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Abstract: The aim of this study is to find an improved dwell time that guarantees the stability of switched systems with het-
erogeneous constant time-delays. Piecewise Lyapunov–Krasovkii functionals are used for each candidate system to investigate
the stability of the switched time-delayed system. Under the assumption that each candidate system is stable for small delay
values, a sufficient condition for dwell-time that guarantees the asymptotic stability is derived. Numerical examples are given
to compare the results with the previously obtained dwell-time bounds.
1 Introduction

A stability condition is derived in this paper for switched
time-delayed systems. The general form of a switched
system can be expressed as

ẋ(t) = fq(t)(x(t)) t ≥ t0 (1)

where q(t) : R → F is the ‘switching signal’, F :=
{1, 2, . . . , �} for some positive integer �, x(t) ∈ R

n is the state
and fi : R

n → R
n is a differentiable function for every i ∈ F .

For notational convenience, we say that each fi represents the
dynamical behaviour of a candidate system. There are sev-
eral works on this topic where the candidate systems are con-
sidered as linear [1], linear parameter varying [2], non-linear
[3] or both non-linear and uncertain [4]. See the survey [5]
for a review of recent results and further references.

The analysis of the switched systems differs from the
analysis of the time-varying systems. For the switched sys-
tems, analysis is performed for a set of switching signal,
whereas for the time-varying systems, analysis is performed
for a specific switching signal [6]. Many control prob-
lems involving complex systems such as non-linear systems,
uncertain systems and parameter-varying systems, can be
cast within the framework of switched systems, [2, 6–10].
The main challenge in a switched control system is the sta-
bility analysis. Note that by a judicious switching between
two or more unstable candidate systems the overall system
can be made stable, [11]. Conversely, it is also possible
to obtain an unstable response by a particular switching
between two stable candidate plants. We refer to [7, 12]
for a general review of the switched systems.
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There is a vast literature about the stability of delay-free
switched systems. In [9], necessary and sufficient conditions
for the quadratic stability is obtained using Filippov solu-
tions to discontinuous differential equations and Lyapunov
functionals. ‘Dwell time’ [8], is the minimum value of the
time intervals between consecutive time instances in which
switching occurs. It is shown that a sufficiently large dwell
time can guarantee the stability of the system provided that
the candidate plants are stable [13]. ‘Average dwell time’ as
an alternative to the dwell time is introduced in [1]. Using
the average dwell-time concept, [14] develops sufficient con-
ditions for exponential stability and weighted L2 gain for
the switched systems; see also [15, 16]. LaSalle’s invari-
ance principle is covered in the framework of the switched
systems in [6]. In [17], results of [1] is applied to lin-
ear parameter-varying systems. In [18, 19], Lie algebra is
used for finding quadratic CLFs. These CLFs are used in
the stability analysis of switched linear and non-linear sys-
tems [18]. Existence of the CLF for the switched system
implies stability of the switched system. Reverse is shown
to be true for both linear [20] and non-linear [21] switched
systems. Stability of the switched non-linear systems are
covered in [3]. State-feedback control design is explained for
continuous uncertain switched systems in [22]. The switched
filter design, for dynamic output stabilisation of continuous
switched systems using Lyapunov–Metzler inequalities, is
covered in [23].

In contrast to the variety in the works on delay-free
switched systems, there are relatively few works on time-
delayed switched systems [24–29]. Switched systems with
time delays on detecting the switching signal are covered
in [30]. In the present work, time-delayed linear switched
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systems are considered to be in the form

ẋ(t) = Aq(t)x(t) + Āq(t)x(t − τ(t)q(t)), t ≥ t0 (2)

In (2), the system switches between infinite-dimensional
systems. Owing to general difficulty of infinite-dimensional
systems, stability analysis of the switched time-delayed sys-
tems are relatively more difficult [31]. Time-delayed systems
are widely encountered in chemical processes, aerodynamics
and communication networks [32–34]. Time delays in these
systems are usually uncertain and time varying [35–37].
Robust H∞ controllers can be designed for time-delayed
systems, which guarantees the robustness within uncer-
tainty bounds [33]. The large collection of conditions for
stability analysis of time-delayed linear systems can be
grouped into two categories: delay-dependent conditions and
delay-independent conditions [38]. Lyapunov–Razumikhin
and Lyapunov–Krasovskii methods are two main approaches
in obtaining delay-dependent and delay-independent stabil-
ity conditions for the time-delayed linear systems [38–42].
There are various sufficient conditions in terms of linear
matrix inequalities (LMIs) and Ricatti-type inequalities for
the stability of time-delayed systems [32, 36, 38, 41, 43, 44].
Many of these sufficient conditions are shown to be equiv-
alent [38, 45]. For the switched time-delayed systems, the
stability analysis and controller design issues are also dis-
cussed in some recent studies [24–26, 28, 46–50]. Addition-
ally, see [51–54] for the discrete-time versions the related
problems associated with switched systems. In particular,
the stability conditions of [24, 51] are trajectory-dependent.
In this paper, trajectory-independent stability is aimed. For
the finite-dimensional linear systems, asymptotic stability of
the system implies the exponential stability while for the
infinite-dimensional systems, this is not the case [31, 55].
The papers [1, 6, 8, 20, 54] deal with finite-dimensional sys-
tems. In [28], piecewise Lyapunov–Razumikhin functions
are used to find a dwell time for the stability. The approach
we are proposing allows reducing the conservatism in [28]
by using piecewise Lyapunov–Krasovskii functionals.

The remaining sections of the paper are organised as
follows. The problem definition and preliminary remarks are
presented in Section 2. The main result is given in Section 3,
where a dwell time is derived for guaranteeing stability. Two
examples are presented in Section 4. Concluding remarks
are made in Section 5. A brief version of this paper (results
given without the proofs) has been presented at the IFAC
World Congress 2011 [56].

2 Problem definition

We use R
+, R

+
0 and Z

+
0 to denote the set of positive real

numbers, non-negative real numbers and non-negative inte-
gers, respectively. The set of all continuous and bounded
functions with domain [a, b] ⊂ R

+
0 and range R

n is denoted
by C([a, b], Rn). Let ||.|| be the Euclidean norm of a vector
in R

n. Let |f ||t−τ ,t| be the ∞ norm of f ∈ C[a, b], defined as

|f ||t−τ ,t| := sup
t−τ≤θ≤t

||f (θ)||

With the notations above, consider the following switched
time-delayed system

�t =
{

ẋ(t) = Aq(t)x(t) + Āq(t)x(t − τq(t)), t ≥ 0
x0(θ) = φ(θ), ∀θ ∈ [−τmax, 0]

(3)
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where x(t) ∈ R
n is the state, q(t) : R

+
0 → F the piecewise

switching and F := {1, 2, . . . , �}. In other words, for all
t ∈ [tj, tj+1), we have q(t) = kj ∈ F , where j ∈ Z

+
0 is the jth

switching time instant and tj ∈ R
+. From these definitions,

it follows that the trajectory of �t in an arbitrary switching
interval [tj, tj+1) obeys

�kj =
{

ẋ(t) = Akj x(t) + Ākj x(t − τkj ), t ∈ [tj, tj+1)

xtj (θ) = φj(θ), ∀θ ∈ [−τkj , 0] (4)

where the initial condition φj(θ) is defined as

φj(θ) =
{

x(tj + θ), −τkj ≤ θ < 0
limh→0− x(tj + h), θ = 0

(5)

Let the triplet �i = (Ai, Āi, τi) ∈ R
n×n × R

n×n × R
+ be the

ith candidate system of (3). For every time instant t, �t ∈
A = {�i : i ∈ F}, where A is the set of all candidate
systems. In equation (3), τmax = maxi∈F τi is the maximal
time delay of the candidate systems in A.

The switched time-delayed system �t is stable [6] if there
exists a strictly increasing continuous function ᾱ : R

+
0 → R

+
0

with ᾱ(0) = 0, such that

||x(t)|| ≤ ᾱ(|x|[t0−τmax,t0]), ∀t ≥ t0 ≥ 0 (6)

along the trajectory of (3). The system is asymptotically
stable if �t is stable and limt→∞ x(t) = 0.

Lemma 2.1 (see [39]): A given candidate system �i can be
transformed into the following system denoted by ϒi

ẏ(t) = (Ai + Āi)y(t) −
∫−τi

−2τi

Ā2
i y(t + θ) dθ

−
∫ 0

−τi

ĀiAiy(t + θ) dθ (7)

with the initial condition

ψi(θ) =
{
φ(θ) −τi ≤ θ < 0
φ(−τi) −2τi ≤ θ < −τi

(8)

Note that asymptotic stability of the system ϒi implies
asymptotic stability of the system �i.

Lemma 2.2 (see [39]): Suppose for a given triplet �i ∈
A, i ∈ F , there exist real symmetric matrices Pi > 0, S1i

and S2i that solves the LMI⎡
⎢⎣

M −τiPiĀiAi −τiPiĀ2
i

−τiAT
i Āi

T
Pi −τiS1i 0

−τi(Ā2
i )

T Pi 0 −τiS2i

⎤
⎥⎦ < 0 (9)

where

M = Pi(Ai + Āi) + (Ai + Āi)
T Pi + τiS1i + τiS2i (10)

then ϒi is asymptotically stable. This guarantees the asymp-
totic stability of �i for all delays in the interval [0, τi].

It is easy to check that (9) implies S1i > 0, S2i > 0 and
Ai + Āi is Hurwitz stable. If all candidate systems of (3),
�i ∈ A are asymptotically stable satisfying (9), then the set
1423
© The Institution of Engineering and Technology 2013



www.ietdl.org
A is denoted as Ã. It is assumed that A = Ã for the rest of
the discussion. In this paper, sufficient condition that guaran-
tees the asymptotic stability of the switched system (3) will
be constructed using piecewise Lyapunov–Krasovskii func-
tionals. One method in the stability analysis of switched sys-
tems is to find common Lyapunov function (CLF). In [57],
CLFs are found for switched time-delay systems assum-
ing that each candidate system has the same time delay τ ,
each candidate is assumed to be delay-independently sta-
ble, A matrix is symmetric and Ā matrix is in the form δI .
Even without these assumptions, method of finding CLFs
are very conservative due to the fact that it is usually diffi-
cult to find a CLF for all the candidate systems, especially
for time-delay systems whose stability criteria are only suffi-
cient in most cases. A recent work found asymptotic stability
conditions using piecewise Lyapunov–Razumikhin functions
[28]. In our work, by using piecewise Lyapunov–Krasovkii
functionals, we will try to reduce the conservatism in [28].

Although there are less conservative conditions than (9)
for the stability of time-delayed linear systems (see e.g.
[38, 41]), for the purpose of this paper the condition (9) is
more useful. Typically, less conservative results are obtained
by additional terms in the Krasovskii functional. However,
this complicates the analysis in finding an bound such as
(20) obtained below. For example, inclusion of the deriva-
tive of the state in the Lyapunov–Krasovskii functional as in
[41], makes it difficult to bound the Lyapunov–Krasovskii
functional by a function that depends ‘only’ on the state.
The inequalities (20) and (24) that are obtained from the
particular Lyapunov–Krasovskii functional chosen here play
crucial roles in our analysis.

3 Main results

For a given τD > 0, the switching signal set based on the
dwell time τD is denoted as S[τD] where for any switching
signal q(t) ∈ S[τD], the distance between any consecutive
discontinuities of q(t), that is, tj+1 − tj for j ∈ Z

+
0 , is greater

than τD [1, 8, 28]. Dwell-time-based switching is indepen-
dent of the trajectory of the solutions [6]. Before presenting
the main result of the paper, we need to recall some lem-
mas and prove some propositions, which will be useful in
the proof of our main result.

Lemma 3.1 (see [39]): Suppose u, v, w : R
+
0 → R

+
0 are con-

tinuous, non-decreasing functions, u(0) = v(0) = 0, w(s) >
0 for s > 0. If there exists a continuous functional V , such
that

u(||x(t)||) ≤ V (t, xt) ≤ v(|x|[t−τ ,t]), ∀t ≥ t0 (11)

V̇ (t, xt) ≤ −w(||x(t)||), ∀t ≥ t0 (12)

then the solution x = 0 of the switched time-delay system
(3) is uniformly asymptotically stable.

For functions defined in Lemma 3.1, we say that
(V , u, v, w) is a stability quadruple for the switched
time-delay system (3). Construct the following piecewise
Lyapunov–Krasovskii functional for the transformed system
ϒi of the candidate system

Vi(t, xt) = xT (t)Pix(t) +
∫ 0

−τi

∫ t

t+θ

xT (ξ)S1ix(ξ) dξ dθ

+
∫−τi

−2τi

∫ t

t+θ

xT (ξ)S2ix(ξ) dξ dθ (13)
1424
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where Pi > 0, S1i > 0 and S2i > 0 are real symmetric matri-
ces and θ ∈ [−2τ , 0]. This functional can be bounded by

ui(||x(t)||) ≤ Vi(t, xt) ≤ vi(|x|[t−2τi ,t]), ∀t ≥ t0, ∀x ∈ R
n

where

ui(s) = σmin[Pi]s2 (14)

and

vi(s) =
(

σmax[Pi] + τ 2
i

2
σmax[S1i] + 3τ 2

i

2
σmax[S2i]

)
s2 (15)

Here σmin[.] and σmax[.] denote the minimum and maximum
singular values, respectively.

Proposition 3.2: For each time-delay system ϒi with
Lyapunov–Krasovskii functional (13), assume that (11) and
(12) are satisfied for some wi(s) with u and v defined as in
(14) and (15) respectively, then we have the following result

|x|[tm−τi ,tm] ≤
√

σmax[Pi] + τ 2
i
2 σmax[S1i] + 3τ 2

i
2 σmax[S2i]

σmin[Pi] |x|[tn−2τi ,tn],

∀tm ≥ tn + τi (16)

Proof: ϒi is stable and Vi is an admissible functional
satisfying (11), Vi(tm, xt) ≤ Vi(tn, xt) for all tm ≥ tn. Thus

ui(||x(tm)||) ≤ Vi(tm, xt) ≤ Vi(tn, xt) ≤ vi(|x|[tn−2τi ,tn])

σmin[Pi]||x(tm)|| ≤ ui(||x(tm)||) ≤ vi(|x||tn−2τi ,tn|)

≤
(

σmax[Pi] + τ 2
i

2
σmax[S1i] + 3τ 2

i

2
σmax[S2i]

)
|x|[tn−2τi ,tn]

Since Pi > 0

||x(tm)|| ≤
√

σmax[Pi] + τ 2
i
2 σmax[S1i] + 3τ 2

i
2 σmax[S2i]

σmin[Pi]
|x|[tn−2τi ,tn], ∀tm ≥ tn

||x(tm − τi)|| ≤
√

σmax[Pi] + τ 2
i
2 σmax[S1i] + 3τ 2

i
2 σmax[S2i]

σmin[Pi]
|x|[tn−2τi ,tn] (17)

for all tm ≥ tn + τi. Since tm > tn + τi is arbitrary, this
equation is also valid for all t ∈ [tm − τi, tm]. �

Assume that Lemma 3.1 is satisfied for system (3)
and lims→∞ u(s) → ∞. Then if |φ|[t0−τ ,t0] ≤ δ1 and δ1 > 0,
Lemma 3.1. implies that there exists δ2 > δ1 > 0, such that
u(δ2) = v(δ1) and ||x(t)|| < δ2 for all t > t0. For such a δ2,
consider the following:

Proposition 3.3: For system (3) satisfying Lemma 3.1
with lims→∞ u(s) → ∞, for an arbitrary η, 0 < η < δ2,
|φ|[t0−τ ,t0] ≤ δ1 < δ2 implies

||x(t)|| ≤ η, ∀t > t0 + T (η) (18)

where T (η) = [v(δ1)]/γ , v is defined as in the Lemma 3.1
and γ = inf η≤s≤δ2 w(s)
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1422–1428
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Proof: Let T∗ > 0 and let ||x(t1)|| > η for a time instant
t1 > t0 + T∗. Let γ = inf η≤s≤δ2 w(s). Since the system is
stable and V is a Lyapunov–Krasovskii functional, from
Lemma 3.1, we have the following

V̇ (t, xt) ≤ −w(||x(t)||) < −γ ∀t ≥ t0

This implies V (t, xt) ≤ V (t0, φ) − (t − t0)γ ≤ v(δ1) − (t −
t0)γ . Let T∗ > [v(δ1)]/γ . Then for every t > t0 + T∗, we
have V (t, xt) ≤ 0. However, we assume that there is a time
instant t1 > t0 + T∗ such that ||x(t1)|| > η. This implies that

V (t, xt) ≥ u(||x(t1)||) ≥ u(η) > 0

This is a contradiction. Therefore time instant t1 cannot
exists and this implies

||x(t)|| ≤ η ∀t > t0 + v(δ1)

γ

which concludes the proof. �

Assumption 3.4: For every transformed candidate system ϒi

defined in Lemma 2.1, the corresponding candidate system
�i satisfies the stability condition of Lemma 2.2, that is,
A = Ã.

Consider an arbitrary switching interval [tj, tj+1) of the
switching signal q(t) ∈ S[τD] with τD > τmax where q(t) =
kj, kj ∈ F for all t ∈ [tj, tj+1) and tj ∈ Z

+ ∪ 0 is the jth
switching time instant. The state variable xj(t) obeys (4) in
this interval. Define xj(tj+1) = limh→0− x(tj+1+h) = xj+1(tj+1)
based on the fact that x(t) is continuous for t ≥ 0. With
this definition xj(t) is defined on the compact set [tj, tj+1].
The initial condition of �kj is φj(t) = x(t) = xj−1(t) where
t ∈ [tj − τkj , tj] for j ∈ Z

+. Initial condition of the trans-
formed system ϒi is φi(t) as defined before. Let the
Lyapunov–Krasovskii functional be

Vkj (t, xt) = xT
j (t)Pkj xj(t) +

∫ 0

−τkj

∫ t

t+θ

xT
j (ξ)S1kj xj(ξ) dξ dθ

+
∫−τkj

−2τkj

∫ t

t+θ

xT
j (ξ)S2kj xj(ξ) dξ dθ (19)

Then for every xj ∈ R
n, t ∈ [tj, tj+1], we have

κkj ||xj(t)||2 ≤ Vkj (t, xt) ≤
(
κ̄kj + τ 2

kj

2
χ̄1kj + 3τ 2

kj

2
χ̄2kj

)
|xj|[t−2τkj ,t]

(20)

where κi = σmin[Pi], κ̄i = σmax[Pi], χ1i = σmax[S1i] and
χ2i = σmax[S2i].
Proposition 3.5: Let

Wkj = −(Pkj (Akj + Ākj ) + (Akj + Ākj )
T Pkj ) − τkj (R1kj + R2kj )

(21)

where R1kj = RT
1kj

is the solution of the LMI

[
S1kj − R1kj −τkj Pkj Ākj Akj

−τkj A
T
kj

ĀT
kj

Pkj −τkj S1i

]
< 0 (22)
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and R2kj = RT
2kj

is the solution of the LMI[
S2kj − R2kj −τkj Pkj Ā

2
kj

−τkj (Ā
T
kj
)2Pkj −τkj S2i

]
< 0 (23)

then the upper bound on the derivative of the Lyapunov
Krasovskii functional (19) can be set as

V̇kj (t, xt) ≤ −xT
j (t)Wkj xj(t) (24)

Proof: Take the derivative of the Lyapunov Krasovskii
functional with respect to time along the trajectory.

V̇kj (t, xt) = xT
j (t)D1kj x

T
j (t)

+
∫ 0

−τkj

[
xT

j (t) xT
j (t + θ)

]
D2kj

[
xj(t)

xj(t + θ)

]
dθ

+
∫−τkj

−2τkj

[
xT

j (t) xT
j (t + θ)

]
D3kj

[
xj(t)

xj(t + θ)

]
dθ

(25)

where

D1kj = Pkj (Akj + Ākj ) + (Akj + Ākj )
T Pkj

D2kj =
(

S1kj −τkj Pkj Ākj Akj

−τkj A
T
kj

ĀT
kj

Pkj −τkj S1i

)

D3kj =
(

S2kj −τkj Pkj Ā
2
kj

−τkj (Ā
T
kj
)2Pkj −τkj S2i

)

Add and subtract the term
∫ 0

−τkj

xT
j (t)R1kj xj(t) dθ +

∫−τkj

−2τkj

xT
j (t)R2kj xj(t) dθ

to the right-hand side of equation (25) where R1kj and R2kj

are the solutions of the LMIs (22) and (23), respectively.
We obtain

V̇kj (t, xt) = xT
j (t)D̃1kj x

T
j (t)

+
∫ 0

−τkj

[
xT

j (t) xT
j (t + θ)

]
D̃2kj

[
xj(t)

xj(t + θ)

]
dθ

+
∫−τkj

−2τkj

[
xT

j (t) xT
j (t + θ)

]
D̃3kj

[
xj(t)

xj(t + θ)

]
dθ

(26)

where

D̃1kj = Pkj (Akj + Ākj ) + (Akj + Ākj )
T Pkj + τkj (R1kj + R2kj )

D̃2kj =
(

S1kj − R1kj −τkj Pkj Ākj Akj

−τkj A
T
kj

ĀT
kj

Pkj −τkj S1i

)

D̃3kj =
(

S2kj − R2kj −τkj Pkj Ā
2
kj

−τkj (Ā
T
kj
)2Pkj −τkj S2i

)

Since D̃2kj and D̃3kj are negative definite

V̇kj (t, xt) = xT
j (t)D̃1kj x

T
j (t)

+
∫ 0

−τkj

[
xT

j (t) xT
j (t + θ)

]
D̃2kj

[
xj(t)

xj(t + θ)

]
dθ
1425
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+
∫−τkj

−2τkj

[
xT

j (t) xT
j (t + θ)

]
D̃3kj

[
xj(t)

xj(t + θ)

]
dθ

≤ xT
j (t)D̃1kj x

T
j (t) = −xT

j (t)Wkj xj(t) �

The best choice of Wkj is obtained from the following
optimisation problem. Maximise l over all l ∈ R

+ and sym-
metric matrices Pkj , R1kj , R2kj , S1kj , S2kj subject to LMIs (22)
and (23) and additional constraints⎡

⎢⎢⎣
M −τkj Pkj Ākj Akj −τkj Pkj Ā

2
kj

−τkj A
T
kj

Ākj

T
Pkj −τkj S1kj 0

−τkj (Ā
T
kj
)2Pkj 0 −τkj S2kj

⎤
⎥⎥⎦ < 0

Pkj (Akj + Ākj ) + (Akj + Ākj )
T Pkj + τkj (R1kj + R2kj ) + lI ≤ 0

where R
+ is the set of positive real numbers, I is the identity

matrix of appropriate dimension and M = Pkj (Akj + Ākj ) +
(Akj + Ākj )

T Pkj + τkj S1kj + τiS2kj . The matrices Pkj , R1kj , R2kj ,
S1kj and S2kj are obtained from the solution of this opti-
misation problem. From these matrices, we can determine
σmin[Pi], σmax[Pi], σmax[S1i], σmax[S2i] and

W ∗
kj

= −Pkj (Akj + Ākj ) − (Akj + Ākj )
T Pkj − τkj (R1kj + R2kj )

Select w(s) in Lemma 3.1 as w(s) = �kj s
2 where �kj =

σmin[W ∗
kj
] > 0 is the minimum eigenvalue of the W ∗

kj
. With

this selection, (12) is satisfied.
Assume |φj(t)|[tj−τj ,tj ] ≤ δj. For an arbitrary α with 0 <

α < 1, let η = αδj in Proposition 3.3. With this selection of
η and δj = δ1, we have 0 < η = αδj < δ1 < δ2. Using the
Proposition 3.3, we have

||xj(t)|| ≤ αδj ∀t ≥ tj + Tj (27)

where

Tj = v(δj)

γ
=

(
κ̄j + τ 2

j

2 χ̄1j + 3τ 2
j

2 χ̄2j

)
α2�j

(28)

Equation (27) implies

|x|[tj+Tj ,tj+1] ≤ αδj (29)

Let

λ = max
i∈F

σmax[Pi] + τ 2
i
2 σmax[S1i] + 3τ 2

i
2 σmax[S2i]

σmin[Pi]
μ = max

i∈F

κ̄i

�i
, ρ1 = max

i∈F

τ 2
maxχ̄1i

2�i
, ρ2 = max

i∈F

3τ 2
maxχ̄2i

2�i
(30)

Define

T ∗ = μ + ρ1 + ρ2

α2

Note that

T ∗ > Tj = v(δj)

γ
=

(
κ̄j + τ 2

j

2 χ̄1j + 3τ 2
j

2 χ̄2j

)
α2�j

, j = 0, 1, 2, . . .

Let the dwell time to be τD = T ∗ + 2τmax. Recall that
tj+1 − tj > τD. Thus tj+1 − tj > T ∗ + 2τmax > T ∗ + 2τj+1 >
1426
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Tj + 2τj+1. Also note that |ψj+1(t)| = |xj(t)| where t ∈
[tj+1 − 2τj+1, tj+1]. Thus, we have

|ψj+1|[tj+1−2τj+1,tj+1] = |xj|[tj+1−2τj+1,tj+1] ≤ |xj|[tj+Tj ,tj+1] ≤ αδj

:= δj+1 (31)

and δ0 is defined as δ0 := |ψ |[−2τmax,0] = |φ|[−τmax,0] ≥
|φ|[−τk0 ,0]. Therefore we obtain a convergent sequence δi

where δi = αiδ0 with i = 0, 1, 2, . . ..
Proposition 3.2 implies

|x|[t,t+τi] ≤
√

σmax[Pi] + τ 2
i
2 σmax[S1i] + 3τ 2

i
2 σmax[S2i]

σmin[Pi] |x|[tn−2τi ,tn],

∀t ≥ tj

Thus

sup
t∈[tj ,tj+1]

||xj(t)|| ≤ sup
t∈[tj ,tj+1]

|xj(t)|[t,t+τkj ] ≤ √
λ|xj|[tj−2τkj ,tj ]

≤ √
λδj = αj

√
λδ0 (32)

which implies the asymptotic stability of the transformed
switched time-delay system ϒt with the switching sig-
nal q(t) ∈ S[τD]. Asymptotic stability of the transformed
switched time-delay system implies the asymptotic stability
of the switched time-delay system �i. Thus, we can state
our final result as follows.

Theorem 3.6: Under Assumption 3.4, the system �t , defined
in (3), is asymptotically stable for any switching rule q(t) ∈
S[τD], where τD = T ∗ + 2τmax with

T ∗ = μ + ρ1 + ρ2

α2
for any α ∈ (0, 1)

and μ, ρ1 ρ2 are as defined in (30); here α determines the
decay rate as shown in (32).

4 Numerical examples

In this section, several illustrative examples are used to
demonstrate the results in Section 3 and compare the main
result of this paper with [28, 29].

Example 4.1: The system given below is taken from [28]
for comparison purposes. Let �1 be

A1 =
[−2 0

0 −0.9

]
, Ā1 =

[ −1 0
−0.5 −1

]
, τ1 = 0.3 s

(33)
Let �2 be

A2 =
[−1 0.5

0 −1

]
, Ā2 =

[−1 0
0.1 −1

]
, τ2 = 0.6 s (34)

In the paper [28], dwell time for this system is found to be
τD = 6.52 s. Using Theorem 3.6, a dwell time is found as
τD = 1.2 + [2.15/α2] seconds for a fixed α. Note that the
system is stable for all α ∈ (0, 1). For α > 0.48 our dwell-
time result is smaller than 6.52 s. Let us take α = 0.99. This
implies τD = 3.4 s. Hence, the bound obtained in [28] can
be improved.
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Example 4.2: Consider the numerical example in [29].
In this example, two candidate systems are stabilised by a
state feedback. The stabilised individual systems have the
following A, Ā matrices and time delays

A1 =
[−1.799 −0.814

0.2 −0.714

]
, Ā1 =

[ −1 0
−0.45 −1

]
τ1 = 0.155 s (35)

A2 =
[−1.853 −0.093
−0.853 −1.1593

]
, Ā2 =

[ −1 0
0.05 −1

]
τ2 = 0.2 s (36)

In [29], a dwell time for the stabilised uncertain switched
system is obtained as τD = 0.83 s. For the same closed loop
system with no uncertainty, our method obtains the dwell
time for the switched system as τD = 0.4 + [0.31/α2 s]. Let
us take α = 0.99. This implies τD = 0.72 s.

5 Concluding remarks

We performed the stability analysis for the switched system
by using some appropriate model transformations of the can-
didate systems. Piecewise Lyapunov–Krasovkii functionals
are used for the derivation of a dwell time. Thus, the earlier
results obtained by using piecewise Lyapunov–Razumikhin
functions in [28, 29] are now improved and simplified. Two
illustrative examples are given for comparisons with the
previous results.
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56 Çalışkan, S.Y., Özbay, H., Niculescu, S.-I.: ‘Stability analysis of
switched systems using Lyapunov–Krasovskii functionals’. Proc. 18th
IFAC World Congress, Milano, Italy, August 28–September 2, 2011,
pp. 7492–7496

57 Zhai, G., Sun, Y., Chen, X., Michel, A.: ‘Stability and L2 gain anal-
ysis for switched symmetric systems with time delay’. Proc. 2003
American Control Conf., Denver, USA, 2003, vol. 3, pp. 2682–2687
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1422–1428
doi: 10.1049/iet-cta.2011.0749


