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Abstract: In this study, the authors consider Gaussian interference channels and fading interference channels, and design short
block length codes based on trellis-based constructions. For both joint maximum likelihood (JML) decoding and single user
minimum distance decoding, they obtain error-rate bounds to assess the code performance. Then they employ the obtained
bounds for code design and present several design examples. For the case of quasi-static fading, they note that while the
simple version of the derived bound is not sufficiently tight for code search purposes, one can obtain a tight performance bound
with a higher complexity that can be used for a theoretical performance investigation. For the Gaussian case under JML
decoding, they show that the newly designed codes provide significant improvements over point-to-point (P2P) trellis-based
codes and off-the-shelf low density parity check codes. They also demonstrate that, for the case of independent and identically
distributed fading, the best codes obtained by performing code search are P2P optimal ones, which is also verified by simulation
results.

1 Introduction
Interference channel (IC) is a physical model of a shared medium
over which several sender–receiver pairs communicate. During the
last several decades, the characterisation of such channels has been
investigated thoroughly and many information theoretic problems
have been addressed, see, e.g. [1, 2]. However, regarding practical
code designs, only a limited number of studies exist; see [3–5] for
the design of asymptotically long block length low density parity
check (LDPC) codes for the two-user Gaussian interference
channels (GICs).

It is suggested in [5] that, in the large block length regime,
performance close to the capacity or rate-region boundaries can be
attained by using optimised irregular LDPC codes. However, the
asymptotic design conjectures are not valid in the short block
length regime, and short block length codes picked up from the
optimised ensembles are rather inferior. This is due to the fact that,
it is not possible to match the optimised degree distributions
exactly, and also small cycles in the Tanner graph cannot be
eliminated completely. To construct short block length LDPC
codes, several approaches specifically based on avoiding small
stopping sets and girth-conditioning are proposed in the literature
[6–9], and performance enhancements over random constructions
are reported for point-to-point (P2P) transmissions. However, these
P2P constructions do not usually perform well over multi-user
channels. Moreover, there do not exist similar (specifically
tailored) code designs for these scenarios.

Motivated by the practical applications demanding low
hardware complexity and small decoding delay, in this work, we
study short block length code design for the two-user ICs. We
focus on the utilisation of trellis-based codes for this purpose since
such codes can achieve superior performance in P2P
communications and space–time coding scenarios [10]. Also, it is
possible to evaluate error-rate bounds of such codes efficiently
leading to proper code designs. Recently, Ozcelikkale and Duman
[11] have designed short block length trellis-based codes for the
two-user Gaussian multiple access channels (GMACs) and it has
been reported that the designed codes outperform the P2P optimal
ones. In this study, we address the short block length code design

problem for the case of two-user GICs. We derive error-rate bounds
for trellis-based codes by using the union bound techniques and
employ these bounds in the code design. Through several
numerical examples, we also study the performance of our newly
designed codes.

In addition to GICs with fixed channel coefficients, we also
consider two different fading scenarios, namely, independent and
identically distributed (i.i.d.) fading and quasi-static fading cases,
and develop average union bound expressions on the error rates to
obtain a simple performance characterisation. We study the
tightness of the derived bounds through numerical examples, and
provide several error-rate performance results for the designed
codes. We demonstrate that for GICs with joint maximum-
likelihood (JML) decoding, the newly designed codes significantly
outperform the P2P optimal ones and off-the-shelf LDPC codes
with the same block lengths. We also show that for the case of i.i.d.
fading IC, the best codes obtained by performing code search are
also P2P optimal. For the case of quasi-static fading, we derive a
simple version of the union bound, however, it is not sufficiently
tight for code search purposes. Hence, we also provide a tight
performance bound with a higher complexity that is useful for a
theoretical assessment of the code performance.

The rest of the paper is organised as follows. In Section 2, we
introduce the system description for the two-user ICs. In Section 3,
we utilise the error-rate bounds obtained for GMACs and Gaussian
broadcast channels (GBCs) from the existing literature and develop
a framework towards designing trellis-based codes for the two-user
Gaussian and fading ICs. We also present the specific design
procedures for different decoding strategies in this section. In
Section 4, we provide various code design examples and
comprehensive performance evaluations. Finally, we conclude the
paper in Section 5.

2 System model
The block diagram of a two-user IC with Gaussian noise is given in
Fig. 1. For receiver i, the received signal vector with length-n can
be expressed as
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yi = αi c + zi, i = 1, 2. (1)

Here c is the binary phase shift keying-modulated codeword matrix
which is defined as follows:

c = c1

c2
=

c1, 1 c1, 2 … c1, n

c2, 1 c2, 2 … c2, n
, (2)

where c1 and c2 are the codewords utilised at transmitter 1 and
transmitter 2, respectively. The one-by-two vector αi = [α1i α2i]
denotes the channel gains vector for receiver i where αji is a
complex number (with real and imaginary components αji

R and αji
I ,

respectively) denoting the channel gain from the transmitter j to the
receiver i. zi represents the vector of i.i.d. zero-mean complex
Gaussian noise samples having variance of N0/2 at receiver i. For
the GIC case, the channel gains are fixed values (and naturally,
they are known both at the transmitter and the receiver). The
signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) at
receiver i are defined as

SNRi = |αii|2
N0

, INRi = |αji|2
N0

, (3)

for i, j = 1, 2. For a GIC, based on the signal and interference
levels, the interference can be classified as strong (if
INRi > SNR j), weak (if SNRi > INR j), or mixed (if INRi > SNR j,
INR j < SNRi) with i ≠ j [12]. 

We consider two models for the case of fading ICs. In the first
one, the fading coefficients αji are modelled as samples of
independent zero-mean circularly symmetric complex Gaussian
random variables with variance σ ji

2 /2 per dimension, i.e. i.i.d. for
each transmission instant. This case can be considered as fast
fading. In the second model, we assume that the fading is slow, and
specifically, the fading coefficients are constant throughout each
codeword. This case can be considered as quasi-static as it does not
offer time diversity. While for the quasi-static case, one can
consider the outage probability, we still consider the average error
probability as the performance metric as also done in the space–
time coding literature [13].

For both fast and quasi-static fading scenarios, we assume that
perfect channel state information (CSI) is available at the receiver,
however, no CSI is available at the transmitter. The SNR and INR
at receiver i are defined as

SNRi = σii
2

N0
, INRi = σ ji

2

N0
, (4)

with i, j = 1, 2.
We consider two decoding techniques for ICs. Namely these are

JML decoding and single user decoding (SUD).

2.1 JML decoding

In this technique, both desired and interfering signals are decoded
based on the ML criterion together at the receiver i, which can be
expressed as [14]

(c1
(JML), c2

(JML))i = arg min
(ĉ1, ĉ2)

∥ yi − α1i c^1 − α2i c^2 ∥2, i = 1, 2. (5)

Here ∥ ⋅ ∥ is the Euclidean norm of the vector, and the
minimisation is taken over both codebooks. We refer to this as
‘joint ML’ decoding since the codewords of the two users are
decoded jointly at each receiver, from which the receivers obtain
their own codeword estimates.

2.2 Single user (SU) decoding

In this method, only the desired signal is decoded and the
interfering signal is treated as noise. According to the minimum
distance criterion, the decoding rule can be expressed as

ci
(SU) = arg min

ĉi

∥ yi − αiic^i ∥2, i = 1, 2, (6)

where the minimisation is performed just over the codebook for the
desired message. Clearly, the SUD is inferior to JML in terms of
performance, however, it is much simpler to implement.

3 Performance analysis
In this section, we derive error-rate bounds on the system
performance by utilising the union bound techniques. We note that
while there are other more sophisticated and improved bounds
(such as those based on the Gallager bound [15, 16] and tangential
sphere bound [17]); however, they have higher computational
complexities, which make them unsuitable for the code design
purposes, hence they are not explored here.

3.1 GIC with strong interference

We first consider GIC with strong interference and assume JML
decoding since it is the optimal decoding strategy. We exploit the
performance analysis approach utilised in [11] for GMACs under
JML decoding and derive performance bounds for our case. We
outline the procedure in the following.

Regarding both receivers, the total frame error rate can be
upper-bounded using the union bound technique as

Pε ≤ 1
|C| ∑c

∑
ĉ ≠ c

Pε, 1(c, c^) + Pε, 2(c, c^) , (7)

where C is the set of codeword pairs c and | ⋅ | is the cardinality of
the set. Pε, i(c, c^) denotes the pairwise error probability for receiver
i. This error probability examines the case where the codeword pair
c^ is more likely to be received instead of the transmitted codeword
pair c. We can express Pε, i(c, c^) as

Pε, i(c, c^) = Q
Edi

2(c, c^)
2N0

, (8)

where Q(x) = (1/ 2π)∫x
∞exp( − (t2/2)) dt, and Edi

2( . , . ) is the
squared Euclidean distance function computed at receiver i, i.e.

Edi
2(c, c^) = αiDc, ĉαi

†

= |α1i |2 d11 + 2(α1i
Rα2i

R + α1i
I α2i

I )d12 + |α2i |2 d22 .

Here ‘ †’ is the Hermitian conjugate and Dc, ĉ denotes the 2-by-2
codeword difference matrix, which is given by

Dc, ĉ = (c − c^)(c − c^)T = d11 d12

d21 d22
. (9)

In the computation of (7) one major difficulty is that, the codeword
difference matrix should be enumerated for all possible c^ and c
pairs. However, this matrix can be calculated efficiently for certain
cases, including the systems that employ convolutional coding. To
count the multiplicities of different Dc, ĉ terms in the bound
calculations, we follow the approach provided in [11]. Then we

Fig. 1  Block diagram of a two-user GIC
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perform the code optimisation by searching over the code pairs
minimising (7) calculated at a specific SNR.

We consider a joint trellis diagram having states labelled as
(s1, s2), where si denotes the trellis state for the ith user's code. It
follows that the joint trellis diagram has ns1 × ns2 states where nsi

represents the number of states for the ith user's code. To take into
account all possible c^ and c pairs, we form a product trellis diagram
having states labelled as (s1, s2, s^1, s^2), where si and s^i denote the
states of the trellises for the codewords ci and c^i, respectively. To
count all possible Dc, ĉ matrices, we define a state transition matrix
S1, 2 for the product trellis. If the transition from state k to state l is
not allowed, the element of the state transition matrix for the kth
row and the lth column is zero. Otherwise the element is in the
form

[S1, 2]k, l = D11
q11

k, l
× D12

q12
k, l

× D22
q22

k, l
, k, l = 1, …, (ns1 × ns2)

2 . (10)

Here D11, D12, D22 are auxiliary variables, which are used to list
various kinds of errors between the two codeword pairs [13]. For
the transition from state k to state l, the exponent qi, i

k, l denotes the
number of indices in which the ith users' correct and erroneous
labels disagree with each other. On the other hand, the exponent
qi, j

k, l with i ≠ j denotes the number of agreements between the
previous indices for the ith and jth users. All these variables are
utilised to evaluate the contributions of the state transitions to the
entries of the Dc, ĉ.

We can obtain tighter bounds by performing expurgation of the
union bound [18], which takes into account only the basic error
events caused by paths diverging from the correct path in only one
segment of the trellis diagram. To count such error events
effectively, we utilise the notion of an error state which was
originally developed in [13]. The transition to the error state occurs
only when the two paths that diverged before merge for the first
time. Moreover, the transition from the error state is only to itself.
By computing the Lth power of S1, 2, the total multiplicities of all
possible Dc, ĉ matrices can be obtained for the L stages of the joint
trellis state transitions. We also note that, when trellis termination
is taken into account, the final state transition matrix calculations
should be modified accordingly [13].

Although the presented approach is rather simple, the exact
calculation of the upper bound is still not feasible due to its
computational complexity. Hence, we cannot utilise the presented
approach directly in the code design. For GMAC, the authors of
[11] assume a shorter frame length than the desired frame length in
the code design, and this simplification does not disturb the
performance significantly since it relies on a traceback length of
four to five times the constraint length of the code [19, Ch. 4].
Another simplification is performed to increase the computational
efficiency where the number of terms for each entry of S1, 2 is
restricted to those components (qi j) with magnitudes less than a
specific threshold knowing that the omitted terms do not affect the
error rate bound considerably [13]. We caution that, although this
approach greatly helps with the computation, the final
computations based on this truncation approach should be
considered as an approximation rather than being true upper-
bounds on the error probabilities.

3.2 GIC with weak interference

In order to evaluate the performance under weak interference, we
assume SUD which is also used in decoding for GBCs [14]. It is
also possible to utilise JML decoding in a weak interference case,
however, we utilise SUD due to its simplicity and tractability. Also,
when the interference level is relatively low, the performance of
SUD is already close to that of JML decoding.

Under SUD, the total frame error probability can be upper
bounded as

Pε ≤ Pε, 1 + Pε, 2 . (11)

Using the union bound, the individual frame error probabilities can
also be upper bounded as

Pε, 1 ≤ 1
|C1| ∑c1

∑
ĉ1 ≠ c1

Pε, 1(c1, c^1), (12)

where

Pε, 1(c1, c^1) = 1
|C2| ∑c2

Pε, 1(c1, c^1 |c2) (13)

with |Ci| denoting the cardinality of the ith user's codebook. Pε, 2 is
obtained similarly. Adopting the technique in [14], we obtain the
pairwise error probability Pε, i(ci, c^i) using the identity

Pε, i(ci, c^i |c^ j) = Q
2 f (dii′ , d ji′ , αii, αji)

N0
, i, j = 1, 2, i ≠ j .(14)

Similar to [14], we introduce f as

f dii′ , d ji′ , αii, αji = |αii |2 dii′ + (αii
Rαji

R + αii
I αji

I )(dii′ − 2d ji′ ) 2

|αii |2 dii′
, (15)

dii′  is the number of indices in which ci differs from c^i, d ji′  is the
number of indices in which ci differs from both c^i and cj,
respectively. To take into account all possible values dii′  and d ji′ , we
introduce a product trellis with two state transition matrices S1, 2′  and
S2, 1′ . For the kth row and lth column, the entry of the Si, j′  is
computed as

[Si, j′ ]k, l = D11
dii

′k, l
× D12

d ji
′k, l

, k, l = 1, …, (ns1 × ns2)
2, (16)

where i, j ∈ {1, 2}, i ≠ j. The evaluated state transition matrices
are employed towards listing the possible values of dii′  and d ji′ . Then
by using the upper bound in (11), the performance bound is
attained similar to the approach presented in [11] and in the
previous subsection. To mitigate with the memory limitations,
simplifications are also performed as explained in the previous
section. Hence the upper bound is only approximate. Finally, the
code design is performed by searching for the code pair which
minimises (11).

Our design methodology can be extended to the case of K > 2
users. For instance, assuming that the users employ SUD, the upper
bound on total frame error probability can be calculated by
introducing a new product trellis with K state transition matrices
and following the same design procedure as before. Regarding the
practical decoding approaches, one can resort to reduced
complexity trellis implementations (such as sequential decoding
and M-algorithm [20]) to reduce the computational complexity
with the increasing number of users.

3.3 I.I.D. fading IC

So far we have derived the union bound on the error probability for
the case of GICs with strong and weak interference levels. We now
consider i.i.d. fading with JML decoding and derive the union
bound for this case. The channel is neither strong nor weak
interference due to the fading. As we will see in Section 4, JML
decoding has a better decoding performance in all Gaussian
channel examples regardless of the interference level, hence we
chose to utilise this approach for the fading case as well. We follow
the same approach as in Section 3.1, and in addition perform
averaging over the fading coefficients to obtain error rate bounds.

We can write the union bound on the probability of frame error
at the ith receiver as follows:
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Pε, i ≤ Eαi
1

|Ci| ∑c
∑
ĉ ≠ c

Pε, i(c, c^ |αi)

= 1
|Ci| ∑c

∑
ĉ ≠ c

Eαi Pε, i(c, c^ |αi) ,
(17)

where the averaging is over the fading coefficients from both
transmitters to the receiver. The average pairwise error probability,
in this case, can be upper bounded as (see equation below), where
αi, t = αi, t

R + −1αi, t
I  is the value of αi vector at time instant t, Dt is

the codeword difference matrix at time instant t, i.e.

Dt = (ct − c^t)(ct − c^t)T =
d11, t d12, t

d21, t d22, t

with

ct =
c1, t

c2, t
and Σ = E[(αi, t

R )Tαi, t
R ] =

σ1i
2

2 0

0 σ2i
2

2

.

We note that d12, t = d21, t and d11, td22, t = d12, t
2 . To count the

multiplicities of the codeword difference matrix for all correct-
erroneous codeword pairs, we use the same procedure as in Section
3.1.

3.4 Quasi-static fading IC

In this channel model, we assume that the fading is slow, and
specifically, the fading coefficients are constant throughout each

codeword. While it is possible to consider the outage probability
for this case, we still consider the average error probability as the
performance metric as done in the space–time coding literature
[13]. Considering the quasi-static fading IC and using the JML
decoding, the union bound on the probability of frame error at the
ith receiver can be written as in (17) where the expectation is
performed over the distribution of the fading coefficient. The
corresponding average pairwise error probability, in this case, can
be bounded as (see equation below) where Dc, ĉ is defined in (9)
and

Σ = E[(αi
R)Tαi

R] =

σ1i
2

2 0

0 σ2i
2

2

.

Using numerical examples, we have observed that although the
derived union bound on the error probability under quasi-static
fading is much tighter than the bound in [21], it is still not tight
enough for code design purposes. We note that a similar
observation has been made in [13] in the context of space–time
trellis codes over a quasi-static fading channel. Therefore, we use
the technique proposed in [22] to limit the conditional union bound
on the error probability before averaging over the fading
coefficient distribution and obtain a new upper bound as

Pε, i ≤ Eαi min 1, 1
|Ci| ∑c

∑
ĉ ≠ c

Pε, i(c, c^ |αi) . (18)

Obviously, we cannot move the averaging operation inside the min
function, hence, (18) needs to be calculated either by numerical

Eαi Pε, i(c, c^ |αi) = Eαi Q
Edi

2(c, c^)
2N0

≤ Eαi e−Edi
2(c, ĉ)/4N0

= Eαi
R e−∑t = 1

n ((α1i, t
R )2d11, t + (α2i, t

R )2d22, t + 2α1i, t
R α2i, t

R d12, t)/4N0 Eαi
I e−∑t = 1

n ((α1i, t
I )2d11, t + (α2i, t

I )2d22, t + 2α1i, t
I α2i, t

I d12, t)/4N0

= ∏
t = 1

n 1
πσ1iσ2i

∫ e−αi, t
R Dt(αi, t

R )T/4N0 × e−αi, t
R Σ−1(αi, t

R )T/2 dαi, t
R

2

= ∏
t = 1

n 1
πσ1iσ2i

∫ e−(1/4N0)αi, t
R

d11, t +
4N0
σ1i

2 d12, t

d12, t d22, t +
4N0
σ2i

2

(αi, t
R )T dαi, t

R
2

= ∏
t = 1

n 4N0

σ1iσ2i (d11, t + (4N0/σ1i
2 ))(d22, t + (4N0/σ2i

2 )) − d12, t
2

2

= ∏
t = 1

n
4N0 d11, tσ1i

2 + d22, tσ2i
2 + 4N0

−1,

Eαi Pε, i(c, c^ |αi) = Eαi Q
Edi

2(c, c^)
2N0

,

≤ Eαi e−Edi
2(c, ĉ)/4N0 ,

= Eαi
R e−((α1i

R)2d11 + (α2i
R)2d22 + 2α1i

Rα2i
Rd12)/4N0 Eαi

I e−((α1i
I )2d11 + (α2i

I )2d22 + 2α1i
I α2i

I d12)/4N0 ,

= 1
πσ1iσ2i

∫ e−(αi
RDc, ĉ (αi

R)T)/4N0 × e−(αi
RΣ−1(αi

R)T)/2 dαi
R

2

= 1
πσ1iσ2i

∫ e−(1/4N0)αi
R

d11 +
4N0
σ1i

2 d12

d12 d22 +
4N0
σ2i

2

(αi
R)T dαi

R
2

= 4N0

σ1iσ2i (d11 + (4N0/σ1i
2 ))(d22 + (4N0/σ2i

2 )) − d12
2

2

= 16N0
2 (d11σ1i

2 + 4N0)(d22σ2i
2 + 4N0) − d12

2 σ1i
2 σ2i

2
−1

,

IET Commun., 2018, Vol. 12 Iss. 18, pp. 2282-2289
© The Institution of Engineering and Technology 2018

2285



evaluation of the multidimensional integration or by the use of
Monte Carlo techniques. Although the bound in (18) is tight, due to
the high complexity of its calculation, it is not a suitable metric for
the code design purposes. Therefore, it is provided as a way of
theoretical performance characterisation.

To verify the tightness of these two bounds, we consider an
example with quasi-static fading IC with SNR1 − SNR2 = 2 dB,
INR1 − SNR2 = 1 dB, and INR2 − SNR1 = 2 dB. The simulation
and bound results of the optimal P2P convolutional code (5,7)/(7,5)
are shown in Fig. 2. The result clearly shows that by utilising the
more sophisticated bound in (18) we can obtain much a tighter
bound on the error probability.

4 Code design examples
In this section, we illustrate the performance of our trellis-based
code designs in comparison with that of P2P optimal trellis-based
codes and off-the-shelf LDPC codes. We assume a code rate of
1/2, a code block length of N = 96 and a code memory of 2. For
each user, the last two information bits are utilised for trellis
termination. We represent the trellis-based codes as (m1, n1)/(m2, n2),
where (mi, ni) represents the convolutional encoder of transmitter i
assuming the octal format. In the code design, we follow a brute-
force approach, i.e. the performance of the candidate codes is
ordered according to their performance computed through the
approximate bounds in (7), (11) and (17) for the cases of GIC with
strong and weak interference and i.i.d. fading ICs, respectively. We
truncate the number of terms for each entry of the state transition
matrix at 25 in order to cope with the memory limitations and
efficiently handle the matrix multiplications. For comparison, we
consider P2P optimal trellis-based codes and implement (5, 7) and
(7, 5) codes for the first and second users, respectively. We note
that these codes have the largest minimum distance among the
memory 2 codes, and they are interleaved versions of one another.
We also consider off-the-shelf LDPC codes provided in [23] and
implement the code (96.33.964)/(96.33.966). In the following, for
most of the GIC examples, we consider real channel coefficients
(for simplicity of exposition), which amounts to the special case of
complex coefficients when both coefficients of intended and
interfering signals have the same phase. On the other hand, for the
fading IC examples, we consider complex channel coefficients.

4.1 GIC with strong interference

In the first example, we assume a GIC with parameters
SNR1 − SNR2 = 2 dB, INR1 − SNR2 = 1 dB, and INR2 − SNR1 = 2 
dB. We perform code design at SNR1 = 8 dB. The minimum value
of the upper-bound (7) is achieved for the code (2, 7)/(7, 5). Fig. 3a
shows the decoding performance of our code design in comparison
with that of P2P trellis-based codes and off-the-shelf LDPC codes.
We illustrate the performance of the LDPC codes with both soft

interference cancellation (SIC) [24] and SUD. Notice that while the
former one assumes joint decoding of both user messages in an
iterative fashion, the latter one assumes trivial decoding by treating
interfering user message as noise. We observe that the designed
codes outperform P2P optimal ones and the LDPC codes even with
SIC. 

In the second example, we consider a GIC with parameters
SNR1 − SNR2 = 1 dB, INR1 − SNR2 = 2 dB, and INR2 − SNR1 =
1.5 dB. We perform code design at SNR1 = 3 dB and
SNR1 = 8 dB for which (2, 7)/(7, 5) and (6, 7)/(3, 5) minimise the
upper bound in (7), respectively. For this scenario, Fig. 3b shows
the decoding results for the codes under consideration. We observe
that while (2, 7)/(7, 5) codes have the best performance for SNR1
below 5.7 dB, (6, 7)/(3, 5) codes have the best performance at
higher SNRs. Furthermore, both codes significantly outperform
P2P optimal trellis-based codes and off-the-shelf LDPC codes.

As the third example for GIC with strong interference, we
consider the previous scenario with the only change that the phases
of the channel coefficients are ∠h11 = ∠h22 = π

4  and

∠h12 = ∠h21 = π
3 . We perform the code design at SNR1 = 8 dB for

which (5, 7)/(6, 3) minimise the upper bound in (7). Fig. 4a shows
the decoding performance of the codes adopted for this example.
The results demonstrate that for the same SNR and INR values
depending on the phases of the channel coefficients, different codes
might perform better. 

Finally, we consider an example with SNR1 − SNR2 = 2 dB,
INR1 − SNR2 = 1 dB, INR2 − SNR1 = 2 dB, ∠h11 = ∠h22 = π

4 , and

Fig. 2  Simulation and bound results of the code (5, 7)/(7, 5) for the quasi-
static fading IC with, SNR1 − SNR2 = 1 dB, INR1 − SNR2 = 2 dB, and
INR2 − SNR1 = 1.5 dB

 

Fig. 3  Total frame error rate of trellis-based codes and LDPC codes
employed for a GIC with strong interference
(a) SNR1 − SNR2 = 2 dB, INR1 − SNR2 = 1 dB, and INR2 − SNR1 = 2 dB, (b)
SNR1 − SNR2 = 1 dB, INR1 − SNR2 = 2 dB, and INR2 − SNR1 = 1.5 dB
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∠h12 = ∠h21 = π
2 . For this example, we perform code design at

SNR1 = 8 dB and the minimum value of the upper-bound in (7) is
achieved for the code (5, 7)/(7, 5) and the second best one is the
code with polynomial (5, 7)/(7, 6). In Fig. 4b, we compare the FER
results of these two codes under joint decoding and LDPC codes
with SIC decoding. For this example, we observe that the best
performance is attained with the LDPC codes with SIC decoding.
All these four examples demonstrate that, for the case of GIC with
strong interference, performance enhancements over off-the-shelf
codes are possible. However, there are also instances where P2P
trellis-based codes or LDPC codes perform the best. We also notice
that as also pointed out in [11], the poor performance of LDPC
codes can be credited to the lack of joint ML decoding and
suboptimal belief propagation-based decoding.

4.2 GIC with weak interference

In this section, first we consider a GIC with parameters
SNR1 − SNR2 = 0.5 dB, INR1 − SNR2 = − 1 dB, and INR2 − SNR1
 = −1.5 dB satisfying the weak interference condition provided in
Section 2. We pursue code design by minimising the upper bound
in (11) at SNR1 = 20 dB over the codes with memory 2 and obtain
(4, 5)/(5, 7) codes. We also perform code optimisation by
minimising the upper bound in (7) at the same SNR level, which
results in the (6, 3)/(5, 7) code pair. In Fig. 5a, we illustrate the
performance of the optimised trellis-based codes in comparison

with that of the P2P optimal ones and the off-the-shelf LDPC
codes. It is observed that for trellis-based codes under SUD, the
design advantage is negligible. However, under JML decoding, the
designed trellis-based codes provide significant enhancements
when compared with the P2P optimal ones and the off-the-shelf
LDPC codes. 

As another example, we carry out code optimisation for a GIC
with parameters SNR1 − SNR2 = − 0.75 dB, INR1 − SNR2 =
−1.5 dB, and INR2 − SNR1 = − 0.5 dB. Assuming SNR1 = 20 dB,
the minimum of the upper bound in (11) is attained with the P2P
optimal codes. The second ranked codes in the minimisation are
(5, 7)/(6, 7) codes. In Fig. 5b we show the performance of these
codes for the GIC under consideration. Under SUD, trellis-based
codes have comparable performance and they are inferior to the
off-the-shelf LDPC codes. However, under the JML decoding,
optimised trellis-based codes exhibit better performance when
compared with the off-the-shelf LDPC codes.

We now consider the same example as in Fig. 5a with different
channel phases given by ∠h11 = ∠h22 = π

4  and ∠h12 = ∠h21 = π
3 . We

perform code design by utilising the upper bound in (7), which is
(by using the joint decoding metric at SNR1 = 8 dB) minimised by
the (6, 3)/(5, 7) code. Fig. 6a shows the decoding results for the
resulting codes. We observe that considering the same SNR and
INR values but different channel phases, results in different
optimised codes. 

Fig. 4  Total frame error rate of trellis-based codes and LDPC codes
employed for a GIC with strong interference
(a) SNR1 − SNR2 = 1 dB, INR1 − SNR2 = 2 dB, INR2 − SNR1 = 1.5 dB, ∠h11 =
∠h22 = π

4 , and ∠h12 = ∠h21 = π
3 , (b) SNR1 − SNR2 = 2 dB, INR1 − SNR2 = 1 dB,

INR2 − SNR1 = 2 dB, ∠h11 = ∠h22 = π
4 , and ∠h12 = ∠h21 = π

2

 

Fig. 5  Total frame error rate of trellis-based codes and LDPC codes
employed for a GIC with weak interference
(a) SNR1 − SNR2 = 0.5 dB, INR1 − SNR2 = − 1 dB, and INR2 − SNR1 = − 1.5 dB,
(b) SNR1 − SNR2 = − 0.75 dB, INR1 − SNR2 = − 1.5 dB, and INR2 − SNR1 =
−0.5 dB
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As the fourth example, we consider an instance of weak GIC
with SNR1 − SNR2 = 1 dB, INR1 − SNR2 = − 2 dB and INR2 −
SNR1 = − 3 dB. The phases are the same with the previous
example. We perform code design at SNR1 = 8 dB. The minimum
value of the upper-bound in (7) is achieved for the code
(5, 7)/(7, 6). We compare the FER results of the selected code with
that of best P2P code under joint decoding and LDPC codes with
SIC decoding in Fig 6b. Now we observe that with the same
channel phases but different SNR and INR values, different
optimised codes are obtained. We also notice that for the case of
weaker interference, it is hard to beat the off-the-shelf codes since
the advantage of joint/successive decoding disappears as the
interference weakens, and the channel more resembles like a P2P
channel.

4.3 I.i.d. fading IC

As the first example, we consider an i.i.d. fading IC with
SNR1 − SNR2 = 2 dB, INR1 − SNR2 = 1 dB, and INR2 − SNR1 =
2 dB. We perform code design by minimising the performance
bound Pε ≤ Pε, 1 + Pε, 2 where Pε, i is given by (17). We assume
SNR1 = 8 dB and the memory size 2. The minimum value of the
upper-bound is attained with the (5, 7)/(7, 5) code. We observe that
the P2P optimal code among all memory 2 codes is the best one,
which suggests that P2P optimal codes perform well in i.i.d. fading
scenarios. Fig. 7a shows the error-rate performance of the trellis-

based codes and the LDPC codes. As is observed the performance
of the optimal convolutional codes with memory 2 is worse than
the LDPC codes, however, by increasing the memory of the code
and utilising optimal P2P convolutional code with memory 6, the
performance improves and beats that of the LDPC code
considerably. 

As another example, we carry out code optimisation for an i.i.d.
fading IC with SNR1 − SNR2 = 1 dB, INR1 − SNR2 = 2 dB, and
INR2 − SNR1 = 1.5 dB. As in the previous example, code design is
done targeting an SNR value of SNR1 = 8 dB. As in the previous
example, the (5, 7)/(7, 5) code minimises the upper bound. Fig. 7b
shows the decoding results for the codes adopted. The LDPC code
performs better than the optimal trellis based code with memory 2,
however, we observe that by increasing the memory of the
convolutional code we can beat the LDPC code performance. We
again attribute the good performance of the LDPC code to the
observation that the optimal P2P codes perform well for the i.i.d.
fading case.

We also consider an i.i.d. fading IC with
SNR1 − SNR2 = 0.5 dB, INR1 − SNR2 = − 1 dB, and INR2 − SNR1
= − 1.5 dB where the average level of the interference is lower
than the signal level. The code design is pursued by minimising the
union bound at SNR1 = 8 dB over memory 2 codes. The
optimisation process results in the code pair (5, 7)/(7, 5). The
performance of the optimised codes is compared with the
performance of the LDPC code. Fig. 8a shows the decoding
results. We observe that as in the case of the previous example
while the performance of the LDPC code beats the best trellis-

Fig. 6  Total frame error rate of trellis-based codes and LDPC codes
employed for a GIC with weak interference
(a) SNR1 − SNR2 = 0.5 dB, INR1 − SNR2 = − 1 dB, INR2 − SNR1 = − 1.5 dB,

∠h11 = ∠h22 = π
4 , and ∠h12 = ∠h21 = π

3 , (b) SNR1 − SNR2 = 1 dB, INR1 − SNR2 =
−2 dB, INR2 − SNR1 = − 3 dB, ∠h11 = ∠h22 = π

4 , and ∠h12 = ∠h21 = π
3

 

Fig. 7  Total frame error rate of trellis-based codes and LDPC codes
employed for an i.i.d. fading IC
(a) SNR1 − SNR2 = 2 dB, INR1 − SNR2 = 1 dB, and INR2 − SNR1 = 2 dB, (b)
SNR1 − SNR2 = 1 dB, INR1 − SNR2 = 2 dB, and INR2 − SNR1 = 1.5 dB
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based code with memory 2, a significant gain can be obtained by
using a convolutional code of higher memory. 

As the final example, code optimisation is carried out for an
i.i.d. fading IC with SNR1 − SNR2 = − 0.75 dB, INR1 − SNR2 =
−1.5 dB, and INR2 − SNR1 = − 0.5 dB. For this case, (5, 7)/(7, 5)
pair achieve the minimum of the expression Pε ≤ Pε, 1 + Pε, 2, where
Pε, i is given by (17). We consider all the codes with memory 2
where the bounds are computed at SNR1 = 8 dB. For comparison,
we also consider an LDPC code and the optimal P2P convolutional
code with memory 6. Fig. 8b shows the performance of the
employed codes demonstrating (as in the previous examples) that
the performance of the optimal P2P convolutional code with
memory 6 beats the other alternatives.

5 Conclusion
In this study, code design methods are proposed for the two-user
Gaussian and fading ICs. Performance bounds based on the union
bounding technique are derived and then they are utilised for
optimising short block length trellis-based codes. It is shown that
for GIC with strong interference, designed trellis-based codes offer
performance enhancements when compared with the P2P optimal
ones, and both codes outperform the off-the-shelf LDPC codes at
these block lengths. For GIC with weak interference and SUD, we
observe that the optimised and the P2P optimal trellis-based codes
have relatively close performance, and both codes perform worse

than the off-the-shelf LDPC codes. However, with JML decoding,
the optimised trellis-based codes outperform both the P2P optimal
trellis-based and the off-the-shelf LDPC codes significantly. The
P2P optimal trellis-based codes are found to have the best
performance for i.i.d. fading ICs and perform superior to the off-
the-shelf LDPC codes if their memory sizes are increased. Finally,
we note that, for the case of quasi-static fading IC, a tight
performance bound has been proposed for theoretical performance
characterisation, which can be evaluated by using Monte Carlo
techniques or numerical multidimensional integration.
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