = 0 .. 5 and A = 3 are fixed pammeters and 

w0 changes. In (c), w0 = 4 and A = 3 are fixecl pa.ra.meters and E 

changes. . ............... . 

4. 5 The rclaxation curvcs for a degencratc two lcvd system, that is 

in intcraction with a power-law type spectrum wit.h A = 10 and 

v = -1 for various tempemtures. On the left; we have a broader 

time range \vhere time is nonnalizeel with an energy scale n, and 

52 

on the right we obsen'e closely the short time range. . . . . . . . . 5ô 

4. 6 The dephasing curves for a degenerate tvm level system, that is 

in intcraction with a power-law type spectrum wit.h A = 10 and 

11 = -1 for various tempera.tures. On the left; wc have a broadcr 

time range where time is nonnalizeel with harmonic frequency, and 

on the right \\'e observe closel.Y the short time range. . . 

4. 7 The relaxation and dephasing curves for a. degenerate two level 

system, that is in intera.ction -.,vith a power-law type spectrıım with 

57 

A = 10 and 11 = O for various temperatııres. . . . . . . . . . . . . . 58 

4. 8 The rdaxation curves for a degcnerat.e two lcvd system, that. is in 

interaction with a Lorentzian type spectrunı with A = 3, E = 3 

and w0 = 5 for various temperatures. On the left side is the overall 

behavior 'ivhere short time range is magnified on the right hand side. 58 

4. 9 The dephasing cun•es for a. degenerate tvm level system; that is in 

intcraction wit.h a LorcnLz;ian type spectrum witlı A = :i, f = 3 

and w0 = 5 for various teınperatures. On the lcft sidc is the overall 

behavior where short time range is ınagnified on the right hand side. 59 

X lll 



4. 10 The relaxation cunres for a degenerate two level system, that is in 

interaction with a. power-law type spectrıım >vith A = 1, T = O 

for varioııs IJ values. On the lcft side is the overall bdıavior where 

short time range is magnified on the right. lıand sidc. . . . . . . . 61 

4. 11 The dephasing curves for a degenerate two level system; that is in 

interaction with a power-law type spectrunı with /\. = 1, T = -

for ·various v values. On the left side is the overall behavior where 

short time range is magnified on the right hand side. 

4. 12Tlıe rclaxation curves for a dcgcncrate two lcvd system, that is in 

internetion witlı a pmver-law type spectrum \vith lJ = O, T = O for 

various ;\ values. On the left side is the overall behavior "vhere 

short time range is magnified on the right hand side. 

4. 1:3 The dephasing curves for a degenerate hvo level system, that is in 

interaction with a pmver-law type spectrıım with 11 =O, T =O for 

various A valnes. On the ldı. side is the overall bchavior where 

61 

62 

short time range is magnified on the right. lıand sidc. . . . . . . . 63 

4. 14 The relaxation curves for a degenerate two level system, that is in 

interaction with a Lorentzian type spectnurı with A = 3 and E = 3 

for various w0 values. On the left side is the uverall behavior where 

short time range is magnified on the right hand side. . . . . . . . 64 

4. 15 The dephasing curves for a degcncratc t.vm lcvd system; that is in 

intcmdinn with a Lorcntzian type spectrum with A_ = 3 and ıc = 3 

for various w0 = 5 values. On the left side is the overall behavior 

where short time range is magnified on the right hand sicle. . . . . 65 

4. Hi The relaxation curves for a clegenerate two level system, that is 

in interaction with a. LorenL;,-;ian type spectnım with A_ = ~) and 

w0 = 5 for varioııs f valnes. On the ldı. sidc is the overall bclıavior 

where short time range is ımı.gnified on the right lıand sidc. . . . . 65 

xrv 



4. 17The dephasing curves for a degenerate t\vo level system, that is 

in interaction with a LorenL;,-;ian type spectrum 'Nith A = ~) and 

w0 = 5 for varioııs f valucs. On the ldt. sidc is the overall hchavior 

·where short time rangc is ınagnified on the right lıand sidc. . . . . 66 

4. 18The relaxation curves for a degenerate two level system, that is 

in interaction with a Lorentzian type spectrurn witlı E = 3 and 

w0 = 5 for various spectral anıplitucles. On the left side is the 

overall behavior where short time range is magnifıed on the right 

hand sidc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

4. 19The dephasing curvcs for a dcgcncratc t.\vo lcvd system, that is 

in interaction 'Nith a Lorentzian type spectrunı witlı E = 3 and 

w0 = 5 for various spectral anıplitucles. On the left sicle is the 

overall behavior where short time ra.nge is magnified on the right 

hand side. . . . . . . . . . . . . . . . . . . . . . 67 

5. 1 The Gaussian decay fıL to the RD"YI clcnıcnt p11 (t) at slıort 

times, 1ındcr the infinence of a Lorentzian spectrum with spectral 

parameters A = 3, E = 3 and w0 = 5. The system is taken as a 

degenerate 2LS. . . . . . . . . . . . . . . . . . . 71 

5. 2 The exponential decay fit to the RD1f element p11(t) at short 

times, under the iniluence of a Lorerıt;,-;ian spectrum with spectra.l 

paranıeters A = ~), f = 3 and w0 = 5. The system is takcn as a 

dcgcncratc 218. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 

.5. :3 The relaxation and dephasing rates for a degerıerate two level 

system, that is in interaction with a Lorentziarı type spectnmı witlı 

E= 0.1, w0 = 1 andA= 1. The coupling range is R = 10 and the 

coupling strength is K = CU. The system is a. singiy degenera.te 

system .. 

xv 

75 



5. 4 The Leakage curves for multileveled systems in interaction >vith a 

LorenLı;ian spectrum with A = ~), w0 = 5 and E = ~). The system 

lı;-ıs coııpling rangc R = 10 and coııpling strcngth f>. = 0.2. On the 

ldt sidc wc see the lmıg time rangc whcrcas the short. time rangc 

is focuseel on the right hancl sicle. . 

.5. 5 The leakage rates for a clegenerate two level system, that is ın 

interaction ·with a Lorentzian type spectrum with E= 0.1, w0 = 1 

76 

anel A = 1. The coupling range is R = 10 anel the coupling 

st.rcngth is '" = 0.1. The system is a singiy dcgcncratc s:ystem. . . 77 

5. 6 The rclaxation and dephasing rates for a mıılti-l<~,rd system, that 

is in interaction \vith a Lorentzian type spectrunı with E = 0.1 and 

A = 1 for various spectra.l locations. The system is prepared with 

coupling range R = 10 and coupling strength I'L = 0.1. Energy 

levels are equally spaced with D.E = 1. . . . . . . . . . . 78 

5. 7 The Gaussian (a)relaxatioıı, (b)dephasing and (c)leaka.ge ratcs 

for nııılti-lcvcl systerns, that. is in intcraction 'lvith a Lorcntzian 

type spectrunı with E = 0.1 anel u..•0 = 2.4 for various spectral 

amplitudes. The s)rstem has equal energy level spacings D.R = 1, 

coupling range R = 10 and coupling strength I'L = 0.1. . . . . . . . 79 

5. 8 The Gaussian (a.)relaxation, (b)dephasing and (c)leakage ratcs 

for nııılti-lcvcl systems, that. is in intcractioıı with a Lorcnt.zian 

t.ype spectrum with f = 0.1 and u..'u = 2.4 for varioııs spectral 

anıplitudes. The system has equal energy level spacings D. 8 = 1, 

coupling range R = 1 O and coupling strength I'L = 0.1. The axes 

have logarithmic scales this time. . . . . 

5. 9 The Gaussian relaxation (first column), dephasing (second col

umn) and lcalmgc (third column) rat.cs for rnult.i-lcvcl systems; that 

is in intcractimı wit.h a rcalistic pm.ver-law spectrum of diffcrcnt 

characteristics, sub-ohınic (first row), ohmic (second row) and 

super-ohmic (third rmv) for various cut-off frequencies /1... Note 

80 

that the a.xes have logarithmic scales. . . . . . . . . . . 81 

xv ı 



5. lOThe exponential (a)relaxation) (b)dephasing and (c)leakage rates 

for multi-level systems) that is in interaction with a LorenLzian 

type spectrum •vith f = 0.1 and A = ı for varioııs spectra.l 

locations. The system h;-ıs equal cncrgy lcvcl spacings D.H = ı, 

coupling range R = 1 O and coupling strength K = O .1. . . . . . 82 

.5. 11 ftn for :3LS and .SLS asa function of spectrum center w0 . The figure 

is an illustration ofthe data in the Table 5.1. . . . . . . . . . . 86 

6. 1 Rabi oscillations in a 2LS. On the left hand side, we have fLtll 

population invcrsion as the Rabi fıdd is rcsonant with D.E, •vhcrcas 

on the riglıt lıand side~ as wR oj:. D.n, 've cannot ohscrvc a full 

population inversion. . . . . . . . . . . . . . . . 88 

6. 2 Rabi oscillations in a 2LS. On the left hand sicle, •ve have full 

population inversion as the Rabi field is resonant with D.R, whereas 

on the right hand side, as wn oj:. D.E) we ca.nnot observe a. fLtll 

population invcrsion. . . . . . . . . . . . . . . . 90 

6. 3 Rabi oscillations in a 2LS. On the lcft hand side, wc have full 

population inversion as the l{a.bi field is resonarıt with D.~', whereas 

on the right hand side, as WR 1 D.F;, \Ve cannot observe a full 

population inversion. . . . . . . . . . . . . . . 91 

6. 4 Rabi oscillations in a 2LS in interaction with an environmental 

bath) as the cnvironnıcntal coupling strcngth is varicd. 

6. 5 Rabi oscillations in a 4LS in intcraction with an cnvironrrıcntal 

bath, for various enviromnental coupling strengths. On the left 

han d si de, we see the populations of the qu bit su bspace, w hereas 

on the right hand sicle, we see the lea.kage to higher levels. 

6. 6 The time average over the R.abi pulse of the third-level occupa.ncy 

is shown as a fımr:t.ion of pulse arca, for difTcrcnL third lcvcl 

cncrgics, where E1 = ı , E2 = 2. The Rabi frequency is set 

as resoııant. with the first two levels. The inlet shovvs the sta.te 

occupations for the equally spacecl system levels, resonant witlı 

93 

93 

the Rabi frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

xvıı 



6. 7 The occupation p11 (t) versus the number of couples of ='JOT 

opcrations perfornıed, in a. 2LS that is in intera.ction with the 

cnviroıımcnt, for various cnvironnıcntal coupling strcngths. 97 

6. 8 The occupation p11 (t) versus the number of couples of ='JOT 

operations perforıned, in a 4LS that is in interaction with the 

environment , for various environmental coupling strengths. . . . . 98 

xvııı 



List of Tables 

5.1 The ~ı, parameter of the R.DL processes for 2LS, 3LS and 5LS 

against varying w0 . The other spectral parameters are f = 0.1 

andA= 1. ..... 

xıx 

85 



Chapter 1 

Introduction 

Quantum computation is one of the hattest fields of research in the recent years, 

as theoreticaliy, it promises great computational speed for certain algorithms and 

extensive security. 1 Numerous scientists are working on quantum algorithms, 

measurement techniques, state preparations, manipulations and so on. There are 

several candidate physical systems for the proposed quantum algorithms, and 

their dynamics are investigated in detail. Yet, stili there is no certain answer to 

the question, whether the long sought quantum computer will be built one day, 

since there are stili many practical problems on the way. 

One of the most important problems is decoherence, i.e. the loss of coherence 

in a quantum system that is in interaction with an environment. It is practicaliy 

impossible to isoiate any quantum mechanical system from the environment, and 

the interaction with the environment, which is often calied "noise", destroys the 

initialiy prepared quantum state very quickly. This is a great obstacle for the 

quantum algorithms, as they need a certain amount of time to be executed. 

Theoreticaliy, any quantum computation algorithm may be expressed in one 

and two qubit gate operations. Qubits are indeed the fact behind the power 

of quantum computation, as they are the quantum equivalent of bits in digital 

computation. But the distinctive property of the qubits is that, apart from the 

classical bit values ı and O, they can take any value between O and ı as well. 

In order to benefit from the quantum computation, a typical algorithm should 

ı 



CH A PTER 1. INTRODUCTION 2 

perform about 103 to 104 gate opcrations on the qubits before the decoherence 

takes place. Yet, such a task is still far from possible with the current techniques 

and knowledge. 

As qubits are the quantum analogoııs of digital bits, and as the name suggests, 

they consist of systems witlı two levels. Tlıouglı, apart from cert.ain system~, 

such as organic molecules with certain eliserete rotational s:ymmetries, or spin

l/2 systems, the ph,ysical systems consist of many levels , and often infinitely many 

levels. DuL this fac:L cloes not constrain the researchers to use such systems as 

qubit candidates, as several a.pproximation tcchnics and modds help to analyze 

the systerns of intcrcst as two lcvel systems. Apart from the nınrıher of lcvds 

in the system, there are still many hardships to face concerning the decoherence 

analysis. 

The system-environment interaction itself is mainly a problem. Though the 

system is often truncated to finite levels, the environment should be continuous, 

and should contain infınitely many levels, for the analysis to produce reasonahlc 

and rcalistic results. The intcract.ioıı of the system witlı tlıcsc infinitely many 

environmental modes is still impossible to trace, still further approximations need 

to be usecl. The system-environment couplings cause the system levels to couple 

to each other, in addition to the entanglement behveen system and environment. 

Furthermore the time evolution ofthe s:ystem turns out to be memory dependent, 

i.c. the bchavior of the system at any t.iınc clepencls on the confıgura.tion of the 

system at all carlicr times. After prcsenting thcsc obstades, it is clcaı· that a 

full analytical and exact solution of clecoherence is inıpossible. Even after many 

a.pproxima.tions, only the sinıplest system-environment models are analyt.ically 

solvable. 

In this thesis, I worked on the decoherence as well, though, I tried to avoid all 

approximations that I could. Eventually, my analysis was a nurnerical analysis. 

I also questioned the validit.y of the well-known t.wo lcvcl approximation, that 

trurıca.tes the physical system clown to two levels as cert.ain conditions are helcl. 

Tn Chapt.er 2, T will introduce the most frequently usecl approximations and 

interaction models that are used in the studies of decohereııce, and present 
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an example solution making use of these approxiınations. In ChapLer ~), I 

will brie11y introduce superconducting systems, Josephson eiTect and SQUID 

(Superconducting QUanLunı Int.crfcrcrıcc Device) systems, <ı.'> they are the most 

widcly rcfcrrcd systems that are bcing studied, and the model system adopted 

for my analysis. Tn Clıapter 4, T will be solving the SQUID-EM field interaction 

model, using the master equation a.pproach, explainecl briefiy in Chapter 2. 

Also the dependence of decoherence on the spectral paranıeteı-s ·will be observed 

qualitatively in this chapter. In Chapter ö, I will investigate the efieeL of system 

parameters in decoherence, nıakc quantitat.ive analysis, and also qucstioıı the 

2LA in detail, by comparing the onteome of nıultilcvded systems and two lcvdcd 

systems. Tn Clıapter 6, T will finally be inspecting the outcuırıe of applying 

driving fields to systems that are also in interaction 'vVith the environment. Tn 

this chapter, I will also demonstrate for a. simple single-qubit gate, and present 

the eiTect of environment and multilevels on the execution. 



Chapter 2 

Methods and models 

Decoherence is the result of interaction of a physical system with the environment, 

which is usually considered as a reservoir, i.e. infinitely large. Solution of the 

interaction of a finite system with an infinite reservoir is impossible by pure 

analytical methods. Even as the reservoir is taken finite, it should have a much 

higher dimension of Hilbert space than the system, and even in this case, tracing 

every possible process between the environment and the system is practically 

impossible. In order to overcome this fundamental problem, several methods and 

approximations are used. 

For a SQUID system that is used as a qubit, there may be several deco

herence sources such as electromagnetic environment, phonons, quasipartides, 

background charges, critical current noise, gate voltage fiuctuations, ete. In 

order to investigate the effects of such decoherence mechanisms there is a widely 

used technique called the master equation technique. Basically master equation 

technique consists of writing an equation of motion for the reduced density 

matrix. In closed quantum systems, i.e. systems that are isolated and not 

in interaction with any kind of environment, this method is quite simple and 

cffcctivc. As density matrix can deseribe anything one may wish to know 

about the system, solving the master equation, that is determining the time 

behavior of the density matrix enables us to deduce any behavior about the 

system at any time. However, for open systems, one cannot obtain exact 

4 
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solutions due to the reasons mentioneel above. In order to obtain reasonable 

mıswcrs, one has to use some simpler models and approxiıııations. Among the 

simple, solvabk models, the wdl-stııdicd spiıı-Doson ıııodcL 2 "spin-bath ıııodcL 6 

Bloclı-Redfield7-9 theory are the most freqw~ntly used orıcs. Abo as fıırthcr 

simplification is required some approximations such as :\!Iarkov approxiınation, 

two-level system approximatiorı, 2 • 13 Born-Oppenheimer approximation16 are also 

used frequerıtly. 

2.1 Master equation formalism 

:\!Iastcr cquatioıı, i.c. cquatioıı of nıotioıı of the density matrix nıay be ohtaiııcd 

ıısing basic quantum ıııedıanical facts. 17 This formalism has bccn used siııcc 

the early works of Bloch, Redfield and Faııo, 7-9 and there have been many 

studies using this formalism. 18- 20 There are three major pictures that are 

used in determining the time clepenclency of quantum mechanical observables, 

Schrödinger pietıırc, Heisenberg pictıın; and the interaction picturc. 

2.1.1 Schrödinger picture 

First, as we consicler the basic Schrödinger picture we know that the state vectors 

evolve in time with the Hamiltonian as 

i~lı,IJ(t)) = H(t)IW)) 
dt 

(2. ı) 

where H(t) is the Hamiltonian and for simplicity the Planck's constant iı is set to 

1. As wedeline a propagator U(t, t 0 ) that propagates the state lıb(t0 )) at initial 

time fo to the statc l\"(t)) at fina! time t, one obtains the relevant cquatioıı of 

ıııotion for the propagat.or 

idd U(t, t 0 ) = H(t)U(t, tu)
t 

(2. 2) 

Int.egraLing the ahove cquatioıı for a time independent Haıııiltonian givcs us the 

well-known propagat.or form 

U(t, tu)= eTp [-iH(t- tu)] (2. 3) 
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where for an explicitly time dependent Hamiltonian one obtains 

(2. 4) 

where the symbol T +-- defines a chronological time ordering operatar which orders 

products of time-dependent operators such that their time-arguments increase 

from right to left as indicated by the arrow. 

After defining the time evolutions of states, we can now write down the density 

matrix and obtain the master equation for Schrödinger picture. As we write down 

the density matrix as 

(2. 5) 

where wi are the weights of the states defining the initial wavefunction, and 

propagate the states by the propagator, we find that at a later time t, 

(2. 6) 

As we differentitate the above equation, we obtain the master equation 

d . 
dtp(t) =-ı [H(t),p(t)] (2. 7) 

which is also known as Liouville-von Neumann equation. 

2.1.2 Heisenberg picture 

As for the Heisenberg and interaction pictures, the master equations are obtained 

in a very similar manner. It is known that in the Heisenberg picture, the time 

dependence is transferred to the operators defining the observables from the wave 

functions. Any operatar in the Heisenberg picture (including the Hamiltonian) 

is obtained as 

CJ][(t) = [!t(t, t0 )CJ(t)[!(t, to) (2. 8) 

where the subscript H denotes the Heisenberg picture and the operatar without 

the subscript is in the Schrödinger picture. Here it is assumed that the operators 
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in both pictures coincide at the initial time t0 . Differentiating both sides of Eq. 

2. 8 we obtain the equation of motion 

(2. 9) 

where HH is the Hamiltonian in the Heisenberg picture. It can be seen that 

if the operatar O has no explicit time dependence and the system is isolated, 

i.e. 8Hj8t = O, the equation of motion obtained is same as the Liouville-von 

Neumann equation obtained in Schrödinger picture: 

(2. 10) 

as we put the density matrix p instead of the operatar O. 

2.1.3 Interaction picture 

The interaction picture is however a little bit different from both Schrödinger 

picture and Heisenberg picture as it is a more general picture while the other 

two are limiting cases for the interaction picture. Interaction picture can be 

considered for a case where two different systems interact with each-other as the 

name depicts. Let us write the Hamiltonian in two parts as 

H(t) =Ho+ fh(t) (2. ll) 

where Ho is the free part of the Hamiltonian, and H1 is the interaction 

Hamiltonian. Free Hamiltonian defines the systems in the absence of interaction 

and usually considered time independent, whereas the interaction Hamiltonian 

defining the interaction between the systems, is time dependent. Now we define 

two time evolution operators as 

Uo(t, t0 ) = exp [-iH0(t- t 0 )] (2. 12) 

and 

UI(t, to)= uJ(t, to)U(t, to) (2. 13) 
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where U(t, t 0 ) is the time evolution operator of the total system, the time 

evolution of any operator may be written as 

0 1 (t) = uJ (t, t 0 )0(t)Uo(t, to) (2. 14) 

and time evolution of any statc may be written as 

(2. 15) 

The relevant density matrix and interaction Hamiltonian ın the interaction 

pieturc can be obtained as follows: 

PJ(t) = UJ(t,ta)p(tn)U}(t,t0 ) 

HI(t) =Ur\ (t, to)Hr(t)Uo(t, to) 

(2. 16) 

(2. 17) 

and the corresponding Lionviile-von Neumann equation is therefore given as 

d 
dli(t) = -i [Hr(t), PI(t)]. (2. 18) 

Due to this equation of motion, density matrix ınay be obtained as 

PI(t) = PI(tu)- i [ds [Hr(s),pi(s)]. 
to 

(2. 19) 

This form of Lioııvillc-voıı Ncıımann equation is freqııently ııscd in dccohcrcncc 

calculations where a systcrıı-bath interaction occurs. For the master equation 

formalisın this ınay be used as a starting point where the interaction Haıniltonian 

in the interaction picture HI may be defined differently for different systems and 

diiierenL interaction mechanisms. 

2.1.4 Decoherence in master equation approach 

\Vhile using the master cqııation formalism the decoherence of the system can 

be obscrvcd via the rcdııced density matrix. Tlıc rcdııced density matrix is the 

density matrix defining only the system, and obtained by tracing the total dcnsity 

matrix over the environınental degrees of freedom. It thus has the diınensions of 

the systeın's Hilbert space. 
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As we cansicler a doseel system, which is not in interaction with an 

cnvironmcnt, and work on the density matrix, 'ivhich also has the dimensionality 

of the Hilbert space, the time dependence of the density matrix clcrncnts may be 

obtained a,,<; 

(2. 20) 

"vhere ck(O), cJ(O) are the amplitudes of the respective eigenstates for the initial 

state, and Hk, EJ are the respective eigenenergies. It is obvious that the diagonal 

element s are stationary in this Schrödinger picturc, and the non-diagonal element s 

cvolvc freely with the rclcvant cncrgy diffcrcncc as a frequency. 

However, for an open system that is in intcract.ioıı with an cnvironmcııt wc 

have a totally clifferent evolution for the density matrix. First, decoherence 

produces a spontarıeous diagonalization of the density matrix. The non-diagonal 

elements of the density matrix rapidly rednce to zero as a marrifestation of 

dephasing. As the non-diagonal elements deline the plıase clifference between 

the states, losing this plıase information is naıncd dcphasing. Depcading on 

the type of coupling wit.h the cnvironment other diffcrenccs are expected to 

occur between the open and doseel syst.ems. Rather than staying st.ationary 

the diagonal elements of the clensity matrix change with time depeneling on the 

interaction, and this process is called relaxation. As a priııciple property the 

tracc of the reducecl matrix still sums up to 1 at all times. This means that 

the population of cigcnstat.cs change, thoııgh as the population of one cigcnstatc 

increases, anotlıcr dccreascs. For instance, Rabi oscillations in hvo-level systems 

demonstrate this population inversion perfectly. 

There is also another process of clecoherence calleclleak.--ıge. As the quantunı 

computation is concerned: the t\vo levels ( conveniently the lowest hvo levels) are 

the only İnıportant levels in a physical system. Because of this fa.cL most of the 

modcls that are commonly usecl, as will be discusscd latcr in this chapter, inchıdc 

only the lowcst two lcvcls of a system. However, the prohabilit.y of the higlıcr 

levels to achieve a finite population is not negligible. This population escape is 
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called leakage, and can be expressed as 

L(t) = 1- 2: Pnn(t). (2. 21) 
n-1,2 

For an exactly two-level system, this expressian ıs zero. Hmve·v·er, for the 

truncated systems it is critica! to choose the truncation limit so that non

negligible leakage effects are correctly included in the solutions. 

2.2 Approximations 

As mentioned before~ open quantum systems cannot be dealt with, 'vVithout any 

approximation. As botlı the system of interest and the environınent that it 

is interacting witlı, has infinite degrees of freedonı, a direct approach for an 

cxact result fails. In order to overcome this situation, some approxinıations 

are freq uently used for thesc type of calcnlations. The most common of thcsc 

approximations are the Born-Oppenheimer approxiınation (BOA),1u the Two

Level approxiınation (2LA), 2 •15 and the IVIarkov approximation. 21 ,22 

2.2.1 Born-Oppenheimer approximation 

Rorn-Oppenheinıer approximation (BOA) in the most general sense, suggests that 

if the Hamiltonian is separable into two or more terms, the total eigenfunctions 

are products of the eigenfunc:Lions of the separate parts of the Hamiltonian. This 

can be simply slıown as 

(2. 22) 

where 0ı (q1) is an eigenfunction of H1 (q1 ), '1/J2(q2 ) is an eigenfunction of H2(q2), 

and 1jJ ( q1 , q2 ) is an eigeııfuııc:Lion of the total Hamiltonian II. 

This approximation was fırst used on nuclcar and atomic physics, considcring 

the Hamiltonians and \vavcfunctions of clcctrons and rmclens. Arıother aspect of 

this approxiınation also takes place "vhere the mavement of the nucleus due to 

electronic interaction is so slow that it is negligible compareel to the mavement of 
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the electrons. Finally, the nucleus can be considered stationary >vhile electrons 

orbit around it, and their eigenfundions can be separately solved to fınd the 

eigenfunction of the wlıolc atom. 

In our casc of open quantum systenıs , the Haıniltoııian can he separated into 

the system Haıniltonian H.~ and the enviromnental Hamiltonian H~. Considering 

the eigenfunctions of both Hamiltonians separately, and, assnıning the total 

eigenfunction to be a product of those hvo, we obtain a separable master equation 

solution for the opcn system such as 

PT(t) = p(t) 0 Prc(t) (2. 23) 

"vhere p(t) defines the dcnsity matrix built with system eigenfunctions and Pe(t) 

defines the clensity matrix built with environmental eigenfunctions. \Vith this 

approach, the interaction is treated perturbatively. Here, the entanglement of 

the s:ystem and the environment is totally neglected. This approxiınation may 

givc doııbtful results in the long time rcgimc however, it would be impossible 

to ealeulatc the bdıavior of the system, eoıısidcring the cntanglcmcnt >vith an 

infinitely large environmental reservoir. 

Going one step further in the Eq. 2. 23 woulcl be to assume the environment 

stationary. This is like neglecting the mavement of the nucleus with respect to 

the electrons. Although the system of iaterest may be iııfiııiiely large, practically 

it may he trııııcatcd in the cncrgy spectrum. This truncatioıı will be analyzed 

in a later scction. The tnıncat.cd system will have mudı less dcgrccs of frccdom 

conıpared to an infinitely large environmental reservoir. Therefore the processes 

occurring between the system and the reservoir effect the system, however 

it may be neglectecl for the reservoir. Finally, ·with the Rorn-Oppenheimer 

approxinıa.tioıı we are left with an expressinn like 

PT(t) = p(t) ,g, Prc (O). (2. 24) 

This expressian a .. <;sumcs the system and cnvironmeııt to be seperable and also 

the environment is left unchanged throughout the time. Thus Born-Oppenheimer 

a.pproxima.tion greatly simplifies the calculation of the open system dynamics. 
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The environmental density matrix with this approximation is considered as a 

thermal equilibrium or a vacuum most of the time. 

2.2.2 Two-level system approximation 

While analyzing the interactions of a system with an infinite environment it is 

impossible to make analytical calculations with the master equation formalism 

if the system under consideration is also considered to have large dimensional 

Hilbert space. Therefore a truncation is often done making use of the fact that 

the system energy levels that are of concern are mostly affected from the levels 

that are in a finite range 

The most aggressive truncation procedure is used to obtain a two-level 

system. Two-level systems have considerable importance concerning the quantum 

computation and qubit operations. Although not essentially required, the qubit 

operations and quantum algorithms are executed trivially in two-level systems. 

There aresome exact two-level physical systems such asspin 1/2 systems where 

most of the real physical systems have higher dimensions of Hilbert space. 

This truncation scheme has been defined in numerous places,2
'
3 although not 

rigorously proven. The procedure is rooted, rather intuitively, to the condition 

that 

(2. 25) 

where ,6. is defined as the tunneling matrix element between the double wells 

in the potential, and w0 is the resonant transition frequency between the lowest 

two levels. In this case, the environmental oscillators are separated into two 

cases. The oscillator frequencies that are ~ w0 are thought to effect the transition 

through the barrier between potential wells, therefore renormalizing the tunneling 

matrix element. On the other hand, the oscillator frequencies that are ;S w0 

detune the potential wells, and thereby destroy the phase coherence between the 

localized states in the two wells. However, throughout this reasoning possible 

transitions to higher levels due to higher environmental oscillator frequencies are 

totally neglected, as possible non-resonant transitions are not considered. 
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The 2LA is one of the most freq uently used approxinıatioııs in studies of 

decoherence, though for most of the cases i ts use is not j ustifıed. \Ve believe 

that this approxiınation should be handlcd with care, and the validity coııditioııs 

should be dıcr:ked ırıetir:ııloıısly. The 2LA will be questioııed in dctail in Chapter 

ô, where also the condition of low temperatures, i.e. Eq. 2. 25 will be discussed. 

2.2.3 Rotating wave approximation 

Evcn if a system is trııııcatcd to two levels, its intcmdinn with an cııviroıııııcnt 

such as a field does not have a dosed-form aııalytical solution. Therefore, 

further approximations are essential in order to achieve analytical progress. The 

rotating wave approximation21 •22 is one approximation widely used to eliminate 

the effects of non-resonant proccsscs. In order to present the complications a 

sample calcıılation will be presented bdow. 

Consider a two !eve! system whidı is in interaction with a dassical dectri<: 

field. A typical Haıniltonian for this syst.em-environınent is 

H= iwıll)(ll + iıw"l2)(21-tJ · E(t)(ll)(21 + 12)(11) (2. 26) 

where the coupling with the electric field is taken to be of the electric elipoJe form, 

coupling the different parity states ll) anel 12). Here for the sake of siınplicity, fL 

is taken to be real. If we examine the evolution of a generic statc 

lı,IJ(t)) = a.ı(t)ll) + a2(t)l2) (2. 27) 

ıııHlcr the Haırıiltoniaıı givcn by Eq. 2. 26, wc obtain the coupled amplitude 

equations as 
/. 

ci1 (t) = -iu:1a 1 (t) + -,;f..i. · E(t)a2(t) 
{/, 

(2. 28) 

(2. 29) 

As a fıırt.hcr simplifıcatioıı, as wc assume the field to be a ırıoııodıroırıatic field, 

wc can express E(t) as E0uı.s(wt +ep) whidı simplifies the anıplitude equations 

to 

ci1 (t) = -iw1a.1 (t) +i'Vcos(wt+<p)a2 (t) (2. ::ıo) 
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a2(t) = -iw2a2(t) + iv"cos(wt + cp)aı(t) (2. 31) 

where V = ~ı· E0 / h. Now, as we pass on to the interaction pictuıc where the free 

cvolııtion of the amplitudes aıc reıııoved from Eqs. 2. 30 anel 2. 31, anel the new 

anıplitudes are defincd as a 1 (t) = b1 (t)e;ı:p( -iw1t) and n2(t) = b2 (t)e:rp( -iw2t), 

the resniting coupled amplitudes turn out to be 

b1 (t) = Wco.s(wt + cp)exp [i(w1 - w2)t] b2(t) (2. 32) 

1;2(t) =iV cos(wt + p)e:rp [i(w2 - w1)t] b1 (t). (2. 33) 

By this transformation, the only time dependence on the aıııplitudes is reduced to 

the one cansed by the coupling. Tn the next step, as the cosine terrrıs in Eqs. 2. :32 

and 2. 33 are written as suın of conıplex exponentials, we obtain two expoııeııtial 

time dependent tcrms in both amplitudes in the form exp [i( -w+ w1 - w2 )] and 

e:rp [i(w + w1 - w2 )] for the fırst term, and the complex conjugatc of thcsc tcrıııs 

for the sccoııd. Here lies the cssencc of the ıotating wavc approximation, whew 

the terrrıs exp [i( -w+ w1 - w2 )] and their coıııplex conjugates are neglected and 

we are left with the new anıplitucle equations in the rotating wave approximation 

. V 
b1(t) = i-:;:exp(ir.p)eı:p( -i6.t)b2 (t) (2. 34) 

. V 
b1(t) = i-:;:exp( -ir.p)exp(i6.t)b1(t) (2. 35) 

where the tc rm 6. = w2 - w1 - w is the eletıming between the transition frequency 

bctwecn the lcvds and the driving dcctric fıclcl. The main iılca bdıinel the 

ıotating wave approximation li es in the choicı~ of the frequency of the field. As the 

frequency of the driving field is very close to the separation between the energy 

levels of the system, we can safely neglect the rapidly oscillating norıresonarıt 

terıns given by exp [i( -w+ w1 - w2 )] and its conıplex conjugate, and only take 

the ıcsonant tcrms given by e:rp [i(w + w1 - w2 )] and its complex conjugate. The 

simplicity supplied by the rotating wave appıoxiınatioıı bccoıııcs dcarer in the 

next step where another tranRformation is madc on the anıplitude equations 2. 

34 and 2. :35 as bı (t) = c1 (t)e;rp( -i/St) and b2(t) = cAt)e:rp [i(6.- o)t] where 
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J may be chosen arbitrarily. The fina! amplitude cqııatioııs, which are stripped 

from explicit time dependencies turn out to be 

(2. :;o) 

V 
c32(t) = i(J- D.)r:z(t) + i 2 e:rp( -icp)cı(t). (2. 37) 

Typical choices for the arbitrary frequency J may be zero and L:ı./2. Here since 

the explicit time depeııdency is taken care of, solviııg these couplecl equations 

become much sinıpler. 

The power of the rotating wave approxiınation can be usecl safely, when the 

driving field frequency is vcry dose to the energy scparation of two kvds and 

also at long times. As the difference bctwecn the frequency of the field and the 

eııergy separation becomes greater, the norıresonant terıns as well as the resonant 

terrus becoıne effective in the dyııaınics of evolutioıı. Furtherınore here, the 

driviııg field is acceptecl as a monochromatic field. As the field starts to incinde 

a wide frequency raııge, the rotatiııg wave approximation becomes questioııable. 

Ilowever, for an isolatccl system that is clrivcn by a rcsoııaııt field where the 

Rabi solııtions an; expected to be observeü, the rotating wavc approximation is 

perfect.ly applicable and transforms the typical Haıniltoııiaıı 

fi 
II= 2 [wıl1)(11 + w212)(21]- iıV (11)(21 + 12)(11) cos(wt +ep) (2. 38) 

into a ırıııdı simpler form as 

rı rıv 
H= 2 [wıl1)(ll + w2 12)(21]- 2 [l2)(l[eTp [-i(wt +ep)]+ ll)(2[eTp [i(wt +ep)]]. 

(2. 39) 

The monochromatic field approach will not be useful in the coıısideratioıı of 

the systcnı-cnviromncnt intcraction, as the cnviroıınıent is usually modeleel as a 

bat h having a contiııııous frequency ran gr,, as negkcting the non-resonant cffects 

for such a large frequency range will not give dependable results in the short time 

regime. So in our calculatioııs, all the non-resonant effects will be coıısidered. 
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2.2.4 Markov approximation 

~·Iarkov approximation2U 2 is anather popular approximation which simplifies 

analytical calculations in the time domain. Tn analytical calcula.tions, the system 

behavior has a memory, so that the evolution of the system at any time clepencls 

on the behavior a.t prcvioııs times. This dependence makes analytical calculations 

rather hard, and rınınerical computations costly. In onier to present the natııre of 

the ~larkov approximations one should considcr a system where a singlc discrctc 

state lO) is •vcakly coupled to higher continuuın of levels via a monochromatic 

classical field. The Hamiltonian of this system ınay be written as 

II = llwoiO) (Ol +n.! u,'lılh) (hldu,'lı + (2. 40) 

n/ 7J~ı [IO)(hlexp(itph)exp( iwt) + lh) (Oiexp( -i'P~ı)exp( -iwt)] dw1ı 

with the rotating wavc approxiınation applied, where the subscript h dcnotcs 

the higher levels of the system. The first line represents the free part of the 

Ha.miltonian and the second line defines the interact.ion with the monochromatic 

field. Here the states are defined orthanormal so that (OIO) = 1, (hlh') = 6(u,•h

w~) and (Ol h) =O. Also n~ıe.rp(itp~ı) clefines the transition matrix element behveen 

the singlc discrctc statc lO) and the highcr statc lh). 

The generic wavchınction of the system is giveıı as 

l1,b(t)) = cuexp( -iwut)IO) + / c~ıexp( -iw~ıt)lh)dwh (2. 41) 

and inserting this wavefunc:tion into the Schröclinger cquation gives the cqııat.ions 

of motions for the statc amplitucles a,<; 

cu= -i/ 17~ıexp(i'P~ı)c~ıexp( -i~~ıt)d~h 

(:h= -iT}~ıexp( -icp~ı)coexp(i~~ıt) 

(2. 42) 

(2. 4.3) 

where the tcrm ~lı = wh - w0 - u,• dcfines the dctuning bctwccn the highcr statc 

lh) and eliserete state lO) via a one photon rcsonaııec. In ordcr to solvc thcsc 

coupled equations of motions it is best to integrate Eq. 2. 43 and insert the 
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resultas ch(t) in Eq. 2. 42 to obtain an equation for the amplitude ofsingle state 

c0 ( t). The resulting equation is an integro-differential equation 

c0 (t) = -1t c0(t')K(t- t')dt' (2. 44) 

where the kernel K(t- t') is given as 

K(t- t') = J T}~exp [-iL~h(t- t')] d5Jı. (2. 45) 

It is obvious that the value of the amplitude c0 at any time depends on the 

values of c0 at all previous times. This is usually defined as the amplitudes 

(i.e. the system) with memory. Here the kernel function is merely a function. 

Nonetheless, similar integro-differential equations are found with the master 

equation formalism and density matrices. In that case, however, the kernel 

is not a function, but generally a complicated operator, usually called as 

the superoperator. It may include projections, commutations ete. But the 

dependence on the previous times is inevitable. The Markov approximation comes 

into scene at this point. The aim of the approximation is merely to reduce the 

integro-differential equation into a simpler differential equation, by erasing the 

memory effects on the system. 

Consider a special case, where the transition matrix element is fiat throughout 

the higher frequency range, so that TJ~ = TJ5. This transforrus Eq. 2. 45 into 

(2. 46) 

so that the kernel is only contributing at t = t'. This delta function behavior 

simplifies the Eq. 2. 44 into 

co(t) = -1rTJ5co(t). (2. 47) 

A less trivial result arises when the continuum of transition matrix elements 

are not fiat but slowly varying. For that case, the kernel will not have a delta 

function behavior, but it will still be sharply peaked at t = t'. As the kernel will 
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contribute mostly nea.r t = t', i ts contribution to the amplitude cqııation ma.y be 

neglected so that 

(2. 48) 

By this equation it is possible to solve the simple differential equation as the 

kernel is integra.ted. Since the kernel is independent of anıplitudes, the problem 

is reduced to the integration of the kernel. During these calculations with Markov 

approxima.tioıı, it is asHıırrıcd that; (1) the kernel is sharply peaked at t = t' ~ i.c. 

the transition matrix clcnıcnts are slowly varying throııghoııt the levels, (2) the 

integral is independent of the upper limit 7 = t, so that the integral may further 

be simplified as taking the upper limit as infinity. 

l\hrkov approximation significa.ntly simplifies the analytical solutions for the 

integro-differential equations, ·whether they arise from the amplitude equations 

of motions or the master eqııation. Ilowever, there is a serimıs assumption: 

the lu~rnel is assamed to be sharply pea.ked. In this ca .. o;e, this mcans that the 

transition matrix clcrncrıts are slcnvly varying, i.c. the transition from the discrctc 

level to all higher levels is ncarly cqııally probable. Tn the master equation 

approach, this may lead to different assumptions, \vhich will be depicted later. 

2.2.5 A general application 

Tn order to demonstrate the nıa.ster equation approadı and the approximations 

mentioned, it will be helpful to solve a simple problem.21 Consider a system 

with equally spacecl energy levels that is in interaction with a continuum of a. 

harmoni c oscillator b atlı. The system operat.ors, den ot ed as st and s crcatc 

and arınihilatc a quantum of cncrgy no in the system, as nıising and lowcring 

operators. The crıvironnıcnt.al mising and lowering operators are dcnotcd as 

b~. and bw. Tn the interaction picture, Hô, the free Hamiltonian of the system, 

introduces a time dependence on the system operators so that st is multiplied by 

exp(int) and s is multiplied by exp( -irıt). In the rotating wave approximation, 

system and environment. operators pair as ,.,tbw and hLs, and introducing a unitary 
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transformali on U = exp [.znt J bLbccdw ı renders these coupled operators time 

independent. Finally, the interaction Hamiltonian where the free part of the 

system is rcıııovcd is gi ve n as 

fi.f wbUJwdw + (2. 49) 

n l f}w [st b w exp( -iv w) + sb~ exp( ip w) ı dw 

where "l}w exp( -i ep w) is the system· bat h coupling. :'vfaking a second LransformaLioıı 

to get rid of the free evolving cnviroımıent part, introclııccs the tinw clepenclencies 

on the cnvironınent. operators b"' and b~ and the fina! Haıniltonian is redııc:ed to 

(2. 50) 

Defining a Langevin operatar for the enviroııınental operators in the form of 

F(t) =-i liJwe:ı:p[-i'Pw]e:ı:p[-iwt]bw(O)dw (2. 51) 

and ıısing the fact. that the Heiscnlıerg operator bw(O) is indeed the intcmct.ion 

operatar b"' here, the iııteraction Haıniltonian is fıırtlıcr redııc:ed to 

Vr(t) =in.[ si F(t)- pl (t)s]. (2. 52) 

Reıneınlıcring the Eq. 2. 18 wc obtain the master equat.ion for the total cleıısity 

Inatrix 
·ı 

Pr(t) = -;;-Wr(t), pT(t)]. 
tl. 

(2. 5:3) 

In ordcr to olıserve the syst<enı lıdıavior only -not to mention that observing an 

infinitely large environment rcalist.ically would be iıııpossible- we need to take 

the trace of the total deıısity matrix, over the environınental degrees of freedom. 

However in oı·der to take this trace we also need to apply the Born-Oppenlıeimer 

approxiıııation given as in Eq. 2. 24. Usiııg the fac:L that Tr[pO] = Tr[Op] = (O) 

wc obtain factors as (F(t)) and (Fl(t))froııı Eq. 2. 53, whidı results in ;oero. 

Therefore, wc need to go to a higher order, at. kast to sccowl one. It. is also trivial 

to see that all odd orders of the expansion of Eq. 2. 33 give zero contribution, 

whereas the even orders give fiııite results. 
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Using the simple relation 

Pr(t) = Pr(O)- * 1t[VI(t'),p(t')]dt' (2. 54) 

and inserting this into Eq. 2. 53, wc obtain the second order equation 

(2. 55) 

The first term here is also zero as explained above. The second term expands as 

ı t p(t) = ~2 Jo Tre [(stF(t)- Ft(t)s), [(stF(t')- Ft(t')s),pe(O) ® p(t')]] dt'. 

(2. 56) 

Using the cyclic property of trace Tre[ABC] = Tre[CAB] = Tre[BCA], we obtain 

the master equation consisting of 16 terms grouped below: 

p(t) = lt { [sp(t')st- stsp(t')] (F(t)Ft(t')) 

+ [sp(t')st- p(t')sts] (F(t')Ft(t)) 

+ [stp(t')s- sstp(t')] (Ft(t)F(t')) 

+ [stp(t')s- p(t')sst] (Ft(t')F(t)) 

- [st p(t')s t - st2 p(t') J (F( t)F( t')) 

- [stp(t')st- p(t')st2] (F(t')F(t)) 

- [sp(t')s- s2p(t')] (Ft(t)Ft(t')) 

- [sp(t')s- p(t')s2J (Ft(t')Ft(t))} dt'. 

(2. 57) 

Here, the last four lines may be dropped out since they include the expectation 

values for two annihilation or two creation operators, which are zero for most 

environment models. The other environmental expectation terms come as a 

multiplication, and they are defined as 

(Ft (t')F(t)) = 1 TJ~fıwexp[ -iw(t- t')]dw (2. 58) 

and 

(F(t)Ft(t')) = 1 TJ~[fıw + l]exp[-iw(t- t')]dw. (2. 59) 
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As we insert these definitions into Eqn. 2. 58, we obtain 

p( t) = lt dt' J 77~dw { [ sp(t')st -st sp(t') J [nw + 1 ]exp[ -iw(t- t')p. 60) 

+ [sp(t')st- p(t')sts] [nw + l]exp[iw(t- t')] 

+ [stp(t')s- sstp(t')] nwexp[iw(t- t')] 

+ [stp(t')s- p(t')sts] nwexp[-iw(t- t')l}. 

The next step in the analytical calculations is introducing the Markov 

approximation. As deseribed in the previous seetion the integro-differential 

equation above may be reduced to a differential equation with the help of the 

Markov approximation. In the master equation approach we have a kernel of 

the form of a superoperator, but we still have a familiar spectral dependency. 

Assuming that the continuous transition matrix element 77w is slowly varying, we 

can think that the main contribution from the density matrix in the equation is 

not from the history, but from the instance the observation is made. Excluding 

the density matrix from the integral we obtain 

p(t) = i6w [sts,p(t)]- i6w' [[st, s],p(t)] 

+ r[n(O) + 1] [2sp(t)st- stsp(t)- p(t)sts] 

+ rn(O) [2stp(t)s- sstp(t)- p(t)sst] 

where r = 1r772 (0) and the integral terms are defined as 

and 

(2. 61) 

(2. 62) 

(2. 63) 

These integral equations result in the frequency shifts on the system, and they 

should be small compared to the latter two terms in order to produce meaningful 

results. The master equation obtained is much simpler to solve than a system 

with multilevels which entangles with the environment immediately, and has a 

rather sharp transition matrix distribution over the spectrum that would have 

an incredibly hard to solve master equation, if not completely impossible. 
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2.3 Models 

In the prcvious seetion the most general approxiıııatioııs are discussed brieily. 

Perhaps the most frequenlly ıısed one is the two-lcvcl approxiınatioıı. Tlıere are 

also differcnt modcls that dcsnibe system and cnvironırıcnt interactioııs. In this 

seetion the ırıoot comman ınodels usedin this problem will be discuı;sed, including 

the famous spiıı-bosoıı model, central spin model, and the Bloch-Redfield model. 

2.3.1 Spin-boson model 

l'erlıaps, the most iııtcnsdy stııdicd model in the dccohcreııce field is the spin

boson model. Basically it consists of a spin system (a two level system) in 

interaction with an environınental b oso ni c bat h ( several, if tnıııcated, or infinitely 

many harmonic oscillators). 2•23- 28 First, as we are accepting a two-level system, 

let us write a simple Hamiltonian describing the system in a two-dimensional 

Hilbert space isolatcd from the environırıcnt as 

ı ı 
II= --iıf>rr, + -Wz 2 . 2 (2. 64) 

where u" and rr z define the Pauli matrices, f> defines the coupling between the 

two stateo and E defines the eigenenergy of the system. This Haıniltonian may 

define a spin ~ system in interaction with a magnetic field. Alsa a two level 

system is commonly thought of as a system having a double-well potential, and 

the trııncatcd two lcvcls are the coınbiııations of the localized groıınd states in 

the wells 1/JR and '1/JL, whidı is also the casc for SQCID systerru;, that will be 

discussed iıı the rıext chapter. Tn this case of double-well poteııtial the coupling 

between the two stateo is considered to be the tunneling amplitude between the 

two wells. The system having the above Hamiltonian can be diagonalized and a 

set of new eigenenergies may be dellned to govern the time evolution, though it 

is not preferable in this case, since experimentally real olıscrvalıles are ncederi to 

examinc the systenı. In casc of a weak tıınnding, where iı,f;j c; is very sınall, the 

eigenenegies of the Haıniltonian would be very close to 'fE:. However, if the ratio 

is high, tlıen there will not be a set of localized states in both wells, but rather 
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a sııpcrpositioıı of them. In the special case of E = O, the eigenstates turn out to 

be even-odd parity states as 

(2. 65) 

(2. 66) 

The dynamics of this isolated two-level system is indeeel a rather trivial one. 

The real coıııplication occurs when the environmental interaction is introdııced. 

In almost all cascs, the coupling to the environment is taken as u 2 D type, where 

IJ is an cnvironnıcııtal operator. This kind of coııpliııg comnıntes with the 

cigcncncrgy part of the Haıniltoııiaıı, lmt it docsıı't commııte with the coııpling 

(tunneling) between the states. Asa result it will not effect the diagonal eleınents 

of the density matrix, also called as the population of states, but rather effect 

the non-diagonal elements. Another way to explaiıı the effect of this interaction 

woııld be to say that it canses the dephasing of the system, but doesn't have a 

rdaxatioıı dicct.. Tlıcre an; stili non-ııeglcctalılc intcractioııs possible with the 

cnviromncntal !ike u.r or lly type coııpliııgs. Dqıendiııg on the type the intcract.ion 

ınay cause relaxatioıı, dephasing, or both. However, as ınuch as the spin-bosoıı 

model is concerned the interaction will be taken as IJ, type. 

As the environnıental coupling is assunıed to be weak it is also possible to 

assunıe tlıe environment to be consisted of ha.rmonic oscillators and the coupling 

with the system to be with the oscillator coonliııatc or nıomcnt.a2 As the coııpling 

is takcıı to be with the cnviromncntal coorüiııate, wc rcadı to the wdl-kııowıı 

spin-bosoıı Haıniltonian 

(2. ö7) 

where Ll is a bare tunneling matrix element, xk, p1,, w1" and mk are respectively 

coordinate, momentıım, frequency, and mass of the A:'h. oscillator in the 

cnviroıııııcnt. Tlıc parameter ek rlcfincs the coııpling strength of the system with 

the 1>: 11' oscillator. The Haıniltonian has a sum over the environnıental degree 

of freedom k, and the depeııcleııce of the coupling on this coupling strength ek 
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may be defıned with a function which is called the spectral function~ the spectral 

strength of the environment 'Nith respect to the frequency of the cnvironıncnt, 

and usually denotcd \vith J(w). I3y this defınition, the dynamics of the system 

are govcrncd by the paranıeters ,6., E and the spectral hınction J (w). The spectral 

function is generall.Y accepted to be a smooth function of environmental frequency 

w. Under these circumstances, the spin-boson model and the Hamiltonian (2. 

67) is extensively used in the literature, whether the system in consideration is a 

gemıine two-level system or a multi-level s:ystem truncated into two levels. 

2.3.2 Central spin model 

The central spin system6
,
26 is similar to the spin-boson model in most aspects. 

The system is again truncated to t\vo levels. IImvever~ in this model~ the 

cnvironınent is di1Terent, so that the system is not coupled to a set of bosonic 

lıannonic oscillators, but instcad coupled to a spin batlı. So in this case, the 

environment consists of two-level systems. The Hamiltonian for this system may 

be given as 

Hes (2. 68) 

N N N N 

+Tz I: wl~~'. a/., +I: w~ 'rn,k. a/., +LL v~:~::ak'at, 
k= l ~'=l ~'=l k:' =·ı 

where T is the central spin, and the ak operators ddinc the spin bath degrccs of 

freedonı. There are also some restrictions and assumptions made to achieve this 

form of the cent.ra.l-spin Hamiltoııian. For instance, the phase of the central spin 

is restricted to a cos(1>) form while the terıns ,6. and <P incorpora.te spin ba.th 

renorma.liza.tion eiTecLs. There are also assumptions such as that the diagonal 

couplings wl~, wt << flo~ >vhcrc fl0 is the ultraviolct cııtoiT frequency for the spiıı 
batlı , and that the inter-spin coupling VA~k' « w~, wt. Howcvcr the ratio of Fkk' / ,6. 

remains arbitrary. Tn the weak coupling linıit, this model can also be reduced to 

spin-boson modeL 



CHAPTFR. 2. METHODS AND MODELS 25 

This model is usually used to solve systems !ike nanomagnets of SQUIDs 

coupled to nuclear and paramagnetic spins. Though this model turns out to 

be a ıısdııl anel simple model, stili it assuıncs a two-lcvd system on top of an 

cnviroıııncntal bath consisting of two-lcvd spin syst<mıs. 

2.3.3 Bloch-Redfield model 

The Bloch-Redfield formalism is rooteri in the Blodı equations that werc deri vee! 

by Bloch iıı 19467 and further development of the Bloch equations by Rerlfield 8 

Bloch equations were first usedin the nuclear magnetic resonance probleıns where 

an :'J-level atom is in interaction with a magnetic field, and the main feature of 

these generalized Bloch equations were to deseribe the relaxation process with 

two real time scales, T1 and T2 . T1 deseribes the time scale for the relaxation, 

anel T2 eleseribes the tinw scalc for the dephasing proccsscs. 

Latcr it was discovcred that tlıcse generalizecl Blodı equations wen; also 

applicable to optical probleıııs related to maser or laser,29 and optical Bloch 

equations were generated. Though the generalized Bloch equations were clerivecl 

for N-level atonıs, the optical Bloch equations were appliecl to spin systeıns, i.e. 

2-level systeıns. In order to obtain these optical Bloch cquations, fırst a fıctitious 

qumıtity, a pseudo-spin vcctor v is dcfıııcd with the components 

Tr [ps(t)O"x] = p(t) 12 + p(t)2ı (2. ö9) 

u" Tr [ps(t)O"y] =i [p(t) 12 + p(tb] 

Vz Tr[ps(t)O"z] = p(t)ıı- p(t)n 

where ps(t) defincs the rcclııcecl clensity matrix for the system. Then the optical 

Bloch equations are given as 

dt 
dvy 
dt 

V [w xv] _....::'. 
X T2 

1' [w x v] - .:JI.. 
y ~l2 

(2. 70) 
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with the w veetar having components 

[w X v]z- ~ 

Vı2 + V2ı 
rı 

Vı2- V2ı 

rı 

Eı +E2 
rı 

26 

(2. 71) 

where the terms v;j = (ilvlj) are the interaction matrix elements defining the 

interaction between the atom and the electromagnetic field. Here, as mentioned 

before, T1 defines the relaxation of the diagonal elements, whereas T2 defines the 

dephasing of the non-diagonal elements of the reduced density matrix. 

Starting from the Bloch equations, the Blo ch-Redfield formalism is con

structed where the reduced density matrix in the eigenbasis of the unperturbed 

Hamiltonian has an equation of motion 

d . 
dtPnm = -ıWnmPnm - L RnmklPkl (2. 72) 

kl 

where the Bloch-Redfield tensor is defined as 

R x ~ r(+l x ~ r(-l r(-l r(+l 
nmkl = 0 lm D nrrk + 0 nk D lrrm - lmnk - lmnk (2. 73) 

r r 

and theratesr are found by the Fermi's Golden Rule17 are 

ı r)Ü 
ri!~k = rı2 lo dtc-iwnkt(HI,zm(t)HI,nk(O))B (2. 74) 

ri~~k = ~2 1
00 

dte-iwnkt(HI,zm(O)HI,nk(t))B (2. 75) 

where H1,zm(t) are the matrix elements of the interaction Hamiltonian in the 

interaction picture, and defined in the eigenbasis of the uncoupled system 

Hamiltonian. The averages are taken over the bath degrees of freedom. 
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The Blo ch-Redfield formalism makes use of the Fermi Golden Rule equations, 

and also has the Born-Oppenheimer approximation fused in it. Although it leads 

to analytically solvable results for 218, 10,20 the drawbacks of this formalism have 

been explored in the cantext of spin magnetic resonance and relaxation.U-13 

2.3.4 Lindblad formalism 

The Lindblad formalism 17,14 is also one of the widely used techniques for the 

solution of the master equation. The popularity of the Lindblad formalism stems 

from its simplicity. This formalism has the Markov approximation integrated in 

it. In its simplest form, the Lindblad equation is known as 

(2. 76) 

where the .C defines a Liouville super-operator, and Ps(t) is the system density 

matrix. For a finite dimensional Hilbert space of the environment, where the 

dimension is given as N, the corresponding Liouville space is a complex space 

of dimension N 2 and N 2 orthanormal basis operators are deseribed to span the 

basis, as Fi, i = 1, .. , N 2
. For convenience one of these operators is taken as 

identity, and the rest of the operators are used to define a new set of operators 

as 

N 2 -1 

Fi = L UkiAk 

k=l 

(2. 77) 

where the solution for the u matrix and evaluation of the final step as in Fig. 2. 

78 is deseribed extensively inY The final form of the Lindblad equation Eq. 2. 

76 is found to be 

(2. 78) 

where the first part defines the unitary part of the dynamics generated by the 

Hamiltonian, and the second part is defined as the dissipator. Operators Ak and 
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A.J., as deseribed in Eq. 2. 77 are ofLen nameel as the Lindbla.d operators. 

The Linclblad forma.lism, a.s seen in Eq. 2. 78 is pretty simple though 

thcrc are somc dra\vl>acks. First, ı'vlarkovian dynamics are assıınıcd from the 

bcginning. Furtlıennore , finitc dinıcnııion for the environnıental Hilbert space 

is used. \Ve ba.sically cliscard all approximations except the HOA. \Ve have a 

cautious treatment. of this single a.pproxima.tion usecl with a proof convincing the 

reacler of the validity of this approximation in the range of our interest. 

As I have introducecl the basic models, approximat.ions anel formalisnıs ın 

this cha.pter, in the ncxt clıapter, I ı,vill be invcstigating the physical s:ystems oJ 

intcrcst for our analysis of decohercnce plıenonıeııon, and present a solution for 

the adopted system~ rf-SQUID. 



Chapter 3 

Superconducting systems and the 

Josephson effect 

Concerning the quantum computation there are several physical systems that are 

considered to be applicable to obtain qubits. NMR systems,30- 32 SQUIDs,33,34 

spin or charge based solid state systems are among the most frequently used 

systems, although there are many other possibilities. YeL perhaps, both in 

theoretical and experimental studies the most popular systems, are the SQUID 

systems. In this chapter the theoretical basics of the SQUID systems will be 

covered, and some SQUID designs will be discussed. 

3.1 J osephson e:ffect 

Josephson effect35,36 is one of the most important discoveries in the world 

of superconductivity. It plays an important role in many technological 

improvements. It is also the phenomenon behind the devices called the SQUIDs 

which will be discussed in the next section. 

The Josephson effect is named after the B.D. Josephson, who first proposed 

that a zero voltage supercurrent 

(3. ı) 

29 
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should fiow through a weak link. 35 The weak link is defined as the junction 

obtained by two superconducting electrodes separated by a thin insulating 

barrier. Here, the term le is the critical current, the maximum supercurrent 

that the junction can let pass through, and D.rp is the phase difference in the 

Ginzburg-Landau wave-function of the two electrodes. Josephson's predictions 

further included the evolution of this phase difference as a potential difference V 

is applied through the junction as 

d( D. rp) 
dt 

2eV 

n (3. 2) 

where the 2e defines the charge of a Cooper pair. This prediction results in 

an alternating current with amplitude le and frequency v = 2e V/ n. These 

predictions, c all ed as the dc-J osephson effect and ac-J osephson effect are verified 

by numerous experiments. 

Although Josephson proposed the weak link to be obtained by 

superconductor-insulator-superconductor junction (S-I-S), it turned out to be 

valid for other possible junctions, such as superconductor-metal-superconductor 

junction (S-N-S) where the metal near the junction turns out to be a weak 

superconductor due to proximity effect, or superconductor-constriction

superconductor junction (S-c-S) where two superconductor electrodes are 

separated via a short, narrow constriction. 

3.1.1 The RCSJ model 

Although the predictions of Josephson about the superconductor electrode 

junctions are solid, further investigations are needed to understand the response 

of the Josephson junctions to finite voltage applications. In order to deepen 

the understanding a simple model named RCSJ37 (resistively and capacitively 

shunted junction) is used. In this model the junction will be treated as an ideal 

Josephson junction, which is shunted by a resistance and a capacitance as seen 

in Fig. 3. 1. 

Here, the resistance is defined by the dissipation in the finite voltage regime, 

and capacitance is defined between the superconducting electrodes. As a finite 
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c R 

Figure 3. 1: The effective circuit used in the RCSJ model. 

bias current is applied to the junction, in order to find the phase 1 associated 

with that, it is appropriate to write a current relation, so that the current from 

the tree channels in the model will sum up to bias current as 

. V dV 
I= Ico sın(r) +-+C-d R t 

(3. 3) 

where Ico denotes the original critical current for the ideal junction, which may 

be greater than le for this model. For further simplification, let us define the 

plasma frequency Wp as 

_ ( 2elco) 
112 

Wp-
rı c 

and a dimensionless time variable T as 

When we eliminate the variable V from Eq. 3. 3, we obtain 

where the ternı Q defines the quality factor and given as 

(3. 4) 

(3. 5) 

(3. 6) 

(3. 7) 

The quality factor defined here is identical to (3~12 , where f3c is the damping 

parameter introduced by Stewart and McCumber. 38,39 

Often, a model nanıed as the tilted-washboard model is also used to deseribe 

the system defined as the RCSJ model, as they are analogous to each-other. In 
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Figure 3. 2: The tilted-washboard potential for I/ Ico = 0.1. 

the tilted-washboard model, a particle of mass (lı/2e)2C is moving ina potential 

(3. 8) 

in the r axis, with a dissipative drag force of 

F = (.!!__) 2 _.!_dr. 
d 2e R dt 

(3. 9) 

Here EJ is the energy scale used, named as the Josephson coupling energy, and 

defined as EJ = (lı/2e)Ico· The tilted-washboard potential as can be seenin Fig. 

3. 2 consists of local minima going down with the axis r for I < Ico· However 

for I > Ico there are no minima or stable equilibrium points. 

As C is chosen small, so that the quality factor Q satisfies the relation Q « 1, 

we have an overdamped junction, and the Eq. 3. 6 can be reduced to 

dr = 2eicoR (~ _ sin(r )) . 
dt lı Ico 

(3. 10) 

Du e to this equation, if I is greater than I cu, dr/ dt al ways stays positive, but 

varies with sine function with frequency r· In order to obtain the average voltage 

we need to take the time average of this equation over one period T, which 

takes r to sean the interval O ----+ 27r. Using the Josephson frequency relation 

2e V/ lı = 21r /T we find the relation for average voltage as 

(3. ll) 
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IL can be seen that the voltage V is zero for I < Ico, and V = IR for I » Ico· 

Ilowever for Q > 1 the junction is underdamped, and we observe a hysteretic 

I-V characteristic. As I is iııcrcased from zcro the potential stays zcro, uııtil it 

junıps up to a finit.c value at I = Ico, and thcn it miscs coııtiııııoıısly with I. 

However as T is decreased below Icu, V does ııot drop to zero at T = Icu, but 

rather drops to zero ne ar T "" 4Ico/ rrQ. 

3.1.2 Josephson effect in the presence of magnetic flux 

Tn order to understand the SQUTO devices and their priııciples, it is important 

to work out the behavior of .Joseplısoıı junctions in the presence of a magnetic 

field. Although the magnetic field may effect the supercoııductor electrodes, for 

the sake of simplicity we may just study the effecL on the gauge invariant phase 

difference, and ignorc the cffcct on the clectrodes. Tlıc gaııgc iııvariaıü phase 

rliffcrcncc is givcn as 
2rr ;· 'Y = t:,'P - <Po A · ds (:3. 12) 

where the supercoııductor flux quaııta is denoted with <!> 0 and A is the relevant 

vector poteııtial. The integration here is calculated from one electrode to the 

other. The supercurrent through an ideal .Josephson junction, in tcrms of this 

gangc iııvariant phase ')' is given as 

(3. 13) 

LeL us consider a double junction confıguralion as in Fig. 3. 3. IL is convenient 

to analyze the system with respect to the magııctic llux through the system as 

it is a gaııgc iııvariant quantity, so that wc woııld avoid the scıısitivity of veetar 

poteııtial due to arbitrary gauge choice. As we choose a specific closed coııtour 

and evaluate the integral, the result gives us the flux <fı through the system as 

B = \7 x A, and the line integral of A on a doseel cantour gives the enclosed 

llux as a result. Let us clıoose the cantour just inside the electrodes, assnıning 

that the thidmess of the dectrodcs an; greater than the skin depth >., so that 

the supercurrent vdocity v" is ;ocro aloııg the contoıır. Theıı ıısiııg the rdation 
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Figure 3. 3: A circular ring with two Josephson junctions. The dotted lines 
indicate the cantour for the integration. 

m*vs = n(Vep-27rA/if!0 ) that can be obtained by the Ginzburg-Landau theory, 37 

we obtain the veetar potential asA= (if!0 /27r)Vep. Using this form of the veetar 

potential we obtain the fiux equation as 

f if!o1 1 if! = A · ds = - V ep · ds + A · ds 
21f elecirodes weak-links 

(3. 14) 

It is obvious that the sum of the phase differences across the weak links ep1 , ep2 

and the integral felectrodes V ep · ds should be zero or an integer multiple of 21r 

since the phase must be a single-valued quantity. Using this fact as we take 

the integrals over the weak-links in the same directian through the contour, we 

obtain the s um of gauge invariant phase differences ep1,2 to be 21rif! / 1»0 . But in 

order to obtain the total supercurrent through the weak-links we should evaluate 

the integrals over the weak links, both from electrode A to electrode B. In that 

case, the difference of the gauge invariant phase differences turns out to be 

27r<P 
lı- 12 =- (mod(21r)). 

if! o 
(3. 15) 

According to this equation, if the supercurrent through both junctions are 

maximum due to Eq. 3. 13, both phase differences lı,2 should be 1r /2, and 

this is only possible if the fiux through the ring is an integral multiple of the 
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llux qııanta ii>o. For the special case, Icı = Ic2 = Ico the maximum supercıırrent 

passing through the paraUel junctions salisfy the condition 

K if> 
Im= 2Icl cos(-)1. 

<Po 
(3. 16) 

The scıısitivity of thcsc rings having Juseplısun jııııctions on tlıcın to the ınagnctic 

flux, nıakes thenı useful tools for several applicatiuns such as rrıagnetunıeten;, 

gradioıneters, volt.nıeters, anıplifiers, ete. This is also the basic idea behind the 

SQUTD devices. 

3.2 SQUID devices 

SQUTD devices are based on the interaction of a superconducting loop, including 

junction(s), with a magnetic field. The basics of this interaction have been 

explained brielly in the prcvioııs scction, yet there are two diliereııt basic types 

of SQUIDs that are bcing stııdicd both theoretically and experimentally. The 

dc-SQUIDs (direct cıırrem SQU!Ds) whidı has two paraUel jııııctioııs, and rf

SQUIDs (radio frequency SQUIDs) that have only one jıındion. Although dc

SQUTD was first tu be developed, and has higher sensitivity, since rf-SQUTD was 

coınnıercially available befure the dc-SQUTD, it remains popnlar among scientists. 

YeL the popularity of SQCID systems is due to another facL. lt has been 

discusscd by several researchers, both theoretically and experimentally, that 

macroscopic quantum cohcrcncc (MQC) is obscrvablc in SQUID systcms:ı,ı.s,ıo is 

indeed a very unique phenomeııon, where the quantunı behavior can be observed 

nıacroscopically. MQC also show itself in laser and superfluidity. Leggett and 

Carg1G discuss that two assumptions are made by most physicists at macroscopic 

level that 

a) Macroscopic systems with two or more macroscopically distinct states 

available will ar. all times will be in one of thesc~ states. 

h) In principle, it is possihle to perform a noııinvasivc; measıırement on macro

scopic systems so that the syst<enı will experience smail perturbatioııon its 

su bsequeııt dynaınics. 
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Though they daim that the extrapolation of quantum mechanics at the macro

scopic level contradicts these assumptions. Consider electronic wavefunctions in 

a superconductor. As indistinguishable electrons with identical wavefunctions 

come together, with the same phase, the phase state which can be observable 

macroscopically can show quantum mechanical behavior, such as tunneling, or 

superposition. For example a superposition of current in a superconductor 

ring so that the current ftows in both directions, or tunneling of a fiux state 

through a potential barrier are examples of such behavior. Recently, there are 

many experimental schemes proposed and applied to observe these superposition 

states and macroscopic quantum tunneling phenomena. 42
-

44 As SQUIDs are 

characterized by the fiux and charge states, they exhibit perfect medium to 

observe the MQC plıenonıenon. 

3.2.1 dc-SQUID 

Abasic treatment of the dc-SQUID37,45 which has two parallel junctions around 

a loop, has been made in the previous section. However, as reallife applications 

have finite voltage values, we will make use of the RCSJ model. Also, to avoid 

further complications related with the hysteresis in the I-V characteristic, the 

devices are usually operated at a slightly overdamped regime. Therefore, we can 

make use of the I-V relation in Eq. 3. ll and obtain 

(3. ı 7) 

where Ico is obtained from Eq. 3. ı6, and R/2 comes from the two parallel 

resistively shunted junctions. It is assumed here that the two junctions have the 

same critical current and resistance values, for simplicity. Using the double angle 

relation with the cosine term in Eq. 3. ı 7, we see that the potential is periodic 

with fiux <I> with frequency <!>0 , the fiux quanta. This shows that a dc-SQUID 

can be used as a fiux-to-voltage transducer in complex devices. 

However, the external bias fiux is not considered here. The total current 

through the dc-SQUID is the sum of currents passing through junctions ı and 2 
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in Fig. 3. 3, and given as 

I= Ic [sin(rı) + sin(r2)] (3. 18) 

and the circulating supercurrent through the superconducting ring is given by 

the difference of the currents mentioned above, as 

Is = (~c) [sin(r2)- sin(rı)] (3. 19) 

yet, both these equations are constrained by Eq. 3. 15. The term <I> in Eq. 3. 

15 is the total fiux, i.e. the sum of the externally supplied bias fiux <I>x and the 

screened fiux <I>s which is given by <I>s = Lls where L is the inductance of the 

loop. If the total current through the SQUID I and the total fiux <I> is known, 

one can calculate the screened fiux <I>s and the external fiux <I>x. 

3.2.2 rf-SQUID 

The rf-SQUID37,45 is different from the dc-SQUID in that, it only contains one 

junction, instead of the two paraHel junctions. As the SQUID loop is shorted 

by a single superconducting electrode, observation on this SQUID is made at 

radio frequency, and hence the name rf-SQUID is used. In the rf-SQUID, the 

basis states are the fiux states, so the fiux threading the ring (or equivalently, the 

current circulating the ring) is observed. This observation is made by inductively 

coupling an rf current to the SQUID loop. This rf circuit is usually, as seen in 

Fig. 3. 4, consists of a coil that inductively couples to the rf-SQUID, and driven 

by a constant current fı. The voltage Vr is detected in the circuit to observe the 

fiux from the loop. 

As we further study the phase across the weak link, we may obtain a relation 

similar to the relation of a dc-SQUID obtained in seetion 3.1.2, Eq. 3. 15, but a 

single junction variant, as 

27r<I> 
1 = ~ [mod(21r)]. (3. 20) 

This relation emphasizes that the current circulating in the SQUID loop is 

(3. 21) 
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L, 

Figure 3. 4: A rf-SQUID coupled to a rf circuit with mutual inductance coupling 
M. 

and the external fiux ı;Pxthrough the loop is given as 

(3. 22) 

where ı;P is the screened ftux. 

3.2.3 SQUID-EM field model 

There are several SQUID designs, making use of the basic properties of dc

SQUIDs and rf-SQUIDs, and aiming to simulate a qubit system, i.e. a two-level 

system. However, for the sake of simplicity, a simple model is adopted, where a 

rf-SQUID ring is coupled to an electromagnetic field inductively, in the presence 

of an external bias fiux as pictured in Fig. 3. 5.46 

The Hamiltonian for such a system is written as 

(3. 23) 

where the SQUID Hamiltonian is written as47 

(3. 24) 

Here, the variables ı;Ps, the fiux threading the ring, and Qs, the total charge 

across the weak link are conjugate variables, and satisfy the commutation relation 
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• M -

Figure 3. 5: A rf-SQUID coupled to an electromagnetic field with mutual 
inductance coupling M. There is also an external fiux <I>x effecting the SQUID 
ring. 

[<I> s, Qs] =in. <Po defines the the external bias fiux, and nz; /2 defines the matrix 

element for the pair tunneling across the weak link. The electromagnetic field 

having the Hamiltonian He may be modelled using a circuit having capacitance 

Ce and inductance Le, so that the Hamiltonian He turns out to be 

(3. 25) 

where, as before, the variables <Pe and Qe define the magnetic ftux and the 

electric charge associated with the cavity, respectively. Finally, the interaction 

Hamiltonian Ih between the circuit and the SQUID loop is given by 

(3. 26) 

where M is the inductive coupling constant as mentioned before. 

Next, by making a unitary translation with the operator U= exp( -i<I>xQs/n), 

the fiux of the SQUID ring in the Hs and H1 is translated by <I>x so that the 

SQUID Hamiltonian becomes 

(3. 27) 

and the interaction Hamiltonian becomes 

(3. 28) 
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Next, we define the dimensionless operators making use of the fact that the 

charge and fiux are conjugate variables, 

X e ff~ e (3. 29) 

Pe = J nw~Ce Qe 

X s ff~ s 

Ps = J nw~Cs Qs 

where the frequencies W 8 and We are defined as 1/vCsLs and 1/vCeLe 

respectively. Making use of the operators at Eq.3. 30, we can define the raising 

and lowering operators as 

Using these operators, the total translated Hamiltonian becomes 

H' = nws ( a!as + ~) + nwe ( a!ae + ~) 

-!ıvcos (
2

7r f!tCtı Xs + 2Kcpx) 
~o V ç;;;: 

(3. 30) 

(3. 31) 

where the dimensionless phase cpx is defined as ~x/~0 . Using this form, the 

system Hamiltonian may be solved for the eigenvalues and the eigenstates, so 
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that they may be used as a basis for the master equation approach, with a 

nurnerical approach, though a truncation will be needed. 

In order to solve the system Hamiltonian, one should take the harmonic 

oscillator states as the basis. By doing so, the diagonal elements of the 

Hamiltonian matrix will have elements Hnn = liws(n + 1/2). The second 

contribution to the matrix would come from the term with cosine, and have 

non-diagonal elements due to the Xs term. As we define the parameters nz; as 

(3 and ;_1r !I_cn as 1', knowing that the dimensionless operatar x s is defined as 
'J!Q V c;:;;; 

( a! + as)/ v'2, the non-diagonal terms of the matrix will arise from the term 

(
l'(a! +as) ) 

-(3 COS y'2 + 21r(/Jx . (3. 32) 

As we further use the trigonometric sum rule cos(A + B) 

sin(A) sin( B), we may further simplify the term to 

cos(A) cos(B) -

{ ( 
1' (at + a ) ) ( 1' (at + a ) ) } -(3 cos ~ s cos(27rıpx) -sin ~ s sin(27rıpx) . (3. 33) 

In the next step of evaluating the terms, we can express the cos and sin terms 

with the system operators as 

( 
1' ( a! + as) ) R [ ( ./' ( a! + as) ) ] cos y'2 = e exp ı y'2 (3. 34) 

. ( 1' ( a! + as) ) _ I· [ ( . 1' ( a! + as) ) ] sm y'2 - m exp ı y'2 . (3. 35) 

Further, as we make use of the Baker-Hausdorff Lemma, that states 

exp(A) exp(B) = exp(A +B) exp ( [A~ B]) (3. 36) 

if the operators A and B commute with the commutator [A, B], which in our 

case, holds, since [a!, as] = -1 and a constant commutes with any operator. In 

order to find the non-diagonal terms, one needs to evaluate the term 

(3. 37) 
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and multiply the real and imaginary parts of this expressian by cos(27rıpx) and 

sin(27rıp) respectively. Here, 1 = 1/ v'2, (ni and im) are the harmonic oscillator 

eigenstates. Thetermin Eq. 3. 37 further expands as 

(3. 38) 

where N is the truncation limit of the system. This equation further turns into 

2 m (i{)l r-;;ı m (i{)k ~ 
exp(-1 /2)~-l-! (n-lly~{;J;!y~lm-k) (3. 39) 

and the inner product in this term reduces to the delta function 5n-l,m-k and 

cancels out one of the summations, due to the orthogonality of the eigenstates. 

Obtaining the full system Hamiltonian, both diagonal and non-diagonal parts, 

and diagonalizingit numerically with the help of a nurnerical Lapack subroutine, 

we may inspect the role of the two main parameters 1 and (3 in the eigenvalues 

and eigenfunctions. There is also a third parameter, <tJx, which depends on 

the external fiux. The role of this paranıeter is to define the symmetry of the 

system potential. As we consider the total potential of the system, including the 

harmonic oscillator potential and the cosine term, it is in the form 

(3. 40) 

Here, as the parameter <tJx is 0.5, meaning the external fiux is half the fiux quanta, 

the cosine term remains even, as well as the harmonic potential. This results 

in a syınmetric double-well potential. However, for different values of <tJx in the 

range from O to 1, the cosine termis no longer even, and the resulting potential is 

asymmetric. For the symınetric case, as we inspect the derivative of the potential, 

to find the minima of the potential, we see that for two minima, which result in 

double-well potential, (3 should remain small compared to 5a7r /2, where a is 

on the order of the harınonic frequency. The higher levels just see a harınonic 

potential weakly modulated by a cosine terın. The (3 parameter defines the barrier 

between the double-wells, and the 1 parameter defines the width of these wells. 



CHA PTFR 3. SUPERCONDUCTING SYSTEMS AND THE JOSEPHSON EFFECT4:3 

4 e.tr fred wau: 

• 

Figure :3. 6: The poteııtial andlow lying energy eigenvalues, for a specific single 
degenerate case. Here the parameters are .B c::: 1.616 and : c::: 1.75:l. The axes 
are normalized and dimensionless. 

For the symmetric poteııtial, which exhibits interesting results, it is possible 

to manipulate the parameters ,3 and 1 so that the eigenenergies of the system 

ıııay be coııfıgurecl freely. An intcrcstiııg casc woııld be to clıoose the parameters 

so that the lowc,;t lyiııg two levels, i.e. groıınd state eııergy aııd first excited state 

energy, are degenerate. As a degeneracy pararneter 17 for a two !eve! system is 

defined as 

and for a multileveled system as 

(.'V) 
TJsd 

(3. 41) 

(3. 42) 

it is possible to obtain 17.~~ and 17_;~) on the order of 107
. Suchaset of parameters 

and the rekvaııt eııcrgy kvds are displayed on Fig. 3. 6. Also intcrcstiııg features 

arise whcıı the system is configurerl so that the lowcst two levels, and the next 

two levels above them are degenerate in each-other. \Ve name such a case as 

double-degeneracy. Here, delinition of anotlıer degeneracy paranıeter is needed 
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·2 ·i 

Figure :3. 7: The pot.ential andlaw lying energy eigenvalues, for a specific clouble 
clegenerate case. Here the parameters are ,B c::: 0.7i2 and: c::: 2.1~7. The axes 
are normalizecl and climensionless. 

as 

(3. 43) 

It is also possible to obtain the clegeneracy paranıeters T}:~ı and 71~7) on the orcler 

of 106 for cliffereııl set of ,3- ~~ paraıneters. Again, a saınple case with eigenvalues 

is clisplayecl in Fig. 3. 7. 

In the next clıapter, the evolııtioıı of thcsc syst<eın states willlıe considercd and 

calculatecl in the presence of the ııon-classical electroıııagnetic field, as modeleel 

in Eq. :3. :32. 



Chapter 4 

Noise and decoherence of the 

system 

In this chapter, we will go one step further from the last chapter, by inserting the 

system-environment interaction into the system defined in the previous chapter. 

So this will be the final step in reaching the decoherence solution that we have 

sought. 

In the next section, we will solve the SQUID-EM field model, introduced and 

deseribed in the previous chapter, using the methodology deseribed in the second 

chapter. During this solution, the important parameters of this system and the 

environment, i.e. the spectral properties will be revealed. Next we will investigate 

the effect of the environmental spectrum on decoherence, introduce the spectral 

models, and try to identify the effect of each spectral parameter, both in short and 

long time limits. As there are several parameters concerning the environmental 

spectrum, this will be a sornewhat tedious work, and the analysis will be mainly 

qualitative. Though after the reader gets acquainted with the spectral effects, the 

quantitative analysis will take place in the next chapter. The system parameters 

will also be discussed in the next chapter, along with the discussion of the 2LA. 

45 
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4.1 Decoherence in SQUID-EM field model 

The solution of the model that is introduced in seetion :>.2.3 will be very 

similar to the one that is goııe through in seetion 2.2.5. Ilowcvcr wc will try 

to avoid the approximations as far as wc can. N amdy, wc w il! not lı e using 

Rotating wave approximation or the l\!Iarkov approximation. However, in oı·der 

to obtain a solvable master equation form, we will be using the Born-Oppenlıeinıer 

approximation. As BOA is safe in the short time scales where the back reaction 

of the system on the environment is negligible. The short times are defıned as to 

lıe shorter than the cnviroıııncntal equilibration time. A dctailcrl cliscııssion on 

the safety of BOA will lıe hdcl in the next chapter. 

Remeınberiııg the most siınple master equation in the interaction picture that 

is given in Eq. 2. 53, we willııeed the interaction part of the Haıniltonian in Eq 

(3.31) in the interaction picture. There is also anather terın usedin the interaction 

Hamiltonian conventionally, for coınpcnsation of the frequency renormalization 

diccts on the system indıır:ecl by the II;nt ıısccl. Our formulat,ioıı does not iııdııcle 

this coıııpcnsatiııg term, and the rcasons are cliscııssed in Appemlix A. For the 

siınplicity in analytical progress, we express the coordinate-coordinate coupling 

between environment and system in Eq. 3.31 as48 

,_\i-1 
Ct'\' 

Hint= 2 L..,(<p),,l(,s)((,rl<p, 
r,~=O 

( 4. ı) 

where u defıncs the coııpling strength anel the symbol ( symbolizes the relcvant 

parameters defining the system, such as the hcight of the poteııtial lıarricr 

between the wells, the bias that tilts the wells, Josephsoıı energy or harınonic 

frequency. Here, the outer product of the system states Ir) and ls) defines the 

transition from state Ir) to state ls) where r might be an energetically lower or 

higher statc than s. The system coordinate <p" which is an x-like coordinate, 

also pcnnits traıısitioııs to lıoth higher and lower states at the same time. Therc 

is also the ncıise inclııcerl dipale matrix elemen ts ( 'P )ö,. that are descrilıecl as 

( 4. 2) 
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Figure 4. 1: The dipale matrix clenıcnts defining the transitions from gronnd and 
first. cxcit.ed st.ate for a specific singlc degcnerate case. Here the paranıeters are 
/3 ,....., 1 . 616 and "'i ,....., 1. 753. Here, the patential "ve lls are symmetric \vith 'Px = 0 .. 5 

These rıoise incluced dipole matrix eleınents are one of the kcy variables in 

the decoherence ınechanisın. They deseribe the \veight of the transitions from 

one system sta.te to another. As we ta.ke the symmetric configuration of the 

double well potentia.l~ the dipole matrix element s ( p) sı· turns out to be zer o 

where r + s = even, i.c. bot.h of the states have evcn or odd parity, duc to the 

parity rules. Therc are finit.c dipale matrix clcnıcnts bctwccn the cvcn and odd 

states. (Fig. 4. 1) However, as the potentia.l is tilted with an external pha.se 

'P:c and asymmetric clouble-well is formed, the system states will have mixed 

pa.rities, and as a result, the dipole matrix elements will have finite valuesfor all 

possible transitions. (Fig. 4. 2). Eventua.lly for any casc, as the states become 

cncrgctically higlıly separated, tlwsc dipale matrix clcnıcnts t.cnd to drop to ;-;ero. 

Tlıcsc facts bcconıc important when cmısidcring a nııılti-lcvcl system, and ı,vill be 

revisited in the next dıa.pter. 

Tn the next step we will be dealing with the environınental part of the 

interaction Hamiltonian. The environment may be considered as ha.rmonic 

oscilla.t.or modes with diiTerenL energies. Consideriııg the master cquatioıı 

expanded to second ordcr as givcıı in Eq. 2. 55~ the ncxt step is modifıcd ;:ı...<; 



CHAPTER. 4. NO/SE AND DECOHERENCE OF THE SYSTEM 

• 

• • • 

• • 

• 

• • 
• • 

• 

• 

• • ..... ·•···•···•· •··· 
• • 

n 

48 

Figure 4. 2: The dipole matrix elements defining the transitions from ground and 
first excited state for a specific single degenerate case. Here the parameters are 
(3-:::::: 1.616 and 1-:::::: 1.753. Here, the potential wells are asymmetric with !f!x = 0.6 

follows: 

P(t) - [Tr, [ (~~o (<p),(t)l(, s(t))((, r(t)l<p,(t)) , (4. 3) 

[ ~ p~O ( <p )pql(, p( t')) ((, q(t') l'l'e(t'), p,(O) @ p(t') ll dt'. 

Here, the density matrix for the system is expressed as p( t) and the environmental 

density matrix is expressed as Pe(t). Whenever the total density matrix will 

be used, we will be using the notation Pr(t) = p(t) ® Pe(t) or rather Pr(t) 

p(t) ® Pe(O). As we express the environmental coordinate !f!e as 

if! e = L TJk(bl + bk) (4. 4) 
k 

where the operators bk are the environmental raising and lowering operators, and 

the factor T/k deseribes the coupling strength of the relevant environmental mode 

k. Inserting this form into the Eq. 4. 4, and ignoring the parameter set ( for 

clarity, we obtain 
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-a2 
p(t) = -2-

t N-l 1 L L T?kTlk'(cp)sr(t)(cp)pq(t') X (4. 5) 
O k,k' p,q,r,s=O 

Tre [ls(t))(r(t)l(bl(t) + bk(t)), [lp(t'))(q(t')l(bl,(t') + bk'(t')),pe(O) ® p(t')]] dt' 

which expands as 

2 t N-l 

p(t) = -; 1 L L T?kTlk'(cp)sr(t)(cp)pq(t') X (4. 6) 
O k,k' p,q,r,s=O 

[ls(t))(r(t)lp(t'))(q(t')lp(t')Tre ((bl(t) + bk(t))(b!,(t') + bk'(t'))Pe(O)) 

ls(t))(r(t)lp(t')lp(t'))(q(t')ITre ((bl(t) + bk(t))Pe(O)(b!,(t') + bk'(t'))) 

IP( t')) (q( t') IP( t') ls( t)) (r( t) ITre ((bl, ( t') + b k' ( t') )Pe (O) (bl(t) + b k ( t))) 

+ p(t')lp(t'))(q(t')ls(t))(r(t)ITre (Pe(O)(b!,(t') + bk'(t'))(bl(t) + bk(t))) J 

The trace operations over the environmental spectrum will turn out to be 

the averages of the relevant operator products over the initial environmental 

collective state, as we are taking the environment to be stationary in time. As we 

are taking the expectation over a fixed state, we safely neglect the expectations of 

two annihilation or two creation operators. Furthermore, the two environmental 

mode indices k and k' should be identical to obtain a non-zero contribution. The 

inner products of the system states also reduce to Kronecker-delta functions as 

we take out their time dependence out. In order to clarify the master equation 

further, we can check the time derivative of the individual matrix elements and 

obtain their relation to the other matrix elements as 

Pkz( t) (4. 7) 
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5k,sPr,p(t')5q,l ( (bl(t')bk(t)) + (bk(t')bl(t))) 

5k,pPq,s(t')5r,z ( (bl(t)bk(t')) + (bk(t)bl(t'))) 

+ Pk,p(t')5q,s5r,l ( (bl(t')bk(t)) + (bk(t')bl(t)))] 

50 

where the dipole matrix elements include the time dependence of the states as 

(ep) sr ( t) 

(ep)pq(t') 

(ep )sr exp( -i(Es- Er )t) 

(ep)pqexp(-i(EP- Eq)t'). 

(4. 8) 

(4. 9) 

We can also simplify the environmental part of the master equation further 

by using an environmental spectral model to define the coupling strength of 

the environmental modes to the system. Although the environmental modes are 

represented as discrete mo des, for the sake of reality, we will treat the environment 

to be a continuous bath, so the sum over the environmental mode index k will 

turn into an integral over the environmental mode frequency w. 

Throughout our calculations, we will be using different environmental models. 

Firstly we will use a realistic model as 

L Tlk =? I(w) = wl+v exp( -w2 /4A2
) coth 2~. 

k 

(4. 10) 

This type of spectrum is used widely in the decoherence calculations,4 where the 

first power term characterizes the low frequency regime of the spectrum, and the 

second exponential part characterizes the high frequency regime. The parameter 

v defines the spectral character, so that for v =O we have an ohmic spectrum, for 

v < O we have a sub-ohmic and for v > O we have a super-ohmic spectrum. These 

names are used conventionally to deseribe how the spectrum is dependent on the 

frequency. A Gaussian cut-off frequency A is used to limit the high frequency 

regime realistically. The coth term comesas a thermal enhancement, due to the 

2nw+ 1 factor comes from the expectation values of the environmental operators as 

we treat the environment as a bosonic bath. In order to understand the behavior 
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of this spectral function better, one can examine Fig. 4. 3. The parameter A in 

a way defines the width of the spectrum. As for the amplitude of the spectrum, 

all parameters A, v, T are effective. T amplifies the amplitude independently, 

whereas for higher A as the cut-off is effective at higher frequencies, so for ohmic 

and super-ohmic parts, the spectrum amplitude has more room to increase. 

Figure 4. 3: The variation of the spectral function I(w) versus w and v for 
-ı :s; v :s; ı and parametrized as A/T = ı o, 50, ıoo from the innermost to the 
outermost surfaces respectively. 

Anather widely used spectral model in our calculations is a Lorentzian spectral 

model. Although the power-law spectral model is quite realistic and has plenty 

of parameters to manipulate, it is not flexible enough. As we try to investigate 

the effects of different parts of the spectrum, while isolating and nullifying the 

rest, a power-law spectrum is not very suitable. As a result we also used a toy 

spectrum model as 

I(w) = A E2 

1r(w-w0)2+E2 (4. ll) 

where the parameter A defines the total area under the spectrum, w0 defines the 

center of the spectrum and E defines the width of the spectrum. As a result we 
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can manipulate the wiclth, height, and location of the spectrıım inclepenclently 

with this spectral functioıı (Fig.4. 4). 

(a) (b) ı (C) 
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F igııre 4. 4: The variation of the spectral fundinn I (w) versus w for Lorcnt.zian 
spectrum. In (a), f = 0.5 and w0 = 4 are fixcd parameters whcrcas A dıangcs. 
In (b), f = 0.5 andA= 3 are fixcd parameters and w0 dıangcs. In (e), w0 = 4 
and A = :3 are fixed panırneters and c changes. 

This Lorentzian spectnurı is quite useful in observing the rıon-reı:;onant efl'ects 

of the environment as we can locate the spectrum at aresonant frequency or non

resonant frequency qııitc precisely. The results will be discussed in the following 

scctions. 

In ordcr to cakıılatc the time dependeııce of specific rcdııccd dcnsit.y matrix 

eleınents, vve will continue from Eq. 4. 8. Due to the two Kronecker-delta 

functions for each terrn, the summation over four indices clrop to hvo indices 

and the suın over the environmeııtal nıod index k turrıs into an integral over 

environmental frequency u..J in order to obtain a more realistic continuous model. 

The remaining master cquation for the reduced density matrix may be shown 

most simply a .. <; 

(4. 12) 
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where the kernel K:i(t, t') is similar to the Bloch-Redfield tensor as given in Eq. 2. 

72, though as it includes both time indices, it is free of the Markov approximation. 

The open form of this kernel is written as 

Kkz(t t') rs ı {F(t- t') [(tp(i)tp(t'))kr 5s,z- (tp(t'))kr (tp(i))sml 

+ F*(t- t') [(tp(t')tp(t))
8
z5r,k- (tp(i))kr (tp(t'))sm]} · 

( 4. 13) 

Here, the function F( t-t') is the complex no ise correlation function, and defined 

as5o 

F(t- t') =Tre [tpe(i)tpe(t')pe(O)] (tp e ( t) tp e ( t')) ( 4. 14) 

100 

dwi(w) coth(w/2T) exp( -iw(t- t')) 

with the conjugation 

F(t- t') = F*(t'- t). (4. 15) 

Note that the noise correlation function has two time indices, which indicates it's 

non-Markovian nature. The non-Markovian reservoirs have also been apoint of 

interest recently, 51- 53 and as it gives more realistic results, we avoid the Markov 

approximation in our calculations. The terms tp(t) are defined as 

N-1 

tp(t) = L (tp hz exp( -i(Ei- Ez)t) ik) (ll) ( 4. 16) 
k,Z=O 

where N is the truncation limit and (tp hz are the dipole matrix elements as 

defined in Eq. 4. 2. 

The cakulation of the time evolution of the reduced density matrix is trivial 

from this point. We perform a nurnerical nonadaptive Euler algorithm48 where 

we use an infinitesimal time inerement dt. The elements of the reduced density 

matrix are calculated one by one with the help of simple equation 
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( 4. 17) 

During the evolution calculation, time is increased discretely from zero by 

dt steps. :\I or e cl early, fırst Pi~l (dt) is calculated us ing the kernel K~; (dt, O) 

and the reduced density matrix p~~)(O). In the ncxt step, Pi~~)(2dt) is calculated 

using the kernel valucs K:_!(2dt, dt) and K;,~(dt, O) and thcir nıultiplications ı.vith 

the reduced dcnsity matrices Pi~)(dt) and Pi~)(O) rcspcctivdy. The cakulation 

continues like this, up to a finite time value t = n· dt "vhere n is on the orcler of 

104
. However this nurnerical cakulation becomes costlv in terıns of time, as the 

dimension of the reduced density matrix, i.e. the truncation limit of the system 

is incrca.'icd and the cakıılation is carricd on up to lorıgcr times. The complexity 

incrcascs witlı N'1 sincc the number of dcıncnts of whidı the time cvolııtion to 

be cakulatecl increases with N 2 and for each element, '''e need to calculate a sum 

with two indices runuing up to N. For instance the cakulation of a 4 leveled 

system takes 1ô times langer time than the cakulation of a 2 leveled system. 

The complexity also increa.ses with n 2 , i. e. the time required to c aleula te the 

cvolution up to t = 100/ws takcs 100 times more time to cakulat-c the cvolution 

up to t = 10/ws, where wR is the hannonic frequency of the system, used to obtain 

norrııalized, dinıcnsionlcss time parameter. 

Next, we will be calculating the RDTVf evolution for varıous paraıneters 

involving the spectrurn and system, and exaınine the effects of these paranıeters. 

4.2 Spectral dependencies 

In this seetion we will be examining the eiiecLs of spectral paraıneters on the 

dccolıcrcnce medıanisnı of system. Tlıcrc are several parameters of a typical 

spectrum. \'Ve have bccn using t.vm spectruın nıodcls throughout the calculations, 

so we will be inspecting the parameters of these spectral models. After going 

through the spectral paraıneters, we will focus on the system pararneters in the 
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ncxt chapter. Throughout this scetioıı, the system will be taken as a two level 

system, i.e. the tnıncation limit will be set to 2. Also the system will be set to 

a clegenerate confıgural.ion, so the two kvds will have almost the same energy. 

Finally, the initial state that the syst<enı is prepared will be a superposition state 

lıJ;(ü)) = aiO) +bil) where a2 + b2 = 1. For convenience we choose a = /().9 and 

b = v'ifieiiT /2 

4.2.1 Temperature 

Tenıperature is common to all spectral ınodels intherınal equilibriunı, so we will 

be inspecting temperature first. As we are dealing with a bosonic environmental 

bath, we use the bosonic occupation factors at finite temperatures, and due to 

the 2n'"(T) + 1 faclor obtained in Eq. 4. 8, we have an effecüve hyperbolic 

cotangent fıındioıı with argument w/21', where the constants fi. and k 8 are taken 

as 1. The hyperlıolic cotangent hınction gocs to infinity as w /21' approaclıes zero, 

and goes to 1 as w j'2T approaches infinity. So effectively, ternperature briııgs an 

eııhaııceıneııt to the spectral form, and this eııhaııcenıeııt is ınuch nıore dominant 

at low frequencies than at high frequencies. 

\Vhile justifying the 2LS approximatioıı, low temperatııre constraint is highly 

rdiecl ııpoıı, so that if the thcrmal energy is low enoııgh, i.e. lowcr than the 

separation of the qubit subspace anel higlıer levels, it is sai<l that the syst<em 

cannot have transitions to higher levels. \Ve will be observiııg the effect of 

tenıperature for both spectral nıoclels, power-law type, and Lorentzian type. 

As we are also questioning the validity of the 2LS as well as some other 

approximatioııs mentioneel in Clıapter 2, our further calculations will only have 

zero temperature. Tlıercforc wc will be working with ideal conclitions for 2LS, and 

can check the validity of the approxiınation in t.lıe next chapter, more conficlently. 

First we will be inspecting the effects of teınpenıture in the presence of a 

power-law spectrurn. As we are using a 2LS, there are two main ınechanisms 

that we can inspect, relaxation and dephasing. In the relaxation graphs, only 

p11 (t) is plottecL as the reduced density matrix has a trace of 1, p22 (t) is simply 



CHAPTER 4. NO/SE AND OECDHERENCE OF THE SYSTEM 56 

1- p11 (t). As for the dephasing mechanism~ lp12(t)l is plotted. As this value 

goes to ~cro, the reduced system loses it 's phase information. As we can see 

from Fig. 4. 5, whidı shows the rclaxation pattern for diiTcrcnL temperature 

values, as the tenıperatuı·e increases, the rclaxation gains mı oscillatory bchavior 

on the overall, the higher the temperature, the higlıer the escillation frequency. 

Hm;ı,rever as --..ve closely obsenre the short time range, apart from the envelope of 

the oscillations which slıows an exponential behavior, there is a Gaussian-like 

belıavior range, and a.s the teınperature incrcascs~ the rela.xation becomes fasLer. 

For all tenıperature values~ the diagonal clcrncnts of the density matrix gocs to 

0.5, the maximum cntropy-minimunı information linıit. Thesc data are obtained 

for a sub-olunic spectrunı (u = -1) for w hi ch the lo w frequency range of the 

spectrum is most dominant. 
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Figure 4. .5: The relaxation curves for a degenerate two level system, that is 
in interaction with a power-la'"' type spectnım with /\. = 1 O and v = -1 for 
varimlS teınperatures. On the left, we have a broader time range where time is 
nornıalized with an energy scale n, and on the right we observe closely the slıort 
time range. 

As for the dephasing mechanism, we obtained Fig. 4. G for the same pararneter 

set. As wc are checking for a modulus, thcrc sccms to he a rcficction-likc bchavior 

for highcr teınperatures from the axis lp12(t)l =O. The cffcct of temperature on 
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dephasing mechanism is very similar to the effecL on relaxation mechanism. For 

both ca.ses the temperature indııces oscillatory beha.vior which has increasing 

frequency wit.h inercasing t.emperature. 1\:Ioreover, the general bchavior is also 

vcry siınilar, an exponential-like envelope hınction for oscillat.ory curvcs (the 

function itself is exponential-like, when there is no oscillation at T = 0), and 

Gaussian-like drop-off at short time ranges. 
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Figure 4. G: The dephasing curves for a. degenera.te hvo level system, that is 
in intcra.ction with a pmver-law t:ype spectrıım with A = 10 and 1.1 = -1 for 
various t.emperatures. On the left, wc have a broadcr time rangc where time 
is normalized \vith harınonic frequency, and on the right ';1re obsenre dosely the 
short time range. 

As vve check the effect of finite tenıperatures for ohmic power-law spectra, we 

observe a similar behavior as slıown for in Fig. 4. 7. The increasing ternperature 

speecls up the decoherence processes both for relaxation and depha.sing. However 

the oscillatory behavior observed in the sub-olımic ca.se is non-existent in the 

olnnic casc. 

Next, wc check the siınpler Lorcntzian spectrum, just to he safe about the 

role of the temperature. The system is again set to be a degenerate two level 

system, and the Lorentzian spectnun para.rneters are clıosen as A = 3, t = 3 and 

w0 = 5. The relaxation pa.ttern as shown in Fig. 4. 8 is very similar to the one 
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Figure 4. 7: The relaxation and dephasing curves for a degenerate two level 
system, that is in interaction wi th a power-law type spectnun \vith /\. = 1 O and 
E/ = O for 'larious temperatures. 

in sub-ohrrıic power-law as well a .. -; the rclaxation pattern as slıo-..vıı in Fig. 4. 9. 
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Figure 4. 8: The relaxation curves for a degenerate two level system, that is in 
interaction >vith a LorenLzian type spectrum with A = ~~ , e: = ~~ and w0 = 5 for 
various temperatııres. On the ldı. sidc is the overall belıavior >vlıerc slıort. time 
raııgc is ımı.gnified on the riglıt lıand sidc. 

As seen from the above figures, teınperature indeed increases both relaxation 
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0.25 

t ( l tn) 

Figure 4. 9: The dephasing curvcs for a degencrat.e two lcvcl system, that. is in 
intcractimı •vith a Lorcnt.zian type spectrum with ,4 = 3, f = 3 and w0 = 5 for 
various temperatures. On the left sicle is the overall behavior where short time 
range is magnifiecl on the riglıt hancl side. 

and dephasing rates. The effect of tenıperature is not quantitatively investigatecl, 

but only qualitatively demonstrated. But it is observable that the relaxa.tion 

and dephasing ratcs are fıniLe for the 2LS even at T = O. The fıniLe 

rclaxation ra.tcs also depenel on the non-diagonal coııpling bctwccn the system 

and the environment; ı.c. the non-diagonal dipole matrix. Tlıcre are also 

other approaclıes that are taking a diagonal coupling in order to observe just 

dephasing, without relaxation. 54 But recently tlıere are other claims using 

realistic models on decolıerence eflects in mesoscopic systems5;3,56 as well as 

some experimental confırma.tions on the saturations of the R.D ratcs at low 

temperatures.G7 Also tlıcorctical studies have bccn ımıele for :.-:cro temperature 

deeohcrcncc rnedmnisnıs. 5~'~ 61 In ordcr to invcstigatc the z;cro temperature 

decoherence and make a critique of 2LA, •ve 'Nill be using zero ternperature 

calculations from nmv on, which is a.cceptecl as the ideal tenıperature for the 

two-level system approximation. 
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4.2.2 Ohmic dependencies 

\Ve will now check the effect of the character of the spectrurn on relaxation and 

dephasing mechanisms. The system used, again, 'Nill be a degenerate two level 

system and the temperature will be taken zero. The cut-off frequency is taken 

as A = 1. As it is shown in Fig. 4. 10 for all characteristic 11 values, we have 

oscillations over the time domain. The symbols in the fıgııres are dıoscn so that 

the envelope fıınct.ion may he visualizcd easily. As wc check the slıort times; wc 

see that sub-ohmic spectrurn is more slO\v in relaxation than the ohmic or super

ohmic spectra. However, the envelopes of the oscillations on the long time range, 

show a different beha.vior, so that the sub-ohmic envelope decays fastest , whereas 

the super-ohmic envelope decays slowest. As we rcturn our attention to Eq. 4. 

10 and Fig. 4. :~, wc see that for sub-ohrrıic spectrum fıuıc.t.ion with TJ = -1 the 

low frequency part of the spectrum is rnudı morc cffcctivc than the low frequency 

part in ohmic or super-olıınic spectra. On the other lıamL for the super-olıınic 

spectrum with v = 1, the high frequency part of the spectrum is more pronounced 

than the others. Our system is a. degenerate system (not exactly degenera.te but 

the energy dilierence is on the order of ıo-4 ), so the rcsonant frequency to induce 

a transition bct.wccn the two states is vcry close to zcro. So on the long rangc, suh

ohmic spectruın is morc effective, where resonant frequency is morc pronouncecl; 

lıowever, on the short range, super-ohırıic spectrunı ('.vhich has a greater total 

area) tends to relax the system faster. This behavior v..-ill be investigated more 

quantitatively in the next chapter. 

As we check the relaxa.tion pa.ttern for the same parameter set as seen in Fig. 

4. ll wc observc the same bdıavior as in the rdaxation ca .. -;c qua.litatively. The 

quantitative analysis >vill be presented in the next dıapter. 

4.2.3 Cut-off frequency 

:.Jcxt \VC will be checking the second parameter of the power-law spectrum, 

the Gaussian cııt-off frequency A. Increasing A has two major cffccts on the 

spectrum. First, it increases the range of spectrunı; as cut-off takes effect at 
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Figure 4. 10: The relaxation curves for a degenerate two level system, that is 
in interaction \vith a power-law type spectrum with /\. = 1, T = O for various v 
values. On the left side is the overall belıavior where short time range is ma.gnified 
on the right ha.nd side. 
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Figııre 4. ll: The dephasing curvcs for a dcgcncratc two lcvcl system, that is 
in intcract.ioıı witlı a pmver-law type spectrıım •vit.h A = 1, T = - for varioııs 1.1 

valncs. On the lcft sidc is the overall bdıavior where short. time rangc is magnified 
on the right hand side. 

higher frequencies, ı.e. the spectral width is increases. Second, as the range is 
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increased~ the spectrıını fıncls nıore room to increase with the effecL of pmvcr 

tcrnı without being nıajorly suppressed by the Gaussian cut.-off. So increasing A 

incrca..'ics bot.lı wicith and amplitude of the spectrunı, rcgardlcss of the spectral 

clıaracteristic, v. As \VC check the rclaxation curvcs in Fig. 4. 12, wc see that 

for sınaller A values, relaxation rates are smaller both in the short ancllong time 

ranges. Again the symbols on the left sicle are spaced so that the envelope of the 

oscillations may be observed easily. 
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Figure 4. 12: The relaxa.tion cıın'es for a clegenerate two level system~ that is 
in interaction 'Nith a. pmver-law type spectrıını with u = O, T = O for various A 
valnes. On the ldL sidc is the overall bchavior where short time range is magnifıed 
on the right hand sidc. 

As in the prcvious ca. .. -;cs, dephasing shows no diiTcrcnL bchavior than the 

rdaxation qualitativdy, as shown in Fig. 4. 13. 

4.2.4 Spectral center 

\'Ve have dıcckcd the ba"sic parameters of the rcalistic pmver-law spectrum. 

Howcvcr power-la'i'<' spectrum is not the best candidate to inspect the spectral 

parameters incicpcndcııtly as increasing the cut-off frequency A both increases 

the wiclth and the amplitude of the spectrum, or changing the characteristic v 
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Figure 4. 13: The dephasing curves for a degenerate two level system, that is 
in interaction 'Nith a pmver-law type spectrıını with u = O, T = O for various A 
valnes. On the ldL sidc is the overall bchavior where short time rangc is magnifıed 
on the right hand sidc. 

value changes the lo>v frequency and lmx.• frequency rcgimcs independently. So wc 

will be using a Lorcntzian spectrum to check the dkct. of width, spectrallocation 

( also not ed as spectral center w0 ) and spectral anıplitude indcpcndcntly. 

First we will be checking the effect of spectral center, i.e. w0 . \·Ve vvill be using 

the other two parameters fixed as A = 3 and E = 3. Changing the spectral center 

does not change the total area under the spectrum, as the height or the width 

of the spectrunı rcmains unchangcd. As wc check in the long time rangc to the 

rclaxation as slıown in Fig. 4. 14, as the spectrum gets furt.hcr awa_y from the 

resoııa.nt frequency whiclı is located very close to zero, i.e. as w0 is increased, the 

rela..xation rates decrease in the long range. However as "\Ve check the slıort time 

behavior, we observe a different behavior from the rest of the parameters. For 

a short but noticeable time, the ratcs of the Gaussian-like relaxation are same, 

independent of the spectrallocation. So this also shows that thcre is a parallelisnı 

bd.\\'CCn the nndıarıged spectral arca and urıdıangcd Gaussian rcgimc rates. This 

parallelisın will also be discussed comprdıcnsivcly in the ııext chapter. 

Checking for the relaxation curves as presented in Fig. 4. 15 we observe the 
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Figure 4. 14: The relaxation curves for a degenerate two level system; that is in 
interaction with a Lorentzian type spectnun \vith A = 3 and E = 3 for various w0 

values. On the left side is the overall belıavior where short time range is magnified 
on the right ha.nd side. 

same behavior, i.e. same rates at short times for all spectrallocations, however, 

sınaller ratcs for increasing center frequency. 

4.2.5 Spectral width 

:\Text we exa.mine the effect of spectral width over the rela.xa.tion and depha.sing. 

As we check the LorenLzia.n funcLion we see that the '\Vidth is directly proportional 

to the spectra.l arca. As the a.mplitude is fıxed, and the spectra.l location 

is irrelevant, inercasing the spectral ı.vidth docs notlıing except inercasing the 

spectral area. As ';11e see the rela...xation in Fig. 4. 16 and dephasing in Fig. 4. 

17 "ve see that for greater spectral wid tb, the relaxation and dephasing ra tes at 

both short time and long time regimes are greater. This also gives us the hint 

about the role of total spectral area over the decoherence mechanisms. 
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Figure 4. 15: The dephasing curves for a degenerate two level system; that is in 
interaction \vith a Lorentzian type spectnun with A = :3 and c = :3 for various 
w0 = 5 values. On the left side is the overall behavior ·where short time range is 
magnified on the right hand side. 
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Figure 4. 16: The rclaxat.ion curvcs for a dcgcncrat.c t.wo lcvcl system; that is in 
intcract.ion with a Lorcntzian type spectrum \vith A = 3 and w0 = 3 for various f 

values. On the left side is the overall behavior "vhere short time range is magnified 
on the right hand side. 

4.2.6 Spectral amplitude 

Speclral amplitude is indccd the most. trivial parameter of the three. As the 

amplitude comcs in front of the Lorcnt.zian form as a factor, it can be takcn out. 
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Figure 4. 17: The dephasing curves for a degenerate two level system; that is in 
interaction with a Lorentzian type spectnun \vith A = 3 and w0 = 3 for various E 

values. On the left side is the overall belıavior where short time range is magnified 
on the right hand side. 

of the integral in Eq. 4. 15, so that it can as well be assnıneel to be a fa.ctor 

of the coupling consta.nt between the system and environment. Trivially, as the 

coupling constant incrcascs, the decolıercnce bccoırıes morc promincnt, over all 

the time rangc. As \VC see the dfcct of aırıplitude on rclaxation in Fig. 4. 18 and 

on dephasing in Fig. 4. 19, '\Ve see that unsurprisingly, for higher A values, the 

rela..xation anel dephasing ra tes becomes higlıer. 

As we have plenty of spectral paranıeters for both rea.listic anel model 

spectrıım functions, it is abit tedious to investigate the effect of each parameter 

independent of the other parameters. In this chapter, wc have inscrtcd the 

cnvironment int.o the SQUID-EM field model introdaecd and solvcd in the 

previous chapter; solved the master equation clmvn to coupled integro-clifferential 

equa.tions and observed the efl'ects of the environmeııtal paranıeters on the 

system qualitatively. In the next clıapter, we will also check the role of system 

pa.rameters and observe the advantages and disadvantages of different system 

coııfıgıını.tions. Also thcrc '\Vill be morc quantitativc analysis and the well-known 

2LS approxiınation will be questioned in dctail. 
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Figure 4. 18: The relaxation curves for a degenerate two level system: that is in 
interaction -r,vith a Lorentz;ian type speetrıım ·with E = :1 and w0 = 5 for various 
spectral anıplitudes. On the le[L side is the uverall belıavior where short time 
raııgc is ma.gnified on the riglıt hand sidc. 

0.25 

30 40 

0.3 

"' 0.25 
~ 
~ 

0.2 

.. 
· ... .• .. 

• .. .. 

o 

Figure 4. 1 9: The dephasing curves for a degenerate two level system: that is in 
interaction with a Lorentzian type spectrum \vith E = 3 and w0 = 5 for various 
spectral amplitudes. On the left side is the overall behavior where short time 
range is magnified on the right hand side. 



Chapter 5 

Effects of Noise Parameters in 

Decoherence 

While environment plays the most effective role in the decoherence mechanisms, 

the system parameters also effect the overall process. As we have explained in the 

previous chapter, the crucial variables of the system that enter the decoherence 

calculations are the system's energy eigenvalues, the dipole coupling matrix 

elements, and the truncation limit that defines the number of levels of the system 

explicitly. 

The truncation limit is completely arbitrary, as we can choose any limit for a 

system, except for some manifesLly N level systems such as spin systems, or some 

organic molecule that has certain discrete rotational symmetries. Although our 

focus is now on SQUID systems, which are systems with infinitely many states, 

so we are inserting a truncation limit. However, our truncation limit will be 

regarding the finite coupling range of the system levels as illustrated in Figs. 4. 

1 and 4. 2. 

We also presented a solution for a SQUID system in chapter 3, where we 

mentioned that by the appropriate choice of the potential parameters 1 and (3, 

we may obtain some special energy level configuration. We can even obtain 

a singiy degenerate (where the ground state energy and the first excited state 

energy are same), or a doubly degenerate (where both ground and first excited, 

68 
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and second-third excited states are degenerate separately) configurations. Of 

course the configurations are obtained by nurnerical search routines, and the 

degeneracies are not absolute though the degeneracy parameters as defined in 

Eqs. 3. 4ı, 3. 42 and 3. 43 can be as high as ıo6 . Although we haven't searched 

for every possible configuration, we believe that we have quite a lot of flexibility 

on preparing a SQUID system in MQC regime, in terms of energy eigenvalues. 

The final crucial parameters are the environmentally induced dipale matrix 

elements as given in Eq. 4. 2. The matrix elements may have parity conservation 

if the potential is symmetric, so that the eigenstates show even and odd parities 

alternatingly, or the matrix may have no zero element in case of asymmetric 

potential as shown in Figs. 4. ı and 4. 2. We also observed in these figures that, 

for a real SQUID system, the dipale matrix elements tend to decay to zero as the 

two indices are different from each other by an order of ıo, i.e. as n- m > ıo, 
cpnm = cpmn tend to approach zero. This means that the direct coupling from 

ground state to rv ısth excited state or above is negligible. 

In the light of this information, we can as well define a toy system model, 

where we can freely manipulate the energy configurations or dipale coupling 

matrix elemen ts. 62 Of course we are not in pursuit of some marginally configured 

systems, but as we know the general behavior of the dipale matrix elements and 

that we can obtain eigenvalue configurations quite fiexibly, it is simpler to use a 

toy system model. Throughout this chapter we will be using such a toy model, 

unless otherwise stated, for which the energy levels may be degenerate or simply 

non-degenerate. As for the dipale coupling matrix elements, we will be using a 

model such as 

{ 
K:e-ln-ri/R if n+ r=odd 

cpnr = 
O if n + r=even 

(5. ı) 

where R is the range of dipale couplings and K: defines the coupling strength. For 

compatibility with the SQUID system, we will be taking this range as R = ıo. 

Note that this type of dipale coupling is for the symmetric potential wells, where 

parity selection rules are valid. For an asymmetric potential configuration, the 

condition will be necessary no more, and all the matrix elements will be finite 
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within the range. 

There will be two maın ıssues that we will probe, in this chapter. Firsl, 

wc will be comparing the decoherence ra tes of ıııııltilcvcled systems and 2LS, 

ıınder the ideal 2LS cunditiuııs, and also invcstigatc the Icakage plıenoıııenon, 

the third mechanism of decoherence. Second, we will be observing the effect of 

non-resonant transitions, which are often overlookecl as compareel to the resonant 

transitions. By combining the resnit of these two sections, we will be questioning 

the 2LS approxiınation, which is widely used since it has been proposed6'ı 

5.1 Decoherence rates at short and long times 

The density matrix m;ııally starts with a Gaussian-!ike time variation, as slıown in 

cletail in the previous chapter, unless the syst.em-noise kernel is abrııptly changing 

at short times, i.e. t -+ t'. It should be remarkecl that those processes in the 

solution of Eq. 4. 12 with a finite first clerivative surviving in the limit t -+ O 

are necessarily :VIarkovian with della-fuııclion !ike correlations, i.e. :F(t- t') ·X 

r5(t- t'). On the other hand, most physical ncıise soıırces display non-:Vlarkovian 

corrdations at short times and the ıısııal practice is to represent thcın by a 

puwer-Gaussiants,so or power-expunential. ı,:uu:un,28 • 27 The zero clerivative of 

the clensity matrix eleınents at t =O is trivial, as from Eq. 4. 12, we have 

r!kı(O) =- { dL' L K;;(o, t')p,,(t') =o. 
' 0 rs 

(5. 2) 

Thcrcforc the Icading termin the slıort time liınit is the scconrl time clcrivativc~ 

given by 

2 
d "" -ki dt2 Pkı(t =O) =-~ h,.,(O, O)p,,(t =O) (5. 3) 

rs 

provided at lcast one of the tcrıııs in the sunımation on the right-lıand siclc is noıı

zero. h can also be chcckcd by direct cakıılation that only the cven derivat.ivcs 

of the reclucecl clcnsity matrix are non-zero at t = O. :"Jote that the Eq. 5. 3 is 

correct only at t = O and should not be iııterpretecl as a differential equation at 
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vanishingly short times. The decohering density matrix therefore starts with a 

time evolution which is Gaussian-like as 

(5. 4) 

where the Gaussian decoherence rates ( Th~L)- 1 = Ar:/2L enter as a sum over 

the square roots of the positive eigenvalues of a characteristic operatur K(O, O) 

representing the system-noise kernel. In appendix B, the positive definiteness of 

K(O, O)and its relation to K:i(O, O) are demonstrated. 

Figure 5. 1: The Gaussian decay fit to the RDM element p11 (t) at short times, 
under the infiuence of a Lorentzian spectrum with spectral parameters A = 3, 
E= 3 and w0 = 5. The system is taken as a degenerate 218. 

As we fit a Gaussian-like decay to the short time ranges in the diagonal RDM 

element p11 ( t), so that 

Pıı(t) = 0.9exp( -t/Tfl) 2 (5. 5) 

where the term The) defines the Gaussian relaxation time at short time limit, and 

the factor 0.9 comes due to the initial state preparation, we obtain a good fit as 

shownin Fig. 5. 1. Only a candidate diagonal element is demonstrated, though 

the fit can be applied to all RDM curves, diagonal or non-diagonal, i.e. relaxation 

or dephasing, for any spectral parameter set. The relevant Gaussian decay rates 
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are obtained from these fıts at short times. Though it should be noted that for the 

dephasing curves for our initial statc clıoice of lı/;(0)) = VOJiiO) + vo.Tei"/2 11), 

the factor bdore the fiUiııg fıınction slıoulrl be 0.3 as it is the iııitial value~ of the 

non-diagonal cknıent P1'2· 

As we have also showed in the previous clıapter, for non-Markovian syst.ems 

the exponential behavior can be reached after a significant decoherence has 

already taken place at short and internıediate times. Here we should also renıark 

that, although a LorenLdan type noise spectrıım has Markovian correlations in 

suffieienlly loııg observational times, tlıere are also physical spectra witlıoııt a 

.Ylarkovian liırıit. For instance, the widdy usccl Rubiıı model whidı represents 

a bosonic environment. with Einstein plıoııons has power law dependence of the 

noise correlations at long times.4 This indicated that the long time decolıerence, 

in c:ontrast to the short time decolıereııce, depends on the type of physical process 

generating the spec:tnıııı. 

Taking the same data as slıown in Fig. 5. 1 and focusing on the long tinw 

raııgc of it, wc can fit the data to an expoııeııtial fıınction as 

Pn(t) = E,exp( -t/Trıı + 0.5 (5. 6) 

where Trı defines the exponential relaxation time at the long time liıııit, and a 

faclor of 0.5 is added as the exponential decay does not approach to O, but rather 

to 0.5 as the informat.ioıılcss linıit. The fiUiııg to the data, as shown in Fig. 5. 

2 is perfect. Just !ike the Gaussian decohercncc fitting, expoııeııtial decohcrence 

fitting may also be applied to non-diagonal elemen ts in oı·der to obtain dephasing 

times, though in that case, the fina! additive factor 0.5 would be absent as the 

dephasing curves decay to O. 

Tlı d lı t . d t . (G,E) d ( (G.E)ı-1 b b . d e eco erence ımes an ra.es, ı.e. TnD an Tnn can e o taıne 

ıısiııg the above methods, anel the valııcs obtained from now on, tlırough-oııt this 

clıapter will be cakıılated !ike this. 
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Figure S. 2: The exponential decay fit to the RDM element p11(t) at short times, 
under the inlluence of a Lorentz.ian spectrımı with spectral paraıneters A = ~~~ 

f = 3 and u,•0 = 5. The system is takcn asa dcgcncrate 2LS. 

5.2 Multilevel effects 

The 2LA is the most canınıonly used approxirnation in the literatıırc. Ilowcvcr 

the validity of the approxiınation is not confirmcd in most cascs. As \VC rccall 

the facts, the 2lıA has, in its essence, three assumptions: 

( a) that the incohcrent transitions cansed by the cnvironmcnt in the system 

are generateel by the resarıant processes: implicit in the 2LA is the belief 

that the spectrurn must have non-negligible couplings at the right transition 

.frequencies at ·ı;vhich the system makes transitions to higher levels; 

(b) at zeroor sufficiently low tenıperatures there are no available environnıental 

states to couple with the system. This assumption and the notion of the 

right transition fn:q,uency is basically tempting one to neglect all parts of 

the spectrıım D..E ::::; w beeause of the long standing bclid that at sufficienlly 

low temperatures the int.eracting part of the spectrum is in the low cncrgics 

w ::::; T « D.. f'j' of which coupling is believed to be suppressed by the low 

tenıperature; 
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(c) negligible leakage of the qubit subspace occupations to higher levels. 

These three fundamental assumptions will be discussed in detail. First we 

will attempt to challenge the assuınption (b). As we have mentioneel earlier, in 

cmier to saLisfy the low temperature conditioıı for any system confıguration, wc 

will use ~cro temperature calculations. As assurncd above, the rclaxation and 

dephasing rates should not be effected by the number of levels, as there won't be 

any available environmental modes to assist the transition to higher levels. 

In order to check this assumption, we increase the truncation limit N and 

calculate the relaxation and dephasing rates as a. hınction of the total number 

of levels in the system. \Ve focus our interest in the slıort time Gaussian 

rates, as they are morc crucial than the loııg time exponential ratcs. The 

system experiences significant dccohcrcncc till the exponential dccay govcrns the 

decoherence rates. \Ve use the toy system model clefinecl in this dıapter with 

coupling strength /'C = 0.1 and coupling range R = 1 O with a singiy degenerate 

configura.tion, ·where the lowest two levels are degenerate and higher levels have 

equally spaced energy values with !lEn,n+l = 1 in tcrms of a fıxed energy scale, 

likc the one used for the SQUID model, i.c. the harınonic cncrgy scalc. The 

rcsult.ing rclaxation and dephasing rates of the RD"YI element p11 as slıowıı in 

Fig. 5. 3 shov..- an increasing behavior. Also; as expected; the ra.tes reach to a 

saturation as the number of levels go over 1 O. There is also a significant step

like behavior in the relaxation curve. This is also expected, as with the parity 

selection rules, the dipole matrix elements forbid transitions from odd levels to 

odd lcvds and from cvcn lcvds to cvcn lcvds. So adding a tlıini lcvd to the 

system does not incrcasc the rclaxation rate, sincc transition from groıınd state 

to this sta.te is forbiclclen. A similar step-like behavior woulcl be seen, if the 

rela..xation ra.tes of RDTvT element p22 vvere to be calcula.ted, but the steps woulcl 

not. be behveen even-odel states but bet\veen odd-even states. 
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Figure 5. 3: The relaxation and dephasin~ rates for a degenerate hvo level system, 
that is in interaction with a Lorentzian type spectrurn with E = 0.1, w0 = 1 and 
A = 1. The coupling range is R = 10 and the coupling strength is K= 0.1. The 
system is a singiy degenerate system. 

5.2.1 Leakage 

As ment.ioned before~ leaka~e is defined as the occupation of the states other than 

the qu bit su bspace, i.e. the ground state and the first excited st at e, as defined 

in Eq. 2. 21. It is often assumed to be zero as part of the 2LA, though this 

assuınpt.ioıı has not been seriously questioned until recently. CounLer-arguments 

against ncglccting the lcakagc cffcds in the long time dynamics can he foıınd for 

instancc in the recent publications. 19•6·
1

•60 

Tn order to examine the İnıportance of leakage, "\Ve need to have a multilevel 

system by default. So as in the previous section, we calculate the leakage for 

different truncation limits, and the results are shown in Fig. 5. 4. As expected, 

the short time behavior of the leakage also shows Gaussian-like behavior and in 

the loııg time, the bdıavior turns into an exponentia.l. Tlıough the Gaussian and 

exponential forms are invcrtcd. 

As we calculate the Gaussian leakage rates TtG) for different truncationlinıits, 
vve obtain Fig. 5. 5. Note that the calculated rates are on the order of the 

relaxation and dephasing rates as present.ed in Fig. 5. 3. This comparison shows 
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Figure 3. 4: The Leakage curves for multileveled systerns in interaction with a 
Lorentzian spectrum witlı A = 3, w0 = 3 and E = 3. The system has coupling 
range R = 10 and coupling strength K = 0.2. On the left side we see the long 
time range '\vhereas the short time range is focused on the right lıand side. 

us that, even at T = O, the leakage is not a negligible phenomenon, and may 

eiTecL the overall decoherence significantly. The eliecLs of leakage 'Nill also be 

considcrcd in the ncxt chapter. 

5. 3 N onresonant effect s 

Throughout the transition calculations in the literature and textbooks, the non

resonant transitions are often ignored. Due to a crucial difference between 

the resarıant and non-resonant transitions , which is the energy conservation, it 

is usually more convenient to consider only the rcsonant transitions. In the 

non-resonant transitions, as the cncrgy of the transition experienced by the 

system does not matdı the cncrgy of the cnvironmcntal process ncccssarily, thcsc 

transitions occur in very short time scales, due to the uncertaint.y principle. The 

higher the energy difference, the shorter is the time to observe the transition. 

The rotating wave approximation discussed in Chapter 2 is used mainly to avoid 

the non-rcsona.nt. tcrms. Ilowever, the eiTecL of these non-rcsona.nt. transitions are 
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Figure S. .1: The leakage ra.tes for a. degenerate two level svstem) that is in 
interaction with a Lorentz.ian type spectrum with f. = 0.1) U-'o = 1 and A = 1. 
The coııpling rangc is R = 10 and the coııpling strcngth is f>. = 0.1. The system 
is a singiy degcncrate system. 

not discusscd extensively. 

The fimı1 assuınption to be discusscd for the 2LA is the resonant transitions 

assuınption. Tn order to check for the validity of this assuınption, >ve nıake 

use of the Lorentzian spectnun as it can be prepa.red at any width and at any 

frequency location. \Ve prepa.re a. spectrum with a very na.rrow \vidth: f. = 0.1 

and by maving this loca.lized spectrıırn around the rcsona.nt and non-rcsona.nt 

freq uencies) wc check the relaxation, dephasing and lcakage ra tes. The sh ort

time Gaussian rates and the long-tiıne exponential ra.tes will he invcst.igat.ed 

respcctivcly. 

5.3.1 Sh ort-time behavior 

As wc have cxmrıincd the dfccts of the environrrıental parameters on the 

clecoherence mechanism qualitativdy in the previous clıapter vve have shown that 

for various spectra.l locat.ions, the short time relaxation and dephasing rates does 

not differ. As we calculate the Gaussia.n rates for various number of levels at 

diiTerent spectral locations) we verify this observation as demonstrated in Fig. 5. 
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Figure 5. 6: The rclaxation and dephasing rates for a nııılti-levcl system, that 
is in intcra.ction with a Lorcntzian type spectrum with f = 0.1 and A = 1 for 
various spectral locations. The system is prepared \vith coupling range R = 1 O 
and coupling strength K = 0.1. Energy levels are equally spaced with !3. R = 1. 

6. These results show that the spectrallocation, i.e. the resonant or non-resonant 

frequencies at the spectrurn, have no effect on the Gaussian decoherence rates. 

Next~ we check the e1Tecl of the spectral area on the Ga.ussian ratcs. \Ve have 

previously ohscrvcd that inercasing thefor A inerensed the Gaussian rates, whilc 

incrca..'iing the total spectral arca. In the Lorcntzian spectral function givcn in Eq. 

4. 11, the total area is founcl as A.E. \Ve have checkeel the Gaussian relaxa.tion, 

dephasing anclleakage rates for multi-level systems and the results are presented 

in Fig. 5. 7. As we can see, rates increase with increasing spectra.l area, though 

not linearly. 

As \VC check the Eq. 5. 4~ the kernel in the right hand side~ K:,! is proportional 

to the squared dipole coupling constants and :F(ü). Also dııe to the Eq. 4. 15, 

.F(ü) is proportional to the spectral area urıder the spectral function. Hence 

the short time decoherence rates are expected to have contributions not only 

from the resonant. terıns but from the entire spectrurn as a whole. \Ve thus 

expect. for all the Ga.ussian ratcs for RDl\-'1, (TK}JL)-1 cx (spectral area) 112
. 

The Ga.ussian dccohcrcnce ratcs corrcsponding to the relaxation, dephasing and 
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Figure .5. 7: The Gaussian (a)relaxation, (b)dephasing and (c)leakage rates for 
multi-level systeıns, that is in interaction with a Lorentzian type spectnıın with 
f = 0.1 and w0 = 2.4 for various spectral amplitudes. The system has equal 
cncrgy !eve! spacings i::ı.E = 1, coııpling raııgc R = 10 and coııpling st.rcngt.h 

"= 0.1. 

leakage contributions eliffer only in their clepenclence on the sum over the allowed 

dipole couplings ep,.,. As we plot the ratcs as in Fig. S. 7, but this time in 

a log-log axcs confıgıırat.ion, wc olıtain Fig. 5. 8. Not.c that the log-log plots 

are liııeaL and the slope confirms the depeııdeııce of the rates over the arca as 

yispectral area. 

The same relation also applies to the power-law spectrunı. Although the 

spectrum characteristic (sub-ohnıic, ohmic or super-ohmic) seem to change the 

decoherence pattenı, as we focus on the short time scales we see that the Gaussiaıı 

ratcs an; not cffcct.cd by the u parameter. As wc dıaııgc~ the total arca uncler the 

spectrum by varying the cııt-off frequency A, anel plot the dccohercncc~ rates as a 

function of total spectral area we obtain Fig .. 5. 9. :"Jote that all the plots have 

the same slope on the log-log a.xes scaleı;, and the v pararneter ınerely changes 

the location of data points for the same A on the line. 
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Figure .5. 8: The Gaussiaıı (a)relaxation) (b)dephasing and (c)leakage rates for 
multi-level systems) that is in interaction with a Lorentzian type spectnırn with 
ı= = 0.1 and w0 = 2.4 for va.rious spectra.l amplit.udes. The system has equa.l 
energy level spacings D.E = 1) coupling ra.nge R = 10 and coupling st.rength 
f>. = 0.1. The axes have logarit.hmic scales this time. 

5.3.2 Long-time behavior 

After verifying the dependence of Gaussiaıı rates on the square root of spectra.l 

a.rea., we nmv check the same dependence on exponential ra.tes. vVe have also 

observed in the prcvions chapter that, though spectral location does not effecL 

the Gaussian rates, it indccd cffcc!.s the exponential ratcs. Changing the spectral 

center, for various number of levels~ >ve obtained the relaxa.tioıı~ dephasing and 

leakage (TIDL) rates of RD\'f element p11 (t) as shownin Fig .. 5. 10. \Ve have 

experienced some rıumerical instabilities while w0 approaches to the resonant 

frequeııcies. It >vas possible to overcome the instabilities by decreasing the time 

inerement dt) though in that casc, the computa.tional times 'Nould increase by an 

cm ler of 102
. For the 2LS) wc have only w0 = 1 as the rcsonarıt frequency, though 

for 3LS wc have u...•0 = 2 ;:ı...<; ·well and for 5LS, U...'o = 3 and w0 = 4 are also addcd. 

Though) again; clue to parity selection rules, for the 3LS, transition from grouncl 

s ta te to second excited state is forbidden, hence we have no instability at w0 = 2 

at any plot. Like,vise, the transition from ground sta.te to fourth excited state is 
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Figure 5. 9: The Gaussian relaxation (first column), dephasing (second column) 
and leakage (third coluınn) ra tes for multi-level systems) that is in interaction 
'vVith a realistic power-la''-' spectnmı of different characteristics, sub-ohınic (first 
rmv), ohmic (second row) and super-ohmic (third row) for various cut-off 
freq uencies A. N o Le that the axes have logarithmic scales. 

also forbiclclen. As a result w0 = 4 point does not su.ITer from the instabilities for 

the 518. 

\Ve have obscrvcd that the resonant frequencies do not caıısc any diffcrcncc at 

short time ranges) whereas at the long time range, they increase the decoherence 

rates significantly. This is indeeel natural as the non-resonant transitions die 

out in the long times, and the resonant transition probabilities a.pproach to 1 at 

t ---+ oo. Ilowever, we have demonstrated that the Gaussian ratcs are more crucial 

in dctcrınining the dccohercncc times, sincc till the exponential ratcs dmrıinatc 

in the long times) great dcal of decohcrcncc is experienced by the system in short 

and interınediate times. Asa result, non-rewrıant transitions cannot be neglected 

that easily as in the 2LA. 

In the previous sections, we have discussed the validity of the assumptions 

that the 2LA is built uporı. FirsL we ha·ve demonstrated that zero temperature is 

not sııfficicnt to sappress the dfccL of lıighcr lcvds over the qubit subspace. Thcn 

\VC also showcd that. lcakagc cannot be ncglcet.cd, cveıı at ~cro temperature, since 



CHAPTER. 5. EFFECTS OF NO/SE PARAMETERSIN OECDHERENCE 82 

o. os O.o7 

e-e 2LS 
........., 3LS 

o.o.ı 
......_. SLS 

o.os 

0().1 

o.oı 

o.oı } o.oı 

o 0'--'-~'--'-...J......JL......J::.-""""1-.1 
00 

(a) (c) 

F igure S. 10: The exponential ( a )relauxation, (b) dephasing and (c )leakage ra. tes 
for mıılti-lcvcl systems, that is in intcractimı with a LorcnLdan type spectrum 
with f = 0.1 and A = 1 for various spectral locat.ions. The system has equal 
energy level spacings .6. hJ = 1 , coupling range R = 1 O and coupling strength 
K= 0.1. 

transit.ions from qubit subspace to higlıcr lcvds cannot be suppressed coınpletely 

cveıı at. zcro temperature. And finally, wc have slıown that non-resonant 

transitions are the main source of decoherence at short times. Throughout the 

calculations, '''e avoided the Markov and rotating wave approximations (RWA), 

and solely used the Rorn-Oppen heimer approximation. Now we will also question 

h l 'd" f h B()A . h . h th t ( (C.E))-1 ·ıı b t e va ı ıty o t e h ın t e ncxt sectıon, w ere . e ra .es T İ?.DL >vı e 
\(-G.E) f . 

cxpresscs as "' nin or convcnıcncc. 

5.4 Limitations of the Born-Oppenheimer ap

proximation 

The essence of the Born-Oppenheinıer approximation is in neglecting the back 

infinence of the quantunı system on the environnıent. At sufficientl.ır short 

observa.tion times, in contrast with the typical environment.al equilibration time, 

this approximation holds well and our results within those observa.tional times 
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are reliable. The crucial question is whether the BOA holds at intermediate as 

well as exponential regimes. 

For a rigorous check of the BOA one has to solve the equations without 

this approximation. This can be done by using other techniques for instance, 

the Nakajima-Zwanzig Projectian Operator Method or the Time Convolutionless 

Projectian Operator (TCL) formalismY Another alternative are the analytic real 

time renormalization group calculations. 66 However, these analytic calculations 

can only be applied, by any practical means, to the two-leveled systems. 

There is, nevertheless, an intuitively vcry simple method for estimating the 

range of the BOA. For a multileveled system with a large number of rcsonant 

frequencies, the smallest resonance energy sets the onset of the exponential 

behavior. In our case, this energy scale is Ac -:::::: !:lE = ı and for times 

ı = ı; Ac « t exponential behavior should be manifest. The BOA continues to 

hold in the exponential regime if the Born-Oppenheimer time ( a typical reaction 

time scale of the environment which is on the order of the inverse width of the 

spectrum ı/ E) is mu ch larger than the transition time ı/ Ac to the exponential 

behavior. 

An estimate for the critical region can be made by looking at the crossover 

between the short and the long time behavior. Assume that after some crossover 

time tc, the Gaussian amplitudes are in the same order of magnitude as the 

exponential ones. This amounts to 

(5. 7) 

Solving this equation for the exponents, one obtains for tc 

(5. 8) 

as an estimate for the crossover time between the intermediate and the 

exponential regions. Crudely, for t « tc Gaussian and for tc « t exponential 

behavior are manifest. However, for the BOA to be accurately valid in the 

exponential regime an additional constraint has to be satisfied: the Born 

equilibration time ı/ E has to be mu ch longer than the crossover time tc thus 
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1 
t, « -. (5. 9) 

f 

Dy defining a test parameter ~ı = tc f anel ıısıııg Eq. 5. 9 wc find that 

the Born approximation holels well in the exponential rcginw if lt « 1 anel it is 

unreliable for 1 «lt· Withiıı the ranges of pararneters investigated in this thesis, 

we calculated the 11. pararneter by the correspoııdiııg RDL rates. The results are 

tabulated in the Table 5.1 for 2LS, 3LS and 5LS. 

The J.ı parameter is iııllueııced both by the short and the long time scales. As it 

can be sccn from the table, thcrc are ccrtaiıı regioııs where the BOA is thrcatcncel. 

For instance, dosc to resonam frequencies f.1 incrcascs towarels uııity aııd for 

the opposite case of off-resonant ones, lt « 1. The basic relatioıı is that, the 

coııtributioıı of the long time resoııant coupliııg is to increase the exponential rates 

which increases 11. In this regime the possibility arises that the environmental 

back reaction takes place before the onsct of exponential behavior. On the other 

hand, and independently from the decohcring system, the contrilıııtion of the 

off-resonam parts of the spectrum is to incrcasc the Gaussian ra tes. This in turn 

decreases the pararneter lt by the relatioııs 3. 8 and 5. 9. 

W e also examined the BOA asa function of the number of !eve ls. Considering 

the behavior of 11. with respect to N, _:\(C) as well as A (E) are both ınoııotonically 

iııcreasing functioııs of N for N ::; R. Tlıerefore, using Eq. S. 8 the overall 

dependence is tc '"-' ljN. Siııce f is independent of N, J.ı '"-' N whidı explains 

why the BOA iınproves in MLS with larger nuınlıer of kvds. Tlıis bdıavior is 

illustrated in Fig. 5. 11 for N ::; 5 and can be studied for larger N values 

provided suf!icieııt computing power. 

In tlıe next c hapter, we w ili be examining the realistic onteome of the driving 

fıelds, that are the main manipulation tools to cxccutc the qııaııtıım computation 

algorithıııs, in the prescncc of the cnviromııeııtal batlı. 
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Lv' o 2LS 3LS OLS 
/Lll. /LLJ f.LH f.LD /LL f.LH f.LD /LL 

0.2 0.027 0.006 0.028 0.010 0.080 0.015 0.008 0.012 
0.4 0.046 0.009 0.047 0.016 0.177 0.025 0.014 0.024 
0.6 0.092 0.018 0.100 0.032 0.4 70 O.lWJ 0.026 0.063 
0.7 0.147 0.027 o. 172 0.050 0.837 0.072 0.039 0.109 
1.3 0.154 0.029 0.177 0.051 0.909 0.086 0.042 0.123 
1.4 0.099 0.021 0.127 0.034 0.514 0.054 0.028 0.070 
1.6 0.052 0.011 O.OS2 0.018 0.203 0.020 0.015 0.030 
2.0 0.021 0.005 0.021 0.008 0.055 0.016 O. 009 0.018 
2.4 0.012 0.003 0.013 0.004 0.023 0.021 0.011 0.036 
2.8 0.008 0.003 0.008 0.003 0.013 0.109 0.0,'53 0.316 
3.2 0.006 0.002 0.006 0.002 0.008 0.097 0.032 0.301 
:Hi 0.005 0.001 0.004 0.002 0.006 0.022 0.012 0.046 
4.0 0.004 0.001 0.004 0.001 0.005 0.010 0.006 0.020 
4.4 0.003 0.001 0.003 0.001 0.004 0.007 0.004 0.012 

Table 5.1: The 11 parameter of the RDL processes for 2LS, 3LS and oLS against 
varyiııg w0 . The other spectral parameters are f = 0.1 andA= 1. 
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Figure .5. 11: IJR for 3LS and o LS asa function of spectrum center Lv'u· The figure 
is an illustration of the data in the Table .5.1. 



Chapter 6 

Driving fields in the realistic 

system-environment model 

Quantum computation makes use of the quantum algorithms, and quantum 

algorithms rely on the manipulation of the quantum systems of interest by 

external means. Quantum computation, very basically, consists of a series of 

external manipulations on a quantum system, and a fınal read-out. These 

manipulations are named as gate operations, referring the logical gate operations, 

and an algorithm may consist of gate operations on the order of 103 . So, the 

ultimate goal nowadays is to obtain a system, for which the destructive effects 

of decoherence are not felt before the read-out. As we focus our interest on the 

widely used SQUID systems, since we know that SQUID systems interact with 

external fields, it is most natural to perform the gate operations via en external 

field. In this section, we will try to demonstrate the results of applying an external 

field to a multileveled system, in the presence of environmental noise. So we will 

have a chance to observe the effects of higher levels and environment on the gate 

operations more realistically. 

First we will focus on the most simple manipulation, an external field at a 

resonant frequency which will result in Rabi oscillations. We will present the 

case of ideal Rabi oscillations, and then investigate the effects of higher levels 

and the presence of the environment. The modifications on the Rabi oscillations 

87 
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should give an idea about the outcoıne of some experiments.67 ,?,?o Later, we ·will 

simulate the operation of a small and simple gate series, and comment on the 

success of the outcomc. 

6.1 Rabi oscillations 

Ralıi oscillations are mainly dcfincd for t.wo-lcvcl systerns. When an cxt.crnal field 

is applied tu the system; the populations in the system tend to oscillate. The 

oscillations' frequency depends on the amplit.ude of the Tlabi field applied; not 

on the intensity of the field. As the applied field's frequency is resona.nt ·with the 

2LS, i.e. Wn =LlE, it is possible to observe the population inversion a.s shovm in 

Fig. 6. 1. Tlıough, for a non-resonant Rabi frequency, full population invcrsion 

is not observalıle, as also slıcnvn in Fig. 6. 1. Ralıi oscillat.imıs are narrıcd a.ft.cr 

the Nobel prize winner physicist Isidur Isaac Rabi (1898-1988). Rcc.crıtly, in the 

experimeııtal studies concerning the quantum computa.tion, Tlabi oscillations are 

commonly nıeasured, as they are the simplest way to ma.ke system modifications. 
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Figure 6. 1: Habi oscillations in a 2LS. On the left hand side, we have full 
population inversion as the Rabi field is resona.nt with DıB, whereason the right 
hand side, as wn "!-LlE, we ca.nnot observe a. fLtll population inversion. 
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The interaction of the system with the Rabi field may be ·written as 

(6. 1) 

where the system is takcn as a 2LS and RWA is uscd. Here g12 ddincs the rcal 

coupling strength between the two levels due to Rabi field. The operators a and 

ai· are the operators for the Tlabi field. The time dependent function p(t) defines 

the shape of the Rabi pulse in time, as the pulse may have any specinc shape, 

though using a step furıcLion as a pulse shape would be much easier. 

The Rab i oscillations and full population invcrsions can be obscrvcd in 2LS ~ 

though as statcd before, many physical systerns are inciecd mııltilcvcled and 

truncated to two levels cxplicitly. So, firstly we wish to observe the changes 

in Tlabi oscillations on a multileveled system nrst, on the next subsection. Later, 

we will also introduce the environment. 

6.1.1 The effect of higher levels 

Rabi oscillations are obscrvablc in 2LS, tlıoııgh a ... "l the number of lcvcls in the 

system is lıiglıcr, wc cannot observc perfect oscillations. As wc have dcnıom;tratcd 

and explained in the previous chapter, although the field that the system interacts 

does not include a resonant. transition frequency, the system may experience non

resonant transitionsin the short time limit. In order to obsen'e this non-resonant 

eiiect~ we prcpare a system with four levels, ·where the energy level spacings are 

D..B12 = 1, !::..E2:~ = 1.5~ and !::..B34 = 2 in ternıs of an arbitrary cncrgy scalc n. 
The dipale coııplings in the system are also dıoscn so that the coııplings bchvccn 

the higher levels are \veaker than the one in the qubit subspace, i.e. :p12 = 0.3, 

:p23 = 0.2 and :p34 = 0.1. \Ve apply a Tlabi field with the resonant frequency 

wn = 1 to this system. One could expect that the Rabi field nıay just generate 

transitions in the qubit subspace, so that the occupatioıı of the higher levels may 

rcmaiıı zero throughout the cnt.irc time rangc. Tlıoııglı, as it may be secıı in Fig. 

6. 2, the Rabi field also iııitia.tcs non-resonant transitions to lıiglıcr levels, and a.s 

a result, the occupations ofthe higher levels may increase up to C'-.) 0.4. :.Jaturally, 

full population inversion is not observable. 
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Figure 6. 2: Rabi oscillations ın a 2LS. On the left hancl side, vve have full 
population inversion as the Tla.bi field is resonant witlı ,0..P, whereason the right 
hancl side, as wn f tıR, we cannot observe a full population inversion. 

The effect of multilevels can eve n be more crucial, depeneling on the system 

confıguration. As ·we set the system 's energy level spacings to be equal so that 

,0..En.,n+ı = 1 and apply the rcsonarıt. Rabi field, the onteome may cven be worsc. 

As it can be sccn in Fig. 6. 3 the occupations of the higher levcls ma~y go up 

to rv 0.8 this time, and the oscillations in the qubit subspace becomes more 

clisorderecl. Of course it is not very probable to have a system witlı the exactly 

same le1.rel spacings, though, in order to demonstrate the im portance of the higher 

levels, it was a propcr example. 

Tlıcrc is also a rcccnt experimental rcsıılt67 obtained on a dc-SQUID, ·where 

a strong dcviatioıı from the st.rict lincar law bctwccn the Rabi frequency and the 

field strength is observed. This deviatioıı is explained by the increasing number 

of multilevels participating in the dynamics by the increasing field strength at 

fixed microvmve frequency. 
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Figure 6. 3: Rabi oscillations in a 2LS. On the lcft hawi side, \VC have full 
population inversion a.s the Rabi field is resarıant with .6.~', whereas on the right 
hand side~ as WR 1- t:ıFJ, we cannot observe a full population inversion. 

6.1.2 The effect of the environment 

In ordcr to ohscrvc the cffcct of cnvironnıcnt on the Rabi oscillations, wc nccd 

to inclucle the systems intera.ction Ha.ıniltonians with both the Rabi field anel the 

environınental bath. Then the total interaction Haıniltonian woulcl be 

N N 

Hınt = HR+HP = L 'Pnr(t)[n)(r[(p(t)a(t)+h.c.)+ L f'm·(t)ryk[n/(r[(b(t)+h.c.) 
n,r=l ıı.,r= l,k 

(6. 2) 

where the funct.ion p( t) dcfincs the pulse slıape of the Ra bi field, a, is the Rab i 

field operatar and b is the environmental bath operator. Throughout this dıapter, 

we will use a pulse sha.pe like a step fıınction~ like 

p(t) = { ~ if t s fp 

if t > tp 
(6. 3) 

where tP is the pulse time. As >ve put this Hamiltonian in Eq. 2. 5.5, ';1re obtain the 

master equation to sol ve. However~ for the environmental part, we have discussed 

that the first areler commutation would yield zcro, due to the cxpcctation of 
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single annihilation and creation operators before. So that we would iterate the 

commutation once more and obtain liniLe results in the second order. Though, for 

the Ra bi part of the intcraction, wc have fıııüe outcoıncs at the fırst coınıııutatioıı, 

so thcrc is no nced to itcratc to sccowl ordcr. As wc are sııpplying the Rabi fidrl 

at high intensit.y, with a source !ike a laser beaın, the expectation of a siııgle 

creatioıı or annihilation operator is generally ass um ed unity. As the Ra bi field 

and environmental bath coınmute with each other, we can treat them separately. 

Finally we obtain the master cqııation as 

i
d Pmn(t) = i(nl [H R(t), p(t)]lm)- r' dt' L x;;n(t, t')Pr.,(t') 
ri lo 

r,s 

(6. 4) 

for the reduced density matrix. 

Solving Eq. 6. 4 siınilarly as in Chapter 4, we obtain the Rabi oscillations in 

presence of environment as in Fig. 6. 4. In our calculatioııs, we used a Lorentzian 

spectrıım with w0 = 5, f = 3 and A = :>. The system parameters are same as in 

the prcvious sectioıı. Ilowever, in ord cr to observc the dıaııgcs for rliiicrcnL Rab i 

and cııviroıııııcııtal coııpliııg strcııgths, wc rlcfincd two coııpliııg strcııgths, üR for 

the Rabi coupling and a 8 for the environmental coupling. Tn our calculatioııs, üR 

seems about 7-20 times greater than a 8 , though as the enviromnental processes 

are calculated at second oı·der, the re al ratio of coupling strengths is on the order 

of 102
. As the intentionally applied Rabi pulse should be much more stroııger 

than the cııviroıııııcııt, whidı is tricd to be avoided, this type of ratio in the 

coupliııgs is expected. In the fina! seetion of this clıapter, even lıiglıcr ratios, 

which seems to be closer to the ideal case, will be used. 

6.1.3 Expectcd outcome of realistic Rabi oscillations 

Fiııally, as t.lıe dfeds of the ııııılti-lcvd and the cııviroıııııcııtal intcractioıı are 

coıııbiııed, we obtain the outcoıııe of the Ra bi field applied to a realistic system. 

We have presented the oscillations in Fig. 6. 3 for different enviromneııtal 

coupling strengths. :-Jote that, significaııt leakage to higher levels takes place 
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cnvironıncnt.al and system parameters are same as in the prcvious scction. 
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Figure 6. 5: Rabi oscillations ina 4LS in interaction with an environmental bath, 
for va.rious environmental coupling strengths. On the left hand sicle, we see the 
populations of the qubit subspace, whereas on the right hand side, we see the 
lcakagc to highcr lcvds. 

\Ve have demonstrated the possible results, as a Tlabi field ıs appliecl to a 
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multi-level system that is interacting with an environmental fıeld. These results 

may shed some light upoıı rcccnt experimental results. For instance there is the 

experiment by Zrenner ct alfi'il where singlc sclf-assemblcd excitonic q-dots are 

ııscd to create excit.ons by a strong Rabi field, ·wlıidı are thcn tıınnclcd out and 

transformeel into a plıotocurrent. The anornaly appears in the damping of the 

Rabi inclucecl oscillations in the pulse averaged photocurrent as the area uncler 

the Rabi pulse is increasecl. This effect ·within the fixecl time of the short 1 

ps pulse ( dephasing and relaxation times are reported to be approximately 500 

ps) could not be obscrvcd in a purely 2LS as it -..vould violatc the fundamcntal 

principle of unitarity. The pulse wi<lth is shortcr than the dccohcrencc time 

by three orders of magnitude and it is clear that the observed damping does 

not originate from decoherence. The short timescale of the effect indicates the 

infiuence of higher excitonic states. In a sinıple approadı it has been shown that 

the damping of the oscillations as the intensity of the short pulse is increased is 

du c to olT-rcsonanL lcakage into bicxcitonic lcvcls. 69·7° Considering this argument, 

-..ve have solved the systcnı-Rabi coupling, ·whilc ncglccting cnvironırıcntal dfccts 

for a three-leveled system and calculatecl the average occupation of third level, i.e. 

(P:~:~(t))pulsc = 1/tP J~ı> dtp33(t); as a function of the pulse area. The frequency of 

the Rabi pulse is taken as resona.nt between the first hvo levels, for three different 

third-level energies. lt can be seen from Fig.6. 6 that the average occupation 

is largdy independent from the third-k-vd cncrgics. Anotlıcr point is that the 

peak position occurs at t~' S 1/o:R. Using the dipale matrix model Eq.5. 1, 

this inıplies tP S cp12TR/(27r), where TR is the Rabi oscillation period; therefore 

tP ~ O.lTn, concluding that the third level is already occııpied maximally before 

the completion of a single Rabi period. This short time effect is counterintuitive 

from the traditional way of thinking in tcnns of the long time rcsonant tra.nsitions. 

IL nıust he rcnıarkcd that this is an cxact rcsult. IL appears that a nıultilcvdcd 

system dccidcs to act. likc so at. vcr')r slıort times in comparison with typical 

resoııa.nt timescales. Thus, Fig.6. 6, in canfirmation of the eaı·lier tlıeoretical 

calculations,W70 manifests the effect of the strong infiuence of the non-rewnant 

processes on leakage. 
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Figure 6. 6: The time average over the R.abi pulse of the third-level occupancy is 
shown asa fıırıct.ion of pulse arca, for difTcrcrıt. tlıini lcvcl cncrgics, 'vlıcre E 1 = 1, 
E 2 = 2. The Ra bi frequency is set a,<; resonant witlı the first two lcvcls. The inlct 
shows the state occupations for the cqnally spaceu system levels, resonarıt with 
the Rabi frequency. 

6.2 NOT gate simulation 

As a final step to check the effect of the multilevels anel the environment, we 

will demonstrate a quantum logic gate operation on a single qubit. ~OT gate 

is a very simple gate, which changes the irıput, i.e. if the input. is 1, the output 

would be O, if the input is O, the output would be 1. Adapting the NOT gate 

to the quantum mcdıanical system, for the qubit sulıspace, if the cxcitcd state 

is occupied, i.e. p22 = 1, the .\JOT gate >voulel switch the state to occupy the 

ground state. i.e. p11 = 1, or vice versa. As we have explained the effects of the 

Rabi field and Rabi oscillations previously, it is clear that we can use Rabi field 

to perform NOT operation on our system. 

The key poirıt of the dcmom;tration woııld he that, aft.cr lıow many gate 

operations, wc >vill stili be ablc to rcad-out the expected rcsıılt. The testing 

scheme will be like applying a NOT gate, wait for some time, and applying 

another NOT gate, anel so on. Tn oreler to perform nuınerous .\JOT gates in 
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our feasible compııtatimı limit (t=200)) we further increase the Rabi strength to 

au = 5. \Ve calibrated the time to switch on and o1I the Rabi fıeld, due to a 2LS 

without environment, i.e. the icical situation. LcL us call this time as tNOT· \Vith 

our paraıneters, wc rncasıırcd t1,wT = 2.1 nornıalizcd with the arbit.rary cncrgy 

scale n as the energy levels. First, "\Ve will prepare the system as the ground sta.te 

is fully occupiecl, i.e. p11 = 1 and Pn = p1z = pz1 = O. So "\Ve will apply Rabi 

field for a elmation of i 1vor, then switch of the field. \Ve will wait for another 

("WT, then switch on the field for another (voT. Iclea.lly, the system would rcturn 

to it's starting configuratioıı ar. this point. Thcn wc will wait. for anothcr tNor 

and at the nıiddk of this 'vaiting period, wc will mea .. -;urc the occupation of the 

ground state. The proc.edure goes on like that, and after each couple of NOT 

operation.s, there will be a rnea.<;urenıent. 

As we appliecl the expla.ined proceclure to the 2LS, with the same parameters 

as in previoııs section, that is in intera.ction with an cnvironmcnt., 'ivhich has 

agaiıı the same pa.ramet.ers as in prcvious section, wc obtained measurcment 

results as slıown in Fig. 6. 7 for cliffercnt cnvironnıcntal conpling st.rcııgtlıs. 

='Jote that, after about 20 couples of NOT operations, 'i;ve are no langer able to 

deduce any information from the system for ap, = 0.05, as the system approaches 

a.n equally occupied configuration, i.e. the maximum entropy limit. For an even 

weaker environmental coupling of ü.J<.,· = 0.01, the system does not rea.ch the 

maximum entropy sitımtion cven afLcr ""20 couples of :::--JOT opcmtions. Thoııgh 

mı exponeııtial approach to that linıit is obvious. 

As we further introduce the higher levels of our ~y~tem~ into the calculations, 

we obtain clramatically worse results as seen in Fig. 6. 8. To put it into sinıpler 

words, the ='JOT ga.te dura.tion tNoT that is obtained for the 2LS is not valid for 

4LS, and as a. result, we perform the mcasurcmcnts before~ or after the maximum 

population iııvcrsion occıırs in the qubit subspace. Of coıırse, as slıown before, full 

population invcrsion is not achicvablc in the presence of cnvironmcnt and lıiglıcr 

sy~t.em levels. As a result, the readings of the ırıea.<;urements may approach to 

the elesireel value, as the expected and real operation frequencies coincide, though 

the rest of the ıneasurements are far from the desired ·values. Note that, as a 
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Figure 6. 7: The occupation p11 (t) versus the m1nıber of couples of NOT 
operations performed, in a 2LS that is in interaction with the environnıent , for 
varimlS environnıental coupling strengths. 

measurement of p11 is close to 0.5, ·we say that we cannot obtain any information 

as measuring 1 or O has a.bout the same probability. Though for p11 < 0.5, the 

mca..-surcmcnts givc us wrong results, as the probability to obtain O as an oııtconıc 

of a mea.<;urement. is greater than to obtaiıı 1. 

So, as demonstrated above; the environınent plays the role that is expected 

of it. But the higher levels of the system, above the qubit subspace, "vhich is 

often neglected may have drastic effects on the opera.tions, that are to be appliecl 

to the system. Apa.rt from trying to get rid of the cnvironmcnt, one also must 

precisely a.djust the eoıırsc of opcmtions on the system. 
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Chapter 7 

Conclusions 

In this thesis, we studied on the decoherence mechanisms in open quantum 

systems. There is an increasing number of studies in the literature in the 

recent years about decoherence, as it has also been a key problem in quantum 

computation. 

Decoherence is mainly deseribed as the destruction of quantum coherence in 

a system due to an interaction with an environmental bath. The most general 

method to analyze the decoherence is using the master equation approach, and it 

has also been used in this thesis. Though, as the exact analytical analysis of the 

interaction is impossible by any means, there have been numerous approximations 

and models used. We have briefiy introduced the most commonly used 

approximations and models in Chapter 2. We have also presented introductory 

information about the SQUID systems, as they are one of the most commonly 

used physical systems in quantum computation field, and also introduced the 

solution for a rf-SQUID. Later, the interaction of the system and environment is 

presented, as coordinate-coordinate coupling introduced by Caldeira and Leggett, 

and solved for various environmental spectra. The key point in our solution was 

that, apart from the Born-Oppenheimer approximation, for which the validity 

region is discussed, we have not used any approximation technics, and obtained 

our results by nurnerical means. 

Our main goal was to observe the effects of the system and environmental 

99 
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pa.rameters in the decoherence mechanism. In our calculations, ·we have perceived 

that the most commonly used 2LA is not as safe as thought. The decoherence 

shows diiTcrcnt. bdıaviors at short times and long times. Vle have shown that 

dccohcrcncc at short times, is affcctcd by the cntirc spectrum, rather than the 

only resonarıt parts of the spectrunı, therefoı·e it is possible to experience serious 

decoherence at short times, even if the resonarıt frequencies in the spectrurn are 

avoided. Nuınerical and analytical analyse have been done to reveal the direct 

proportion of the short time decoherence ratcs ·with the squarc root of the total 

spectral arca. \'le have also shown that, the higher lcvds in a physical system 

cannot be avoided totally, as the cncrgy lcvcl spa.cing bctwecn the qubit subspace 

and higher levels is large, even if the environnıental tenıperature is set to zero. 

Beca.use, the key point in the higher level transitions is the environnıentally 

induced dipole coupling matrix elements, rather than the sole energy level 

diiTerences. IL is also shown that, due to these higher level transitions, leakage 

cannot be ncglccted in favor of the 2LA that easily. 

Fiııally, wc have also dcmonstratcd the possible onteome of the driving fidds 

applied to a system in interaction with the environmental bath. Apart from 

the expected result of environmental interaction, 'vhich is quite like the effect 

of damping on an oscillating system, we have probed the effect of higher levels. 

IL has been demonstrated that~ as the driving fielcls are adjusted for the 2LS 

approxinıa.tioıı, it is possible to obtain clramatically cnoncous results duc to the 

intcrfcrcncc of the higlıer lcvds. Evcn >vithoııt the widc cnviromncntal spectrum, 

the monochromatic Rabi field may also initiate non-resonant transitions to lıigher 

levels. 

In conclusion, it has been discussed that, the validity of the 2LA is not 

that stra.iglıtJor,varcl as thought. The critical parameteı-s for the safety of the 

system are slıown to he diiTcrcnt than the oncs commonly bclievcd. The basic 

dccolıcrcncc ıncdıanisnıs have bccn dcnıonstrated. 



Appendix A 

The analysis of the compensating 

ter m 

In the calculations of the system-reservoir models, there is usually a compensating 

part of the interaction Hamiltonian which is included in order to compensate 

the frequency renormalizations on the system.4 This compensating term may 

contain environmental parameters, though it cannot contain the environmental 

dynamical variable, which is in our case the environmental phase. We write down 

the compensating term of the Hamiltonian we use as 

He= L'P~rln)(rl J dwr]~. 
n,r 

(1. ı) 

The effect of this compensating term is to shift the system basis by a unitary 

transformatian 

Ut = T exp( -i 1t dt' He( t')) (1. 2) 

where T is the time ordering operator. With this transformation, the full density 

matrix Pr(t) is transformed like plf,(t) = uttPr(t)Ut. The reduced density matrix 

is again fo und by tracing over the environmental degrees of freedam of w hi ch the 

matrixelementsin the original system are found. Repeating the same algebra as 

101 
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in Chapler 4, one fıııds for the reduced density matrix that 

d U (t) 1' dt' Kn"'(t t') U (i') -j Pnm. = - · · rs ·ı Prs ' 
lt o 

(1. 3) 

where the kernel is now fonnci as 

{.F(t- t')(<;P(t)'!F(t'))n1 b,m- (c,cF(t'))m·(\cF(t)),m] (1. 4) 

+ .F*(t -t.')[(\oF(t')'tF(t)),,A_,- (;F(t)),,.(iceP(t'J."'l}. 

Ilere, the Iransformed elipoJe matrix cleıneııts an; 

(ı. 5) 

Therefore, the net effect of the transformation due to compensating ternı is 

transforming the original system dipole matrix into 

(1. 6) 

The new dipole matrix elements due to this transformation are 

(1. 7) 
r,8 

At the short times for the perturbative elipoJe interaction, the fırsl few tcrms are 

gıvcıı as 

. 1' ı 1' 1'ı cpu (t) ~ cp(t)- i dt'[H,,(t'), cp(t)]- :ı T dt1 dt2[H,(tı ), [H,(t"), cp(t)]] + ... 
o 2. u o 

(1. 8) 

It is trivially seen that the reııorınalization of the initial elipoJe matrix elemeats 

are contributecl by the terıns with oclcl mınıher of time integrals in the above 

expaıısioıı.The elipoJe elements that are not presentecl in the original system, such 

as the even transitions 'P~.n-2m (t) are created by the tcnns with even mımber of 

int.cgrals. For three and foıır !eve! systems, it can be sccıı that the corrcctioııs to 

all di poJe matrix ekınents start witlı those terms with at kast two time integrals. 
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In cakulation of the short time decoherence rates, the effect of the two small 

parameters, i.e. time and the dipole couplings are multiplicative. This proves 

that the compensating term does not create an appreciable renormalization of 

the system basis in the short time limit. For a system with a small number of 

levels the smallness of this effect should persist even at longer times. 

There are arguments that at long times, the effect of the compensating term is 

also negligible. 19 It is also possible to sum up the infini te series of the expansion 

to all orders. The general term in the series is given at the operator level by 

U ~ ( -iA)n t t 2 2 
<p (t) = <p(t) +TL 1 lo dtı··· lo dtn[!f! (tn), ... [<p (tı), <p(t)] ... ] 

n=l n. o o 
(1. 9) 

where Hc(t) = A<p2 (t) is used explicitly. The last term includes an n-fold 

commutator and T is the time ordering operator. As the short time part is 

currently the subject of interest, let t ----+ O. Due to the time ordering in the 

expansion, we have 

lt lt tn 
dtı··· dtn1 ':::::: 1· 

o o n. 
(1. 10) 

Hence for sufficiently short times, 

<pu (t) = eiAtcp2 (o)<p(t)eiAtcp2 (o) (1. ll) 

which proves that all corrections to the system dipole transitions occur in powers 

of the square of the transition matrix elements. It can be seen easily that Eq. 1. 

ll becomes an appreciable renormalization only when sufficiently large number 

of levels are involved in the non-resonant transitions. 

To examine the effect of compensation at long times, let t ----+ oo so that 

<pu (t) -:::::: <p(t)- i 100 

dt'[Hc(t'), <p(t)] (1. 12) 

_!_T {
00 

dtı tı dt2[Hc(tı), [Hc(t2), <p(t)]] + ... 
21 lo lo 

The first term does not include a time ordering and therefore can be calculated 

easily as 

(1. 13) 
s 
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In the limit t ---+ ::x:.ı, '-Prıs(t) is a. sha.rply peaked function for n = s, rapidly 

oscillating othenvise. As this tcrın is approximated as 6n,s at t---+ oc~ it vanishes. 

Likewise, the ncst tcrnı inclııdcs a time ordcring wlıidı can also be calculatcd 

cxactly. In this term, the non-hcro contribııtions are rcstrictcd to cveıı morc 

energetic conditions and the second tenn also vanishes in the liınit t ---+ ::x:.ı. 

\ ,Toreover, all the terrrıs have, in common, different matrix elements of cp(t). Tn 

the t ---+ oo limit; these contributions average out anything simver to zero, making 

it possible to ignore them. 

The overall rcsıılt is that it is possible to ignorc the rcnorrrıalizing c!Tcct of 

the compcnsating ternı in our caleıılations. 



Appendix B 

Proof of the reality and positivity 
of A(G) 

Let us define a Hermitian dipole transition operator CfJt such that 

(2. ı) 

By using the above equation, it is trivially checked that the system-noise kernel 

can be written at t = t' =O as a non-negative real operator 

K(O, O)= F(O)Icpo ®I- I® cpÖI 2 (2. 2) 

where F(O) = A is the spectral area, which is real by definition and T denotes 

transpose. Hence Eq. 2. 2 deseribes a real non-negative operator in the two

folded Hilbert space In) x lm) where n, m = ı, N. By using Eq. 2. 2, it can be 

shown easily that the system-noise kernel in Eq. 1. 5 is equivalently written as 

K~sm(o, O) = (ni x (miK(O, O) Ir) x ls). (2. 3) 

Defining a vector 1 V) such that 

Pnm(O) = (ni X (miV) (2. 4) 

we can write Eq. 5. 3 in the implicit operator form as 

IV)= -K(O, O) IV) (2. 5) 
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where the lefL h and si de cl early implies the second derivative of the density matrix 

at t =O. Since K(O, O) is real and non-negative, its eigenva.lues are real and non

ncgativc; lıcncc a rcal Gaussian likc slıort. dccohcrcncc timescale cxists. 

Arıother analytic exact. rcsıılt is that. the Gaussian-like slıort. dccolıcrencc 

timescales are proportional to the square root of the spectral area. This follmvs 

from the fact that the matrix eleınents of K(O: O) lıave, in common, a term 

proportional to .F(O) which is just the spectral a.rea. The solution of Eq. 2. 

S then indicates that the slıort time decoherence ra.tcs scale with the squarc root 

of the spectral arca. 



Appendix C 

N um erical code 

The nurnerical code that is used is presented here in it's most general form. The 

package lgrind is used to create the output from the code. Note that the code 

can be used for both toy system model and a SQUID system, after commenting 

out relevant lines. Basic information is supplied within the code with comments. 

program density _tls 

implicit double precision( a-h,o-y) 

c ndim defines the dimension of the Hilbert space 

parameter( ndim=4) 

c ntime defines the time steps to be calculated 

parameter( ntime=20000) 

complex *16 zrho(O:ntime,ndim,ndim),ztr 

double precision fi(ndim,ndim),w(ndim) 

external initrho,rhot,fiush,rabi 

intrinsic dfioat,dcmplx,conjg,dasin,dacos,datan 

intrinsic dsqrt 
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open(l,filc= 'output. file. dat') 

ccccr:ccrccr:ccrccrccccr:ccr:ccr:ccrccrcrx;cr:ccr:ccrccrccrcrccr:ccrccc 

c nhs define8 the trıınccıtion lim-it 

c alpha. de.fines the Rabi coupling strength 

c erw defines the env-ironmental couplinq strenqth 

c wO dejines the Rabi field frequency 

c tO and tpp are ti·me paranu:tcrs to define pıdse shape 

ccccr:ccr:ccrccccr:cccccrccrxcrcccccccr:ccccccccrcccccccr:ccrccrccc 

nhs=2 

alpha=l.dO 

env=2.d0 

\V0=Ü.5dQ 

tO=O.dO 

tpp=l.dO 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c For a SQUJTJ system, these two subroutines calcula.te and 

c diagonalize the system Hamilionian 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call lıanıiltonian ( A,gammap, beta,xinnt,fi) 

cccccccrccccccccccrcccccccccccccrccrccccccccccrcccccccccccccrccc 

c /.,A PACK subroutine to calc·ulate the eigcn:ualucs and 

c eigenvectors of a real matrix 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dsyev( 'v', '1' ,ndim,A,ndim, \V, \:VORK,lwork,info) 

cccccccrccr:ccr:ccccrccrccr:ccr:ccccrccrccr:ccr:ccccrccr:ccr:cccccccrccc 

c For the toy model, energy level spacings and dipole matTix 

c elements are de.fined here 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do i=l,ndim 
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c w(i) = (2. 5dO*dfioat(i) )-3. 5d0 

do j=l,ndinı 

if (mod(i+j,2).eq.O) then 

fi(i,j)=O.dO 

else 

fi(i,j)=0.3dO*dexp( -dabs( dfioat( i) -dfioat(j)) /lO.dO) 

e nd if 

e nd do 

enddo 

"\V( 4)=9.5dQ 

"\V(3)=9.dQ 

w(2):-1.5d0 

w(l):-l.dO 

cr:ccr:ccrccrccccr:ccrcccccrccccr:ccrccccccccccr:ccrccccccccccr:ccrcccc 

dt=l.d-2 

c density matrix initial-ization 

call ini trlıo( ~rlıo) 

c Density matrix calc·ulation 

call rhot ( zrho,fi,dt, w ,nhs, tO, tpp,alpha, "\VÜ,env) 

en d 

cccccccccccccccccccccr::ccccccccccccccccr::cccccccccccccccccccc 
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c sv.bnndine to calcalate initial rho 

ccccrccrccrccccccccccrccrccrcccccccr;ccrccrccrcccccccr;ccrccc 

subroutine initrho(zrho) 

implicit double precision (a-h,o-y) 

parameter ( ndim,.,--:4) 

parameter ( ntime=20000) 

complex *16 ~a.:dı.~rho(O:ntinıe,ndinı,ndim) 

intrinsic dcmplx, conjg,clsqrt,dcos,dsin 

pi=4.dO*datan(l.dO) 

za=dcmplx(O.dO,O.dO) 

;.-;b=dcmplx(1.dO,O.dO) 

do i=l,ndinı 

do j=1,ndinı 

do k=O,ntime 

zrho(k,i,j)=dcmplx(O.dO,O.dO) 

e nd do 

en d do 

e nd do 

~rho(O, 1,1 )=7,a*conjg( za) 

zrho(O, 2,2)=zb*conjg(zb) 

zrho(O, 1,2)=za *conjg(zb) 

zrho(0,2 ,1 )=zb*conjg(za) 

return 

en d 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c subroutine to ca.lculate time evalutian of rho 

cccccccccccccccccccccccccccccccccccr::ccccccccccccccccccccccccccccccccu; 
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subroutine rhot(z.rho,fi,dt,,v,nhs,tO,tpp,alpha,\vÜ,env) 

implicit double precision (a-h,o-y) 

parameter (ndiın=4) 

parameter (ntime=20000) 

complex *16 zrho(O:ntime,ndim,ndim),zaux5,za.uxs 

111 

no 

complex * 16 zaııxl,za.ux2 ,zaux:3 ,za.ux4,zenv1,zenv2 ,zenv3,zenv4,zenv 

integer nx_y( ntirne) 

complex*16 ?;t,inf( nt i me ),uabi( ndim,ndim) 

double precision fi(ndiın,ndim),w(ndim) 

intrinsic dcos,dsin,dexp,dcmplx,dfloat 

intrinsic dreal,dimag,dat.an,dsqrt 

cxtcrnal flııt'ih 

crccrccrccrccrccccrx;crccrccrccccrccrccccccccrcrrcrccccccccrccccrccrccrc 

c envimnmental C01Telation function is a pTe-calculated and read 

c .fmm a .file 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

open (2,file:-' lar. ep s. 3. wO. 6') 

do i=1,ııtime-1 

read(2,33) ijk,"'tinf(i) 

33 format(i.J,lx,f12.5,1x,fl2.5) 

enddo 

do in=l,ntime 

it.O=time() 

t.p=dfioat(in)*dt 

do ia=l,nhs 

do ib=l,nhs 

zaux5=dcmplx( O.dO, O.dO) 

do ik=O,in-1 

t.=dfloa.t( ik) *dt 
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scale=l.dü/(l.dl *dt) 

c zr.:nv=l. d-4 *8cale *ztinf(in-ik) 

$ 

$ 

$ 

$ 

zenv=env*;~;tinf(in-ik) 

do ir=l,nhs 

do is=l,nhs 

al---cw(ia)-w(is) 

a2=w(is)-w(ir) 

a3=v••(ir )-w(ib) 

a4=a2+a3 

a.5=al+a2 

:.-;env l=dcmplx( dcos( a2*t ),elsin( -a2*t) )* 

dc:nıplx(dc:os(al *tp),dsin( -al *tp)) 

zenv2=elcınplx( elcos(a5*t ),elsin( -a5*t))* 

dcmplx( dcos( a4*tp ),elsin( -a4 *tp)) 

:.-;env3=dcmplx( dcos( a2*t) ,ds in(- a.2*t) )* 

dcnıplx( dcos( a3*tp ),dsin( -a3*tp )) 

zenv4=elcınplx( dcos(a5*tp ),elsin( -a.J*tp ))* 

dcmplx(dcos(a4*t),dsin( -a4*t)) 

:.-;auxl=fi( ia.,is) *fı(is,ir) *dt*dt *zrlıo(ik,ir ,i b) *zenv 1 

~mux2=fi(is,ib )*fı(ia,ir )*clt. *dt*u ho( ik, ir ,is) *;-;env2 

;~;aux:3=fi(is,ir) *fı( ir,ib) *dt*dt. *zrho(ik,ia,is) *;~;env:3 

zaux4=fi(ia,ir )*fı(is,ib )*dt *dt*zrho( ik, ir ,is) *zenv4 
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lG O 

zauxs=( (zauxl -zaux2)*zenv )+( (zaux3-zaux4 )*conjg(zenv)) 

zauxS=zaux5-zauxs 170 
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en d do 

e nd do 

e nd do 

zrho( in,ia,ib )=zauxG 

en d do 

e nd do 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c In the presence of R.o.bi .field, rabi subroutine 'ts called 

c here 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call rabi(zrabi,dt, w ,zrho,fı,nhs, tü, tpp,alpha, \VÜ,in- ı) 

do i=l,ndinı 

do j=ı,ndinı 

zrho( in,i,j) =zrho( in,i,j )+zrho(in-ı ,i,j )+zrabi( i,j) 

enddo 

e nd do 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccu:ccccc 

c The evolution of the RDAf -is ·written to a file hen~. Any 

c element of interest may be written. 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

write ( 1,44 )tp,dreal(zrho(in,l, 1) ),dreal(zrho(in,2,2) ), 

$cdabs(zrho( in,l, 2)), dreal( zrho( in, 3,3)) ,dreal( zrho( in,4,4) ), 

$ l.dO-( drea.l(zrho(in,l, 1) )+dreal( zrho(in,2,2))) 

call fiush(ı) 

44 format ( f8 .3, ıx,f10.5, lx,flO .S,lx, flO. 5, lx,flO .S,lx, 

$ fl0.5,ıx,fl0.5) 

enddo 

ret ur n 

113 

ıso 

HJO 

200 



A PPBNDTX C. NUNfERTCAL CODE 1 14 

en d 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Subrouline to calculate the e.ffect of the drivüıg Rabi .field 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine rabi(zrabi,dt,w,zrho,fi,nhs,t.O,t.pp,alpha,\vÜ,in) 210 

implicit double precisiorı (a- h,o- y) 

parameter (ndiın=4) 

parameter (ntime=20000) 

complex *16 zrho(O:ntime,ndiın,ndim) 

complex * 16 z;aııxl,z;aux2 ,L:aux3 ,zrabi( ndinı,ndim) 

complex*16 zrot.l,;r,rot2,z.i 

double precisioıı fi(ndiın,ndim),w(ndim),gt 

intrinsic dcm;,dsin,dexp,dcmplx,dftoat 

intrinsic dreal,diınag,datan,dsqrt 

external flush 

t=dfioat(in -1 )*dt 

zi=dcmplx( O.dO, 1. dO) 

gt=O.dO 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Any pulse shape ma:tf be de.fined here 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

if ((t.gt.(tO-tpp)).aııd.(t.lt.(tO+tpp))) therı 

gt=dexp( -lO.dO/(( tpp*tpp)-( (t-t.pp )*(t-tpp) ))) 

erıdif 

do ia=l,nhs 

do ib=1,nhs 

zaux3=dcmplx(O .dO, O.dO) 

220 
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do ir=l,nhs 

cccccccrcccccrccrcrx;ccccrccrccrccccrccccccccrcrrcrccrcccccrccrcrccrccrr 

c Rotating wave appro:ı:imation is u.sed here 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

if ( ia.gt .ir) the n 

zrotl=dcmplx( dcos( •vO*t ),dsin( ·wO*t)) 

else 

~rot.l=dcırıplx( dcos( wO*t ), - dsin( v,,O*t)) 

endif 

if (ir.gt.ib) then 

zrot2=dcmplx( de os( •vO*t ),dsin( v•.rO*t)) 

else 

ı-;rot2=dcmplx( dcos( ı,vü*t ), -ds in( vi O* t.)) 

endif 

7.auxl =fi(ia, ir )*u ho( in,ir ,i b) *7.rotl 

115 

$ *dcınplx( dcos( ( vv(ia)-w(ir) )*t ),-dsin( ( w(ia)-w(ir) )*t)) 

240 

zaux2=fi( ir ,i b )*zrho( in,ia,ir) *zrot2 250 

$ *dcmplx( dcos( ( w(ir )-w(ib) )*t ),-dsin( ( \v(ir )-w(ib) )*t)) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

~aux3=~aux3+( ~aux2-~auxl )*~i*gt *alpha 

e nd do 

zrabi(ia,ib )=zaux3*dt 

enddo 

enddo 

re turn 

e nd 

cccccccccccccccccccccccccccccccccccccccccccccccccc 

c Funclion that mlculate8 log of a facloriel 
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real*8 function fac(n) 

implicit double precision(a-h,o-y) 

intrinsic dfioat ,dlog 

aux=O.dO 

if (n.eq.O) then 

fac=l.dO 

goto 30 

else 

do i=l,n 

aux=aux+dlog( dfioat(i)) 

en d do 

endif 

fac=aux 

30 return 

en d 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Subrouline to constnıct the system H am·iltonian 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine haıniltonian(A,gamnıap,beta,xinnt,fi) 

implicit double precision( a-h,o-y) 

parameter (ndiın=30) 

double precision A(ndiın,ndim),fi(ndim,ndim) 

external clsyev ,[ac 

intrinsic dcos,dsin,clexp,dlog,dfioat.,conjg 
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intrinsie dcnııılx, <linıag,datan,drcal,dtan, min 

complex *ı6 zi,zaux,zzz,zix,zalt,zig 

pi=4.dO*datan(l.dO) 

eta.=l.d-ı 

tix=xinnt*l.d-2 

,..;İx=dcmplx( dcos(2.dO*pi *fix ), dsin(2. dO*pi*fix)) 

;.-;i=dcmplx(O.dO, l.dO) 

egamma=dexp(-gamınap*gaınınap /2 .dO) 

do n=O,nclinı -1 

do ın=O,n 

,..;,..;:t;=clcmplx(O.dO,O.dO) 

j=min(nı,n) 

do k=O,j 

zig=dcmplx( O .dO ,gammap) 

zalt=zig**dfloat(m+n-2*k) 

xfacl=( fac( m-k )+fac( n-k )+fac(k)) 

xfac2=0.5*(fac( m)+fac(n)) 

xfac3=dexp( xfac2-xfad) 

zaux=(heta *zaJt. *xfac:)*egamma) 

zzz=zzz+zaux 

en d do 

A( n+ ı,m +ı )=dreal( :t;z,..;*,..;ix) 

fi( n+ ı, m+ ı) =dimag( z;z;z*;.-;ix) 

A(m+ı.n+ı)=A(n+ı.m+l) 

fi(ın+ ı,n+ ı )=fi(n+ ı,m+ ı) 

enddo 

e nd do 

1 ı 7 
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do i=l,ndim 

A(i ,i )= A( i ,i )+dfloat. (i) -0. 5d0 

enddo 

ret ur n 

e n d 

11 8 
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