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ABSTRACT

ON THE OPTIMAL TIMING OF REGIME

SWITCHING IN OPTIMAL GROWTH MODELS: A

SOBOLEV SPACE APPROACH

Erol Doğan

M.A., Department of Economics

Supervisors: Assist. Prof. Dr. Hüseyin Çağrı Sağlam

July 2007

In this thesis, we derive the necessary conditions of optimality of regime

switching in optimal growth models, and extend the already established re-

sults in the literature to cover the multi-stage infinite horizon models de-

pending explicitly to the switching instant. To this end, we utilize standard

techniques from calculus of variations, and some basic properties of Sobolev

spaces. We compare our results with previously established ones. In an ap-

plication, we analyze the determinants of timing of technological adoption,

under linearly expanding technological frontier.

Keywords: Multi-stage Optimal Control, Optimal Growth, Adoption,

Sobolev Spaces.
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ÖZET

OPTİMAL BÜYÜME MODELLERİNDE REJİM

DEĞİŞİKLİĞİNİN ZAMANLAMASI ÜZERİNE:

SOBOLEV UZAYI YAKLAŞIMI

Erol Doğan

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Hüseyin Çağrı Sağlam

July 2007

Bu tezde optimal büyüme modellerinde rejim değişikliğinin optimal oluşu için

gerekli koşulları buluyor, ve literatürde varolan sonuçları, çok aşamalı, sonsuz

ufuklu, değişiklik anına açıkça bağımlı modellere genişletiyoruz. Bu amaçla,

varyasyonlar kalkülüsünden standart tekniklerle birlikte Sobolev uzaylarının

temel özelliklerini kullanıyoruz. Sonuçlarımızı önceden bulunmuş sonuçlarla

karşılaştırıyoruz. Bir uygulamada, doğrusal olarak genişleyen bir teknoloji

cephesi altında teknolojik adaptasyonun zamanlamasını belirleyen faktörleri

inceliyoruz.

Anahtar Kelimeler: Çok Aşamalı Optimal Kontrol, Optimal Büyüme, Adap-

tasyon, Sobolev Uzayları.
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CHAPTER 1

INTRODUCTION

Optimal growth models are useful tools to analyze dynamics of an economy.

The role of technology in this dynamics is of particular importance. So comes

the technology adoption problem to the stage, together with a set of ques-

tions related to the determinants of the timing of adoption. The effect of

learning and maintenance on the adoption of the new technology are just two

examples. As learning and maintenance may adversely affect the adoption of

new technology by causing delays in the adoption, it is important to have a

precise idea about the mechanics of such a delay (Boucekkine et al., 2004).

Adoption under the conditions of continuously increasing technology frontier

is also a problem of this kind. But one needs the tools to deal with these

problems. Since these problems include a succession of different technological

regimes, traditional dynamic optimization methods do not trivially extend

to these problems. Below, we will be discussing the techniques associated

with these problems. Also a model with increasing technology frontier will

be analyzed so that we will be able to carry the discussion on the technique

on material grounds, and highlight some aspects of technological adoption.

Maximization of a functional

∫ ∞

0

U(c(t))e−ρtdt
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subject to constraints of type

k̇(t) + q1c(t) = F 1(k), for t < t1

k̇(t) + q2c(t) = F 2(k), for t > t1,

k(0) = k0, k(t) ≥ 0, c(t) ≥ 0

is at the basis of the technology adoption problem, where k(t), c(t), and t1 are

choice variables. In this study a more general version of this problem will be

considered but this simple setup is useful to understand the basics of adop-

tion problem. This is a representative agent model with intertemporal utility

function
∫∞

0
U(c(t))e−ρtdt. The problem is composed of two periods, where

each one corresponds to a different mode of technology, t1 refers to the instant

of the switch between these modes, k and c denote capital and consumption,

respectively, F 1(k) and F 2(k) are production functions in the respective pe-

riods, and U(c(t)) is the instantaneous utility function. The obvious problem

here is to characterize optimal paths of capital and consumption, together

with the switching instant.

The problem rests on the following relationships to hold in each period:

y(t) = F (k(t)) = c(t) + i(t)

k̇(t) = q i(t),

where i(t) denotes investment (we omit depreciation both here and in the ap-

plication at the third chapter). First equation is the usual resource constraint

while the second one denotes the evolution equation of capital. The variable

q (q1, q2 in respective periods) represents the level of utilized technology. In

general available technology may be higher than the utilized one. Indeed,

in this setup, it is assumed that at t = 0 both technologies, i.e. q1, q2, are

present, but only after switching q2 is utilized. Obviously, the central planner
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has the option not to switch to the higher technology, or switch immediately

to the higher technology. These are corner solutions to the problem. In a

more general case in which one is allowed to switch more than once, say

three, possibility of corner solutions imply that, number of switches is in fact

the maximum number of switches allowed. The q here represents embodied

technology, that only affects the new capital goods, which hence must be

labeled as ”investment specific.”

But switching to a new technology has its costs which can be very high

(see Jovanovic, 1997). These are first, costs due to the obsolescence of ex-

isting capital. A reassignment of resources towards capital goods in case of

an increase in embodied technology (this will be the case as higher embod-

ied technology decreases relative price of new capital) will induce a drop in

consumption, thereby resulting with a loss in welfare. This is referred to

as obsolescence cost (see Boucekkine et al., 2003). Loss in specific human

capital is also posed as a particular cost in Parente (1994), Greenwood and

Jovanovic (2001). This can be interpreted basically in terms of the expertise

loss due to the adoption of a new technology. This will be reflected in the pro-

duction functions of the two periods. For example, having F 1(k) = a1k and

F 2(k) = a2k, where a2 < a1 would reflect these costs. A learning structure

in line with Parente (1994) and Boucekkine et.al., (2004) may also imposed

in the second period so that expertise loss is overcome in time. An example

would be the following production function from Boucekkine et.al., (2004):

F 2(k(t)) = (1− Ae−θ(t−t1))k(t).

Given these costs, and the advantage of efficiency in the capital sector by

higher level of technology, the trade-off at the basis of technology adoption

should be clear by now.

There are few papers dealing with the necessary conditions of optimality

for this problem. These papers are Tomiyama (1985), Tomiyama and Rossana

(1989), Makris (2001), Sağlam (2002). These papers utilize a dynamic pro-
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gramming approach (principle of optimality) together with standard optimal

control techniques. The main idea is to reduce the two stage problem to a

standard one, first by solving the second period problem and then attach-

ing it to the first period problem, in order to utilize dynamic programming

technique, while Pontryagin Maximum Principle concludes at the interme-

diate steps. Illustrations of this technique may be found in Sağlam (2002),

Boucekkine, et.all (2003), and Karaşahin (2006).

Three important aspects of the problem are first, the horizon of the func-

tional to be maximized (infinite horizon case), second, the dependence of the

constraint functions and U(c(t)) on the switching instant (we will refer to

the situation in this second case as ”explicit dependence to the switching

instant”), third possibility of more than one switch. There is no paper that

deals with all of these at the same time. Makris (2001) considers an infinite

horizon problem with multiple switches, yet ignores explicit dependence to

the switching instant. Tomiyama and Rossana (1989) develop, Tomiyama

(1985) at this last point while working in finite horizon with a single switch.

Sağlam (2002) considers multiple switches in finite horizon. So the infinite

horizon multi-stage problem with explicit dependence to the switching instant

remains to be dealt with.

We should also note that multi-stage problems are not restricted to eco-

nomics, although we restrict ourselves to economics here. In fact, the recently

uprising hybrid optimal control literature focuses on these types of problems

occuring in engineering (for a short overview of this literature, see Xu and

Antsaklis, 2002). Leaving aside the applied approach in this literature which

focuses on developing algoritms for solutions of such problems, the theoretical

results in this literature are limited to the problems in which the cost func-

tions and the constraints are invariant under time translations (see Sussmann

(1999) and Garavello and Piccoli (2005)). Thus, as it will be more clear when

we define the general problem that we will consider in the next chapter, the
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main type of problem in this study, i.e. problems with ”explicit dependence to

the switching instant” falls outside the scope of the current theoretical state

of hybrid optimal control. Yet the practical results of this literature should be

noted as they are related to somehow more general systems then we consider

here. In particular, algoritms developed within this tradition applies to the

cases when there is no predetermined sequence of subsystems.

Returning to our formulation of the problem, aside from the standard

optimality conditions, like Euler-Lagrange equation, which will be shown to

hold in our case, two specific necessary conditions occur here. These are noth-

ing but extensions of the Weierstrass-Erdmann corner conditions. We will be

able to show that indeed Weierstrass-Erdmann corner conditions extend to

the problems with switches.

We proceed in entirely different lines with the existing literature. We treat

the problem as an ordinary problem in calculus of variations, and attack it

by the standard tools from the calculus of variations. We also utilize some

basic properties of Sobolev spaces. Since in optimal growth models the path

of capital will be in a Sobolev space (see the third chapter) this is the natural

setting for the problem.

In this framework we will be able to extend the necessary conditions of

optimality to the cases with multiple switches in infinite horizon under ex-

plicit dependence to the switching instant, as this case has never been dealt

with before. Moreover we will translate our results into the Hamiltonian

”language”.

Organization of the paper is as follows: we start with the formulation

of a set of necessary conditions of optimality in a two-stage problem, and

extend them to the multiple-switch case. Then we discuss the passage from

our formulation of the necessary conditions to that of Tomiyama and Rossana

(1989) and Makris (2001). Finally, we apply the results obtained to a problem

with expanding technology frontier, and conclude.

5



CHAPTER 2

MAIN RESULTS

2.1 Euler-Lagrange Equation, Continuity

Condition

We generalize and rewrite the problem mentioned at the introduction as fol-

lows:

max
x(t),t1

∫ t1

t0

L1(x,
.
x, t, t1)e

−ρtdt +

∫ tf

t1

L2(x, ẋ, t, t1)e
−ρtdt

subject to

(x(t), ẋ(t)) ∈ Dt1(t) ⊂ R2, x(t0) = x0, x(t) ≥ 0, a.e on [t0, tf ], tf ≤ ∞,

where

Dt1(t) = {(x, y) | f 1(x, y, t, t1) ≥ 0, for t0 ≤ t < t1;

f 2(x, y, t, t1) ≥ 0, for tf ≥ t > t1 }
We also assume that t0 and tf are fixed. Although we write the integrands

and the constraint set as if they depend on the switching instant, t1, this

need not be the case. But whenever this is the case, we will generally say

that ”the problem depends explicitly to the switching instant”, as we have

pointed out at the introduction. Throughout this study, t1 will refer to the

optimal switching instant, and whenever we say that x is optimal, we will

mean the x in the solution pair (x, t1).
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First we state some preliminary material that we will utilize throughout

this study, from Brezis (1983). We will say that a function, x : [t0, tf ] → R,

is locally integrable, and write x ∈ L1(loc), if it is integrable on any bounded

interval (the space L1 will be the space of integrable functions). L∞(loc) will

denote functions essentially bounded on finite intervals. By x ∈ Ck
c (a, b), for

(a, b) an open interval, we will mean that x ∈ Ck(a, b), i.e. x is k-th times

continuously differentiable, and supp x = {t ∈ R+ : x(t) > 0} ⊂ (a, b). For

any x ∈ L1(loc), we will say and write that x′ is the weak derivative of x, if

∀h ∈ C1
c (t0, tf ),

∫ tf
t0

x(t)ḣ(t) = −
∫ tf

t0
x′(t)h(t). For a function x ∈ C1

c (t0, tf ),

the weak derivative will be identical with the ordinary derivative.

The space W 1,1 ≡ W 1,1(t0, tf ) ≡ {x ∈ L1 : x′ exists and x′ ∈ L1} will

be the Sobolev space that we will frequently be referring to. W 1,1(loc) is

similarly defined on (t0, tf ) to be {x ∈ L1(loc) : x′ exists and x′ ∈ L1(loc)}.

Two important properties of this space will prove to be useful here. First one

is that for any function x in W 1,1, as the elements of this space are equivalence

classes, there is a continuous representative, say x̄, which is equal to x almost

everywhere. So we will be talking about this representative, whenever we

refer to an element of this space. Second, relatedly, weak derivative coincides

with the usual derivative almost everywhere and x̄(b) = x̄(a) +
∫ b

a
x′dt. Thus

elements of this space are absolutely continuous functions on finite intervals.

In fact, on a finite open interval, the set of absolutely continuous functions

and the space W 1,1 are the same.

We will have the following assumptions. From now on, third and fourth

arguments of L will be suppressed, whenever we do not need them. Moreover,

x will refer to the optimal x, always, unless otherwise stated.

A1 Li(.) : R4 → R is C1; f i(.) : R4 → R is continuous, for i = 1, 2.

A2 EXISTENCE There is an optimal pair (x(t), t1) that solves the above

problem with
∫ t1

t0
L1(x,

.
x)e−ρtdt +

∫ tf
t1

L2(x, ẋ)e−ρtdt < ∞.

7



A3 INTERIORITY x(t) > 0, f i(x, y, t, t1) > 0 uniformly (in the sense of

the space L∞) on any bounded interval, for i = 1, 2.

A4 x(t) ∈ W 1,1(loc); ẋ(t) ∈ L∞(loc).

Our first result will be a Euler-Lagrange equation that fits our purposes

here. This equation is rather standard. The only nonstandard thing here is

the change in the objective functional at an instant.

Proposition 1 EULER LAGRANGE EQUATION Optimal x(t) satisfies:

(Lẋ(x, ẋ)e−ρt)
′
= Lx(x, ẋ)e−ρt (2.1)

on any bounded interval (a, b), under the assumptions A1,A3,A4 (L should

be read as L1 whenever t < t1, as L2 whenever t > t1; ’ denotes the weak

derivative, as we have noted above).

Proof Consider any bounded interval (a, b) on (t0, tf ).Take any h ∈ C1
c (a, b),

and assume that it is extended to zero outside (a, b).

For λ small x + λh > 0, clearly. Moreover, for λ small, for an appropriate

ε, (x + λh, ẋ + λḣ) is in an open ball of radius ε centered at (x, ẋ), for each

t ∈ (a, b) so that f i(x + λh, ẋ + λḣ, t, t1) > 0, for i = 1, 2.

Define ϕ(λ) =
∫ b

a
L(x + λh, ẋ + λḣ)e−ρtdt =

∫ t1
a

L1(x + λh, ẋ +

λḣ)e−ρtdt+
∫ b

t1
L2(x+λh, ẋ+λḣ)e−ρtdt, and write ϕ1(λ) =

∫ t1
a

L1(x+λh, ẋ+

λḣ)e−ρtdt, ϕ2(λ) =
∫ b

t1
L2(x + λh, ẋ + λḣ)e−ρtdt. For any sequence of real

numbers λn → 0, fixing any t,

L(x + λnh,
.
x +

.

λnh)− L(x,
.
x)

λn

= Lx(x+λ̄nh, ẋ+λ̄nḣ)h+Lẋ(x+λ̄nh, ẋ+λ̄nḣ)ḣ,

for some 0 < λ̄n < λn, by mean value theorem. Now, Lx and Lẋ are

continuous, and are restricted here to a bounded rectangle in R2, due the

the continuity of x and boundedness of ẋ. So, Lx(x + λ̄nh, ẋ + λ̄nḣ), and
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Lẋ(x + λ̄nh, ẋ + λ̄nḣ)ḣ are bounded in L∞(a, b). Thus, there is K ∈ R such

that
∣∣∣L(x+λnh,

.
x+

.
λnh)−L(x,

.
x)

λn

∣∣∣ ≤ K, a.e. But then, we may apply Dominated

Convergence Theorem to the sequence

ϕ1(λn)− ϕ1(0)

λn

=

∫ t1

a

L1(x + λnh,
.
x +

.

λnh)− L1(x,
.
x)

λn

e−ρtdt, concluding

that ϕ1(λ) is differentiable at 0 with the derivative,

lim
n→∞

∫ t1
a

L1(x+λnh,
.
x+

.
λnh)−L1(x,

.
x)

λn
e−ρtdt =

∫ t1
a

(
L1

x(x, ẋ)he−ρt + L1
ẋ(x, ẋ)ḣe−ρt

)
dt.

By repeating the same steps on (t1, b) one may also find that ϕ2(λ) =∫ b

t1

(
L2

x(x, ẋ)he−ρt + L2
ẋ(x, ẋ)ḣe−ρt

)
dt. Hence we easily have that ϕ′(0) =∫ b

a
Lx(x, ẋ)he−ρt + Lẋ(x, ẋ)ḣe−ρtdt.

Now,
∫∞

0
L(x + λh, ẋ + λḣ)e−ρtdt −

∫∞
0

L(x, ẋ)e−ρtdt = ϕ(λ) − ϕ(0), so

that ϕ(.) is maximized at 0. Since ϕ(.) is differentiable at zero,

ϕ′(0) =

∫ b

a

(Lx(x, ẋ)e−ρth + Lẋ(x, ẋ)e−ρtḣ)dt = 0. (2.2)

As h ∈ C1
c (a, b) was arbitrary, (L .

x(x,
.
x)e−ρt)

′
= Lx(x,

.
x)e−ρt, i.e. Lx(x,

.
x)e−ρt

is the weak derivative of L .
x(x,

.
x)e−ρt on (a, b). �

As a result of this proposition, we will have the first important necessary

condition for problems with switches. This is also called the first Weierstrass-

Erdmann corner condition.

Corollary 1 CONTINUITY CONDITION Assumption 4 with EL equation

imply that Lẋ(x, ẋ)e−ρt ∈ W 1,1(loc),hence is absolutely continuous on any

bounded interval, hence continuous everywhere. In particular we have conti-

nuity at the switching instant.
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2.2 Characterization of The Switching In-

stant

Before establishing the optimality condition with respect to the switching

instant, we need to impose more regularity on the solution x(t). We do this

as follows:

Corollary 2 Optimal x is locally Lipschitz, i.e. it is Lipschitz on any

bounded interval.

Proof This is immediate since x ∈ W 1,1(loc), and |ẋ| is bounded. Indeed,

for any a, b ∈ (t0, tf ), if for some K, |ẋ| ≤ K, then x(b) − x(a) =
∫ b

a
ẋdt ≤

K |b− a|. �

If we continue to rely on the assumptions stated above, then we have the

following. We need below, in particular, the Euler-Lagrange equation.

Proposition 2 If the optimal x is Lipschitz on an open interval I, Lẋ is C1

(thus switching point should not be in this interval, in general), and Lẋẋ < 0

on its entire domain, then x is C2 on Ī. Thus x is C2 except possibly at t1.

Proof See Butazzo, et al. (1998), Proposition 4.4, page 135. �

A5 ADMISSIBILITY ∃δ > 0, T ∈ N such that ∀ ε ∈ (−δ, δ), ∀t ≥ T,

f i(x, ẋ, t, t1 + ε) ≥ 0, for i ∈ {1, 2}, where (x, t1) denotes an optimal

pair, as usual.

A6 There exist an integrable function g(t) on [t0, tf ] and some δ > 0 :

∀ ε ∈ (−δ, δ),
∣∣Li

t1
(x, ẋ, t, t1 + ε)

∣∣ ≤ g(t) for i ∈ {1, 2}.

A7 ẍ ∈ L1(loc).

Below proposition, which is a variant of the second Weierstrass-Erdmann

corner conditions, will be proved by the so-called ”variation of the indepen-

dent variable” technique. The assumptions above are crucial for this result.
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By A5 we will be able to work in infinite horizon. It is stated at the most

general level required by the proof below. This assumption, together with

A6 enable us to derive the derivative at (2.4), and equate it to zero. Finally,

A7 is required to carry out the integration by parts step below, as it ensures

absolute continuity of the functions involved, together with A4.

In order to be neat, we will sometimes write limit of an expression with

a subscript attached to that expression, showing the point, and direction of

the limit.

Proposition 3 MATCHING CONDITION Under the assumptions above the

optimal pair (x(t), t1) satisfies

[ẋL1
ẋ−L1]t1−e−ρt1 − [ẋL2

ẋ−L2]t1+e−ρt1 =

∫ t1

t0

L1
t1
e−ρtdt+

∫ tf

t1

L2
t1
e−ρtdt (2.3)

whenever t0 < t1 < tf .

Proof Take any h ∈ C1
c (t0, tf ), and define the mapping on [t0, tf ] by

τ(t, ε) = t − εh(t) ≡ s (h is extended to zero outside (t0, tf )). For ε small

enough, τ t(t, ε) = 1 − εh′(t) > 0 (we continue to use subscripts for deriva-

tives). Thus for any ε, the mapping τ(., ε) is a C1 diffeomorphism of [t0, tf ].

Write ζ(s, ε), for the inverse of this mapping, and τ(t1, ε) = s1. Since the

transformation t 7→ s, is monotonic, for ε small enough, the path x(ζ(s, ε))

as a function of s, satisfies the constraints of the problem, where s1 is the

instant of switch (if tf = ∞, we need A5 to ensure admissibility). So,

ϕ(ε) =
∫ s1

t0
L1(x(ζ(s, ε)), dx(ζ(s,ε))

ds
, s, s1)dt +

∫ tf
s1

L2(x(ζ(s, ε)), dx(ζ(s,ε))
ds

, s, s1)ds

is maximized at 0 (we assume that the term e−ρt is subsumed under the

functions Li, for ease of demonstration, also note that τ(t, 0) = t). Since

dx(ζ(s, ε))

ds
= ẋ(ζ(s, ε))ζs(s, ε), we write:

ϕ(ε) =

∫ s1

t0

L1(x(ζ(s, ε)), ẋ(ζ(s, ε))ζs(s, ε), s, s1)ds

+

∫ tf

s1

L2(x(ζ(s, ε)), ẋ(ζ(s, ε))ζs(s, ε), s, s1)ds.

(2.4)
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ϕ(ε) is finite and τ is a C1 diffeomorphism, so by an application of change

of variables (Lang, 1993, p.505, Theorem 2.6) we transform the above function

as:

ϕ(ε) =
∫ t1

t0
L1(x(t), ẋ(t) 1

τ t(t,ε)
, τ(t, ε), τ(t1, ε))τ t(t, ε)dt

+
∫ tf

t1
L2(x(t), ẋ(t) 1

τ t(t,ε)
, τ(t, ε), τ(t1, ε))τ t(t, ε)dt

(2.5)

where we use τ t(ζ(s, ε), ε)ζs(s, ε) = 1.

Now, in a neighborhood of zero, by assumptions A1, A4, and A6, the

partial derivatives with respect to ε of the integrands above, (1− εh′)[−Li
th+

ẋLi
ẋ

h′

(1−εh′)2
− Li

t1
h(t1)] − Lih′, will be dominated by an integrable function,

from which it will follow by dominated convergence theorem that ϕ(ε) is dif-

ferentiable at zero (we suppress arguments of the functions). This derivative

is zero, and given by the following expression :

ϕ′(0) =

∫ t1

t0

[−L1
t h + ẋL1

ẋh
′ − L1

t1
h(t1)− L1h′] dt

+

∫ tf

t1

[−L2
t h + ẋL2

ẋh
′ − L2

t1
h(t1)− L2h′] dt.

(2.6)

By integration by parts
∫ t1

t0
[ẋL1

ẋ − L1]h′dt = [ẋL1
ẋ − L1]t1−h(t1) −∫ t1

t0

d[ẋL1
ẋ−L1]

dt
hdt, and

∫ tf
t1

[ẋL2
ẋ − L2]h′dt =

∫ b

t1
[ẋL2

ẋ − L2]h′dt = −[ẋL2
ẋ −

L2]t1+h(t1) −
∫ b

t1

d[ẋL2
ẋ−L2]

dt
hdt, for some b < ∞, as h has a compact sup-

port (see that ẋL1
ẋ − L1 and ẋL2

ẋ − L2 are absolutely continuous on

[0, t1], [t1, b], respectively, so that integration by parts is possible, by Gor-

don (1994), p. 185, Theorem 12.5). Plugging these in ϕ′(0) we have

h(t1)
(
[ẋL1

ẋ − L1]t1− − [ẋL2
ẋ − L2]t1+

)
+

∫ t1
t0

(−L1
t −

d[ẋL1
ẋ−L1]

dt
)hdt +

∫ tf
t1

(−L2
t −

d[ẋL2
ẋ−L2]

dt
)hdt = h(t1)

(∫ t1
t0

L1
t1
dt +

∫ tf
t1

L2
t1
dt

)
. For h(t1) 6= 0,
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[ẋL1
ẋ−L1]t1−− [ẋL2

ẋ−L2]t1+ =
(∫ t1

t0
L1

t1
dt +

∫ tf
t1

L2
t1
dt

)
+

1

h(t1)

[∫ t1
t0

(L1
t +

d[ẋL1
ẋ−L1]

dt
)hdt +

∫ tf
t1

(L2
t +

d[ẋL2
ẋ−L2]

dt
)hdt

]
(2.7)

It follows that the expression on the far most right is constant for any λ

with λ(t1) 6= 0. But it is also linear in λ, so it must be zero. �

For the corner solutions we need to modify the above condition as:

[ẋL1
ẋ − L1]t=t0

e−ρt0 − [ẋL2
ẋ − L2]t=t0

e−ρt0 ≥
∫ tf

t0

L2
t1
e−ρtdt

and

[ẋL1
ẋ − L1]t→tf

e−ρtf − [ẋL2
ẋ − L2]t→tf

e−ρtf ≤
∫ tf

t0

L1
t1
e−ρtdt

for t1 = 0, and t1 → ∞, respectively. These follow from the requirement

that lim
n

ϕ′(0, tn) 6 0, as tn ↓ t1 = t0, and tn ↑ t1 = ∞, respectively. For the

proof of the case t1 = t0, we define ϕ(ε, tn) as in (2.4), where s1 is replaced

by sn = τ(tn, ε), and by ϕ′(ε, tn), we mean derivative with respect to the first

variable:

ϕ(ε, tn) =
∫ sn

t0
L1(x(ζ(s, ε)), ẋ(ζ(s, ε))ζs(s, ε), s, sn)ds

+
∫ tf

sn
L2(x(ζ(s, ε)), ẋ(ζ(s, ε))ζs(s, ε), s, sn)ds.

As we need the result of a limit in which tn ↓ t1 = t0, the setting in

the proof above dictates that we consider ε ↓ 0, where hn(tn) < 0, so that

τ(tn, ε) = tn−εhn(tn) ↓ t0, as ε ↓ 0, n →∞ ( sure one may assume ε ↑ 0, while

hn(tn) > 0). We write hn instead of h as we will also impose hn(tn) = −1, for

each n ∈ N, and supp hn ↓ 0, as n → ∞ (since we consider the case tn ↓ t0,

supp hn ↓ 0 is automatically true). Now, for the validity of the argument

lim
n

ϕ′(0, tn) 6 0, first check that we are able to differentiate ϕ(ε) at zero

13



even if we replace t1 in the definition of ϕ(ε) with tn close to t0, and by the

continuity of

ϕ′(0, tn) =

∫ tn

t0

[−L1
t h + ẋL1

ẋh
′ − L1

t1
h(tn)− L1h′] dt

+

∫ tf

tn
[−L2

t h + ẋL2
ẋh

′ − L2
t1
h(tn)− L2h′] dt

in tn (as integrands are bounded around t0), lim ϕ′(0, tn) exists. For the

inequality first note

ϕ(ε, tn)− ϕ(0, tn) =

∫ tn

t0

L1(x(t), ẋ(t)
1

τ t(t, ε)
, τ(t, ε), τ(tn, ε))τ t(t, ε)dt

+

∫ tf

tn
L2(x(t), ẋ(t)

1

τ t(t, ε)
, τ(t, ε), τ(t1, ε))τ t(t, ε)dt

−
∫ tn

t0

L1(x(t), ẋ(t), t, tn)dt−
∫ tf

tn
L2(x(t), ẋ(t), t, tn)dt (2.8)

So,

ϕ(ε, tn)−ϕ(0, tn)

ε

=

∫ tn

t0

L1(x(t), ẋ(t) 1
τ t(t,ε)

, τ(t, ε), τ(t1, ε))τ t(t, ε)− L1(x(t), ẋ(t), t, tn)

ε
dt

+

∫ tf

tn

L2(x(t), ẋ(t) 1
τ t(t,ε)

, τ(t, ε), τ(t1, ε))τ t(t, ε)− L2(x(t), ẋ(t), t, tn)

ε
dt

By mean value theorem, for some 0 < δ(t) < ε, and

cn(t) ≡ (x(t), ẋ(t)
1

τ t(t, δ(t))
, τ(t, δ(t)), τ(tn, δ(t)))τ t(t, ε),

ϕ(ε, tn)− ϕ(0, tn)

ε

=

∫ tn

t0

[{
− L1

t (cn(t))h+ ẋL1
ẋ(cn(t)) h′

(1−εh′)2
− L1

t1
(cn(t))h(tn)

}
τ t(t, ε)− L1(cn(t))h′

]
dt

+

∫ tf

tn

[{
− L2

t (cn(t))h+ ẋL2
ẋ(cn(t)) h′

(1−εh′)2
− L2

t1
(cn(t))h(tn)

}
τ t(t, ε)− L2(cn(t))h′

]
dt

14



Plugging h(tn) = −1, and τ t(t, ε) = 1− εh′(t), and omitting the terms in-

cluding εh′(t) in the product of the curly brackets above (these will disappear

in the limit considered below, so for ease of demonstration we will exclude

them), we have:

∣∣∣∣ϕ(ε, tn)− ϕ(0, tn)

ε
− ϕ′(0, tn)

∣∣∣∣
≤

∫ tn

t0

∣∣(L1
t − L1

t (cn(t))
)

h
∣∣ dt +

∫ tn

t0

∣∣∣∣(ẋL1
ẋ(cn(t))

1

(1− εh′)2
− ẋL1

ẋ

)
h′

∣∣∣∣ dt

−
∫ tn

t0

∣∣L1
t1
− L1

t1
(cn(t))

∣∣ dt +

∫ tn

t0

∣∣(L1 − L1(cn(t))
)

h′
∣∣ dt

+

∫ tf

tn

∣∣(L2
t − L2

t (cn(t))
)

h
∣∣ dt +

∫ tf

tn

∣∣∣∣(ẋL2
ẋ(cn(t))

1

(1− εh′)2
− ẋL2

ẋ

)
h′

∣∣∣∣ dt

−
∫ tf

tn

∣∣L2
t1
− L2

t1
(cn(t))

∣∣ dt +

∫ tf

tn

∣∣(L2 − L2(cn(t))
)

h′
∣∣ dt

The integrands including h or h′, can be made arbitrarily small for any

ε > 0, by choosing n large, since compact support of h or h′ allows us to work

on compact sets, and since the integrands are continuous. So the problem is

with the terms
∫ tn

t0

∣∣L1
t1
− L1

t1
(cn(t))

∣∣ dt,
∫ tf

tn

∣∣L2
t1
− L2

t1
(cn(t))

∣∣ dt. The first one

of these terms is easy to handle since the integrand is continuous and restricted

to compact set whose measure decreases to zero, as n →∞ . Hence taking n

large enough is sufficient, to make it arbitrarily small. For the second one, by

the integrability assumption, A6, we may restrict our attention to a compact

subset of [t0, tf ]. On this subset, the set supp hn can also be handled easily.

So, it remains to show that the term, for some b < ∞,

∫ b

t0

∣∣L2
t1
(x(t), ẋ(t), t, tn)− L2

t1
(x(t), ẋ(t), t, tn + ε)

∣∣ dt

is arbitrarily small for all n large (note that outside the support of h,

cn(t) = (x(t), ẋ(t), t, tn + ε)). But this is obvious since, L2
t1
(x(t), ẋ(t), t, tn) is

uniformly continous on [t0, b]. Restricting ε to some sufficiently small values,
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the integrand, hence the integral will be small for all n. Thus we may state

the following: for any α > 0, ∃N : ∀n ≥ N,
∣∣∣ϕ(ε,tn)−ϕ(0,tn)

ε
− ϕ′(0, tn)

∣∣∣ < α
2
, for

all ε small.

Now, if lim
n

ϕ′(0, tn) > 0 is the case, one may take α also satisfying

lim
n

ϕ′(0, tn) ≥ α > 0. So ϕ(ε,tn)−ϕ(0,tn)
ε

≥ α
2
, for all ε small, n ≥ N . Tak-

ing limit with respect to n gives ϕ(ε, t0)−ϕ(0, t0) > 0, which contradicts the

optimality of t1 = t0.Hence one obtains (2.7) with equality replaced with ≥ .

In this case also, linearity of the right most expression in h implies that it is

a constant. Hence comes the result.

For the case t1 = tf , the same arguments apply with little change.

2.3 Extension to the Multiple Switch Case

We will show in this section that above results are easily generalized to the

multiple switch case. The problem we have in mind is below. It is sufficient

to consider a problem with two switches. The assumptions for single switch

case generalize to this case, easily, so we will not deal with them.

max
x(t),t1

∫ t1

t0

L1(x,
.
x, t, t1, t2)e

−ρtdt+

∫ t2

t1

L2(x, ẋ, t, t1, t2)e
−ρtdt+

∫ tf

t2

L3(x, ẋ, t, t1, t2)e
−ρtdt

subject to

(x(t), ẋ(t)) ∈ Dt1,t2(t) ⊂ R2, x(0) = x0, x(t) ≥ 0, a.e on [0,∞), tf ≤ ∞,

Dt1,t2(t) = {(x, y) | f 1(x, y, t, t1, t2) ≥ 0, for t < t1; f 2(x, y, t, t1, t2) ≥ 0,

for t2 > t > t1; f 3(x, y, t, t1, t2) ≥ 0, for tf > t > t2}.

Assume that (x, t1, t2) is a solution to the problem. Euler-Lagrange equa-

tion, and hence continuity condition extends immediately to this case. So we

will deal with the extension of the matching condition. By the proof of the

matching condition, it is clear that we can rewrite (2.7) as:
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ϕ′(0) = h(tf )[ẋL3
ẋ − L3]tf− − h(t2)[ẋL3

ẋ − L3]t2+ −
∫ tf

t2

(
h(t1)L

3
t1

+ h(t2)L
3
t2

+ φ3h
)
dt

+h(t2)[ẋL2
ẋ − L2]t2− − h(t1)[ẋL2

ẋ − L2]t1+ −
∫ t2

t1

(
h(t1)L

2
t1

+ h(t2)L
2
t2

+ φ2h
)
dt

+h(t1)[ẋL1
ẋ − L1]

t1
− − h(t0)[ẋL1

ẋ − L1]t0+ −
∫ t1

t0

(
h(t1)L

1
t1

+ h(t2)L
1
t2

+ φ1h
)
dt

where φi(t) ≡ −Li
t −

d[ẋLi
ẋ − Li]

dt
, for i ∈ {1, 2, 3}.

For t0 < t1 < t2 < tf , we have ϕ′(0) = 0. Now, if h is such that h(t1) 6= 0,

h(t2) = 0, (h(tf ) = h(t0) = 0, as h will have compact support on (t0, tf )),

then:

[ẋL1
ẋ−L1]t1−e−ρt1−[ẋL2

ẋ−L2]t1+e−ρt1 =

∫ t1

t0

L1
t1
e−ρtdt+

∫ tf

t1

L2
t1
e−ρtdt+

∫ tf

t2

L3
t1
dt.

And similarly,

[ẋL2
ẋ−L2]t2−e−ρt1−[ẋL3

ẋ−L3]t2+e−ρt1 =

∫ t1

t0

L1
t2
e−ρtdt+

∫ tf

t1

L2
t2
e−ρtdt+

∫ tf

t2

L3
t2
dt.

These are the necessary conditions for t1, t2 be interior optimal switching

instants. For the corner conditions, first check that there are seven possible

corner solutions. In general, in a system with k switches there will be 2k+1−

1 possible corner solutions. But it is not hard to adapt the conditions in

the previous section here. As an example we will take the following out

of the seven configuration: t0 = t1 = t2 < tf . In this case the system

immediately jumps to the third stage. By the same arguments in the previous

section, considering the appropriate limits, we have the following as necessary

conditions:

[ẋL1
ẋ − L1]t=t0

e−ρt0 − [ẋL3
ẋ − L3]t=t0

e−ρt0 ≥
∫ tf

t0

L3
t1
e−ρtdt, (2.9)
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[ẋL2
ẋ − L2]t=t0

e−ρt0 − [ẋL3
ẋ − L3]t=t0

e−ρt0 ≥
∫ tf

t0

L3
t2
e−ρtdt. (2.10)

One may also obtain these in a more intuitive way. As the system jumps

immediately to the third stage, in a system with one switch, in which the

first system is given by L1, and by the corresponding constraints (and t2 is

defined to be t0), we would have an immediate jump to the third system.

Thus follows (2.9). Similarly, if the first system is defined to be L2, then we

obtain (2.10).

In this manner, the necessary conditions for all corner solutions can be

written. But it is clear that implementing these in practice is really hard, as

the number of necessary conditions grow very fast. For example in a three

switch system, one would have 15 possible corner solutions, with 3 necessary

conditions for each of them (one for each switch) with a total of 45 conditions.

2.4 A Comparison with Optimal Control Ap-

proach

In this section we will translate our findings in the previous sections into the

Hamiltonian ”language” as we also want to confirm our findings by relying

on the Hamiltonian based results. We also aim here to highlight the relation

between our approach and that of the literature. To this end we will take

Tomiyama and Rossana (1989) as main reference and refer to Makris (2001)

whenever it is necessary. But this section will not carry the generality we

have established in the previous sections. We will restrict ourselves to the

generality in the literature while translating our results.

Tomiyama and Rossana (1989) follow a two stage dynamic optimization

procedure in order to formulate necessary conditions to this problem. We will
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summarize their approach but first we need some definitions:

For x, u state and control variables, respectively, the problem is to maxi-

mize, for tf < ∞,

J =
∫ t1

t0
L1(x, u, t, t1)e

−ρtdt +
∫ tf

t1
L2(x, u, t, t1)e

−ρtdt, where x(t0) = x0,

ẋ(t) =


f 1(x, u, t, t1), t0 ≤ t < t1

f 2(x, u, t, t1), t1 < t ≤ tf

(2.11)

The Hamiltonians for the first and second stages, namely for the first

period, i = 1, at which t ∈ [t0, t1) and the second period, i = 2, at which

t ∈ (t1, tf ] are:

H i(x, c, p, t, t1) = −Li(x, c, t, t1)e
−ρt + p(t)f i(x, c, t, t1).

The value functions for the two stages are:

J1(x(t1), t1) =

∫ t1

t0

L1(x, c, t, t1)e
−ρtdt,

J2(x(t1), t1) =

∫ tf

t1

L2(x, c, t, t1)e
−ρtdt,

where x, c, t1 are optimal.

Now, at the first step one considers the second stage problem, for an ar-

bitrary initial value of state, and an arbitrary switching instant, say x(t1)

and t1, and obtains by Pontryagin’s Maximum Principle, a value function,

J2(x(t1), t1), depending on x(t1) and t1. Given this, the main problem re-

duces to maximizing
∫ t1

t0
L1(x, u, t, t1)e

−ρtdt+J2(x(t1), t1), where t1 and x(t1)

are free. Within this setup comes the standard Pontryagin conditions, i.e.

minimization of the Hamiltonians together with the equations

∂H i

∂p
= ẋ,

∂H i

∂x
= −ṗ, (2.12)

to be satisfied at each period. Moreover conditions specific to the switch-
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ing instant are obtained. These are the ones that we have proven above,

namely continuity and matching conditions. The approach in Makris (2001)

is the same, while he works in infinite horizon. We will now compare the re-

sults of Tomiyama and Rossana (1989), Makris (2001) with ours, and discuss

them.

The correspondent formulation of the continuity of Lẋ at the switching

instant in these papers is continuity of the co-state variable p(t), at the switch-

ing instant. Their formulation rests on the following observation:

∂(J∗1 (x(t1), t1) + J∗2 (x(t1), t1))

∂x(t1)
= 0. (2.13)

Indeed, assuming the differentiability of J∗1 , and J∗2 , this formulation and ours

are the same. To see this, consider any h ∈ C1, for which h(t) = 0 for t ≥ T,

for some T > t1, and h(t1) 6= 0. Define ε = λh(t1), for λ ∈ R. We clearly have

J∗2 (x(t1)+ε, t1)−J∗2 (x(t1), t1) ≥
∫ T

t1

L2(x+λh, ẋ+λḣ, t, t1)−
∫ T

t1

L2(x, ẋ, t, t1).

Thus
J∗2 (x(t1)+ε,t1)−J∗2 (x(t1),t1)

ε
≥

∫ T

t1

L2(x+λh,ẋ+λḣ,t,t1)−L2(x,ẋ,t,t1)
λh(t1)

, if ε > 0. For ε ↓ 0,

by (2.2) (by a sequence of λ suitable with ε ↓ 0),

lim
λ→0

∫ T

t1

L2(x+λh,ẋ+λḣ,t,t1)−L2(x,ẋ,t,t1)
λh(t1)

=
∫ T

t1

L2
x(x,ẋ,t,t1)h(t)+L2

ẋ(x,ẋ,t,t1)ḣ(t)

h(t1)
= 0.

Thus,
∂J∗2 (x(t1),t1)

∂x(t1)
= lim

ε↓0

J∗2 (x(t1)+ε,t1)−J∗2 (x(t1),t1)

ε
≥ 0. By considering the limit

ε ↑ 0, we obtain the reverse inequality, so that we have
∂J∗2 (x(t1),t1)

∂x(t1)
= −L2

ẋ |t1+ .

A similar argument for the first period yields
∂J∗1 (x(t1),t1)

∂x(t1)
= L1

ẋ |t1+ . Thus we

obtain by (2.13)

L1
ẋ |t1+= L2

ẋ |t1+ .

But this is the result of a much more general result, namely the equivalence

of the Pontryagin’s conditions, and the Euler-Lagrange equation. By rewrit-

ing the Hamiltonians above, as H i(x, p, t, t1) = −Li(x, ẋ, t, t1)e
−ρt +p(t)ẋ, for
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the two periods, excluding the control from the definitions, we are able to state

the following. Under the conditions that L is C2, and Lẋẋ is invertible, say

Lẋẋ < 0, a solution of Euler-Lagrange equation is a solution of the correspond-

ing Hamiltonian system, i.e. the equation system (2.12), and vice versa (But-

tazzo, et.all 1998, Proposition 1.34, p.38). Moreover Lẋ(x, ẋ, t, t1)e
−ρt = p(t),

at any t, which establishes the equality we have claimed.

The stated matching condition for an interior switch, at Tomiyama and

Rossana (1989) is:

[
H2 |t1+

]
−

[
H1 |t1−

]
−

∫ t1

t0

∂H1

∂t1
dt−

∫ tf

t1

∂H2

∂t1
dt = 0. (2.14)

When the switching instant to not appear explicitly in the integrands or

constraints, this condition reduces to
[
H2 |t1+

]
=

[
H1 |t1−

]
. This is the second

Weierstrass-Erdman corner condition, and this is the formulation that we find

in Makris(2001), as he does not consider explicit dependence on the switching

instant.

The equivalence of this formulation to ours should be clear from the dis-

cussion so far, as we have

H2 |t1+ = [ẋL2
ẋ − L2]t1+e−ρt1

H1 |t1− = [ẋL1
ẋ − L1]t1−e−ρt1

∂Li(x, ẋ, t, t1)

∂t1
+

∂H i(x, Lẋ, t, t1)

∂t1
= 0, for i ∈ {1, 2}.
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CHAPTER 3

APPLICATION

In this part we will solve an adoption problem with expanding technology

frontier. As advancement of technology may be regarded as a continuous

process while adoption of it is a discrete process, the exercise below will be

legitimate in its approach to the adoption issue. So it will help in understand-

ing the dynamics of adoption. Yet, the exercise below should be treated as

a complement to the studies Boucekkine et.all (2004), and Karaşahin (2006),

as adoption process is rather complicated with determinants like learning and

maintenance, effects of which are studied by these authors.

3.1 The Model

The model will be the following one:

max
k(t),t1

∫ ∞

0

ln(c(t))e−ρtdt

subject to

k̇(t) = q(0)(a1k(t)− c(t)), for t < t1

k̇(t) = q(t1)(a2k(t)− c(t)), : for t > t1,

k(0) = k0, k(t) ≥ 0, c(t) ≥ 0

This is a representative agent model, with the intertemporal utility func-

tion
∫∞

0
ln(c(t))e−ρtdt. Here ρ > 0 represents the discount factor, k, and c
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represents capital stock, and consumption, respectively. The relations,

y(t) = aik(t) = c(t) + I(t)

k̇(t) = q(t) I(t),

imply the stated form of the problem. The first of these is resource constraint,

for i = 1, 2, refering to the periods, and aik(t) to the production function, and

the second one gives the evolution of capital stock, where I is investment, q(t)

is the level of technology. Note that, we have no depreciation, so by I ≥ 0,

we will always have k̇(t) ≥ 0.The initial capital stock k0 will assumed to be

positive. By the production function, marginal productivity of the capital

at the first period is given by a1, and at the second period it is given by a2.

We assume that a2 < a1. The reasoning behind this assumption is provided

in the introduction. q(t) is assumed to be 1 + γt, i.e. we assume a linearly

expanding frontier, so that when switching is realized, the adopted level of

technology will be q(t1) = 1 + γt1, while before switching it is q(0) = 1,

without loss of generality.

The basic interpretation of this setup is provided in the introduction.

Here the only change, with respect to the basic problem discussed at the in-

troduction is explicit specification of the level of technology at each instant.

Interpreting this setup further as a technology adoption problem of a de-

veloping country may also help in understanding the model. A developing

country importing technology from abroad would solve this problem to find

the optimal timing of adoption under a maximum of one switching allowed.

Before analyzing the solution to the model we will check the validity of the

assumptions made in the previous part. The existence of solution follows from

the existence of solution for standard optimal growth models (see d’Albis et.all

2004). This establishes existence of a continuous solution for both periods

of the problem, separately. So existence problem reduces to the existence of
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solution to the problem in which the function

Ψ(t1, x(t1)) = sup
y, y(t1)=x(t1)

[∫ t1

t0

L1(y,
.
y, t, t1)e

−ρtdt +

∫ tf

t1

L2(y, ẏ, t, t1)e
−ρtdt

]

is maximized (right hand side attains its supremum). We impose continuity

to the solution at the switching instant by setting y(t1) = x(t1) for all y

in the solution set. So let Ψ(tn, x(tn)) → sup
t1,x(t1)

Ψ(t1, x(t1)). If tn → ∞,

then existence is no problem since problem reduces to a one stage problem.

Otherwise tn is bounded, from which it follows that x(tn) is also bounded. So

by the continuity of Ψ, we conclude that Ψ attains its supremum.

Now, by the continuity of the solution k, and by the constraints it is

obvious that k̇(t) is essentially bounded. From this follows, by a version

of the fundamental theorem of calculus (see Gordon (1994), Theorem 6.27,

p.104) that for a, b finite, k(b) = k(a) +
∫ b

a
k̇(t)dt, i.e. k(t) is absolutely

continuous, i.e. k(t) ∈ W 1,1(loc). So, A4 is satisfied.

Given the continuity of k(t), k̇(t) ≥ 0, and k0 > 0, the assumption that

k(t) > 0, uniformly on bounded intervals, is trivially satisfied. But the re-

maining part of the assumption A3 is not so trivial. It is equivalent here to

the argument that c(t) be uniformly above zero, on bounded intervals. This

is established for standard optimal growth models (see Le Van et.all, 2007),

but when there is a switch the issue becomes rather complicated. So we will

take it as given in the present study.

Continuity and the differentiability of the functions involved in the prob-

lem are obvious (for `n we need to restrict the domain of the function, so that

the restricted domain includes the solution, but the interiority assumption

above shows that this is possible). It remains to consider the assumptions,

A5, A6 and A7, but we will be able to check them right before we write the

matching condition.

24



3.2 Solution

By Proposition 2, on each period c(t) and k(t) are differentiable. Having this

in mind, by (2.1) for the second period we have

ċ(t)

α (c(t))2
+

1

α c(t)
ρ =

a2

c(t)
.

From this we find that,

c(t) = c(t1+) e(ρ−a2α)t1 e(a2α−ρ)t.

Using this we obtain the first order linear differential equation, for A =

c(t1) e(ρ−a2α)t1 ,

k̇(t)− a2 α k(t) + A α e(a2α−ρ)t = 0,

solution of which is:

k(t) = −A α ea2α t

[
− e−ρt

ρ
− k(t1) e−a2α t1

A α
+

e−ρt1

ρ

]
(3.1)

Following Boucekkine et.all (2004), the necessary transversality condition

is :

lim
t→∞

(
∂L

∂k̇
k(t)e−ρt

)
= 0.

This limit is
e−ρt1

ρ
− k(t1) e−a2α t1

A α
, so we conclude that:

c(t1+) =
ρ

α
k(t1) (3.2)

Again utilizing (2.1), this time for the first period we find that:

c(t) = c(0) e(a1−ρ)t (3.3)

25



Writing the equation for capital, we find:

k(t) = −c(0)ea1t

[
− e−ρt

ρ
+

1

ρ
− k(0)

c(0)

]
(3.4)

The corollary 2 above states that ∂L
∂k̇

is continuous at t1. Since

lim
t→t+1

∂L

∂k̇
=

−1

ρ k(t1)

and,

lim
t→t−1

∂L

∂k̇
= lim

t→t+1

∂L

∂k̇
,

by equality of these:

c(0) = ρ k(t1) e(ρ−a1)t1 . (3.5)

We also have continuity of k(t) at t1. Writing (3.4) at t1 :

k(t1) = −c(0)ea1t1

[
− e−ρt1

ρ
+

1

ρ
− k(0)

c(0)

]

= −ρ k(t1) e(ρ−a1)t1ea1t1

[
− e−ρt1

ρ
+

1

ρ
− k(0)

ρ k(t1) e(ρ−a1)t1

]

= k(t1)− k(t1) eρt1 + k(0) ea1t1

From this follows that:

k(t1) = k(0) e(a1−ρ)t1 (3.6)

Thus we have the solution of the problem in terms of k(0), and t1. We

summarize this below:

k(t) = k0 e(a1−ρ)t, 0 < t ≤ t1 (3.7)

c(t) = ρ k0 e(a1−ρ)t, 0 < t < t1 (3.8)
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k(t) = k0 e(a1−a2α)t1 e(a2α−ρ)t, t1 ≤ t < ∞ (3.9)

c(t) =
ρ

α
k0 e(a1−a2α)t1 e(a2α−ρ)t, t1 < t < ∞ (3.10)

Now it comes to utilize the matching condition, (3.12). First we have to

check that A5, A6 and A7 are satisfied. Note that f i in A5 is consumption.

As the first period consumption do not depend on t1 there is nothing to

check. For the second period, as the consumption path is exponential, a

perturbation of t1 cannot make consumption negative. So A5 is satisfied.

For A6, again we need to check only the second period as t1 do not occur in

the first period consumption. The second period Lt1 is a2
dα
dt1

te−ρt, which is

clearly integrable. So, A6 is also satisfied. For A7, we have k̈(t) = k0(−a2α+

ρ)2e(a1−a2α)t1+(a2α−ρ)t. This function is locally integrable, obviously. Given

these, we can proceed to characterize the switching instant.

To write the matching condition, we have:

[ẋL1
ẋ − L1]t1−e−ρt1 = −

(
ρ

(
−1 + ln

(
k0ρet1(−ρ+a1)

))
+ a1

)
e−ρt1

ρ

[ẋL2
ẋ − L2]t1+e−ρt1 =

(
ρ− ρ ln

(
k0ρet1(−ρ+a1)

1+γt1

)
− a2(1 + γt1)

)
e−ρt1

ρ

∫ tf

t1

L2
t1
e−ρtdt =

(−γρ + (1 + γt1) (ρa1 − a2(ρ + γ(−1 + γt1) ))) e−ρt1

(1 + γt1)ρ2

Also by,
∫ t1

0
L1

t1
e−ρtdt = 0, the matching equation is:
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e−ρt1 {ρ [γ − (1 + γt1)ρ ln(1 + γt1)] + (1 + γt1) [−2ρa1 + a2(2ρ + γ(2ρt1 − 1))]}
(1 + γt1)ρ2

(3.11)

So the necessary condition for an interior switch is:

ρ [γ − (1 + γt1)ρ ln(1 + γt1)] + (1 + γt1) [−2ρa1 + a2(2ρ + γ(2ρt1 − 1))] = 0.

(3.12)

After some manipulation, and defining s = 1 + γt1, we reduce this to:

ρ γ + 2ρa2s
2 = ρ2s ln s + s(2ρ(a1 − a2) + a2γ + 2ρa2). (3.13)

As a first step in the interpretation of this equation note that this equation

does not depend on the initial value of the capital stock. This is rather natural

in our setup, since marginal productivity of capital does not depend on the

amount of capital stock as we assume Ak type production technology. For a

Cobb-Douglas type technology switching instant would depend on the initial

capital stock.

To simplify the interpretation of (3.13), we will assume that

ργ < 2ρ(a1 − a2) + a2γ.

In this way we ensure that left hand side of (3.13) has a lower value than

right hand side of (3.13) at t1 = 0. Now, the derivative with respect to s

at the left hand side of (3.13) is 4ρa2s, while the right hand side derivative

is ρ2(ln s + 1) + 2ρ(a1 − a2) + a2γ + 2ρa2. Since for large s the left hand

side derivative will be higher than that of the right hand side, there is a

unique solution t1 > 0 to (3.13), under this assumption. Hence excluding

the possibility of a corner solution, we may continue to analyze the matching

condition. But before to that we note that, above inequality has an important
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interpretation that highlights the trade-off at the center of the problem. We

have explained the costs and advantages of switching at the introduction. So

if at t1 values close to zero, the costs of switching is less than the advantage

gained by switching to higher technology, and if this difference decreases up

to a point, so that costs and benefits outweigh each other at that point, than

this point should be the switching point. Indeed, the above inequality and

the discussion following it ensures this.

The matching condition does not have an algebraic solution. So we will

proceed with the examination of elasticities of the parameters in (3.13), and

do some numerical calculations. To understand the effect of a2, second period

marginal productivity of capital, on the switching instant, we will calculate

the switching instants for the following set of parameters: ρ = 0.04, γ = 0.02,

a1 = 1 (for a discussion of this particular choice of parameters, see Sağlam

(2002)) as

a2 t1

0.8 25.1

0.7 34.25

0.6 46.5

The interpretation is that, lower value of marginal productivity after adop-

tion delays the adoption. This is reasonable since lower marginal productivity

after adoption means that the costs to switching is higher. So this should be

compensated by a higher gain in technological jump, so by waiting a higher

technology to adopt. This is more clear if we consider the derivative with re-

spect to a2 of (3.12), as this derivative, −γ(1+ γt1)+2(1+ γt1)
2ρ, is positive

whenever ρ ≥ γ
2
.

ρ t1

0.03 29.12

0.04 25.1

0.06 21.05
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Higher discount rates should fasten the adoption. Higher discounting

implies an urgency in covering the costs resulting from the delay in adoption.

In fact the costs from switching decreases at a particular instant with higher

discount rates with respect to the costs with a lower discount rates. This is

what we see in the above table constructed with the parameter set γ = 0.02,

a1 = 1, a2 = 0.8. Again, by looking at the derivative of (3.13) with respect to

ρ, −(2(a1 − a2) + 2a2)s + 2a2s
2 + γ − 2sρ ln(s), we see this effect (we look at

the derivative with respect to s as it is easier to interpret).

Our final consideration will be about the effect of the pace of technology

on adoption. Our findings are again rather intuitive. For the parameter set,

ρ = 0.04, a1 = 1, a2 = 0.8, we obtain the following:

γ t1

0.02 25.1

0.06 16.64

0.1 14.98

Higher pace of technology implies fastening of adoption. As high technol-

ogy comes early, the loss due to the drop in marginal productivity of capital

after adoption becomes tolerable in a shorter run. Derivative of (3.12) with

respect to γ is ρ− t1ρ(2a+ρ)+a2(−1−2t1γ +4t1(1+ t1γ)ρ)− t1ρ
2 ln[1+ t1γ].

Given the assumption of lower discount values above, this derivative supports

our numerical analysis. We should also note the following numerical result:

0.02× 25.1 = 0.5 < 0.06× 16.64 = 0.99 < 0.1× 14.98 = 1.498. This implies

that, not only adoption gets earlier as technology increases faster, but also

adopted level of technology gets higher.
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CHAPTER 4

CONCLUSION

In this study we have formulated necessary conditions for a class of infinite

horizon multi-stage optimization problems. We compared these with the lit-

erature, and applied to an economic problem. Meanwhile we extended the

already established results, in some directions. In particular we have formu-

lated the necessary conditions for multi-stage problems depending explicitly

to the switching instant, in infinite horizon. These are done by treating the

problem as an ordinary problem in calculus of variations, and attacking it

with the standard tools in calculus of variations, together with basic proper-

ties of Sobolev spaces.

The advantages of our approach first rests on the fact that we never refer to

a value function. Hence we avoid the strict assumption that the value function

be differentiable. Second, we impose no regularity on the derivative of the

state path except for a boundedness assumption. Yet, we are able to cover the

most general problem in the literature, necessary conditions of optimality of

which is never provided in the literature. This is also partially true when we

consider the so-called hybrid optimal control literature in engineering, since

the problem here do not exclude the explicit dependence to the switching

instant. We say ”partially” since hybrid optimal control literature includes

results for nonsmooth problems, which we do not cover here.

As an application of these theoretical remarks, we have analyzed a tech-

nological adoption problem with a linearly expanding technological frontier.
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We have demonstrated, mainly that, under some certain assumptions, an in-

crease in the speed of technology induces faster adoption, and adoption of

higher technologies.

Yet, this application does not reflect the strength of our theoretical results,

as we allow for just one switch in infinite horizon. Indeed, higher number of

switches, possibly number of switches determined endogenously, would also

be more sensible from an economic point of view. An important extension

would also be abandonment of the restriction that the new technology after

switching is the highest possible technology available at that instant1. In

fact, in reality it is rare that the highest possible technology is adopted when

it is to adopt due to the higher price of the new technology. While it is

really a hard task to handle the case of endogenous number of switches, as

this would be a genuine combination of discrete and continuous optimization,

the last extension can be handled within our framework by introducing a

new parameter to the functional maximized and treating it as the switching

instant is treated.

We have no result in this study on uniqueness and sufficiency. While in

application part we ensure these easily, establishing general results in these

requires some convexity like assumptions together with an evaluation of the

second variation of the problem. So we also note these for future work.

1This important extension is suggested by Semih Koray.
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