
Evaluation of a Broadcast Scheduling Algorithm

Murat Karakaya1 and Özgür Ulusoy2

1 Department of Technical Sciences
Turkish Land Forces Academy, Ankara 06100, Turkey

2 Department of Computer Engineering
Bilkent University, Ankara 06533, Turkey

muratk@kho.edu.tr, oulusoy@cs.bilkent.edu.tr

Abstract. One of the two main approaches of data broadcasting is pull-
based data delivery. In this paper, we focus on the problem of scheduling
data items to broadcast in such a pull-based environment. Previous work
has shown that the Longest Wait First heuristic has the best performance
results compared to all other broadcast scheduling algorithms, however
the decision overhead avoids its practical implementation. Observing this
fact, we propose an efficient broadcast scheduling algorithm which is
based on an approximate version of the Longest Wait First heuristic. We
also compare the performance of the proposed algorithm against well-
known broadcast scheduling algorithms.

1 Introduction

There exist two main approaches for data dissemination in broadcast systems:
push and pull [1,2,12,19]. In push-based data delivery, the information server
tries to predict data needs using the knowledge provided by user profiles or sub-
scriptions. The server constructs a broadcast schedule in which initiation of data
transmission does not require an explicit request from mobile users. The server
repetitively transmits the content of broadcast schedule to user population. Mo-
bile users monitor the broadcast channel and retrieve the items they require as
they arrive. On the other hand, in a pull-based environment, clients explicitly
request data items by sending message to the server. The requests are compiled
in a service queue, and a scheduling algorithm decides which data item should
be broadcast.

The main contributions of our work can be described as follows. First, pre-
vious work has shown that the Longest Wait First (LWF) heuristic has the
best performance results compared to all other broadcast scheduling algorithms,
however the decision overhead avoids its practical implementation [6,7,19,5]. We
propose to use an approximate version of the LWF heuristic which can consid-
erably remove the decision overhead of LWF. Second, the implementation of the
approximate heuristic is carefully designed and also parameterized to increase the
performance with respect to different criteria. Third, some heuristics proposed to
be used in push-based broadcast environments are modified and evaluated in the

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 182–195, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Evaluation of a Broadcast Scheduling Algorithm 183

pull-based broadcast environment we simulate. And, finally detailed simulation
tests are conducted and reported.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
a mobile computing environment that we assume in our work and summarize
related work. In Sect. 3, we describe our approximate heuristic and its imple-
mentation, Bucketing scheduling algorithm. Performance evaluation results of
the proposed algorithm are provided and compared with the results of some
well-known broadcast scheduling algorithms in Sect. 4. Finally, in Sect. 5 con-
cluding remarks are provided.

2 Background

2.1 Mobile Computing Environment

In a common architectural model used for a mobile computing environment [8,
9,12], geographical area is divided into regions, called cells, each of which is cov-
ered and serviced by a stationary controller. There exist two types of computers;
mobile units (computers) (MUs) and stationary computers (SCs). SCs are con-
nected together via a fixed network. Some of SCs are equipped with wireless
interfaces to communicate with MUs and called mobile support stations (MSSs).
MSSs behave as entry points from MUs to the fixed network. MUs can consume
and also produce information by querying and updating the online database
stored on SCs. MSSs can be proxy servers on behalf of the other SCs or they
can themselves be information servers.

It is assumed in this mobile environment that there is a single broadcast
channel dedicated to data broadcast. Users monitor this channel continuously
to get the data items they require. There is a backchannel which enables MUs
to send data requests to MSSs.

2.2 Related Work

The first work related with broadcasting in a pull-based environment is by Am-
mar and Wong in the context of teletext and videotext systems [6,7,19]. In [19],
Wong proposes three alternative architectures for broadcast information deliv-
ery systems: one-way broadcast (push), two-way interaction (pull), and one-way
broadcast/two-way interaction (hybrid). The heuristics used in two-way interac-
tion are as follows [19]:

– The well-known FCFS algorithm has been modified in such a way that if a
page has been requested and placed in the service queue, a new request for
that page is ignored. In this way, redundant broadcasts of the same page are
avoided [5].

– Another heuristic proposed to be used in broadcast scheduling is Most Re-
quested First (MRF). As the name of the heuristic implies, the page with
the largest number of pending requests is selected to broadcast.



184 M. Karakaya and Ö. Ulusoy

– The MRF heuristic is configured to break ties in favor of the page with
the lowest request probability if the request probabilities of the pages are
available to the scheduling algorithm. This version of the heuristic is termed
Most Requested First Lowest (MRFL).

– The heuristic which selects the page with the largest total waiting time of
all pending requests is Longest Wait First (LWF).

These heuristics are evaluated in [19] and it is concluded that when the system
load is light, the mean response time is not sensitive to the heuristic used. This is
due to the fact that in light loads, few scheduling decisions need to be made. On
the other hand, when the system load is high and the page request probabilities
follow Zipf’s Law [20], LWF has the best performance, whereas FCFS has the
worst.

Vaidya et al. have worked on data broadcast scheduling algorithms for push-
based environments extensively and proposed several scheduling algorithms [10,
11,13,14,17,18]. In [13], Jiang and Vaidya also investigate how the variance
of response time can be minimized. The authors claim that their work and
algorithms can be applied to pull-based environments as well. Therefore, we
take their algorithms into consideration while devising our heuristic.

The work which is most related to our work is the one performed by Ak-
soy and Franklin [4,5]. The authors have proposed a scheduling algorithm which
improves and unifies FCFS and MRF heuristics. They conclude that the LWF
heuristic has the best performance results according to overall mean waiting
time. However, the authors also point out that the straightforward implementa-
tion of LWF is not practical. Aksoy and Franklin suggest to integrate FCFS and
MRF in a practical way to combine their advantages and eliminate the disad-
vantages. As a result, the authors propose the RxW heuristic which balances the
selection criterion between the number of pending requests and the first request
arrival time of a data item. RxW computes the product of the total number of
pending requests (R) and waiting time of the first request (W) of that data item,
and selects the data item with the maximum RxW value.

3 Bucketing Algorithm

We have aimed to develop a scheduling algorithm that can minimize both the
mean waiting time and its variance, as well as is robust to changes in mobile
environment and has lower overhead. We describe a new heuristic that we name
Approximate Total Waiting Time (ATWT). The proposed ATWT heuristic is
implemented using a bucketing scheme and the resulting algorithm is termed
Bucketing Algorithm.

3.1 Approximate Total Waiting Time

In order to decrease the amount of computation, we first assume that all requests
for a page come at the same time as the first one. Thus, we only keep the arrival



Evaluation of a Broadcast Scheduling Algorithm 185

time of the first request for each page. When we need to compute total waiting
time of a page, we can simply multiply the number of pending requests with
the elapsed time since the first request arrived. This approximation gives us the
upper bound of total waiting time of a page. Provided that requests arrival is
governed by the Poisson process, if a page is broadcast τ time units after the
arrival of the first request to it, mean waiting time for pending requests for this
page is τ

2 [6,17]. This fact gives an approximation to compute total waiting time
for a page as follows:

Wp(t) =
t − Ap

2
∗ Rp(t) (1)

where t is the current time, Ap is the first request arrival time, and Rp(t) is the
total number of pending requests for page p at time t. Wp(t) is the approximate
total waiting time for page p. The LWF heuristic needs to compute the total
waiting time for every page to select the one with the largest value. We can
drop the division by 2 in (1) to simplify the calculation since Wp(t) of each page
will be compared. This finalizes the basic formulation, that we call Approximate
Total Waiting Time (ATWT). ATWT enables us to record less information and
do less computation1.

Finding the Maximal ATWT. The direct implementation of the heuristic
we propose above has a time complexity of O(N), where N is the total number
of requested pages. In order to avoid the calculation of each requested page’s
ATWT, we use a method which selects a few pages and calculates only their
ATWTs to select the page with maximal ATWT value. Our implementation is
based on a bucketing technique. We classify the pages according to the number
of pending requests associated with them. All the pages that lie in bucket i will
have pending request numbers ranging between 2i−1 and 2i-1. The number of
buckets is limited by the number of pending requests for distinct pages. There
will be dlog(R + 1)e buckets of pages, where R is the number of pending requests
of the most requested page in the system. In each bucket, the pages are ordered
according to their first request arrival time. The first page of each bucket is the
first requested page within that bucket.

Whenever we need to find the page with the maximal ATWT, we compare
only the ATWT values of the first pages of each bucket. Since the number of
buckets is logarithmic with respect to the most requested page’s request number,
we would examine very few candidates. The page with the largest ATWT value is
selected among the first entries of all buckets. It can be shown that the bucketing
scheme results in selecting a page with an ATWT value which is at least half of
the maximum ATWT value.

1 A formula similar to the approximation we provide for total waiting time has also
been suggested by Aksoy and Franklin [5] but through completely different reasoning
and observations from ATWT.



186 M. Karakaya and Ö. Ulusoy

3.2 Implementation of Bucketing Algorithm

The data structure used for each requested page in Bucketing algorithm is il-
lustrated in Fig. 1. Each bucket is a linked list of requested pages2. Pages are
ordered in the linked lists according to the first request arrival time. Fields Prev
and Next are pointers to the previous and next pages, respectively in the linked
list.

A

Arrival Time
First Request

requests

Total number
R

Next

of pending

Previous page

according to

A value

according to

A value

Next page

Prev

Fig. 1. Page data structure

Entries for pages are placed in buckets by mapping total number of requests
to bucket number. A page with a total request number i is placed to bucket
blog(i)c + 1.

Bucketing algorithm works as follows: when a request arrives to the server,
if it is the first request for the page, its arrival time is recorded to field A of the
page data structure and the number of pending requests (R) is set to one. The
page is placed at the end of the linked list in the first bucket since its R value
is 1.

Otherwise, if the page was requested and not yet broadcast, R is incremented
by one. Then, if the page does not belong to the existing bucket anymore, it is
moved to the appropriate bucket according to its R value. The page is then
inserted in the linked list of this bucket with respect to its A value.

In the selection of the page to broadcast, only the first page of each bucket
is examined. The page with the largest ATWT is broadcast and removed from
the bucket. The bucketing scheme reduces the decision overhead considerably
without deteriorating the quality of the produced broadcast.

We have also implemented a variant of Bucketing algorithm, called k-depth
Bucketing algorithm, in which we examine the first k entries of each bucket. By
comparing more entries in a bucket, it is expected to have more accurate ATWT.

Minimizing the Variance of Waiting Time. We have investigated the vari-
ance of waiting time produced by ATWT and several other heuristics. In [13],
Jiang and Vaidya reformulate the algorithm presented in [17] considering vari-
ance metric and propose a new algorithm called α-algorithm. The authors also
2 For performance concerns, instead of using a linked list data structure, a heap data

structure can also be implemented to store the items in each bucket. However, for
the sake of simplicity we prefer to implement a linked list data structure in the
simulation.



Evaluation of a Broadcast Scheduling Algorithm 187

claim that the algorithm can be adapted to pull-based systems as well. There-
fore, we modify the computation of ATWT in our heuristic in a way similar to
that suggested in [13] as follows:

(t − Ap)α ∗ Rp(t) (2)

where α can be assigned different values in order to tune variance of waiting
time and mean waiting time.

4 Simulation Results

We have simulated the mobile environment introduced in Sect. 2.1. The simula-
tion program was written in CSIM [16]. Due to lack of space we can not provide
all the experiments and their results. For more details please refer to [15].

4.1 Simulation Model

Our simulation model consists of three main components: a mobile support sta-
tion (MSS), a population of mobile units (MUs) and communication channels.
Published requests are kept in service queue. Online database stores the shared
data items. The decision process is performed by a scheduling algorithm. Client
population represents MUs within the cell. Communication channel is a two-way
medium. In broadcast channel, selected data items are delivered to MUs, whereas
backchannel is used to send data requests of MUs to MSS.

Simulation parameters and their values are summarized in Table 1. dbSize is
the total number of available data items at an MSS. Data items are numbered
from 1 to dbSize, where a data item is, for example, a web page or a file. We use
the terms data item and page interchangeably since the information server can
be a database or web server.

Table 1. Simulation parameters

Symbol Description Default Range Unit

λ Mean Req.Arrival Rate 10 [10-100] req./tick
Θ Request Pattern Skewness 1.0 [0.1-1.0] -
dbSize Database Size 1,000 [1,000-10,000] pages
pSize Page Size 1 - tick

Requests of MUs are represented by a single request stream. Request arrivals
are assumed to be Poisson with a mean value of λ. By increasing λ, we can sim-
ulate a higher system load. MUs may exhibit data locality, querying a particular
subset of the database repeatedly [9,12]. This subset is a hot spot for an MU.
In general, a user may request multiple items simultaneously and would expect



188 M. Karakaya and Ö. Ulusoy

to receive mutually consistent versions of the requested items. In this paper,
similar to many of the past work, we consider the case where a user demands
only one item per request, and unless the user gets the item, a new request is
not initiated. In our work, the effect of transmission errors is not considered. We
assume that when a data item is broadcast, all the users requesting that item
receive it completely. It is assumed that access probabilities follow the Zipf [20]
distribution over the database items as in many other related work (e.g., [3,5,
19]). Data items are supposed to be ordered in the database according to their
access probabilities in decreasing order, i.e., the most favorite data item is in
the first place in the database. Zipf’s law states that the relative probability
of a request for the i’th most popular data item is proportional to 1

i , where i
is between 1 and dbSize. The Zipf distribution can be formulated to show the
demand probability of each data item as below:

pi =
(1/i)Θ

ΣdbSize
i=1 (1/i)Θ

(3)

where Θ is a parameter termed access skew coefficient [18]. By changing the
value of Θ, different Zipf distributions can be obtained.

The time to broadcast a data item is calculated by a specific time unit called
tick. We assume that page sizes (pSize) are equal and each page can be transmit-
ted in one tick. The use of tick as a time unit enables us to compare easily the
results of systems with different properties such as bandwidth and data item size.
For evaluating a broadcast scheduling algorithm for a particular set of parame-
ters, the broadcast schedule is produced for at least 30,000 cycles. Furthermore,
we run each configuration ten times and use the averages as final estimates.

4.2 Performance Criteria

We have used the following performance criteria in our evaluations:

– Waiting time of a request is defined as the duration from when the request
is made until the desired data item begins to be transmitted on the channel.

– Variance of waiting time is taken into consideration to evaluate the Quality
of Service experienced by any user [13], where the overall mean waiting time
is an indication of the idle time for the whole user population.

– Worst waiting time is defined as the maximum amount of time that any
user request waits before being satisfied. The reason to use this criterion
is to check if the algorithm causes starvation of some requests, which is an
important property for interactive applications [5].

– Decision overhead is the time taken by the computation which should be
done for selecting a data item to broadcast next. The decision overhead of a
good scheduling algorithm should not be high.

4.3 Mean Waiting Time

In this experiment, mean request arrival rate (λ) is varied from 10 requests to
100 requests per tick. As depicted in Fig. 2, mean waiting times for all algorithms



Evaluation of a Broadcast Scheduling Algorithm 189

are increasing while the request arrival rate is getting higher. However, after a
certain rate, it levels off. In the figure, the results of MRF and FCFS are not
presented. Because they have much larger mean waiting time than the other
algorithms. LWF, RxW, and Bucketing algorithms are characterized by almost
the same mean waiting time. The largest difference between any two of these
three algorithms is not more than 0.8%.

Fig. 2. Mean waiting times of the LWF, RxW, and Bucketing algorithms

Although LWF is a good algorithm in terms of mean waiting time, straight-
forward implementation of it is not practical for large databases and high-speed
broadcast channels. RxW and Bucketing algorithm are the only algorithms which
are practical to implement and satisfactory in terms of mean waiting time results.

We have conducted several simulation tests to record the impact of the dif-
ferent database sizes and access skewness values. It is observed that the resulting
waiting times of algorithms are relatively almost the same. As the database size
increases, the mean waiting time increases as well. There is not much difference
between the scalability of the algorithms with respect to database size. There-
fore, concerning the time required to perform the simulation experiments, we
preferred to use a default database size of 1,000 pages for all other experiments
without losing generality. As the skewness of the Zipf distribution is increased,
mean waiting time values of the algorithms, except FCFS, are getting consid-
erably smaller. This result is due to the fact that the highly skewed request
distribution (i.e., θ ≥ 0.7) leads to the existence of many pending requests to
a few data items, and that broadcasting one of the most requested data items
satisfies many pending requests. RxW, LWF and Bucketing algorithms take the
number of pending requests into account and this property causes more efficient
use of the broadcast channel. However, when θ is 0.1, the distribution reduces to
an almost uniform distribution, and each data item has almost the same pending



190 M. Karakaya and Ö. Ulusoy

requests. In that case, all the scheduling algorithms lead to almost the same mean
waiting time. FCFS does not consider the pending request number in broadcast
scheduling. Hence, the mean waiting time obtained with this algorithm does not
improve much when the access skewness increases.

4.4 Variance of Waiting Time

In Sect. 2, we have modified our algorithm to handle the trade-off between mean
waiting time and variance of waiting time. The ATWT value used as a selection
criterion in Bucketing algorithm has been modified as in (2).

To observe the effect of different α values both on variance of waiting times
and mean waiting time of Bucketing algorithm we conduct several experiments.
In these experiments, α parameter of (2) is varied from 0.5 to 3.0, while using the
other default parameter values given in Table 1. We observe that the trade-off
between mean waiting time and variance of waiting time is evident. For higher
values of α, the variance is improving, on the other hand, the mean waiting
time of the algorithm is getting worse. The mean waiting time of the algorithm
improves while α is increased from 0.5 to a certain value, which is 0.9 in our
experiment. Then, for the values larger than this threshold, the mean waiting
time begins to worsen again. This result is due to the fact that for the α values
higher than 1, the modified ATWT heuristic in (2) attaches more importance to
the waiting time of the first request than the total number of pending requests
of a page. Therefore, the heuristic selects the pages similar to those selected with
FCFS. On the other hand, when α is set to values lower than 1, the heuristic
behaves in favor of the most requested pages like MRF. As a result, as the α
value gets smaller or larger than 1, the experienced mean waiting time becomes
more similar to that of one of the two algorithms.

We also conducted an experiment to compare the variance obtained with all
scheduling algorithms. The results depicted in Fig. 3 show that FCFS has the
lowest degree of variance due to the fact that in the worst case, the algorithm
broadcasts any requested data item after broadcasting the whole set of data
items in the database. That is, for the waiting time of a request, there is an
upper bound which is determined by the database and page sizes. This upper
bound also limits the variance of the waiting time. However, we can not claim
this argument for the other algorithms.

The performance results obtained after modifying the computation of ATWT
in our algorithm as in (2) are presented in Fig. 3. In this experiment, we set
the α value to 2. For the high workloads, the modified ATWT has even better
variance of waiting time than that of FCFS. However, as discussed above, the
mean waiting time of the modified ATWT has become slightly worse (see Fig. 4).
With a greater value for α (e.g., 3), the variance of waiting time can be further
decreased; nonetheless, the the mean waiting time would become worse.



Evaluation of a Broadcast Scheduling Algorithm 191

Fig. 3. Comparing Bucketing algorithm when α=2

Fig. 4. Mean waiting time of Bucketing algorithm when α=2

4.5 Worst Waiting Time

The reason to investigate the worst waiting time is to check if a scheduling
algorithm causes starvation of any request, which is an important property that
should be avoided in interactive applications. Figure 5 displays the results for
the longest waiting time experienced by any MU during the whole simulation
time. For the default values of the simulation parameters presented in Table 1,
FCFS has the lowest worst waiting time among all the algorithms. As discussed
above, when FCFS is employed as the scheduling algorithm, any requested data
item will be broadcast after the data items previously requested and the number
of these data items is limited by the database size. In other words, the largest



192 M. Karakaya and Ö. Ulusoy

possible worst waiting time of a request is the time taken by broadcasting all
the database items. However, for the other algorithms, it might be possible
that a request waits while some of the data items are broadcast multiple times.
Bucketing algorithm has considerably lower worst waiting time values compared
to RxW. The results obtained with MRF are so much larger than those of the
other algorithms that we do not include them in the figure.

Fig. 5. Worst waiting time

4.6 Scheduling Decision Overhead

As discussed previously, a good scheduling algorithm should not have much
scheduling decision overhead. In implementing the performance model, the de-
cision overhead associated with each algorithm has not been considered. Since
this overhead can not be accurately simulated for different types of algorithms,
the time spent during the decision process has been ignored. For a comparative
evaluation of decision overhead of the scheduling algorithms, we examined the
number of requests scanned for selecting one of them to broadcast. If the number
is large, the decision takes much more time and may become a bottleneck.

We compared the average number of data items scanned by three algorithms:
LWF, RxW and Bucketing. FCFS is not included in this experiment. It just
broadcasts the request that has arrived first, and does not need to compare any
entry. On the other hand, its overall waiting time is so bad that it is not a
competitive algorithm to be used.

As depicted in Fig. 6, LWF has the highest decision overhead while Bucketing
algorithm has the lowest. The overhead of RxW is in between. Compared to
other algorithms, Bucketing algorithm examines significantly fewer number of
requests at each scheduling decision. For a request rate of 10 requests per tick,



Evaluation of a Broadcast Scheduling Algorithm 193

Fig. 6. Decision overhead

LWF compares 130 times more entries and RxW compares 36 times more entries
than that of Bucketing algorithm3.

4.7 Improving the Bucketing Algorithm

We have tried to improve the mean waiting time of our Bucketing algorithm and
implemented the depth approach as presented in Sect. 3.2. There is a trade-off
between the decision overhead and the mean waiting time in this approach. As
we increase the search depth, we need to compare more entries of ATWT values,
and we obtain lower mean waiting time. When we set the depth parameter to
50, the resulting mean waiting time of Bucketing algorithm is less than that of
RxW as can be seen in Fig. 7.

5 Conclusion

In this paper, the problem we attack is the design of a broadcast scheduling al-
gorithm which efficiently meets the demands of a mobile computing environment
and mobile users. We have first proposed a new broadcast scheduling heuristic,
ATWT, which is an approximate version of LWF heuristic [19]. Then, we have
developed an algorithm called Bucketing algorithm to implement ATWT heuris-
tic by using a bucketing scheme. Finally, we have conducted extensive simulation

3 In [5], approximate versions of the RxW algorithm are proposed and they are shown
to lead to less comparisons in deciding which data item to broadcast. However, these
approximate versions have worse mean waiting time compared to RxW. The Buck-
eting algorithm, as discussed in Sect. 4.3, produces almost the same mean waiting
times as RxW, while leading to less scheduling decision overhead.



194 M. Karakaya and Ö. Ulusoy

Fig. 7. Bucketing algorithm with depth=50 and the other competitive algorithms

experiments to evaluate the performance of our algorithm, and to compare the
performance results against those of previously proposed scheduling algorithms.

Considering the performance results, the first remark to be done is that the
most competitive algorithm to our algorithm is RxW [5]. The other algorithms,
except LWF, do not produce good results with respect to the main performance
criterion, the overall mean waiting time. Although, LWF has better performance
than all the others, it has serious drawbacks which prevent its practical usage. In
terms of the other performance metrics, i.e., variance of waiting time and worst
waiting time, the performance of Bucketing algorithm is better, in general, than
that of all other scheduling algorithms.

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast disks: Data manage-
ment for asymmetric communication environments. Proceedings of ACM SIGMOD
(1995) 199–210

2. Acharya, S., Franklin, M., and Zdonik, S.: Balancing push and pull for data broad-
cast. Proceedings of ACM SIGMOD Conference. Tuscon, Arizona. (1997)

3. Acharya, S., M., Franklin, J., Zdonik, S.: Dissemination-based data delivery using
broadcast disks. IEEE Personal Communications. 2(6) (December 1995) 50–60

4. Aksoy, D., Franklin, M.: Scheduling for large-scale on-demand data broadcasting.
Proceedings of the IEEE INFOCOM Conference. (1998) 651–659

5. Aksoy, D., Franklin, M.: Rxw: A scheduling approach for large-scale on-demand
data broadcast. ACM/IEEE Transactions on Networking. 7 (1999) 846–860

6. Ammar, M., H., Wong, J., W.: The design of teletext broadcast cycles. Performance
Evaluation. 5 (November 1985) 235–242

7. Ammar, M., H., Wong, J., W.: On the optimality of cyclic transmission in teletext
systems. IEEE Transactions on Communications. 35 (January 1987) 68–73



Evaluation of a Broadcast Scheduling Algorithm 195

8. Barbara, D.: Mobile computing and database: A survey. IEEE Transactions on
Knowledge and Data Engineering. 11 (January-February 1999) 108–117

9. Barbara, D., Imielinski, T.: Sleepers and workaholics: Caching strategies in mobile
environment. ACM SIGMOD RECORD. 23 (May 1994)

10. Hameed, S., Vaidya, N.,H.: Log-time algorithms for scheduling single and multiple
channel data broadcast. Proceedings of the Third Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking. Budapest, (September
1997) 90–99

11. Hameed, S., Vaidya, N.,H.: Efficient algorithms for scheduling data broadcast.
Wireless Networks. 5 (1999) 183–193

12. Imielinski, T., Badrinath, B., R.: Mobile wireless computing: Challenges in data
management. Communications of the ACM (October 1994) 19–27

13. Jiang, S., Vaidya, N., H.: Response time in data broadcast systems: Mean, variance
and trade-off. Proceedings of International Workshop on Satellite-based Informa-
tion Services (WOSBIS). (October 1998)

14. Jiang, S., Vaidya, N., H.: Scheduling data broadcasting to “impatient” users. Pro-
ceedings of the ACM International Workshop on Data Engineering for Wireless
and Mobile Access. Seattle, WA USA, (August 1999) 52–59

15. Karakaya, M., Ulusoy, Ö.: An efficient broadcast scheduling algorithm for pull-
based mobile environments. Submitted to the IEEE/ACM Transactions on Net-
working.

16. Schwetman, H.: Csim18 the simulation engine. In J., Charnes, D., Morrice, D.,
Brunner, J., Swain, editors. Proceedings of the 1996 Winter Simulation Conference.
San Diego, CA, (1996) 517–521

17. Vaidya, N., H., Hameed, S.: Scheduling data broadcast in asymmetric communi-
cation environments. Wireless Networks. 5 (1999) 171–182

18. Vaidya, N., H., Jiang, S.: Data broadcast in asymmetric wireless environments.
Proceedings of First International Workshop on Satellite-based Information Ser-
vices (WOSBIS). NY, (November 1996)

19. Wong, J., W.: Broadcast delivery. Proceedings of The IEEE. 76 (December 1988)
1566–1577

20. Zipf, G., K.: Relative frequency as a determinant of phonetic change. XL.
Reprinted from the Harvard Studies in Classical Philiology. (1929)


	Introduction
	Background
	Mobile Computing Environment
	Related Work

	Bucketing Algorithm
	Approximate Total Waiting Time
	Implementation of Bucketing Algorithm

	Simulation Results
	Simulation Model
	Performance Criteria
	Mean Waiting Time
	Variance of Waiting Time
	Worst Waiting Time
	Scheduling Decision Overhead
	Improving the Bucketing Algorithm

	Conclusion

