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Abstract 
 
 

BEAM SEARCH ALGORITHMS FOR THE MIXED-MODEL ASSEMBLY 
LINE SEQUENCING PROBLEM 

 
 

Yasin Göçgün 

M.S. in Industrial Engineering 

Supervisor: Prof. İhsan Sabuncuoğlu 

July 2005 

 
In this thesis, we study the mixed-model assembly line sequencing problem that 

considers the following objectives: 1) leveling the part usage, and 2) leveling 

workload on the final assembly line. We propose Beam Search algorithms for this 

problem. Unlike the traditional Beam Search, the proposed algorithms have 

information exchange and backtracking capabilities. The performances of the 

proposed algorithms are compared with those of the heuristics in the literature. The 

results indicate that the proposed methods generally outperform the existing 

heuristics. A comprehensive bibliography is also provided in this study.     

Keywords: Mixed-model assembly line sequencing, Beam Search  
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Özet 
 
 

KARIŞIK MODELLİ MONTAJ HATTI SIRALAMA PROBLEMİ İÇİN IŞIN 
 

TARAMASI ALGORİTMALARI 
 

 

Yasin Göçgün  

Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticisi: Prof. İhsan Sabuncuoğlu 

Temmuz 2005 

 

Bu tezde, şu belirtilen amaçları göz önüne alan karışık modelli montaj hattı 

sıralama problemini incelemekteyiz: son montaj hattı üzerinde 1) parça kullanımı 

ve 2) iş yükü dengelenmesi. Bu problem için Işın Taraması algoritmaları 

önermekteyiz. Geleneksel Işın Tarama yönteminden farklı olarak, önerilen 

algoritmalar bilgi değiştirme ve geri izleme yeteneğine sahiptir. Önerilen 

algoritmaların performansları literatürdeki sezgisel yöntemlerinki ile 

karşılaştırılmıştır. Sonuçlar, önerilen yöntemlerin halihazırdaki yöntemlerden 

genelde üstün olduğunu göstermektedir. Bu çalışmada ayrıca ayrıntılı bir kaynakça 

verilmektedir. 

Anahtar Kelimeler: Karışık modelli montaj hattı sıralama, Işın Taraması  
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Chap t e r  1  

 
INTRODUCTION 
 
  

An assembly line consists of a sequence of stations performing a specified set 

of tasks repeatedly on consecutive items moving along the line (Erel et al. 2005). 

The development of the first assembly line is credited to Henry Ford in 1913. 

Since the early times of Henry Ford, several advancements took place that 

changed assembly lines from single-model lines to more flexible systems such as 

lines with parallel stations, and customer-oriented mixed-model lines. 

In today’s business environment, many industries have to cope with the trend 

of diversification of customer demand which requires an increasing variety of 

products. Many repetitive manufacturers that used to produce single items via 

mass production now have to produce more variety of products on a single 

assembly line. Hence, many companies have been using mixed-model assembly 

lines (MMALs). This is because, mixed-model lines can assemble a variety of 

related products in very small quantities without a changeover delay. In this way, 

the companies can respond quickly to changes in market demand and avoid large 

inventories of specific product models. 

Below, background for the mixed-model lines, statement of the problem, 

contribution of this study, and thesis outline are given.   
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1.1. Background 

Mixed-model assembly lines (MMALs) are a type of production line where a 

variety of product models similar in product characteristics are assembled. They 

are generally used in multi-level production systems (Figure 1). In multi-level 

production systems, raw materials are fabricated into components which are 

combined into sub-assemblies; sub-assemblies are assembled into products on a 

final assembly line.   

Mixed-model lines become popular in recent decades, especially as an integral 

part of just-in-time (JIT) production systems. JIT is a pull system, meaning that 

the sub-assemblies, components and raw materials are pulled forward as they are 

needed; production is initiated by one level’s requirement for the output of another 

level. Hence, the final assembly line is the focus for controlling mixed-model 

lines.    

The effective utilization of mixed-model lines requires that the following two 

problems be tackled: 1) the line balancing problem, and 2) the line sequencing 

problem. The line balancing problem is the process of allocating the set of tasks to 

stations to finish an assembly work. A task is the smallest work element of the 

total work in an assembly process. A station is a location on the line at which work 

is performed on the product. The line sequencing is a problem of determining a 

sequence of the product models on the final assembly line with the objective of 

optimizing line utilization.  

In many JIT systems, part production is made in manufacturing cells that 

manufacture families of parts (Leu et al. 1997). Figure 2 shows how parts being 

produced in manufacturing cells feed the final assembly line. 
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1.2. Statement of the problem 

In this thesis, we study the MMAL sequencing problem assuming that the line 

balancing is accomplished, and setup times between the different product models 

are negligible. In determining the sequence of models produced on the line, we 

consider the following common goals separately: 

1) Leveling parts usage: maintain a constant rate of usage of all parts that 

feed the final assembly line  

2) Leveling workload: Smooth the workload on the final assembly line to 

reduce the chance of production delays and stoppages 

The first goal, also known as leveling the parts usage, requires that products 

(level 1) be assembled at rates proportional to their volume requirements, and parts 

(levels 2, 3, and so on) be pulled through the system at constant rates (Miltenburg 

and Sinnamon 1992). In other words, there should be very little variability in the 

parts usage from one time period to the next. 

The second goal, balancing the workload, recognizes that not all products have 

the same operation time at each station on the line. Products requiring relatively 

longer operation times at any station are difficult to assemble unless they are 

balanced off with products having shorter operation times. The load leveling goal 

aims to level the work load on the final assembly line to reduce the chance of 

production delays and line stoppages. Products are sequenced so that production 

requirements for the outputs required to support the production of the products are 

balanced.  

Since the parts usage goal is generally considered to be more important for JIT 

production systems, we mainly focus on the parts usage goal. We also consider the 
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variability only at the sub-assembly level (level 2), as suggested by Monden 

(1983). Small versions of this problem are optimally solved by exact procedures. 

However, heuristics should be developed to handle large-size problems. The 

existing heuristics are computationally efficient but their performances are not 

sufficient enough in terms of solution quality. Hence, in this study we aim to 

propose an efficient heuristic procedure for the parts usage problem that 

outperforms the existing heuristics in terms of solution quality. 

In order to solve the MMAL sequencing problem, we propose several beam 

search methods which include some enhancement tools, and compare their 

performances against the well-known heuristics from the literature. 

 

1.3. Contribution 

First, this research is the first to use enhanced Beam Search methods for the 

MMAL sequencing problem. Second, our proposed algorithms are generally 

superior to the state-of-the-art heuristics in terms of solution quality. We also draw 

conclusions about the algorithmic performances of the existing heuristics, which 

have not been performed completely in the literature.  

Our contribution to beam search literature is two-fold: First we incorporate a 

novel enhancement tool, the exchange of information (EOI) procedure, into 

traditional beam search applications and show that it generally improves the 

solution quality. Second we draw inferences about where EOI should be invoked 

during the search procedure.  
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1.4. Thesis outline  

The rest of the thesis is organized as follows. We briefly discuss the existing 

studies in Chapter 2. We give the formulation of the problem, and the explanation 

of the heuristics developed for the problem in Chapter 3. In Chapter 4, we discuss 

the proposed Beam Search algorithms in detail. We explain the computational 

results in Chapter 5. Finally, in Chapter 6 we give concluding remarks and further 

research directions.     
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Chap t e r  2  

 
LITERATURE REVIEW 
 

 

This chapter is organized in two sections: 1) brief discussion of the research 

conducted on the MMAL sequencing problem, and 2) summary of the studies on the 

beam search. 

 

2.1. MMAL sequencing problem 

After first investigated by Kilbridge and Webster (1963), a large number of 

research have been conducted on the MMAL sequencing problem, the pioneers of 

which are Thomopoulos (1967), Dar-el and Cother (1975), and Dar-el and Cucuy 

(1977), and Yamashita and Okamura (1979). A common property of all these studies 

is that, they consider the final assembly line, by ignoring the effects on other levels 

in the multi-level production system, with different objectives such as minimizing 

line length, and line stoppages. The first analysis of mixed-model, multi-level 

production systems have been made by Monden (1983), and Miltenburg and 

Sinnamon (1989). The detailed explanation of research carried out on the MMAL 

sequencing problem is given below. 

 

 

 



 8

2.1.1. The MMAL problem with single objective 

Miltenburg (1989) studies the mixed-model sequencing problem by considering 

the variation in production rates of the finished products. Under the assumption that 

all models require the same number and mix of parts, he emphasizes that minimizing 

the variation in production rates of the finished products achieves minimizing the 

variation in parts usage rates. The author formulates the problem as a nonlinear 

integer programming model with the aim of minimizing the total deviation of actual 

production rates from the desired production rates. The author develops an exact 

algorithm to solve the program which has a worst case complexity that grows 

exponentially with the number of products. Hence, he proposes two heuristics, 

called Miltenburg’s Algorithm 3 Using Heuristic 1 (MA3H1), and Miltenburg’s 

Algorithm 3 Using Heuristic 2 (MA3H2) for the problem. 

In another study, Miltenburg and Sinnamon (1989) consider multi-level model 

production systems to solve mixed-model sequencing problem with the objective of 

keeping a constant rate of every part used by the system. They develop a 

mathematical model for the problem, and extend the heuristics proposed by 

Miltenburg (1989) to include all levels in the multi-level system. In a follow up 

study, Miltenburg and Sinnamon (1992) consider the same problem and propose 

heuristic procedures for finding good solutions, and solving large problems. 

Sumichrast and Russell (1990) consider the MMAL sequencing problem with 

the objective of leveling the parts usage. They review five sequencing methods 

which are Goal Chasing 1 (GC1), Goal Chasing 2 (GC2), and Miltenburg’s three 

heuristics (M-A1, MA3H1, and M-A3H2). The performance of the heuristics is 

evaluated for the special case in which all models use the same parts. The evaluation 
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is based on the ability to minimize the mean absolute deviation from uniform 

production of each model. The results of their experimental study indicate that M-

A3H2 outperforms other methods under all conditions tested. They also observe that 

the relative performance of the method is not related to the number of models, 

demand type, or the length of production sequence. As for the case of different 

models requiring different components, only goal chasing methods are tested since 

Miltenburg’s algorithms are not appropriate for this problem. It is shown that the 

performance of the two goal chasing methods is good when the products have 

simple product structures. However, when more than one component or many 

different components are used for models, the performance of GC2 worsens 

significantly. 

Miltenburg and Goldstein (1991) address the mixed-model multi-level 

sequencing problem that considers both the usage and loading goal. They propose a 

single-stage and a double-stage heuristic to solve the joint problem. The single-stage 

(double-stage) heuristic myopically minimizes the one-stage (two-stage) variation 

each time a model is added to the sequence.  

Kubiak and Sethi (1991) study the MMAL sequencing problem with the 

objective of minimizing the product usage variation. They formulate an assignment 

problem to obtain optimal level schedules for MMALs. They show that their 

assignment formulation can be extended to more general objective functions than the 

one used by Miltenburg (1989).  

Inman and Bulfin (1991) propose Earliest Due Date (EDD) algorithm to 

determine the optimal sequence with the objective of leveling product usage rate. 

They demonstrate that model sequencing can be reduced to a single machine 
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sequencing problem if processing times are identical for all items. They compare the 

EDD approach with others reported in the literature. The computational study shows 

that the proposed algorithm is as good as other algorithms in terms of solution 

quality when evaluated with respect to traditional objectives, but its sequences are 

found extremely faster. 

Yano and Rachamadugu (1991) study the problem of MMAL sequencing to 

minimize work overload. They first consider the sequencing problem for a single 

station, and propose an optimal procedure for this problem. For multiple stations, 

they develop a heuristic procedure which is shown to reduce work overload 

significantly.  

For the MMAL sequencing problem, Ding and Cheng (1993) propose a simple 

heuristic procedure that aims to smooth product usage rate. They compare the 

proposed algorithm with M-A3H2 in problem sets conducted by Russell and 

Sumichrast. The experimental results indicate that the proposed method is as good as 

M-A3H2 in solution quality regarding the mean squared and absolute deviations and 

much more efficient in terms of computational effort. It is also shown that as the 

number of products increases, the computation time required by M-A3H2 increases 

much faster than the proposed method. 

Kubiak (1993) reviews the results of research conducted on the problem of 

MMAL sequencing with the goal of smoothing the parts usage rate. In his paper, he 

considers research efforts made on both product usage rate and component usage 

rate variation with various objective functions such as maximum and total deviaiton 

between actual usage and the expected usage. The author relates the results of this 

research to the due date based scheduling problems and reviews a mathematical 
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programming model of the problem. The author further discusses another primary 

concern in JIT systems, which is smoothing the workload on each workstation on 

the line to reduce the chance of production delays and stoppages. 

Ng and Mak (1994) study the sequencing problem of mixed-model assembly 

lines that produce products with similar part requirements in a just-in-time 

production environment. The objective used in their study is to minimize the total 

variation of the actual production quantities of products from desired amount. They 

propose an efficient Branch and Bound algorithm for determining the optimal 

sequence. The computational results reveal that the algorithm is very efficient for the 

MMAL sequencing problem. 

Bautista et al. (1996) develop an exact algorithm that considers leveling parts 

usage rate to solve MMAL sequencing problem. Their algorithm is based on 

bounded dynamic programming (BDP). BDP combines features of dynamic 

programming with features of branch and bound algorithms. The authors show that 

the problem is equivalent to searching for a minimum path in an associated graph. 

They also emphasize the myopic behavior of goal chasing method, and propose 

several heuristics that are modification of GC method. 

Cheng and Ding (1996) study the MMAL sequencing problem with the objective 

of maintaining nearly constant rates of model usage on the line. They generalize the 

problem to consider the weights for different models in evaluating their influence on 

the model usage rate. They demonstrate that the existing sequencing heuristics (i.e., 

Miltenburg’s Algorithm 3 using heuristic 2, two-stage algorithm, and EDD method) 

for equal-weight MMALs can be extended to this problem. They also compare these 

modified heuristics and an optimal procedure in terms of solution quality and CPU 
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time requirements. The results indicate that the modified EDD, the modified two-

stage, and the modified MA3-H2 methods are quite efficient for this problem.    

Duplaga et al. (1996) describe and illustrate the mixed-model sequencing 

approach used by Hyundai Motor Company that minimizes the parts usage variation. 

Hyundai’s methodology is developed to provide a reasonable solution that 

approximates the result found by GCM1 while reducing CPU time considerations. 

In their paper, Kim et al. (1996) propose a genetic algorithm for the MMAL 

sequencing problem to minimize the overall length of a line. The computational 

results indicate that the proposed algorithm is very efficient in terms of CPU time 

considerations as well as solution quality. 

Duplaga and Bragg (1998) compare the performance of six sequencing heuristics 

developed for smoothing parts usage in MMALs. The heuristics evaluated in their 

study are Goal-Chasing Method 1, Goal-Chasing Method 2, Hyundai’s heuristic, 

Miltenburg and Sinnamon’s heuristic 1, Miltenburg and Sinnamon’s heuristic 2, and 

Extended Goal-Chasing method. Performance comparison is made considering 

products that may require different components that are common among products. 

The results of their computational experiments show that Extended Goal-chasing 

Method and Miltenburg and Sinnamon’s heuristic 2 have statistically better 

performance than the others.   

In another study, Zhu and Ding (2000) transform the minimization of the two-

stage variation in the mixed-model sequencing problem of reducing the part-level 

variation to product-level terms. The two-stage transformation is based on a 

simplification of the two-stage approach and a relationship matrix that evaluates the 

relevance of product structures of a variety of models. Computational comparisons 
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indicate that the proposed method generally outperforms the one-stage method in 

terms of solution quality, and is much faster than direct enumeration in computation. 

The authors also present a general sufficient condition for the equivalence of the 

sequencing problems of the product and part levels.  

In another study, Celano et al. (2005) investigate the sequencing of MMAL 

assuming the parts usage smoothing as the goal of the sequence selection. They 

study this problem considering not only the traditional goal chasing approaches, 

which assume zero-length assembly lines, but also models which take into account 

the effective length of the assembly line. This implies that the number of 

workstations and their extensions become important parameters for the optimal 

sequence of the models. They propose a simulated annealing (SA) algorithm for this 

problem and compare it with Goal Chasing algorithms. The experimental results 

indicate that in the most cases the SA outperforms other heuristics.  It is also shown 

that the differences in the algorithm performances are affected by workstations and 

parts number. As line length and mix to be assembled grows, satisfying the 

component usage constraint becomes very difficult. 

 

2.1.2. The MMAL problem with multiple objectives 

Dar-El (1978) develops a broad classification of mixed-model assembly lines 

(MMAL) from which four categories of model sequencing are derived. In each 

category, satisfying one or both of two objective criteria, the one minimizing the 

overall line length, and the other minimizing the throughput time is aimed. 

Methodologies for solving the sequencing problem in each category are also 



 14

presented. The author also proposes a design strategy that can be followed by 

designers of mixed-model assembly lines. 

Bard et al. (1994) study MMAL sequencing problem with the objective of 

minimizing the line length of the line (i.e., minimizing the risk of stopping the 

conveyor and the station lengths are fixed) and maintaining constant product usage 

rate. They present a bicriteria formulation of the problem that is suitable to examine 

the tradeoffs between line length and product usage. The resulting model is solved 

with a combination of Branch and Bound and heuristics such as Tabu Search and 

adjacent pairwise interchange heuristic. The evaluation of the methods is performed 

with a wide range of problems sizes defined by the number of stations on the line, 

the number of different model types, and the total number of units to be assembled. 

The results reveal that as problem size increases, computation times grow 

exponentially for Branch and Bound algorithm, which necessitates the use of 

heuristics for large problems. It is also shown that in the majority of cases at least 

one of the heuristics finds either the optimal or near-optimal solution. 

Hyun et al. (1998) propose a new genetic algorithm (GA) to solve multiple 

objective sequencing problems in MMALs. They consider three objectives: 

minimizing total utility work, minimizing total setup cost, and keeping model 

production constant. The algorithm searches for a set of diverse non-dominated 

solutions and give importance to the diversity of solutions and the Pareto optimality. 

The results of the performance comparison of the proposed GA with three existing 

GAs in terms of solution quality and diversity reveal that the proposed GA is better, 

especially for problems that are large, and involve great variation in setup cost.  
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Merengo et al. (1999) develop new balancing and sequencing methods for the 

MMAL problem with the following objectives: minimizing the rate of incomplete 

jobs (in paced lines and in moving lines) or the probability of blocking/starvation 

events, and reducing WIP. Minimizing the product usage variation is also considered 

by their sequencing methodology. Regarding the sequencing problems, they 

highlight the similarities between the need to minimize incomplete units and the 

need to level product usage. They demonstrate that one single sequencing method 

can meet both objectives. 

Sumichrast et al. (2000) develop a new sequencing method, Evolutionary 

Production Sequencer (EPS) to maximize production on MMAL’s. They evaluate 

the performance of EPS using three measures: minimum cycle time necessary to 

attain 100% completion without rework, percent of items completed without rework 

for a given cycle time, and maintaining nearly constant rates of parts usage. 

Sequence smoothness is measured by the mean absolute deviation (MAD) between 

actual part usage and the expected part usage at each level in the production 

sequence. They compare the performance of EPS with well-known sequencing 

methods developed by Miltenburg (1989), Okamura and Yamashina (1979), and 

Yano and Rachamadugu (1991). Their experimental study indicates that, when 

MAD is the criterion of success, EPS is inferior to the Miltenburg heuristic, but 

better than the other two methods. 

In another study, McMullen and Frazier (2000) propose a Simulated Annealing 

(SA) based heuristic that simultaneously considers both setups and the stability of 

product usage rates to solve MMAL sequencing problem. The performance of the 

SA algorithm is compared with that of Tabu Search approach from the literature. 
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The results indicate that the SA approach generally outperforms Tabu Search. It is 

also shown that the SA approach achieves near-optimal solutions for smaller 

problems. 

In another study, Zeramdini (2000) et al. consider bicriteria sequencing problem 

for mixed-model assembly lines with the following goals: 1) keeping a constant rate 

of parts usage, and 2) leveling the workload at work stations to avoid line stoppages. 

They develop a two-step approach, where in the first step they consider only goal 1 

by applying Extended Goal Chasing Method (EGCM). In the second step they place 

emphasis on goal 2, by investigating the efficiency of a spacing-constraint based 

approach, in comparison with a more general time-based one. They show that the 

EGCM is an appropriate choice for step 1 with a new performance measure that 

represents a lower bound on variation in parts usage. As for the workload 

smoothing, it is shown that the spacing-constraint based method outperforms the 

time-based approach.  

Drexl and Kimms (2001) propose a new integer-programming model that 

considers both of the following objectives: smoothing the usage rate of all parts fed 

into the final assembly line, and keeping the line’s workstation loads as constant as 

possible. Unlike the algorithms reported in the literature, their model allows one to 

control the risk of conveyor stoppage or enables one to control the cost for utility 

work while producing smooth JIT schedules. They solve the problem by specifying 

a set-partitioning/ column-generation approach. They demonstrate that solving the 

LP-relaxation of this model by column generation provides tight lower bounds for 

the optimal value of objective function.  
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Korkmazel and Meral (2001) study MMAL sequencing problem considering two 

major goals: 1) smoothing the workload on each workstation on the assembly line, 

2) keeping a constant rate of usage of products on the assembly line. They develop 

the modified Ding and Cheng algorithm to minimize the sum of deviations of actual 

production from the desired amount. The proposed algorithm is compared with M-

A3H2 and Ding and Cheng (D&C) Algorithm. The results of evaluation reveal that 

the modified D&C algorithm outperforms the other methodologies in all problem 

instances handled. Furthermore, the approaches that perform better than the others 

are extended for the bicriteria problem considering goals 1 and 2, simultaneously. In 

their study, it is also demonstrated that the bicriteria problem with the sum-of-

deviations type objective function can also be formulated as an assignment problem; 

and hence, the optimal solution to the small-sized problems can be obtained by 

solving the assignment problem. 

Ponnambalam (2003) et al. propose a genetic algorithm (GA) for the MMAL 

sequencing problem considering both a single objective and multiple objectives. 

They compare genetic algorithm with the algorithm of Miltenburg and Sinnamon 

(MS1992) to get the constant usage of every part considering variation at four levels: 

1) product, 2) subassembly, 3) component, and 4) raw material. The results of 

evaluation show that GA outperforms MS1992 in the majority of the problems 

investigated. As for the multiple-objective genetic algorithm for sequencing 

MMALs, the minimization of total utility work, leveling parts usage, and 

minimization of total setup cost are considered. The genetic algorithm used to solve 

this problem employs the selection mechanism of Pareto stratum-niche cubicle. 

Pareto stratum-niche cubicle is compared with the selection based on scalar fitness 
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function value. The results show that GA using Pareto stratum-niche cubicle 

performs better than the GA with other selection mechanisms.     

McMullen and Tarasewich (2005) consider the problem of mixed-model 

sequencing with setups. The problem has two objectives: minimizing the product 

usage variation and number of setups. Since the objectives are frequently in 

opposition with one another, they present an efficient frontier approach for this 

problem. To effectively generate efficient frontiers necessary to solve the problem, 

they develop a beam-search heuristic. The experimental results reveal that the 

proposed approach performs well in terms of solution quality as well as 

computational effort.   

In a recent study, Mansouri (2005) develops a multi-objective genetic algorithm 

for MMAL sequencing problem to optimize the variation of product usage rates and 

number of steps simultaneously. Since the two objectives are inversely correlated 

with each other, simultaneously optimizing both of them is difficult. Hence, the 

proposed method searches for locally Pareto-optimal or locally non-dominated 

frontier where simultaneous minimization of the product usage rate variation and the 

number of setups is desired. Performance of the algorithm is compared against a 

total enumeration (TE) scheme in small problems and also against several heuristics 

in small, medium and large problems. The results of evaluation show that the 

proposed method is better in CPU time considerations and it outperforms the 

comparator algorithms in solution quality as well as computational effort. 

It is worth concluding this section with the summary of research on the MMAL 

sequencing problem. Table 1 presents the related research with their objectives. 
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Table 1. The summary of research on the MMAL sequencing problem. 

Author 
Type of the 
Prod. System 

Objective Solution Method 

Thomopoulos 
(1967) 

Single level 
Optimally utilizing 

line operators 
Heuristic procedure 

Dar-el and 
Cother (1975) 

Single level 
Minimizing line 

length 
Heuristic procedure 

Dar-el and 
Cucuy (1977) 

Single level 
Minimizing line 

length 
Integer 

programming 

Dar-el (1978) Single level 
Minimizing line 

length, and 
throughput time 

Heuristic 
procedures 

Yamashita and 
Okamura 
(1979) 

Single level 
Minimizing line 

stoppages 
Heuristic procedure 

Monden (1983) Multi-level Leveling part usage Heuristic procedure 
Miltenburg 

(1989) 
Single level 

Leveling product 
usage 

Heuristic procedure 

Miltenburg and 
Sinnamon 
(1989) 

Multi-level 
Leveling product 
and part usage 

Heuristic procedure 

Sumichrast and 
Russell (1990) 

Multi-level Leveling part usage Non 

Kubiak and 
Sethi (1991) 

Single level 
Leveling product 

usage 
Optimization 
algorithm 

Miltenburg and 
Goldstein 
(1991) 

Multi-level 
Leveling product 
and part usage 

Heuristic procedure 

Inman and 
Bulfin (1991) 

Single level 
Leveling product 

usage 
EDD algorithm 

Yano and 
Rachamadugu 

(1991) 
Single-level 

Minimizing work 
overload 

Heuristic procedure 

Miltenburg and 
Sinnamon 
(1992) 

Multi-level 
Leveling product 
and part usage 

Heuristic procedure 
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Table 1. The summary of research on MMAL sequencing problem (cont’d). 

Author 
Type of Pr. 
System 

Objective Solution Method 

Kubiak (1993) Multi-level Leveling part usage Non 
Ding and 

Cheng (1993) 
Single level 

Leveling product 
usage 

Heuristic procedure 

Ng and Mak 
(1994) 

Single level 
Leveling product 

usage 
Branch-and-Bound 

algorithm 

Bard et al. 
(1994) 

Single level 

Leveling product 
usage, and 

minimizing line 
length 

Branch-and-Bound 
algorithm and 

heuristic procedures 

Bautista et al. 
(1996) 

Multi-level Leveling part usage 
Exact algorithm and 
heuristic procedures 

Duplaga et al. 
(1996) 

Multi-level Leveling part usage Non 

Kim et al. 
(1996) 

Single level 
Minimizing line 

length 
Heuristic procedure 

Duplaga and 
Bragg (1998) 

Multi-level Leveling part usage Non 

Hyun et al. 
(1998) 

Single level 

Leveling product 
usage, minimizing 
total utility work, 
and minimizing 
total setup cost 

Heuristic procedure 

Merengo et al. 
(1999) 

Single level 
Leveling product 

usage 
Heuristic procedure 

Sumichrast et 
al. (2000) 

Multi-level Leveling part usage Heuristic procedure 

Zhu and Ding 
(2000) 

Multi-level Leveling part usage Heuristic procedure 

McMullen and 
Frazier (2000) 

Single level 

Leveling product 
usage, and 

minimizing number 
of setups 

Heuristic procedure 

Zeramdini et 
al. (2000) 

Multi-level 
Leveling part usage 

and workload 
Heuristic procedure 

Drexl and 
Kimms (2001) 

Multi-level 
Leveling part usage 

and workload 
Integer 

programming 
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Table 1. The summary of research on MMAL sequencing problem (cont’d). 

Author 
Type of Pr. 
System 

Objective Solution Method 

Korkmazel and 
Meral (2001) 

Single level 
Leveling product 

usage and workload 
Heuristic procedure 

Ponnambalam 
(2003) et al. 

Multi-level 

Leveling part usage, 
minimizing total 
utility work, and 
minimizing total 

setup cost 

Heuristic procedure 

McMullen and 
Tarasewich 

(2005) 
Single level 

Leveling product 
usage, and 

minimizing the 
number of setups 

Heuristic procedure 

Mansouri 
(2005) 

Single level 

Leveling product 
usage, and 

minimizing the 
number of setups 

Heuristic procedure 

Celano et al. 
(2005) 

Multi-level Leveling part usage Heuristic procedure 

  

2.2. Beam search techniques 

Beam search is an adaptation of the branch and bound method which involves 

searching a limited number of solution paths (i.e., beam width number of paths) in 

parallel. Since it progresses level by level without backtracking, optimal solution is 

not guaranteed. At any level, only the best beam width promising nodes, are kept for 

further sprouting. A variation of BS, called Filtered Beam Search, includes a 

filtering procedure, by which some nodes are eliminated by a quick method, and 

only remaining nodes (filter width) are globally evaluated (the detailed explanation 

of the structure of beam search is given in Chapter 4). 

Beam search technique was first used by (Lowerre 1976) in the artificial 

intelligence applications. Later, it was incorporated into other applications such as 
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FMS and job shop scheduling problems (see Ow and Morton 1988, Sabuncuoglu 

and Karabuk 1998, Sabuncuoglu and Bayiz 2000). More recently, some 

enhancement tools have been used with beam search techniques which are 

mentioned below. 

Honda et al. (2003) propose backtracking beam search algorithm for multi-

objective flowshop problem to minimize both objectives. As there may not be a 

schedule that can optimize both criteria, the authors seek non-dominated schedules 

(i.e., feasible schedules that are not dominated by any other feasible schedules). In 

the proposed method, the traditional beam search is performed. Then, backtracking 

is invoked to some nodes and the re-search is performed many times so that 

widespread non-dominated solutions can be obtained. During the searching, the 

pruned nodes are preserved. The lower bound of each pruned node is compared with 

the tentative solution, and the bounded operation is applied, as done in branch-and-

bound method. The computational study indicates that the proposed algorithm can 

find more balanced solutions than does the beam search method.  

In another study, Croce and Tadei (2004) develop a Recovering Beam Search 

(RBS) method for the two combinatorial optimization problems: the two-machine 

total completion time flow shop scheduling problem and the uncapacitated p-median 

location problem. The recovering phase of the algorithm aims at recovering from 

previous wrong decisions. This step is invoked to each of the beam width number of 

best child nodes generated. For a given node, the recovering phase, by means of 

interchange operators applied to the current partial schedule, checks whether the 

current solution is dominated by another partial solution sharing the same search tree 

level. If so, the current solution is replaced by the better solution. The results of 
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evaluation show that RBS procedure outperforms basic beam search approach in 

solution quality, and is competitive with the state-of-the-art heuristics.  

Valente and Alves (2005) develop filtered and recovering beam search 

algorithms for the single machine earliness/tardiness scheduling problem with no 

idle time. The RBS algorithm differs from filtered beam search in three ways: First, 

its beam width is equal to 1; second, the global evaluation is employed by a 

weighted sum of both lower and upper bounds for the solution that can be obtained 

from the partial schedule represented by the node. Third, once the best node and the 

corresponding best partial solution are retained, a recovering step is applied. The 

computational results show that the RBS algorithms outperform the filtered beam 

search algorithm in terms of solution quality as well as computational effort.  

Ghirardi and Potts (2005) propose a RBS method for minimizing makespan on 

unrelated parallel machine. In order to test its effectiveness, they compare it with a 

procedure reported in the literature. The computational study reveals that the RBS 

algorithm generally outperforms the other in both solution quality as well as 

computational time. In addition, it is shown that the RBS method is able to 

generate approximate solutions for instances with large size using reasonable 

computation time. 

Esteve et al. (2005) propose RBS algorithm and several heuristic algorithms for 

the single machine JIT scheduling problem. The recovering step is invoked to each 

of the beam width number of best child nodes generated. For a given node, a local 

search is applied to the current partial schedule. If the obtained partial schedule is 

superior and has a lower makespan than the current one, the current schedule is 

replaced by the better schedule. The authors state that although this condition is not 
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an exact dominance condition, it improves the behavior of RBS algorithm. The 

computational experiments indicate that the RBS algorithm outperforms other 

heuristics in solution quality. 

 

2.3. Summary of the literature and research motivation 

Over years, a large number of research have been conducted on the MMAL 

sequencing problem with the aim of minimizing the parts usage variation and the 

workload variation. Since the parts usage problem is considered to be more 

important for JIT production systems, the majority of research deals with the parts 

usage problem.  

Although small versions of this problem are optimally solved by exact 

procedures, heuristic methods are needed to solve large-size problems in a 

reasonable time frame. Hence, several heuristic procedures are developed for the 

problem in the literature. Although they are efficient in terms of CPU time 

considerations, they are not competent in solution quality. In addition to this, there 

is not a sufficient study on the performance comparison of the state-of-the-art 

heuristics in the literature. Hence, in this study we propose Beam Search 

algorithms to minimize the parts usage variation that generally outperform the 

existing heuristics. We also implement these algorithms to solve the load leveling 

problem. We draw conclusions about the algorithmic performances of the state-of-

the-art heuristics in the literature, as well. 

Beam search applications have also been used in various research areas such 

as scheduling, artificial intelligence, and assembly lines. In recent studies, the 

structure of beam search techniques has been improved with several enhancement 
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tools. The algorithms we propose are one type of enhanced beam search 

techniques, which have never been used for the MMAL sequencing problem. 

Unlike the traditional beam search applications, the proposed algorithms have the 

following capabilities: 1) backtracking, and 2) exchange of information (EOI). 

Among the enhancement procedures, exchange of information is a novel 

enhancement tool for the beam search literature. We further address the research 

question of where to invoke EOI in the search procedure.   
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Chap t e r  3  

 
PROBLEM FORMULATION AND 

EXISTING HEURISTICS 
 

 

First, the formulation of the MMAL sequencing problem is given by considering 

the part usage and load leveling goals separately. Then, the solution procedures 

reported in the literature are explained in Section 3.2. 

 

3.1. Problem formulation  

3.1. 1. The parts usage problem  

The formulation of the MMAL sequencing problem to minimize the parts usage 

variation was developed by Jin and Wu (2002), which is presented below. 

We assume that there are N different models to be produced on the final 

assembly line, and C different parts that can be used by a model. The following 

notation is used in formulating the problem. 

 
di :  the demand for model i, i = 1,…, N 

cj,i : the number of part j  required for one model i,    i = 1,…, N,  j = 1,…, C 

DT: the total demand for models,   ∑
=

=
N

i

iT dD
1
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Tj: the total number of part j required for the full sequence,  j = 1,…, C,    

 ∑
=

=
N

i

iijj dcT
1

,   

rj:  the desired parts consuming rate,   
T

j

j
D

T
r =  

xi,k: the total number of model i sequenced in the first k position for a specific 

sequence 

The desired number of part j consumed in the first k positions for a specific sequence 

is:  jkr    

The cumulative consumption of part j for one specific sequence at position k is: 

 ∑
=

N

i

ijki cx
1

,,   

Hence, the parts usage variation at ant level (i.e., level k) is calculated as follows: 

 
2

1 1
,,∑ ∑

= =









−=

C

j

j

N

i

ijki krcxV                                       (1) 

  

Various types of objective functions for this problem are used in the literature 

such as minimizing the absolute deviation or maximum deviation of the actual parts 

usage from the desired amount. However, we use one of the most popular objective 

functions: the sum of quadratic differences between the actual parts usage and 

desired parts usage.  

Using the notations and the objective function given above, the MMAL 

sequencing problem is formulated as follows: 
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2

1 1 1
,, SDQ Min. ∑∑ ∑

= = =









−=

TD

k

C

j

j

N

i

ijki krcx                                      (2) 

 

 s.t. ∑
=

=
N

i

ki kx
1

,   k = 1,…, DT                 (3) 

 11,, ≤− −kiki xx   i = 1,…, N,   k = 1,…, DT                    (4) 

 01,, ≥− −kiki xx  i = 1,…, N,   k = 1,…, DT              (5)

  

 iki dx ≤≤ ,0   i = 1,…, N,   k = 1,…, DT                    (6) 

 where xi,k is a non-negative integer 

 

The objective function aims to minimize the cumulative variation in parts 

consumption. Constraint (3) ensures that at any position k, the total number of 

sequenced models is k. Constraints (4) and (5) require that the number of the 

sequenced model i be increase by one or remain the same. Constraint (6) guarantees 

that the number of the sequenced model i at any position k should not exceed the 

demand for this model. This problem is an integer non-linear problem and it would 

be NP-Hard in any sense if the objective was linear (Jin and Wu 2002). Small 

versions of the problem can be solved using exact procedures (see Bautista et al. 

1996).   

 

3.1.2. The load leveling problem 

The mathematical formulation of the loading problem is developed by 

Miltenburg and Goldstein (1991) using the following assumptions: 
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• There are totally N models to be assembled on the final assembly line, 

and S stations where different models require, in general, significantly 

different operation times   

• The line consists of stations between which models move until 

production is completed, 

• The available production time at each station on the assembly line is 

fixed. 

The notations di, DT, and xi,k, being used to formulate the usage problem,  are 

also valid for the loading problem. The remaining notations are defined below. 

 

Ti
s : the production time required to  produce model i at station s,  s = 1,… S  

_
sT : the average production time required at station s,  s = 1,… S 

 
T

N

i

i

s

i

s

D

dT

T

∑
== 1

_

 

The total actual time at station S to complete the production requirements for model 

through to position k  is:  ki

s

i xT ,  

The total actual time at station for all models through to position k is:  ∑
=

N

i

ki

s

i xT
1

,     

The desired production time over the first k positions is:   
__
sTk    

Using these expressions, the loading variation at position k is calculated as follows: 

 

  

2

1

_

1
,  ∑ ∑

= =








−=

S

s

s
N

i

ki

s

i TkxTVL                                          (7) 
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Since the objective function is the sum of the loading variation at each position, 

Equation (7) is summed over all positions to express the objective function. Hence, 

the complete loading problem is mathematically formulated as follows: 

 Minimize  ∑ ∑ ∑
= = =









−

TD

k

S

s

s
N

i

ki

s

i TkxT
1

2

1

_

1
,                                      (8) 

 

s.t.  ∑
=

=
N

i

ki kx
1

,   k = 1,…, DT                (9)

 iDi dx
T

=,   i = 1,…, N              (10) 

 00, =ix   i = 1,…, N              (11) 

 1,, −≥ kiki xx   i = 1,…, N,  k = 1,…, DT                 (12)

 where xi.k is a non-negative integer  

 

As in the formulation of the usage problem, Constraint (9) ensures that one 

model is assembled during each stage. Constraints (10) and (11) guarantee that the 

total demand for each model is met. The last constraint ensures that the number of 

the sequenced model should increase by one or remain the same. This problem is 

also an integer non-linear problem and it has the same structure of complexity with 

the parts usage problem. 

Note that the formulation for the loading problem is similar to that for the usage 

problem, however it emphasizes the workloads at stations, instead of sub-assemblies 

and parts usage.  
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3.2. Heuristics 

In this section, we present the algorithms developed for minimizing parts usage 

on MMALs since we mainly focus on the usage problem. Since the structure of the 

load leveling problem is similar to that of the usage problem, the algorithms can also 

be used for the latter case. 

Over years, a large number of solution procedures have been proposed for the 

MMAL sequencing problem with the objective of minimizing parts usage. Among 

them, we consider the well-known algorithms developed for the Monden problem, 

which considers the variability at the sub-assembly level, and ignores the variability 

at the final assembly. The explanation of these algorithms is given next. 

 

3.2.1. Goal Chasing Method 

Monden (1983) develops a greedy heuristic, Goal Chasing Method (GCM), to 

level parts usage. At any level, the procedure selects the model that yields the 

minimum parts usage variation. Hence, it is very efficient in computational effort, 

but myopic in nature. The steps of the algorithms is shown below (Jin and Wu 

2002): 

 

Step 1. Set k = 1, xi,0 = 0,  { }Ni ,...,1∈    

Step 2. Select the model m with mkm dx <−1,  that minimizes the variation at position 

k:  

 

 
{ }

( )( )




















−+= ∑ ∑

= =

−
∈

2

1 1
,,1,

N1,...,m

*  min arg
C

j

N

i

jijmiki krczxm                           (13) 



 32

 
1    if  i = m 

     where  zi.m =                              { }Nm ,...,1∈  

    0   o.w. 

   
               xi,k-1 + 1  when i = m*  

Step 3.  xi,k  =           { }Ni ,...,1∈   

    xi,k-1    o.w. 

Step 4. Set k = k+1 

 If k > DT end 

 Else go to Step 2. 

 

3.2.2. 2-step Heuristic 

Bautista et al. (1996) propose a two-stage heuristic to reduce the myopic feature 

of the GCM. The procedure positions two models for the next two stages by 

calculating the combined variation (i.e., total variation at two positions) for all 

combinations. The combination of two feasible units with the minimum combined 

variation is chosen and only the first model is positioned into the sequence. Note that 

the same methodology was also developed by Miltenburg and Sinnamon (1989) for 

the multi-level production system.  

As the procedure considers two stages in one iteration, it reduces the greedy 

feature of the GCM. However, its running time is higher as compared to that of the 

GCM. 

3.2.3. Variance Method:  

Jin and Wu (2002) develop a heuristic method to improve the performance of the 

GCM. They emphasize that the drawback of the GCM is that the good units (i.e, 
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models) are used too quickly in the early iterations and the bad units are left to 

position in the late iterations. By defining good units and bad units they develop 

variance improvement to enhance the GCM. 

A good unit is defined as a model that has a parts structure being close to desired 

consuming rate. In order to measure goodness, they use model variance vi: 

( )
2

1
,∑

=

−=
C

i

ijji crv                (14) 

Hence, the model with little vi is a good unit. For one specific composition of the 

units, they also define the total composition variance as: 

 ∑
=

=
N

i

iivdt
1

               (15) 

A composition with a small composition variance value has many good units and 

probably yields a good sequence for the usage problem.  

Variance improvement reduces the myopic feature of the GCM by integrating 

the composition variance as opportunity cost for the remaining composition into the 

total cost. Hence, the current cost (i.e, variation at the current position) and the 

opportunity cost are conflicted, as the former tries to sequence the ‘good’ one in the 

early iterations and the latter tries to keep good ones for the future positions. The 

opportunity cost is multiplied with a discounting coefficient and the model with the 

minimum total cost is selected at each stage. Hence, variance method is 

implemented by changing Step 2 in the GCM as follows: 

 

Step 2. Choose the model m with mkm dx <−1,  that minimizes the total cost: 
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min arg             (16) 

  

 
1    if  i = m 

     where  zi.m =                              { }Nm ,...,1∈  ,  

    0   o.w. 

   

  and w is the discounting factor for the opportunity cost.  

 

3.2.4. 2-step-variance Method 

As performed in the 2-step heuristic, the 2-step Variance method positions two 

models for the next two stages and compares all alternatives with respect to the 

combined total variation. The combination of two feasible models with the 

minimum total variation is chosen and only the first model is positioned into the 

sequence. Hence, the procedure further enhances the look-ahead feature of the 

Variance Method.  

 

3.2.5. Beam Search Method 

Leu et al. (1997) develop a beam search technique for the problem to minimize 

the parts usage variation. At each stage, the procedure selects the beam width best 

nodes using an evaluation function that minimizes the variation in parts 

consumption. The evaluation function evaluates all solution paths at any level by 

calculating the cumulative parts usage variation at the current stage, and selects the 
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beam width nodes that yield the minimum cumulative variation. In the same manner, 

the search procedure continues until the last stage at which the best solution path can 

be determined. The sequence is determined by tracing back up the best solution path.     

 

3.2.6. Performance of the heuristics 

The performances of the existing heuristics are tested in several studies. Leu et 

al. (1997) test the performance of the BS method against the GC method and the 2-

step method. They consider over 400 test problems that vary in terms of number of 

number of product models, quantity of assembly, and degree of part commonality. 

The results reveal that the BS method outperforms the GC method and the 2-step 

method in solution quality. It is also shown that the BS method offers a substantial 

improvement over the 2-step method when the problem size increases. Besides, Jin 

and Wu (2002) demonstrate that the Variance method is superior to the GC method 

in solution quality. They also show that the Variance method is superior to the 2-

step method in terms of computational effort. However, their study does not contain 

the extensive comparison of the Variance and 2-step Variance methods against the 

BS Method.   
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Chap t e r  4  

 
PROPOSED ALGORITHM 
 

 

4.1. Structure of beam search 

Beam search (BS) is an adaptation of the branch and bound method in which 

only some nodes are evaluated in the search tree. It is similar to a breadth-first 

search as it progresses level by level without backtracking. However, unlike breadth-

first, only the best β promising nodes, called beam width, are kept for further 

sprouting at any level (Sabuncuoglu and Bayiz 1999). The potential promise of each 

node is determined by global evaluation function, to select the best β nodes. Global 

evaluation function typically estimates the minimum total cost of the best solution 

obtained from the partial schedule represented by the node. In order to reduce 

computational burden, filtering mechanism can also be used, by which some nodes 

are eliminated by a computationally fast method (i.e., local evaluation function), and 

only remaining nodes (filter width) are globally evaluated. 

The representation of BS tree is shown in Figure 3. We select the promising 

nodes (beam nodes) by invoking local and global evaluations and proceed with the 

search through these selected nodes. After determining the first beam nodes at level 

1, we apply the algorithm to these nodes independently and generate one partial tree 

(i.e., beam) from each of them. After filtering procedure, for each beam, one node 

(beam node for the next level) is chosen among the descendants of its beam node, 
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using the outcome of the global evaluation. Since we have β number of nodes in the 

former level while keeping one descendant, we again have β number of nodes in the 

next level; therefore the search progresses through β parallel beams.                  

 

Beam width: 2 

Filter width: 2                                         Root                                                                                           
                                                                                                    

                                                                                                              Level 1    

  

                                                                                                     Level 2 

 

                                                          Level 3           

 

                                                           Level 4    

 

                           Nodes pruned by local evaluation                          
 

                           Beam nodes          
 
                           Nodes selected for global evaluation 

 

Figure 3. Representation of a BS tree 
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correspond to the full sequence of products. The value of local evaluation function is 

the parts usage variation, which is shown in Equation (1) on page 27. Global 

evaluation function is defined as the total parts usage variation, which is the sum of 

the parts usage variation at the current level (i.e., one level ahead of the beam node) 

and some subsequent levels. Hence, it estimates the solution quality of a partial 

solution, instead of full solution, which allows us to globally evaluate the candidate 

nodes quickly. It first selects the product (i.e., descendant of the evaluated node) 

with the minimum variation at the next level. Thus, for each of the subsequent 

levels, it schedules products so that the variability is kept as small as possible (this 

procedure is explained in Section 4.2.3.).  

Differing from the traditional (BS) applications, the proposed algorithm 

incorporates various enhancement tools such as backtracking and information 

exchange (i.e, sharing). Backtracking is the process of going back to the previous 

solution states in the search tree with the expectation of obtaining better solutions. 

The motivation to implement this procedure stems from the fact that whenever two 

or more beams are equivalent in some sense, as explained below, some of the beams 

are further explored by going back to their previous solution states.  

The other enhancement tool is the exchange of information (EOI) by which we 

take the part of the solution from one beam and transfer it to another beam, hoping 

that the resulting beam with this additional information will lead to better solutions. 

EOI is performed at certain predetermined levels, considering the possibility that the 

part of a beam that precedes and follows the same product will lead to better 

solutions if it is located just after the same product in another beam.  
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Before explaining these enhancement tools and other features of the proposed 

algorithm, the steps of the algorithm and related notation are introduced next. 

Notation: 

BL: beginning level for EOI 

I: interval for EOI 

k: indicator for EOI 

DT : total demand  

l: current level in the search tree  

 

Steps of the Proposed Algorithm: 

Step 0. (Initialization) 

Set k = 0 and l = 0. 

Step 1. Generate descendant nodes. 

Step 2. (Determining beam nodes) 

Select the best β beam nodes using global evaluation function, and set 1+= ll . 

Step 3. (Search in the beam nodes) 

Step 3.1. For each beam: 

Step 3.1.1. Keep at most α nodes emanating from the current beam node,  

      using the local evaluation function. 

Step 3.1.2. Select the best node among w of them, using the global  

evaluation function. 

Step 3.2. Set 1+= ll . 

Step 4. (Exchange of information) 

Step 4.1. If kIBLl *+= and TDl ≤ , then 
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Step 4.1.1. For each beam:  

Step 4.1.1.1. Select the best beam among the alternative solutions   

         generated by EOI procedure.  

Step 4.1.2. Set 1+= kk . 

Step 5. (Backtracking) 

Step 5.1. If TDl = , then stop the algorithm. 

Step 5.2. If equivalency is observed, then create an alternative beam for each  

         inferior beam with backtracking procedure. 

Step 5.3 Go to Step 1. 

 

4.2.1. Backtracking procedure 

The backtracking procedure is applied whenever the equivalency is observed 

after the selection of beam nodes at any level. Beams are considered equivalent at a 

level whenever the number of each product sequenced up to that level at each beam 

are equal to each other. As an illustration, consider the following two beams in 

Figure 4: The products A, B, B, C are sequenced in Beam 1 and the products C, A, 

B, B are sequenced in Beam 2 (see Figure 4a). Since both of the beams have one A, 

two B’s, and one C, they are considered equivalent.  

The cumulative variation of equivalent beams at the current level (i.e., level k < 

DT) is calculated and each of the inferior beams is backtracked by moving one level 

up, and generating the next best (NB) child node. Hence, β+1 nodes are usually 

investigated. NB node is further sprouted by selecting the best node, using global 

evaluation function. The original node, however, is further sprouted by selecting the 

NB node, due to equivalency theorem. Finally, these two newly generated nodes are 
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evaluated in the sense that the one having the minimum value of global evaluation 

function plus the variation at the current level is selected.  

The backtracking procedure is shown by considering two equivalent beams 

represented in Figure 4a. After comparing the cumulative variation values of the two 

beams at level k, Beam 2 is found to be inferior. Then, NB child node of Beam 2 at 

level k is further branched by choosing the best node at level k+1; whereas the 

original node (i.e., product B) at level k is further branched by selecting the NB node 

at level k+1. Hence, at level k+1 we have two alternative beam nodes; after 

evaluating these nodes, we continue the search procedure by selecting the superior 

one. 

 

4.2.1.1. Equivalency Theorem: 

The notation is introduced before the detailed explanation and proof of the 

theorem.    

Notation: 
i

kσ : partial sequence at level k on beam i,  k = 1,…,DT-1  

V ( i

kσ ) : parts usage variation for i

kσ  at level k 

CV ( i

kσ ) : cumulative parts usage variation for i

kσ   ( ∑
=

=
k

j

i

j

i

k VCV
1

)()( σσ  ) 

GE j (
i

kσ ) : the value of global estimation obtained by completing  i

kσ  up to 

level j,  j= k+1,…, DT   

 

Theorem: Let i

kσ and j

kσ  be two equivalent sequences belonging to beam i and 

beam j, respectively. If the result of global and local evaluation functions only 

depend on remaining products at level k-1, and )()( j

k

i

k CVCV σσ < , then the 
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following inequality holds (as long as the same BS parameters are used in the 

remaining levels of search tree): 

)()( j

D

i

D TT
CVCV σσ <     

This theorem implies that since beam j is inefficient under these circumstances, 

it is backtracked with the expectation of leading to a better solution than beam i. 

 

Proof: First consider the case in which only the global evaluation function is 

invoked. Since the remaining products to be scheduled for beam i and beam j are 

identical, during global evaluation the same nodes are considered at level k+1 for 

each beam. Let the products chosen for beam i and beam j at level k+1 be m and n, 

respectively such that m≠n ; hence: 

 
( ){ } : , minarg ksk

i

kt
s

dxssGEm <= Uσ                                                                     (17) 

where  xsk : number of product s sequenced up to level k  

 ds : demand for product s 

The following inequality is drawn by Expression 1: 

)(  )( nGEmGE i

kt

i

kt UU σσ <                                                     (18) 

After applying the same steps for beam j, the following inequality is obtained: 

     )( )( mGEnGE j

kt

j

kt UU σσ <                                                                                     (19) 

Since the values of global estimations are equal for the equivalent sequences 

(i.e., li

k Uσ  and lj

k Uσ ), the following equality holds: 

( ) ( )lGElGE j

kt

i

kt UU σσ =  , l = m, n                                                                   (20) 
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Figure 4. The schematic view of backtracking procedure 

B 

C 

B 

B  

B 

C 

 

 

B  

  

B 

B 

C 

A

B 

B 

A C 

 



 44

Hence, the inequalities (18) and (19) contradict with each other, implying m = n. As 

a result, the same product is chosen for each beam at level k+1. The selection of the 

same product at further levels for each beam is pursued since the beams are also 

equivalent at each of the remaining levels.  

Since variation at any level only depends on the number of each product 

sequenced up to that level, and the sequences of beam i and beam j are also 

equivalent at level k+1; the following equality is obtained: 

( ) ( )mVmV j

k

i

k UU σσ =                                                                                      (21) 

It is inferred from Equality (21) that cumulative variation for each beam is equally 

incremented at subsequent levels. Accordingly, if beam i is superior than beam j at 

level k, it is also superior at the last level (i.e, level DT), which means that the 

following inequality holds: 

)()( j

D

i

D TT
CVCV σσ < .   

The theorem is also valid if a filtering procedure is also applied in the BS 

implementation. This is because of the fact that, the same candidate nodes are 

filtered for beam i and beam j since the local evaluation function depends only on 

the remaining products at level k-1. As a result, the same nodes are considered at 

further levels for each beam during the global evaluation, which also implies that 

cumulative variation for each beam is equally incremented at further levels. 

 

4.2.2. Exchange of Information (EOI) Procedure 

EOI is invoked at certain levels, with the expectation of finding better solutions 

in the search tree. At these levels, EOI between the beams is performed in the 

following way: First, the last product (i.e., product i for Beam 2 in Figure 5a) of a 
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beam is chosen. Then, a partial solution consisting of the product sequence between 

the first and the last appearance of that product (i.e., product i) is transferred to all 

other beams (see Figure 5b). This transfer is carried out as follows: 

First we try to insert the partial solution to a new beam at the level where 

product i appears first in the sequence. If the length of the new beam is smaller than 

the current level, then we try to repeat this insertion operation at the next level where 

i appears the second, third, etc. If the length of the beam is greater than the current 

level, we truncate the partial solution so that its length becomes equal to the current 

level. Note that in either case, we repeat the insertion operation until the feasible 

solution is achieved. 

After constructing the new beams, each original beam is compared against its 

new beams; the beam with the smallest value of global evaluation function plus the 

cumulative variation at the previous level (i.e., one level before the current level) is 

chosen to continue the search procedure (see Figure 5b). The same method is 

repeated at subsequent predetermined levels.  

Note that if EOI and backtracking procedures are both used at the same level, 

EOI is applied before backtracking. Moreover, during the comparison of an original 

beam and its new beams, consider the case where a new beam is chosen. If the 

equivalency is observed between the new beam and another beam, and the new 

beam is found to be an equivalent inferior beam, it is not backtracked. Instead, it 

progresses by selecting the NB node for the next level. 
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4.2.3.  Global evaluation 

Global evaluation function used in our algorithm calculates the sum of variation 

at the current level (i.e., level k) and subsequent three levels. It is expressed 

mathematically as follows: 
23

1 1
,, ∑∑ ∑

+

= = =









−=

k

kl

C

j

j

N

i

ijli lrcxGF                                                                 (22) 

    

Global evaluation function uses a heuristic procedure to determine the products 

for each of the further three levels of a partial solution. The procedure first selects 

the product with the minimum variation at the next level (i.e., level k+1 for a 

sequence at level k). For each of the last two levels, it calculates the combined 

variations (i.e, the variations at levels k+1 and k+2) with each of the alternative 

product pairs (see Figure 6c). Then, it selects the first product of the pair with the 

minimum combined variation, as done in 2-step Monden heuristic. However, unlike 

2-step heuristic, some of the alternative pairs are eliminated. 

Since the minimization of the sum of the variation at each level is the objective 

function of the sequencing problem, it is intuitive that an optimal/near-optimal 

sequence yields relatively small variation at each level. This implies that the amount 

of actual usage is very close to that of desired usage for each part at a particular 

level. As an example, if the variation at level k+1 would be equal to 0, the products 

for the next 2 levels could be determined without considering the sequence at level 

k+1. Hence, if the variation at level k+1 is ignored, some of the alternative pairs can 

be eliminated without considering the sequence at level k+1. The detailed 

explanation of the methodology to select the last two products is given below:     
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First, all of the feasible 3-level sequences starting with the product at level k+1 

are created (see Figure 6b). Then, the total variation for each of them is calculated 

by summing the variations at level 2 and 3, and the variation at level 2 for a 

sequence with the last two products. As an example, for a sequence of A (the last 

product of the sequence at level k+1), B, and D, the total variation is calculated as 

follows: 

( ) ( ) ),(,,,),,( DBVDBAVBAVDBATV ++=  

The equation shown above implies that if the TV(A,B,D) is small enough, the 

products B and D are suitable to be sequenced after A, and D is suitable to be chosen 

after B. If TV (A,B,D) is significantly large, products B and D should not be added 

respectively to any partial solution that ends with A. This is because of the fact that 

the total variation at the last three levels of any near-optimal solution that ends with 

A, B, and D most probably increases dramatically.  

After calculating the value of total variation for each 3-level sequence, the best w 

solutions (i.e., the ones that have the minimum total variation) of at most n2 

alternatives is considered for global estimation. Then, w solutions are created by 

adding the last two products of the filtered 3-level sequences to the current solution 

(i.e., the sequence at level k+1) and the pair that yields the minimum combined 

variation is selected. Then, the first product of the best pair is chosen for level k+2. 

The product for level k+3 is selected using the same procedure. 
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a. The representation of the selection process at level k+1. 
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c. Representation of the alternative pairs considered during global evaluation. 

Figure 6. The illustration of several steps of the heuristic used in global evaluation  
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4.2.4. Different versions of the proposed method 

In the earlier implementation of the proposed method, we thus far considered 

the BS technique in which beams progress independently. However, contrary is 

also possible in the sense that the BS technique can be implemented with 

dependent beams, i.e., all descendant nodes are evaluated at any level and the best 

β nodes are chosen among them as the beam nodes. Thus, we also consider this 

version of the BS method, with the expectation of obtaining better solutions. Note 

that the filtering procedure is invoked for each beam independently in this version, 

as performed in the first version. 

In order to observe the effect of the backtracking and EOI on the objective 

function, we also design several versions of the algorithm with backtracking or 

EOI, or neither of them. Note that we do not apply the backtracking procedure for 

the BS method with dependent beams as this procedure requires that beams 

progress independently.  

The versions of the proposed method used in this study are: 

BS-1: A BS technique in which beams progress independently. 

BS-2: A BS technique in which beams progress independently, and 

backtracking procedure is invoked. 

BS-3:  A BS technique in which beams progress independently, and EOI 

procedure is invoked. 

BS-4: A BS technique in which beams progress independently, and 

backtracking and EOI procedures are invoked. 

BS-5: A BS technique with dependent beams. 
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BS-6: A BS technique in which beams progress dependently, and EOI 

procedure is invoked. 

Figure 7 illustrates these versions and their relationships. 

 
                   
                Backtracking                                                 EOI 

 

                           EOI                                                 Backtracking 

 
 
                  
                                                             EOI 
 

Figure 7. Different versions of the proposed algorithm. 

 

Numerical Example: 

We clarify the steps of our algorithm with an example problem. We have 4 

different products to be assembled and 4 components that will be used for 

products. The values of cj,i, which are taken from Bautista et al. (1996), are 

presented in Table 2. The demand vector is (2,4,3,1), meaning that the demand for 

product 1 is 2, the demand for product 2 is 4, etc. 

The values of the parameters used to implement the algorithm are the 

following: the beam width (β) and filter width (α) are set to 2 and 3, respectively. 

EOI is invoked only at level 5. Moreover, the width for global evaluation function 

(w), called global width, is set to 5.  Note that this version of the algorithm is BS-

4.  

 

BS-1 

BS-2 

BS-3 

BS-4 

BS-5 BS-6 
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Table 2.  The part structure used for the example problem (Structure 3 in Bautista 

et al. (1996)) 

Products Parts 
P1 P2 P3 P4 

P1 0 0 0 5 
P2 3 1 0 5 
P3 3 3 5 0 
P4 4 6 5 0 

 

In order to show the improvement obtained by BS-4 with respect to the 

traditional BS method, we first present the solution of the BS method (i.e, BS-1) 

for the example problem (see Figure 8). The nodes given in Figure 8 represent the 

beam nodes in the search tree. The resultant sequence of Beam 1 yields the CV of 

71.8, while the CV of the sequence of Beam 2 is 72.6. Hence, the implementation 

of the BS method yields the cumulative variation of 71.8, with the following 

sequence:   

2-1-3-1-2-3-4-3-2-2. 

The proposed algorithm, however, first invokes the backtracking procedure at 

level 2, at which the equivalency is observed. As Beam 2 is found to be inferior at 

this level, it is backtracked by moving one level up, and generating the NB node, 

(i.e, product 3 in Figure 9a). The NB node is further branched by selecting the best 

node (i.e, product 2 in Figure 9a); whereas the original node is further sprouted by 

choosing the NB node at level 3. After the comparison of these two nodes, the 

newly generated node is found to be superior. Hence, Beam 2 progresses the 

search procedure with the new node. As the equivalency is observed at level 3, the 
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same procedure is invoked for the inferior beam (i.e., Beam 2 in Figure 9b) at this 

level.  

In addition to the backtracking method, we apply the EOI procedure at a 

certain level which is level 5. We first choose the last products of Beam1 and  

Beam 2, which are product 2 and product 3, respectively. Then we exchange the 

information between each beam in the following way:  

First we transfer the sequence of 2-2 from Beam 2 to Beam 1 since it is 

between the first and the last appearance of the last product (i.e., product 3) of 

Beam 2. This partial sequence is inserted to Beam 1 at level 3, at which the first 

appearance of product 3 is observed. Hence, a new solution with the sequence of 

2-1-3-2-2 is obtained at level 5. This solution is compared with the original 

solution of Beam 1 that has the sequence of 2-1-3-1-2. Similarly, the sequence of 

1-3-1 is transferred from Beam 1 to Beam 2, leading a new beam with a sequence 

of 1-3-2-1-3-1. Since the length of the new beam is greater than the current level, 

it is truncated, by which we obtain the sequence of 1-3-2-1-3. The result of the 

evaluation of the original beams and the newly generated beams reveals that the 

new beams are inferior. Hence, the procedure progresses with the original beams 

at level 5.  

During the implementation of the algorithm, the equivalency is observed again 

at level 9. However it does not change the structure of the inferior beam (i.e., 

Beam 1) at this level. The resulting sequence is 1-3-2-2-3-4-2-3-1-2, with a CV 

value of 66.2. Hence, the CV is improved by 8.4 percent.  
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Z = 71.8                                                                            Z = 72.6   

Figure 8. The BS tree obtained by implementing BS-1. Z stands for the value 

of the objective function.  
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a. The schematic view of the backtracking procedure at level 2. 
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b. The schematic view of the backtracking procedure at level 3. 

Figure 9. The backtracking procedure invoked in the implementation of BS-4. 
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Figure 10. The EOI procedure in the implementation of BS-4.  
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Chap t e r  5  

 
COMPUTATIONAL RESULTS 
 

 

In this chapter, we first give the comparison of the proposed method with the 

existing heuristics reported in the literature. Then, we analyze the case if the solution 

quality is improved by the backtracking and EOI procedures in Section 5.2. We 

investigate the effect of the EOI procedure at different positions. The results are 

presented in Section 5.3. 

       

5.1. The evaluation of the proposed algorithm 

The proposed methods (i.e, BS-1,…, BS-6) are compared with the five 

heuristics, which are GC Method, 2-step Method, Variance Method, 2-step Variance 

Method, and Beam Search Heuristic. In the implementation of the Variance and 2-

step Variance algorithms, we optimize the discounting coefficient of the opportunity 

cost which is added to the objective function. The following parameters of the beam 

search algorithms are also optimized: filter width, global width, the beginning level 

for EOI, and the interval for EOI. Note that, we use a clever search mechanism in 

the implementation of the parameter optimization, rather than the total enumeration. 

In addition, we perform the parameter optimization for each problem instance. 
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5.1.1. Computational results for the parts usage measure 

5.1.1.1. Experimental conditions 

For the parts usage problem, the heuristics are first tested with the problem data 

set given in Bautista et al. (1996) and Jin and Wu (2002). In order to statistically 

compare the best of the proposed methods and the best of the five existing heuristics, 

the p-value is calculated via the paired-t test. In the statistical analysis, the 95% 

confidence interval is used. Hence the p-value being less than 0.05 implies the 

statistical significance.     

The part-product relationship (i.e., number of each part required for each 

product) represents a structure in the literature. For Structure 6, we generate totally 

45 demand patterns using the demand data in Ding and Chen (1993). This is 

because, only one demand pattern is used for this structure in the literature.   

The algorithms are further tested by generating various additional data sets. In 

order to generate the appropriate data, the following factors given in Leu et al. 

(1997) are used: 1) number of products, 2) quantity per assembly, and 3) degree of 

commonality. The explanations of these factors are given next. 

Quantity per assembly indicates the number of units of a part required for a final 

product. The value of 1-10 for this factor implies that the ceiling of a uniform 

random number between 1 and 10 is set to quantity per assembly of a part for a 

product. Degree of commonality shows the approximate percentage of common 

parts used by the products. As an example, if a part has 0% commonality, it is used 

by only one product, whereas an 80% commonality means that a part is used by 

approximately 80% of the product.  Number of parts is set to two times the number 

of products.  
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The factors and their levels used to generate the appropriate data are shown in 

Table 3. Since each factor is tested at two levels, we have 8 experimental 

configurations. 9 different demand patterns are determined for each configuration 

using the patterns given by Ding and Chen (1993) (see Table 4). The number of 

replications used for each configuration is set to 10.  

 

Table 3. Experimental factors and their levels used in 

the comparison 

Factors Levels 

Number of products 
5 
20 

Quantity per assembly 
1-10 
1-20 

Degree of commonality 
0-20% 
60-80% 

 

Table 4. Demand pattern for the newly generated problems 

N Demand 
Pattern 

5 20 
1 16,1,1,1,1 21,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
2 15,2,1,1,1 18,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
3 13,4,1,1,1 15,5,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
4 10,5,2,2,1 12,6,4,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
5 8,7,2,2,1 9,6,5,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
6 6,6,5,2,1 6,6,5,4,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
7 5,5,5,3,2 4,4,4,4,4,3,3,2,1,1,1,1,1,1,1,1,1,1,1,1 
8 5,4,4,4,3 4,4,4,4,4,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1 
9 4,4,4,4,4 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 
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5.1.1.2. Results of the comparison study 

5.1.1.2.1. Comparison of the CPU time requirements   

Before presenting the results, we show the computational efficiency of the 

algorithms with an example problem given in Bautista et el. (1996). The number of 

parts required to produce each part is given in Table 5. The demand pattern is 

(12,8,6,15,7), yielding the total demand of 48. 

The algorithms were coded in Java language and run on a station with 256 Mb 

memory and 2.4 GHz CPU, under Windows Xp.  

 

Table 5. Demand pattern for the example problem (Structure 6 in Bautista et al. 

(1997)). 

Products 
Parts 

P1 P2 P3 P4 P5 
P1 3 2  1 0 3 
P2 2 2 4 2 3 
P3 0 3 2 5 0 
P4 4 2 2 2 3 

 

As shown in Table 6, almost all of the proposed algorithms outperform the 

existing heuristics in terms of solution quality; whereas the avaliable heuristics are 

more efficient in terms of CPU time considerations. This is because of the fact that 

the enhancement tools and global evaluation function increases the time to 

implement the proposed methods although they improve the solution quality. 

Moreover, nearly all of the existing heuristics are greedy in nature, which makes 

them efficient in computational effort. Among the proposed algorithms, the most 

efficient one in terms computational effort is BS-5 since it does include any of the 
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enhancement tools. Furthermore, the GC Method and Variance Method outperform 

the 2-step Method and 2-step Variance Method in terms of computational effort, as 

stated in the literature.   

 

Table 6. The comparison of the algorithms in terms of computational 

effort 

Structure ββββ Heuristic Z 
CPU time 
(in msec) 

- GC 226.875 10 
- 2-step 153.040 30 
- Variance 146.040 10 
- 2-step/var.s 138.040 20 
5 BS(Leu) 136.042 30 
5 BS-1 137.04 261 
5 BS-2 137.04 270 
5 BS-3 125.708 330 
5 BS-4 130.208 331 
5 BS-5 126.708 171 

6.2 

5 BS-6 125.708 220 

 

5.1.1.2.2. Comparison  

The results of the comparison using the data sets in the literature indicate that the 

performance of BS-6 is better than other versions of the proposed method in solution 

quality. BS-6 also outperforms the heuristics reported in the literature for all 

structures, except Structure 3 and Structure 5 (see Table 7). However, there is not a 

significant difference between BS-5 and BS-6 in nearly all structures. This implies 

that exchange of information is not effective to improve the solution quality of BS 

with dependent beams. Moreover, BS-5 is much more efficient than BS (Leu) in 

solution quality even though it does not include the enhancement tools. This 
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indicates the efficiency of the global evaluation function. In addition, BS-4 is 

superior to the available heuristics in structures 2, 6.1, 6.2, and 6.3. Furthermore, 2-

step Variance Method is in general the best of the comparator heuristics in solution 

quality.   

As for the results obtained by using new data sets, BS-6 statistically outperforms 

the 5 heuristics in all of the structures except Structure 7 (see Table 8). In Structure 

7, BS-4 is statistically the best algorithm in solution quality. Moreover, BS-6 is 

statistically better than BS-4 in structures 1, 3, 4, and 6; whereas BS-4 statistically 

outperforms BS-6 in Structure 5. Besides, out of eight structures, BS-4 statistically 

outperforms the existing heuristics in six structures.  

Among the existing heuristics, none of them is statistically the best in the first 

four structures. 2–step Variance Method statistically outperforms others in structures 

5 and 7; whereas BS (Leu) is statistically the best in structures 6 and 8. This 

indicates that the performance of BS (Leu) increases with the increase in the number 

of products and degree of commonality.  

In summary, BS-4 and BS-6 seem to be the most useful methods for this 

problem since they generally outperform available heuristics in terms of solution 

quality.    

5.1.2. The computational results for the loading problem 

5.1.2.1. Experimental conditions 

Since the parts usage and load leveling problems are structurally the same, 

solving the one problem is equivalent to solving the other problem. As a result, the 

experimental conditions developed for the load leveling problem are similar to that 

for the parts usage problem.  
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Table 7. The computational results obtained by the data sets in given in the literature 

Structure N D 
# of demand 
pattern 

ββββ Heuristic Zavg p-value 

- GC 93.333 
- 2-step 64.711 
- Variance 66.116 
- 2-step/var. 61.973 
4 BS(Leu) 72.124 
4 BS-1 62.24 
4 BS-2 61.742 
4 BS-3 61.795 
4 BS-4 60.818 
4 BS-5 60.356 

1 4 20 45 

4 BS-6 60.124 

0.003 * 

- GC 214.185 
- 2-step 151.856 
- Variance 141.749 
- 2-step/var. 138.376 
4 BS(Leu) 157.183 
4 BS-1 139.541 
4 BS-2 137.852 
4 BS-3 137.545 
4 BS-4 134.849 
4 BS-5 134.089 

2 4 20 45 

4 BS-6 133.529 

0.0005 * 

- GC 210.744 
- 2-step 151.798 
- Variance 164.073 
- 2-step/var. 137.984 
4 BS(Leu) 160.082 
4 BS-1 141.642 
4 BS-2 140.078 
4 BS-3 140.82 
4 BS-4 137.598 
4 BS-5 137.620 

3 4 20 45 

4 BS-6 137.309 

0.478 
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Table 7. The computational results obtained by the data sets in given in the literature 

(cont’d).  

Structure N D 
# of demand 
pattern 

ββββ Heuristic Zavg p-value 

- GC 17.897 
- 2-step 15.817 
- Variance 16.688 
- 2-step/var. 15.732 
4 BS(Leu) 15.834 
4 BS-1 15.821 
4 BS-2 15.803 
4 BS-3 15.812 
4 BS-4 15.714 
4 BS-5 15.661 

4 4 20 45 

4 BS-6 15.652 

0.032 * 

- GC 195.734 
- 2-step 176.749 
- Variance 153.421 
- 2-step/var. 157.505 
4 BS(Leu) 185.818 
4 BS-1 163.232 
4 BS-2 158.456 
4 BS-3 161.241 
4 BS-4 154.827 
4 BS-5 156.705 

5 4 20 45 

4 BS-6 155.367 

0.203 

- GC 61.073 
- 2-step 51.718 
- Variance 50.753 
- 2-step/var. 48.216 
4 BS(Leu) 51.473 
4 BS-1 48.18 
4 BS-2 47.891 
4 BS-3 47.562 
4 BS-4 47.287 
4 BS-5 46.58 

6.1 5 20 45 

4 BS-6 46.402 

0.0001 * 
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Table 7. The computational results obtained by the data sets in given in the literature 

(cont’d).  

Structure N D 
# of demand 
pattern 

ββββ Heuristic Zavg p-value 

- GC 226.875 
- 2-step 153.040 
- Variance 146.040 
- 2-step/var.s 138.040 
5 BS(Leu) 136.042 
5 BS-1 137.04 
5 BS-2 137.04 
5 BS-3 125.708 
5 BS-4 130.208 
5 BS-5 126.708 

6.2 5 48 1 

5 BS-6 125.708 

- 

- GC 1344.089 
- 2-step 896.590 
- Variance 565.375 
- 2-step/var. 574.018 
5 BS(Leu) 1057.161 
5 BS-1 599.660 
5 BS-2 599.660 
5 BS-3 552.732 
5 BS-4 560.660 
5 BS-5 587.875 

6.3 5 280 1 

5 BS-6 549.446 

- 
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Table 8. The computational results obtained by the newly generated data sets 
Configuration N D QPA DOC ββββ Heuristic Zavg p-value 

- GC 1088.9 
- 2-step 1054.4 
- Variance 1066.4 
- 2-step/var. 1043.8 
3 BS(Leu) 1043.5 
3 BS-1 1041.7 
3 BS-4 1038.4 
3 BS-5 1033.1 

1 5 20 1-10 0-20% 

3 BS-6 1032.4 

0.002 * 

- GC 1387.1 
- 2-step 1299.4 
- Variance 1328.7 
- 2-step/var. 1290.8 
3 BS(Leu) 1287.4 
3 BS-1 1282.9 
3 BS-4 1279.5 
3 BS-5 1274 

2 5 20 1-10 60-80% 

3 BS-6 1273.2 

0.001 * 

- GC 4018.6 
- 2-step 3881.8 
- Variance 3917.6 
- 2-step/var. 3840 
3 BS(Leu) 3848.7 
3 BS-1 3826.3 
3 BS-4 3822.7 
3 BS-5 3797.07 

3 5 20 1-20 0-20% 

3 BS-6 3796.5 

0.003 * 

- GC 4895.7 
- 2-step 4660.7 
- Variance 4742.6 
- 2-step/var 4627.7 
3 BS(Leu) 4653.2 
3 BS-1 4589.4 
3 BS-4 4584.7 
3 BS-5 4565.5 

4 5 20 1-20 60-80% 

3 BS-6 4564.2 

0.00001 * 
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Table 8. The computational results obtained by the newly generated data sets 

(cont’d).  
Configuration N D QPA DOC ββββ Heuristic Zavg p-value 

- GC 11872.6 
- 2-step 11582.2 
- Variance 11218.8 
- 2-tep/var. 11093.5 
10 BS(Leu) 11283.4 
10 BS-1 11035.6 
10 BS-4 10899.2 
10 BS-5 10984.6 

5 20 40 1-10 0-20% 

10 BS-6 10983.7 

5.1E-07 * 

- GC 31634.9 
- 2-step 30190.7 
- Variance 30438.2 
- 2-step/var. 29329.6 
10 BS(Leu) 29009.1 
10 BS-1 28839.2 
10 BS-4 28734.8 
10 BS-5 28391.7 

6 20 40 1-10 60-80% 

10 BS-6 28389.1 

0.002 * 

- GC 39688.8 
- 2-step 38550.4 
- Variance 37363.8 
- 2-step/var. 36902.4 
10 BS(Leu) 37741.7 
10 BS-1 36796.8 
10 BS-4 36443.9 
10 BS-5 36562.3 

7 20 40 1-20 0-20% 

10 BS-6 36564.2 

0.001 * 

- GC 119856.9 
- 2-step 114541.3 
- Variance 115109.0 
- 2-step/var. 112033 
10 BS(Leu) 110648.2 
10 BS-1 109820.2 
10 BS-4 109158.3 
10 BS-5 108688.6 

8 20 40 1-20 60-80% 

10 BS-6 108688.6 

0.003 * 
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In addition to number of products, the processing time for a model at a station is 

used as the second factor in the load leveling problem. Since each product must be 

processed at each station, we do not need the degree of commonality factor. The list 

of the factors and their levels are given in Table 9. Since each factor is tested at two 

levels, we have 4 experimental configurations. The demand patterns are taken from 

Ding and Chen (1993) (see Table 10), and the number of replications used for each 

condition is 10.  

 

Table 9. Experimental factors and their levels for the 

loading problem 

Factors Levels 

Number of products 
5 
10 

Processing time 
1-10 
1-20 

 

Table 10. Demand pattern for the newly generated problems 

N Demand 
pattern 

5 10 
1 16,1,1,1,1 11,1,1,1,1,1,1,1,1,1 
2 15,2,1,1,1 10,2,1,1,1,1,1,1,1,1 
3 13,4,1,1,1 9,3,1,1,1,1,1,1,1,1 
4 10,5,2,2,1 8,4,1,1,1,1,1,1,1,1 
5 8,7,2,2,1 7,5,1,1,1,1,1,1,1,1 
6 6,6,5,2,1 6,5,2,1,1,1,1,1,1,1 
7 5,5,5,3,2 5,5,3,1,1,1,1,1,1,1 
8 5,4,4,4,3 4,4,4,2,1,1,1,1,1,1 
9 4,4,4,4,4 2,2,2,2,2,2,2,2,2,2 
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5.1.2.2. Results 

The results of the comparison study for the loading problem indicate that BS-6 

statistically outperforms other algorithms in terms of solution quality (see Table 11). 

This verifies the structural equivalency of the load leveling and parts usage problem. 

Moreover, the performances of BS-5 and BS-6 are statistically the same, implying 

that information sharing between dependent beams does not improve the solution 

quality. 

 

5.2. The effect of backtracking and EOI on solution quality 

In this section, we show that the enhancement tools incorporated into classical 

beam search technique with independent beams improve the solution quality. First, 

we consider the improvement obtained by the backtracking procedure. Then, we 

focus on the effect of the EOI procedure on the objective function in Section 5.2.2. 

 

5.2.1. The effect of backtracking 

In order to test the efficiency of the backtracking procedure, we compare the 

performances of BS-1 and BS-2. As explained in previous chapter, in BS-1 beams 

progress independently and none of the enhancement tools are invoked. In BS-2, 

beams progress independently and only the backtracking procedure is performed. 

The performance of the algorithms for the data sets in Bautista et al. (1996) and 

Jin and Wu (2002) are shown in Table 12. The results reveal that the backtracking 

procedure generally improves the solution quality. However, if the quantity per 

assembly for each part shows considerably slight variations (i.e., in Structure 5), the 

backtracking method does not statistically increase the solution quality.  
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Table 11. The computational results for the loading problem 

Configuration N 
Processing 
times 

ββββ Heuristic Zavg p-value 

- GC 304.154 
- 2-step 278.502 
- Variance 283.842 
- 2-step/var. 273.770 
3 BS(Leu) 278.981 
3 BS-1 272.523 
3 BS-4 272.006 
3 BS-5 269.929 

1 5 1-10 

3 BS-6 269.876 

0.0001 * 

- GC 1305.1 
- 2-step 1228.1 
- Variance 1229.1 
- 2-step/var. 1198.9 
3 BS(Leu) 1227.4 
3 BS-1 1197.3 
3 BS-4 1193.3 
3 BS-5 1180.5 

2 5 1-20 

3 BS-6 1179.8 

2.5E-07 * 

- GC 934.525 
- 2-step 859.914 
- Variance 862.802 
- 2-step/var. 831.287 
5 BS(Leu) 835.784 
5 BS-1 830.206 
5 BS-4 824.710 
5 BS-5 815.861 

3 10 1-10 

5 BS-6 815.685 

6.2E-05 * 

- GC 4084.1 
- 2-step 3777.9 
- Variance 3812.8 
- 2-step/var. 3634.8 
5 BS(Leu) 3672.7 
5 BS-1 3646 
5 BS-4 3607.9 
5 BS-5 3572.7 

4 10 1-20 

5 BS-6 3572.7 

0.0004 * 
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Table 12. The effect of backtracking on the solution quality 

Structure N D 
# of 

demand 
pattern 

ββββ Heuristic Zavg p-value % diff. 

4 BS-1 62.24 
1 4 20 45 

4 BS-2 61.742 
0.014 * 0.807 

4 BS-1 139.541 
2 4 20 45 

4 BS-2 137.82 
0.004 * 1.249 

4 BS-1 141.642 
3 4 20 45 

4 BS-2 140.078 
0.03 * 

1.117 

4 BS-1 15.821 
4 4 20 45 

4 BS-2 15.803 
0.160 0.114 

4 BS-1 163.232 
5 4 20 45 

4 BS-2 158.456 
0.0001 * 

3.014 

4 BS-1 48.18 
6.1 4 20 45 

4 BS-2 47.891 
0.087 0.603 

5 BS-1 137.04 
6.2 5 48 1 

5 BS-2 137.04 
- 0 

5 BS-1 599.660 
6.3 5 280 1 

5 BS-2 599.660 
- 0 

 

5.2.2. The effect of EOI 

We consider the performances of BS-1 and BS-3, to measure the effect of the 

EOI procedure on the solution quality. BS-3 differs from BS-1 in that it includes 

exchange of information. 

The data sets in Bautista et al. (1996) and Jin and Wu (2002) are used to 

compare BS-1 and BS-3. The computational results indicate that the EOI procedure 

improves the solution quality in all structures except Structure 4 (see Table 13). 

Moreover, as the number of total demand increases, percentage improvement gained 

by invoking the EOI procedure increases. This is because of the fact that, the 

alternative solutions created during the search procedure increases with the increase 

in the total number of levels.  
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Table 13. The effect of exchange of information on the solution quality 

Structure N D 
# of 

demand 
pattern 

ββββ Heuristic Zavg p-value % diff. 

4 BS-1 62.24 
1 4 20 45 

4 BS-3 61.795 
0.046 * 0.720 

4 BS-1 139.541 
2 4 20 45 

4 BS-3 137.545 
0.0003 * 1.451 

4 BS-1 141.642 
3 4 20 45 

4 BS-3 140.82 
0.018 * 0.584 

4 BS-1 15.821 
4 4 20 45 

4 BS-3 15.812 
0.323 0.057 

4 BS-1 163.232 
5 4 20 45 

4 BS-3 161.241 
0.0005 * 1.235 

4 BS-1 48.18 
6.1 4 20 45 

4 BS-3 47.562 
0.006 * 1.299 

5 BS-1 137.04 
6.2 5 48 1 

5 BS-3 125.708 
- 9.015 

5 BS-1 599.660 
6.3 5 280 1 

5 BS-3 552.732 
- 8.490 

 
 

5.3.  The effect of EOI at different positions 

The performance of the proposed algorithm shows that the EOI procedure 

generally improves the solution quality. However, further analysis is necessary to 

determine the interval for which the EOI is more effective. Hence, the EOI 

procedure is invoked at predetermined intervals to observe its effect on the 

performance measure (see Figure 11 and Figure 12). As an example, for a design 

with  20 levels, EOI is only performed at the following intervals: 1-4, 5-8, 9-12, 13-

16, 17-2. Note that the analysis is performed by using BS-3, in which beams 

progress independently and exchange of information is invoked. In addition, we 

consider the data sets given in Bautista et al. (1996). The experimental analysis is 
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first performed on small problems in which the number of total demand is 20. Then, 

the total demand is increased to higher levels such as 260.    

The analysis on the exchange of information indicates that if the number of 

levels (i.e., total demand) is small, invoking the EOI procedure between certain 

intervals generally does not improve the objective function (see Figure 11). Only 

in Structure 2, the EOI procedure statistically improves the solution quality if it 

invoked at the middle levels. If we increase the number of levels, the EOI 

procedure statistically improves the solution quality in Structures 1, 2, and 5. It is 

inferred from the Figure 12 that the interval at which EOI is the most effective 

seems to be the middle of the search procedure. However, as shown in Figure 12b, 

in some cases the most effective interval for EOI may shift toward the end of the 

search procedure. 
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Figure 11. The effect of EOI on the performance measure when number of levels is 

20. BL for EOI refers to the level at which EOI is first invoked. 
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Figure 11. The effect of EOI on the performance measure when number of 

levels is 20 (cont’d). 
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Figure 12. The effect of information exchange on the performance measure when 

number of levels is increased to 260. 
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Figure 12. The effect of information exchange on the performance measure when 

number of levels is increased to 260 (cont’d). 
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Chap t e r  6  

 
CONCLUSION 
 

 

In this thesis, we study the mixed-model assembly line sequencing problem, 

with the assumptions of balanced lines with fix processing times, and negligible 

setup times between the different product models. We aim to optimize the 

following objectives separately: 

1) Maintaining a constant rate of usage of all parts that feed the final 

assembly line  

2) Smoothing the workload on the final assembly line to reduce the chance of 

production delays and stoppages 

We propose Beam Search algorithms to solve the problem. Unlike the classical 

beam search techniques, the proposed algorithms have some enhancement tools 

that improve the solution quality. These tools are the backtracking and EOI 

procedures. The backtracking method enables to return to some previous solution 

states in the search tree with the expectation of obtaining better solutions. The EOI 

procedure takes the part of the solution from one beam and transfers it to another 

beam. Hence, the resulting beam with this additional information may lead to 

better solutions.  

We compare the beam search algorithms with the existing heuristics reported 

in the literature, using various problem data sets. The computational results 
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indicate that the proposed algorithms generally outperform the available heuristics 

for the parts usage and loading problems. Besides, we demonstrate that the 

backtracking and EOI procedures generally improve the solution quality. 

We also analyze the effect of the EOI when it is invoked at different positions 

in the search tree. The results lead us to the following conjecture: the exchange of 

information is the most effective when it is invoked at the middle levels in the 

search tree. 

We can list the following further research directions: First, the proposed 

algorithms can be implemented for the same problem with different objectives 

such as minimizing the utility work (i.e, the amount of work that cannot be 

completed within the given length of the station), and line stoppages. Second, the 

EOI procedure can be incorporated into beam search algorithms that are used in 

other research areas such as scheduling, assembly line balancing, etc. Third, 

different versions of the EOI and backtracking methods can be developed for the 

MMAL sequencing problem to further improve their efficiency. Fourth, a further 

analysis on the EOI should be performed to draw inferences about where it is the 

most effective during the search procedure. Furthermore, the MMAL sequencing 

problem can be studied by considering asynchronous lines as well as hybrid 

systems. It may also be useful to observe whether the line balancing and the line 

sequencing problems can be solved simultaneously in some real-life conditions. 
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APPENDIX 

 
Problem data given in Bautista et al. and Jin and Wu (2002). 

Table A.1 Number of each part required for each product. 

Table A.1a.  Structure 1. 

Products 
Parts 

Pr1 Pr2 Pr3 Pr4 

P1 1 5 2 0 

P2 4 0 3 5 

P3 1 1 0 2 

P4 1 1 2 0 

Table A.1b.  Structure 2. 

Products 
Parts 

Pr1 Pr2 Pr3 Pr4 

P1 2 6 4 0 

P2 4 0 2 6 

P3 1 1 0 2 

P4 1 1 2 1 

P5 1 1 0 2 

P6 1 1 2 0 

P7 4 0 3 5 

P8 1 5 2 0 
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Table A.1c.  Structure 3. 

Products 
Parts 

Pr1 Pr2 Pr3 Pr4 

P1 0 0 0 5 

P2 3 1 0 5 

P3 3 3 5 0 

P4 4 6 5 0 

Table A.1d.  Structure 4. 

Products 
Parts 

Pr1 Pr2 Pr3 Pr4 

P1 1 0 0 1 

P2 1 2 0 1 

P3 0 0 2 1 

P4 1 1 1 0 

Table A.1e.  Structure 5 

Products 
Parts 

Pr1 Pr2 Pr3 Pr4 

P1 3 6 9 12 

P2 0 1 2 3 

P3 1 2 3 4 

P4 3 6 9 12 

P5 1 0 0 0 
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Table A.1.f. Structure 6. 

Products 
Parts 

Pr1 Pr2 Pr3 Pr4 

P1 3 2 0 3 

P2 2 2 2 3 

P3 0 3 5 0 

P4 4 2 2 3 
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Table A.2. Demand vector for products. 

Table A.2a. Demand vector for Structure 1..5 

Pr. 1-9 Pr. 10-18 Pr. 19-27 Pr. 28-36 Pr. 37-45 

17,1,1,1 1,1,9,9 6,6,2,6 4,2,6,8 6,4,8,2 

1,17,1,1 6,6,4,4 6,2,6,6 4,2,8,6 6,8,2,4 

1,1,17,1 6,4,6,4 2,6,6,6 4,6,2,8 6,8,4,2 

1,1,1,17 6,4,4,6 2,4,6,8 4,6,8,2 8,2,4,6 

9,9,1,1 4,6,6,4 2,4,8,6 4,8,2,6 8,2,6,4 

9,1,9,1 4,6,4,6 2,6,4,8 4,8,6,2 8,4,2,6 

9,1,1,9 4,4,6,6 2,6,8,4 6,2,4,8 8,4,6,2 

1,9,9,1 5,5,5,5 2,8,4,6 6,2,8,4 8,6,2,4 

1,9,1,9 6,6,6,2 2,8,6,4 6,4,2,8 8,6,4,2 

Table A.2b. Demand vector for Structure 6.1 

Pr. 1-9 Pr. 10-18 Pr. 19-27 Pr. 28-36 Pr. 37-45 

16,1,1,1,1 4,13,1,1,1 1,4,1,1,13 5,5,3,5,2 5,2,5,5,3 

1,16,1,1,1 4,1,13,1,1 1,1,13,4,1 5,5,3,2,5 3,5,2,5,5 

1,1,16,1,1 4,1,1,13,1 1,1,13,1,4 5,5,2,3,5 3,5,5,2,5 

1,1,1,16,1 4,1,1,1,13 1,1,4,13,1 5,5,2,5,3 3,5,5,5,2 

1,1,1,1,16 1,13,4,1,1 1,1,4,1,13 5,3,5,5,2 3,2,5,5,5 

13,4,1,1,1 1,13,1,4,1 1,1,1,13,4 5,3,5,2,5 2,5,3,5,5 

13,1,4,1,1 1,13,1,1,4 1,1,1,4,13 5,3,2,5,5 2,5,5,3,5 

13,1,1,4,1 1,4,13,1,1 5,5,5,3,2 5,2,3,5,5 2,5,5,5,3 

13,1,1,1,4 1,4,1,13,1 5,5,5,2,3 5,2,5,3,5 2,3,5,5,5 
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Table A.2c. Demand vector for Structure 6.2 and 6.3. 

Products 
Structure 

P1 P2 P3 P4 P5 

6.2 12 8 6 15 7 

6.3 90 80 25 15 70 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 


