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ABSTRACT

POINT CLOUD REGISTRATION USING QUANTILE
ASSIGNMENT

Ecenur Oğuz

M.S. in Industrial Engineering

Advisors: Mustafa Ç. Pınar and Oya Karaşan

July 2023

Point cloud registration is a fundamental problem in computer vision with a wide

range of applications. The problem mainly consists of three parts: feature estimation,

correspondence matching and transformation estimation. We introduced the Quan-

tile Assignment problem and proposed a solution algorithm to be used in a point

cloud registration framework for establishing the correspondence set between the

source and the target point clouds. We analyzed different common feature descriptors

and transformation estimation methods to combine with our Quantile Assignment

algorithm. The performance of these approaches together with our algorithm are

tested with controlled experiments on a dataset we constructed using well-known 3D

models. We detected the most suitable methods to combine with our approach and

proposed a new end-to-end pairwise point cloud registration framework. Finally, we

tested our framework on both indoor and outdoor benchmark datasets and compared

our results with state-of-the-art point cloud registration methods in the literature.

Keywords: point cloud registration, Fast Point Feature Histograms (FPFH) descrip-

tor, quantile assignment, iterative closest point algorithm, bipartite graph matching,

Hungarian algorithm, Hopcroft-Karp algorithm.
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ÖZET

NİCELİKSEL ATAMA YÖNTEMİ İLE NOKTA BULUTU
EŞLEŞTİRME PROBLEMİNİN ÇÖZÜLMESİ

Ecenur Oğuz

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanları: Mustafa Ç. Pınar ve Oya Karaşan

Temmuz 2023

Nokta bulutu eşleştirme, bilgisayarlı görü alanında geniş uygulama alanları olan

temel bir problemdir. Bu problem genel olarak üç kısımdan oluşur: öznitelik be-

lirleme, tekabüliyet eşleştirme ve transformasyon belirleme. Kaynak ve hedef nokta

bulutları arasındaki tekabüliyet setinin belirlenmesi ile nokta bulutu eşleştirme prob-

leminde kullanılması için niceliksel atama problemini tanımladık ve bu problem için

bir çözüm algoritması önerdik. Niceliksel atama algoritmamızla birlikte kullanmak

için yaygınlıkla kullanılan farklı öznitelik tanımlama ve transformasyon belirleme

yöntemlerini analiz ettik. Literatürde sıklıkla kullanılan üç boyutlu modeller ile

oluşturduğumuz veri kümesini kullanarak bu yöntemlerin algoritmamızla birlikte kul-

lanıldığındaki performansını test ettik. Önermiş olduğumuz niceliksel atama yöntemi

ile birlikte kullanılabilecek en uyumlu yöntemleri tespit ettik ve yeni bir baştan-uca

ikili nokta bulutu eşleştirme çatısı önerdik. Son olarak, geliştirdiğimiz çatıyı iç mekan

ve dış mekan denektaşı veri kümeleri üstünde test ettik ve sonuçlarımızı literatürdeki

güncel olan en iyi nokta bulutu eşleştirme yöntemleri ile karşılaştırdık.

Anahtar sözcükler: nokta bulutu eşleştirme, Hızlı Nokta Özellik Histogramları

(FPFH) tanımlayıcısı, niceliksel atama, iteratif en yakın nokta algoritması, iki parçalı

çizge eşleme, Hungarian algoritması, Hopcroft-Karp algoritması.
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Chapter 1

Introduction

This thesis introduces a new coarse-to-fine approach to solving the pairwise 3D point

cloud registration (PCR) problem. PCR aims to align two or more point clouds in a

standard coordinate system by estimating the transformation that maps one point

cloud onto another. A point cloud is a set of data points in X, Y, and Z coordi-

nates representing a 3D shape or object. Range sensors such as ultrasonic sensors,

Kinect, and LiDAR are widely used technologies to gather point cloud data [2]. Since

these sensors have a limited view range, the existing technologies cannot represent

a complete scene for larger shapes or objects. PCR combines the point clouds and

obtains a complete 3D scene; therefore, it is a fundamental task in computer vision

and robotics with many applications such as 3D reconstruction, 3D localization, and

pose estimation [3].

The pairwise PCR problem mainly involves detecting the corresponding point

pairs between the two clouds (source and target) and calculating the transformation

matrix (rotation and translation) that minimizes the distance between the corre-

sponding points. For many applications, the source and the target point cloud do
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not match exactly and only partially overlap [4]. To deal with this challenge, we

defined the quantile assignment problem to obtain the correspondence set using a

bipartite assignment approach where we aim to detect the point pairs that belong

to the overlapping region and find an accurate matching for those pairs only.

1.1 Problem Definition

Let S = {p1, . . . , pN} and T = {q1, . . . , qM} be the source and the target point clouds

where pi and qj are the coordinate vectors of the i
th and jth points of their respective

point cloud, S, T ⊂ R3.

The goal of PCR is to find the rotation matrix R and the translation vector t that

minimizes the distance between the source and the target point cloud, i.e., solve the

following optimization problem:

min
R∈R3×3

t∈R3

d(RS + t, T ).

We define the correspondence set C ⊂ N2 as the one-to-one mapping between S
and T , i.e. the sets representing the points of the source and the target point clouds

where N denotes the natural numbers. Let (i, j) be any tuple in C, then the points

pi ∈ S and qj ∈ T are said to correspond. Assume this C is known, then d(S, T ),
which denotes the distance between S and T , is defined as

d(S, T ) =
∑

(i,j)∈C

∥pi − qj∥2.
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When C is known, the optimization problem above has a closed-form solution [5].

However, obtaining an accurate enough correspondence set is a challenging task.

1.2 Challenges

Range sensing technologies have evolved rapidly throughout recent years [6]; however,

the point cloud data gathered is still subject to noise and outliers. Moreover, as

mentioned earlier, the point clouds to be registered have only partial overlaps. These

limitations make it difficult to accurately detect the points in the source point cloud

belonging to the overlapping region and the points in the target point cloud they

correspond to. Since the initial positions of the two clouds are on different coordinate

systems, only using the Euclidean distance between the data points for registration

may result in false alignments. Therefore pose-invariant local descriptors are widely

utilized [7] to detect the corresponding pairs, and remarkable developments have

been made regarding these descriptors. Still, the accuracy of the 3D point cloud

registration is limited by the robustness of descriptors, and improvement is needed

for better results.

In general, input point clouds may contain up to billions of points, and therefore

PCR applications have been limited by high memory footprint and slow speed [8].

Downsampling methods are utilized to deal with more extensive data. However,

downsampling the point clouds may result in losing some of the descriptive features of

surfaces. Thus, there is a trade-off between accuracy and computational complexity,

which makes it challenging to deal with these large point clouds without suffering

from inaccurate correspondences. When the correspondence set does not contain

enough accurate corresponding pairs, the resulting transformation fails to align the

source point cloud with the target point cloud.
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1.3 Applications

PCR plays a critical role in various applications in computer vision and robotics.

PCR algorithms represent scenes and objects in 3D by registering multiple point

cloud data. This process is called 3D reconstruction. 3D reconstruction can be used

for medical imaging [9], constructions of buildings, roads and bridges [10], indoor

location-based services such as building maintenance and renovation planning [11],

autonomous driving [12], monitoring of underground mining [13]. Simultaneous local-

ization and mapping (SLAM) is another process in robotics that utilizes PCR meth-

ods for estimating the real-time positions of objects in unknown environments [14].

PCR application areas will likely grow as more accurate and robust techniques are

developed.

1.4 Motivation

The interest in PCR has increased rapidly in recent years due to many critical appli-

cations of the technique. Many efficient learning and optimization-based algorithms

can achieve accurate point cloud registration. However, there is still a need for im-

provement due to the many challenges of dealing with large and noisy point cloud

data. Also, as mentioned earlier, the low overlap ratio between the source and target

cloud imposes difficulties in estimating accurate transformations. Our study focused

on detecting the overlapping region and adaptively achieving accurate registration

by utilizing only the points in this region. We developed an optimization-based

algorithm that does not require any initialization.
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Chapter 2

Literature Review

There are many different algorithms developed to achieve efficient and accurate PCR.

There are two PCR types, which are global registration and local registration. Global

registration methods do not only use the point clouds’ positions; hence, they do

not require initialization. In contrast, local registration methods utilize the coor-

dinates of points and rely on a rough initial alignment. As mentioned earlier, the

initial alignment of the point clouds may affect the registration result adversely. A

common strategy to deal with this challenge is to adopt a coarse-to-fine registration

approach, which is first estimating an initial approximate transformation with coarse

registration (based on pose-invariant features) and refining this transformation with

fine registration (based on coordinates) [15]. Typically, global and local registration

problems are solved in a coarse-to-fine approach.

The local registration (refinement) is performed generally with the well-known

iterative closest point (ICP) method [16] [17] or its variants. ICP matches each

point in the source cloud to its geometrically nearest point in the target cloud and

transforms the source cloud such that the distance between these corresponding
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points is minimized. This procedure is repeated until the distance is below a thresh-

old. There are several standard methods for calculating the transformation: SVD,

Lucas-Kanade algorithm, and Procrustes analysis [3]. In addition to the point-point

distance metric, the point-plane, and plane-plane distance metrics are also used in

other ICP-based methods. ICP is a fast and straightforward method. However, it

converges to the nearest local minimum, and therefore its registration performance

is highly dependent on the initial position of the point clouds [15]. There are many

variants of ICP in the literature that made improvements to the classic method.

Scale-adaptive ICP method [18] integrates the scale factor into the optimization pro-

cess and handles the PCR problem when a scale difference between the input clouds

is present. In the Sparse ICP method [19], the registration optimization is formulated

using sparsity-inducing norms to become more robust to noise and outliers. Zhang

et al. [20] developed a fast converging method using an Anderson acceleration ap-

proach. Stechschulte et al. [21] used a Markov random field model to handle outliers

well when the overlap ratio between the clouds is low.

As stated earlier, refinement is typically performed with an ICP-based method.

Many different approaches can be used to obtain the rough alignment needed for

ICP. We classified these registration algorithms as learning-based and optimization-

based ones. In the remainder of this chapter, some of the well-known methods in

both categories are explained.

2.1 Learning-based Approaches

Deep neural network (DNN) methods are used extensively in the literature to per-

form PCR. DNN is commonly used for feature extraction and transformation estima-

tion [3]. One common approach is establishing the features with a feature learning

model and using a robust estimation tool to obtain the transformation. Random
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sample consensus (RANSAC) algorithm [22] is one of the most used methods to

estimate the transformation matrix. RANSAC is a search algorithm that uses re-

peated random sub-sampling to estimate parameters iteratively. An alternative to

RANSAC is the optimized sample consensus (OSAC) algorithm [23] which has a

similar principle but uses a different error metric. For both algorithms, a different

set of correspondences are obtained at each iteration.

Zeng et al. introduced 3DMatch [24], a learning model that uses 3D local volumet-

ric data and extracts 512-dimensional features representing local patches. Instead of

learning from volumetric data, the PPFNet model [25] learns local descriptors on pure

geometry and extracts 64-dimensional compact descriptors. Yew et al. introduced

3DFeatNet [26], which uses weak supervision for learning and leverages alignment

and attention mechanisms to learn feature correspondences from GPS/INS tagged

3D point clouds without explicitly specifying them. SiamesePointNet [27], another

learning model for feature extraction, uses a hierarchical encoder-decoder architec-

ture to produce descriptors. PCR can be performed using the extracted features by

one of the above models and estimating a transformation via RANSAC.

DNNs are also utilized for transformation estimation with an end-to-end frame-

work. PCR can be solved with end-to-end neural networks by transforming the

registration problem into a regression problem [3]. 3DRegNet [28] uses DNN to clas-

sify the inliers/outliers among correspondences and perform regression of the trans-

formation parameters. Alternative to DNN, the authors also adopted a Procrustes

approach for regression. Similarly, Choy et al. introduced the framework deep global

registration [29], which uses a differentiable Weighted Procrustes algorithm for trans-

formation estimation. Deep global registration uses a 6-dimensional convolutional

network for correspondence confidence prediction and a robust gradient-based SE(3)

optimizer for pose refinement. Gojcic et al. introduced a learning model for solving

coarse and fine registration with an end-to-end neural network. Similarly, they use

the Procrustes problem to estimate the initial transformation parameters and the
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iterative-reweighted least squares (IRLS) problem for refinement [30].

Learning-based methods can perform fast and accurate registration. However,

they have a separate training process that requires extensive data, and their perfor-

mance can drop significantly for unknown scenes much different than the training

data [3].

2.2 Optimization-based Approaches

Handcrafted feature descriptors are also commonly used instead of feature learning

models. Handcrafted descriptors are based on spatial and geometric attributes or

relationships between different points in the cloud [7]. Spin image [31] is generated

by accumulating two parameters in a 2D array that describe the position of a point

with respect to its neighboring points. Local feature statistics histogram (LFSH) [23]

describes local shape geometries using local depth, point density, and angles between

normals. Some handcrafted descriptors are built using a local reference frame (LRF).

Signature of Histograms of OrienTations (SHOT) [32] descriptor is based on spatial

distributions of the local neighborhoods of the key points. Fast Point Feature His-

tograms (FPFH) [33] is a robust descriptor based on geometric relations within the

local neighborhood of a key point.

Fast global registration (FGR) [34] is a state-of-the-art optimization-based global

registration method. FGR uses FPFH features for correspondence search and esti-

mates the transformation with an alternating optimization algorithm that utilizes

the Jacobian of the feature differences and the Gauss-Newton method. Probabilistic

approaches are also adopted for optimization-based registration algorithms, such as

the coherent point drift (CPD) algorithm. CPD [35] transforms the registration prob-

lem into a likelihood maximization problem using Gaussian mixture models (GMM).
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Another popular approach is to use graph matching to establish the correspondence

set. The iterative global similarity point (IGSP) algorithm [36] is a variant of the

ICP algorithm where correspondences are obtained with the Hungarian algorithm

using a hybrid distance metric. The metric used in IGSP utilizes the points’ local

and geometric features. The singular value decomposition (SVD) method calculates

the transformation matrix.

Since optimization-based registration methods do not need training, they can be

generalized well to unknown scenes. However, the performance of these methods

might suffer from high computation costs.

Significant advancements in point cloud registration have been made in recent

years, with a predominant emphasis on feature extraction and transformation estima-

tion. However, we have observed a relative lack of attention given to the crucial task

of feature-matching or correspondence estimation by computer vision researchers.

Typically, existing techniques such as maximum matching or nearest neighbor ap-

proaches are employed for this task, but they might fall short in terms of accuracy in

the presence of noise and partial overlap. The correspondence set directly affects the

end transformation and, thus, is a crucial part of the registration process. Therefore,

integrating more sophisticated novel feature-matching techniques to point cloud reg-

istration frameworks would help to achieve higher accuracy and precision. The main

focus of this thesis is developing and applying the quantile assignment algorithm

for precise correspondence estimation. We defined the quantile assignment problem

specifically for the registration task considering the limitations such as noise, outliers,

and partial overlap between the input point clouds. We analyzed different feature

descriptors and transformation estimation methods to combine with our correspon-

dence estimation algorithm and proposed a new optimization-based framework.
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Chapter 3

The Quantile Assignment Problem

We used the previously reported quantile assignment algorithm [4]1 to obtain the

correspondence set needed for estimating a transformation that aligns the source

cloud with the target cloud. The assignment problem was shown as polynomially

solvable [37], and the quantile assignment problem is a variant of the maximum

bipartite assignment problem.

3.1 Problem Definition

Let the sets S = {p1, . . . , pN} and T = {q1, . . . , qM} represent points in the source

and target cloud respectively. Without loss of generality, let M ≥ N . The feature

of each point is calculated using a local descriptor. Note that these features can be

a scalar or a vector depending on the descriptor. Let pi be the feature value/vector

of ith point in S and qj be the feature value/vector of jth point in T . Using these

1Part of this chapter was previously published elsewhere.
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features, we construct the affinity matrix AN×M where Aij = −ρe∥pi−qj∥2 and ρ is

the penalty coefficient.

The standard maximum weight assignment problem in graph G = (S ∪ T,A)

where S, T , and A are defined as above solves the following mathematical model.

max
N∑

n=1

M∑
m=1

AnmXnm

s.t.
N∑

n=1

Xnm = 1, m ∈ {1, . . . ,M}

M∑
m=1

Xnm = 1, n ∈ {1, . . . , N}

X ∈ {0, 1}N×M

The following relaxation is defined over the polytope of doubly stochastic matrices

is exact for this problem [38, 39].

max
N∑

n=1

M∑
m=1

AnmXnm

s.t.
N∑

n=1

Xnm = 1, m ∈ {1, . . . ,M}

M∑
m=1

Xnm = 1, n ∈ {1, . . . , N}

Xnm ≥ 0 for n ∈ {1, . . . , N},m ∈ {1, . . . ,M}.

We defined α ∈ [0, 1] as the overlap ratio between the source and the target clouds.

In practical applications, noise makes the overlap ratio difficult to estimate. Let us
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assume there is no noise, and K ⊆ N is the set of points in the source cloud (smaller

cloud without loss of generality) that matches exactly to the points in the target

cloud where N denotes the natural numbers. Then we set α =
|K|
N

, representing the

ratio of expected matches for the smaller point cloud. Using this value, we define

kα = max (1, ⌈(1− α)N⌉). We denote the distinct entries of the matrix A as q values.

The kth
α smallest q value is called the α-quantile, qα.

Given an affinity matrix A, let

X=

{
X ∈ {0, 1}N×M :

N∑
n=1

Xnm = 1,m∈{1, . . . ,M} and
M∑

m=1

Xnm = 1, n∈{1, . . . , N}

}

be the set of all bipartite matchings, i.e., the set of permutation matrices. Given α,

the objective of the quantile assignment problem is to find the bipartite matching on

the affinity matrix A that maximizes the α-quantile of the weights associated with

a bipartite matching problem, i.e., solve the following optimization problem.

max
X∈X

qα ({AnmXnm, n ∈ {1, . . . , N},m ∈ {1, . . . ,M}) .

It was shown that the problem is polynomially solvable with the proposed al-

gorithm, and an integer programming formulation is reported for completeness [4].

After the correspondence set is established using the quantile assignment problem,

the transformation matrix is estimated using only the matches with larger affinity

values than the optimal kth
α smallest affinity value since we assume that the matches

with smaller affinity values belong to the non-overlapping region. Hence, we avoid

using faulty matches that could disrupt the calculation of our transformation matrix.

12



3.2 Solution Method

3.2.1 Algorithms

We can solve the quantile assignment problem by conducting a binary search on the

affinity matrix’s distinct entries called the q values. The q values are sequentially

tested at each binary search step for α−feasibility. A particular q value is considered

α − feasible if there exists X ∈ X such that the kth
α smallest affinity value in

{AnmXnm, n ∈ {1, . . . , N},m ∈ {1, . . . ,M}} is at least as high as q [4]. We aim to

find the largest α-feasible q value.

This property is tested by constructing a binary cost matrix C depending on the q

value and solving the assignment problem on this C. A Hungarian-based method is

proposed to test whether a q value is α−feasible. This method first constructs C by

assigning each entry of A the value one if that entry is smaller than q and zero if not.

Then, the minimum cost matching problem can be solved on C using the Hungarian

algorithm [40]. The current q value is considered α − feasible if the minimum cost

found with the Hungarian algorithm is less than or equal to kα − 1. Note that the

source and the target clouds are generally not the same sizes; hence, our matrix C

may not be square. Since the Hungarian algorithm can only be performed in square

matrices, we complement C to a square one by adding appropriate dummy rows or

columns [4].

Alternatively, a Hopcroft-Karp-based method is proposed. The Hopcroft-Karp

maximum cardinality matching algorithm [41] is applied in a bipartite graph that is

not necessarily complete or balanced to test the α-feasibility of a q value. The edges

of this bipartite graph will correspond to pairs in A that have zero corresponding

costs in C. Augmenting the maximum cardinality matching edges in this graph

with enough edges with cost values as one will result in a minimum cost matching.
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Similarly, if the cost computed for C is less than or equal to kα−1, one can conclude

that the current q value is α−feasible. A third option for testing the α−feasibility

is to adopt the method reported by Itai et al. [42]. We will refer to this method as

the Bellman-Ford-based method. In [42], the maximum cardinality problem on a

bipartite graph can be solved by adding source and sink nodes to the graph and

solving the minimum cost maximum flow problem similar to the second alternative.

Ford and Fulkerson’s augmenting path algorithm [43] can be applied through the

shortest paths in the residual network. Since the residual network will have negative

costs, the Bellman-Ford algorithm [24] is the proper algorithm to find the shortest

paths [4].

When the largest α− feasible q value is obtained, the matching found for that q

is utilized for constructing the correspondence set. Matched points with an affinity

value smaller than q are excluded from the matching, and the remaining pairs are

used for estimating the transformation matrix [4]. However, recall that the matching

is calculated on the binary cost matrix C; therefore, each potential pair with an

affinity value higher than q is treated the same. To further differentiate between

the potential point pairs, one can use the cost matrix Cq with the following entries

instead to obtain the correspondence set:

(Cq)ij :=

Aij, if Aij ≥ q,

0, otherwise.

Once the largest α − feasible q value is found, the maximum cost matching

problem is solved on this matrix one last time with the Hungarian algorithm to obtain

the final matching. With this modification, we aim to detect the pairs belonging to

the overlapping region of the two point clouds and search for the best matching among

the overlapping pairs. We will refer to this method as Hungarian cost sensitive in

the remainder of the sequel.
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Lemma. Given α, q, and A, deciding whether there exists a matching such that the

kth
α smallest entry in this matching is at least q can be done in O(M1.5N) time.

Proof. It has been shown in [42] that given a bipartite graph, finding a matching

with the additional restriction that no more than a given number of edges from a

specified subset are in the matching can be done in O(N3) time. We can adapt

their algorithm to solve the problem at hand. Let the subset of edges be those with

affinity values strictly less than the given q value, and the restriction is that no

more than kα − 1 edges should be used from this set. Then, any perfect cardinal-

ity matching in this graph will correspond to a perfect matching in the underlying

weighted bipartite graph with the kth
α smallest entry at least as large as the given

q value. This bound can further be improved by eliminating the edges with affinity

values less than q from the bipartite graph and solving for a maximum cardinality

matching via the Hopcropt-Karp algorithm [41]. If the number of edges to comple-

ment the matching to a perfect one is no more than kα − 1, then the answer is yes.

Since the complexity of the Hopcropt-Karp maximum cardinality finding algorithm

is O((#edges+#nodes)
√
#nodes) [41], our result follows.

Our main result follows from a binary search on possible q values, i.e., the distinct

entries in the affinity matrix.

Theorem. Finding a perfect matching that maximizes the α-quantile can be done in

O(M1.5N logM) time.

Proof. MN elements can be sorted in O(MN logMN) time. After applying a binary

search to these elements, the largest value will be determined after at most logMN

attempts. Since each requires O(M1.5N) time, the result follows.

The above result can also be alternatively reached. In [44], the authors show that

the problem of maximizing the kth smallest entry in a combinatorial optimization
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problem can be achieved in time complexity O(T log p) where p is the number of

variables in the optimization problem andO(T ) corresponds to solving the underlying

optimization problem with unitary data. In the special case when the combinatorial

optimization problem is finding a perfect cardinality matching, the same complexity

is attained.

The pseudocode for solving the quantile assignment problem [4] is depicted in

Algorithm 1.

Algorithm 1 Quantile assignment

Input: N ×M affinity matrix A and α ∈ [0, 1]
Output: qα

∗

Initialize:
q∗ ← 0
kα ← max(1, ⌈(1− α)N⌉)
Sort distinct entries of ({Aij, i ∈ N , j ∈M}) into q1 < q2, . . . , < qs
left← 1
right← s
while left ≤ right do

mid← ⌊ left+right
2
⌋

Cij =

{
1 if Aij < qmid

0 otherwise
i ∈ N , j ∈M.

cost← minimum cost perfect matching value for data C = [Cij]
if cost ≤ kα − 1 then

q∗ ← qmid

left← mid+ 1
else

right← mid− 1
end if

end while
return qα

∗
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3.2.2 Integer Linear Programming Formulation

Even though we have established above that the problem is solvable in polynomial

time, the problem is immediately amenable to a mixed integer linear programming

formulation that off-the-shelf solvers can process. For the interested reader, we pro-

vide this formulation below. Let A∗ = max{Amn : m,n ∈ N} be the largest affinity

value. Let us partition the matched edge variables defined for all m,n ∈ N into two,

namely,

xmn =

1 if matched edge {m,n} has Amn ≥ q

0 otherwise

and

ymn =

1 if matched edge {m,n} has Amn < q

0 otherwise
.

Then, the following model will solve the quantile bipartite perfect matching problem.
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max q (3.1a)

s.t.
N∑

m=1

(xmn + ymn) = 1 n ∈ N , (3.1b)

N∑
n=1

(xmn + ymn) = 1 m ∈ N , (3.1c)

Amnxmn ≥ q − A*(1− xmn) m,n ∈ N , (3.1d)

Amnymn ≤ q − 1 m,n ∈ N , (3.1e)

N∑
m=1

N∑
n=1

ymn ≤ kα − 1, (3.1f)

xmn, ymn ∈ {0, 1} m,n ∈ N . (3.1g)

Constraints (3.1b) and (3.1c) ensure that there will be a perfect matching. The

matching edges indicated with x and y variables are forced to have corresponding

affinity values at least and strictly less than q values, respectively, through constraints

(3.1d) and (3.1e). With constraint (3.1f), the number of matched edges with small

values is limited to the maximum allowed value for the given α. Finally, the objective

function finds the maximum possible q, i.e., the maximum α-quantile value.

18



3.3 Numerical Example

Consider the following instance with N = 5, the affinity matrix

A =



19 13 8 1 14

9 3 18 2 18

17 15 7 14 19

2 1 9 6 13

17 20 13 14 15


.

and α = 0.55. One can easily find that kα = 3. Consider the following perfect

matching.

A =



19 13 8 1 14

9 3 18 2 18

17 15 7 14 19

2 1 9 6 13

17 20 13 14 15


.

The q value in this matching is the third smallest value in the set of matched elements

and is equal to 18. However, the following assignment

A =



19 13 8 1 14

9 3 18 2 18

17 15 7 14 19

2 1 9 6 13

17 20 13 14 15


.

is preferable since it gives a q value equal to 19. The latter is the optimal value.
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Chapter 4

Computational Experiments

The performance of our approach explained in Chapter 3 is tested by conducting

a series of PCR experiments. We constructed a synthetic dataset inspired by the

experiments conducted by Zhou et al. [34]. Our dataset contains five models: the

Angel, Bunny, Happy Buddha, Dragon, and Horse point clouds [45]. We generated

five partially overlapping clouds for each model by cropping the models, and we added

Gaussian noise to each partial cloud using three noise levels. We set the Gaussian

standard deviation parameter σ equal to 0 (no noise), 0.0025 (noise level 1), and 0.005

(noise level 2) for each noise level, respectively, and multiplied this parameter with

the diameter of the partial cloud. Our dataset contains 75 different point clouds,

three noise levels for each model, and five point clouds for each noise level. The

overlap ratio varies between 51% and 94%. Visuals of an example partial cloud from

the three noise levels for each model can be seen in 4.1.
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(a) Angel

(b) Happy Buddha

(c) Bunny

(d) Dragon

(e) Horse

Figure 4.1: Noise added partial point clouds in the synthetic dataset
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An example of the PCR process for our experiments is visualized in 4.2.

(a) Partial bunnies (b) Rotated and translated

(c) Correspondences (d) Registered

Figure 4.2: (a) shows the initial position of the two partially overlapping clouds.

Then, the source cloud (blue) is rotated by the matrix R and translated by the vector

t as shown in (b) where R is constructed from the XYZ Euler angles [1]
[π
3
,
π

2
, π

]
, and

t = [0.5, 0.5, 0.5]. The correspondence set for the point clouds is constructed using

our quantile assignment algorithm. The correspondence lines between the point

clouds for the top 50 affinity values are visualized in (c). Then the transformation

matrix is calculated using the correspondence set and applied to the source cloud.

The final registration is shown in (d)

Ground truth rotation and translation for the experiments conducted with syn-

thetic data can be found by calculating the inverse of R and t. The registration
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performance is evaluated using the ground truth rotation and translation. The reg-

istration is successful if the difference between the transformation calculated and the

ground truth transformation is below a threshold. For the synthetic dataset, the

rotation threshold is 5◦, and the translation threshold is 2 cm. We used the evalua-

tion metric recall in our experiments, representing the ratio of successfully registered

point cloud pairs to all pairs [3].

4.1 Framework

We adopted a coarse-to-fine approach to perform PCR, consisting of global and local

registration as explained in Chapter 2. The workflow of our registration process can

be found in Figure 4.3.

Figure 4.3: Our workflow

The inputs of our algorithm are the source and the target point clouds. The

point clouds are simplified using voxel or uniform downsampling methods to deal
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with large data. In voxel downsampling, points in the cloud are bucketed into voxels

for a given measure, and each occupied voxel generates one point by averaging all

points inside [46]. An alternative method is uniform downsampling which samples

the point cloud in the order of the points. The selected point indices are [0, k, 2k, ...]

for a given parameter k [46].

Features of the simplified point clouds are extracted with the chosen descriptor.

We tested our algorithm with three different feature descriptors: curvatures [47],

FPFH [33], and LFSH [23]. The computation of each descriptor is explained, and

their performances are analyzed in Section 4.2.

The affinity matrix is constructed using the chosen descriptor, as explained in

Section 3.1, and the quantile assignment problem is solved on this affinity matrix

with one of the algorithms explained in 3.2.1. The registration performances of

different choices of algorithms are analyzed in Section 4.3. As stated earlier, the

quantile assignment algorithm requires an α value as input representing the overlap

ratio between the source and the target point cloud. This ratio must be estimated

visually for point clouds obtained by different scans. We manually synthesized the

partial point cloud pairs from a single model for our synthetic dataset. Therefore,

the overlap ratio is easily computed and used as an input.

The resulting matching of our quantile assignment algorithm is the initial cor-

respondence set. We apply a test called tuple normal alignment test to the initial

correspondence set to eliminate false correspondences. The tuple normal alignment

test process details are given in Section 4.4. After applying the test, we obtain the

final correspondence set to estimate the transformation.

Given the correspondence set, we implemented two methods to estimate the trans-

formation matrix. The first option is to perform singular value decomposition (SVD),

a well-known method for estimating the rotation matrix. After the rotation matrix
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is calculated with SVD and applied to the source point cloud, the translation vector

is calculated by simply using the difference between the mean coordinates of the

matched points among the target cloud and the rotated source cloud. We also im-

plemented the algorithm developed by Zhou et al. [34], which we refer to as the FGR

optimization method where FGR stands for Fast Global Registration. Both methods

are explained, and their registration performances are evaluated in Section 4.5.

The process so far is the global registration part of our framework. Finally, we per-

form local registration after the found transformation is applied to the source cloud.

The point-to-plane ICP algorithm (cf. Section 4.6) performs fast and accurate regis-

tration if the initial alignment of the input point clouds is close enough. Therefore,

the original target cloud and the previously transformed source cloud are taken as

input for the ICP algorithm to perform local refinement, and the final registration

is obtained.

4.2 Feature Investigation

Feature descriptor choice is crucial for our work. The main idea is that one should

associate with each point in the cloud a number or a vector that does not change

with the set of possible transformations that the point cloud may have to go

through to achieve an optimal registration with another point cloud. We imple-

mented three pose-invariant local descriptors for our PCR algorithm: curvatures [47],

Fast Point Feature Histograms (FPFH) [33], and Local Feature Statistics Histogram

(LFSH) [23]. In this chapter, computations of each of the implemented local descrip-

tors are explained, and the performances of the features are compared according to

their registration performance and descriptiveness.

Our first choice as a descriptor was curvatures. Curvature is a quantity preserved
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under rigid transformation. Histogram shapes of local curvature for K-nearest neigh-

bors are invariant under, e.g., affine transformations. Curvature computation for

point clouds is performed as follows. For each point xi, i = 1, . . . , n in the point

cloud, let Mi be the associated unit normal vector. Fix one point P = xi0 and let

N = Mi0 denote its normal vector. Let another point Qi = xi be chosen in a close

neighborhood of P . The normal curvature τi can be estimated at any point by

τi =
sin(β)

|PQi| sin(α)
,

where α denotes the angle between −N and PQi, and β represents the angle between

N and Mi (see [47] for details).

Alternative pose-invariant local features are Fast Point Feature Histograms

(FPFH). FPFH is a modification of previously reported Point Feature Histograms

(PFH) to be more robust. PFH is computed as follows. For a given point p, a ra-

dius r, and neighbor count k, all the points in the k-neighborhood of p are selected.

These points must be enclosed in the sphere where p is the center and the radius

is r. For any point pi in the k-neighborhood of p, the estimated normal of pi is

denoted as ni. Let pi and pj be any point pair in the k-neighborhood where pi has

a smaller angle between its associated normal and the line connecting the points,

without loss of generality. Let u = ni, v = (pj − pi) × u,w = u × v. The PFH of

the point p is computed using the following values α, ϕ, θ for each such pair (pi, pj)

in the k-neighborhood of p:

α = v · nj,

ϕ = (u · (pj − pi))/||pj − pi||, and

θ = arctan(w · nj, u · nj).

The default implementation uses 11 binning subdivisions, which results in a 33-

dimensional feature for each key point. FPFH is a modification of PFH where all
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neighbors of p are not fully interconnected, and thus the process is simplified. After

the set of tuples α, ϕ, θ between itself and some of its neighbors are computed for

each point p (called Simplified Point Feature Histograms (SPFH)), k neighbors of p

are re-determined and the final histogram (FPFH) is calculated as follows:

FPFH(p) = SPFH(p) +
1

k

k∑
i=1

1

wi

SPFH(pi),

where wi is the weight that represents the distance between query point p and a neigh-

bor point pi in a given metric space. The computation times are reduced drastically

for the implementation of FPFH compared to PFH, and most of the discriminative

power of PFH is retained (see [33] for details).

The third local descriptor we implement for our PCR algorithm is Local Feature

Statistics Histograms (LFSH). LFSH describes local shape geometries by encoding

their statistical properties on local depth, point density, and angles between normals.

The eigenvector corresponding to the minimum value of Cov(p) is used to estimate

the normal of a point p where

Cov(p) =


p1 − p̄

. . .

pk − p̄


⊤

·


p1 − p̄

. . .

pk − p̄


and p̄ is the centroid of the k-neighborhood of p.

The first aspect, local depth, is computed as follows. For a key point p, the k-

neighborhood of p is selected as described before. Along the positive direction of n

(normal vector of p), a 2D plane L is defined as a tangent plane of the sphere with

radius r. The projection of any neighbor pi on L is denoted as p′i. The local depth

is defined as the distance between pi and p′i, which is:

di = r − n · (qi − q).
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A circle of radius r is placed at the crossing point of n and L to calculate point

density. This circle is divided into several parts with the same width, and the ratio of

points distributed in each part is calculated using the distance of p′i from the crossing

point p′. This distance is denoted as ρ where

ρi =
√
||p− pi||2 − (n · (p− pi))2.

The deviation angle between normals is represented as

θi = arccos(n · ni).

Three sub-histograms are obtained using these feature statistics containing 10, 15,

and 5 bins, respectively. The LFSH descriptor is obtained by concatenating these

three sub-histograms into one histogram (see [23] for details).

The performances of the three local descriptors curvatures, FPFH and LFSH,

are first tested using the Feature Visualizer tool we designed using the Open3D

library [46]. For any given point in the source cloud, the location of the closest point

in the target cloud regarding its feature value/vector for the given local descriptor is

shown via the Feature Visualizer.

The given point for the point cloud on the left side of Figure 4.4 is shown as green.

The points in the point cloud on the right are colored from red to blue using the

heat map technique depending on their closeness (in terms of the used feature) to

the green point. The colors are normalized, the closest points are colored red, and

the furthest points are colored blue accordingly. According to our Feature Visualizer

tool, the FPFH feature seems more discriminative than the other two.

We used the Bunny model from our synthetic dataset to test the registration per-

formances of the descriptors. For each descriptor, our PCR framework is used on the

ten partially overlapping pairs from each noise level, with voxel downsampling and
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(a) Curvature (b) LFSH

(c) FPFH

Figure 4.4: Images obtained from the Feature Visualizer tool

uniform downsampling for simplification. The recall values are plotted for the cases

of no noise, noise level 1, and noise level 2 in Figures 4.5, 4.6, and 4.7, respectively.

Figure 4.5: Feature recalls with no noise
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Figure 4.6: Feature recalls with noise Level 1

Figure 4.7: Feature recalls with noise Level 2
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As a result of our experiments, the FPFH feature achieved better registration re-

sults in our PCR framework for each noise level and downsampling method compared

to curvatures and LFSH.

4.3 Correspondence Set

The initial correspondence set is obtained by solving the quantile assignment prob-

lem. Several solution methods are proposed and explained in Chapter 3. Integer lin-

ear programming formulation is not preferred for implementation since it has a much

higher computation cost than the algorithms. The Hungarian-based, Hopcroft-Karp-

based, and Bellman-Ford-based methods give the same solution among the proposed

algorithms. The Bellman-Ford-based method is much slower than the other two.

The Hungarian-based and the Hopcroft-Carp-based methods have similar computa-

tion times. However, the Hopcroft-Karp-based method is preferable since the affinity

matrix is not generally square (see [4] for more details regarding this comparison).

The results were expected to differ for the Hungarian cost-sensitive method since

the cost matrix construction was modified. Therefore, among the proposed solution

methods, we used the Hopcroft-Karp-based method and the Hungarian cost-sensitive

method for our computational PCR experiments since these two methods perform

better than their alternatives in terms of both accuracy and computation time.

In this chapter, the registration performances of the two methods are compared.

The bunny model in our synthetic dataset is again used for the experiments. The

recall values and the computation times are plotted below for the two methods.
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Figure 4.8: Hungarian cost-sensitive and Hopcroft-Karp-based recalls with voxel

downsampling

Figure 4.9: Hungarian cost-sensitive and Hopcroft-Karp-based recalls with uniform

downsampling
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As shown in Figures 4.8 and 4.9, the recall values resulting from the Hopcroft-

Karp-based and the Hungarian cost-sensitive methods are similar. However, there

is a significant difference between the computation times of the compared methods.

Therefore, we prefer the Hungarian cost-sensitive method in our implementation.

4.4 Tuple Normal Alignment Test

We adopted the tuple test used in [34] and used it on our initial correspondence

set to eliminate the faulty matches. The tuple test is applied as follows. Three

correspondence pairs (p1, q1), (p2, q2), (p3, q3) are randomly selected from the set.

The tuples (p1, p2, p3) and (q1, q2, q3) are considered compatible and pass the test if

the condition below is satisfied:

τ <
||pi − pj||
||qi − qj||

<
1

τ
, ∀ i, j = 1, 2, 3 and i ̸= j

where τ is selected as 0.9. For any two corresponding pairs (pi, qi), (pj, qj), the ratio

of their distances must be close to one if any of the correspondences is not false.

The source cloud is transformed by utilizing the correspondences that pass the

tuple test. Then, to further eliminate the faulty correspondences, we applied one

more test using the normal alignments of the triangles formed by the tuples. We

will refer to this test as the tuple normal alignment test, which is applied as follows.

Three correspondence pairs (p1, q1), (p2, q2), (p3, q3) are randomly selected from the

set. Let np be the surface normal of the triangle formed by the tuple (p′1, p
′
2, p

′
3)

and nq be the surface normal of the triangle formed by the tuple (q1, q2, q3), where

(p′1, p
′
2, p

′
3) is the points in the source cloud after the transformation is applied. The

correspondence pairs (p1, q1), (p2, q2), (p3, q3) remain in the final correspondence set
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if the angle between np and nq is less than or equal to our threshold which is set to

15◦. The final correspondence set is established in our implementation after both

the tuple test and the tuple normal test is applied to the initial correspondence set.

4.5 Transformation Estimation

The well-known singular value decomposition (SVD) method can estimate the trans-

formation matrix. After the final correspondence set is established, our aim is to

compute the rotation matrix R and the translation vector t that minimizes the

weighted sum of squared errors (the distance between the corresponding pairs), i.e.,

the following optimization problem is solved:

min
R∈R3×3

t∈R3

∑
(i,j)∈C

∥(Rpi + t)− qj∥2wij.

where wij weight of the corresponding pair (pi, qj). We used the affinity matrix

values, which show the closeness of two points in terms of their features as weights.

A direct optimal solution for the rotation matrix can be found via SVD. First, the

weighted mean values p0 and q0 for the source and the target clouds, respectively,

are calculated as follows:

p0 =

∑
(i,j)∈C piwij∑
(i,j)∈C wij

, q0 =

∑
(i,j)∈C qjwij∑
(i,j)∈C wij

.

Next, the covariance matrix H is calculated as shown below:

34



H =
∑

(i,j)∈C

(qj − qo)(pi − p0)
⊤wij

Finally, we apply SVD to H to decompose H into matrices U , D and V :

SV D(H) = UDV ⊤.

Using the SVD decomposition, the rotation matrix R can be calculated:

R = V U⊤.

Once R is computed, the translation vector is calculated as a shift between the

means of the matched points from the two point clouds:

t = q0 −Rp0.

It was shown that this (R, t) is the optimal solution to the optimization problem

defined above (see [48] for details).

Our second option to estimate the transformation matrix is to use the FGR op-

timization method proposed by Zhou et al. [34]. The following objective function is

used in this method:

E(R, t) =
∑

(i,j)∈C

ρ(||(Rpi + t)− qj||).
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where a scaled Geman-McClure estimator is used as the robust penalty function ρ(.):

ρ(x) =
µx2

µ+ x2
.

Since optimizing E(R, t) is difficult, the authors proposed an equivalent joint

objective using Black-Rangajaran duality. This equivalent objective is optimized

with an alternate algorithm (see [34] for details).

The registration performances of the two methods are compared using the bunny

model in our synthetic dataset. The recall values are plotted below.

Figure 4.10: FGR optimization method and SVD recalls with no noise
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Figure 4.11: FGR optimization method and SVD recalls with noise Level 1

Figure 4.12: FGR optimization method and SVD recalls with noise Level 2

As shown in Figures 4.10, 4.11 and 4.12, the FGR optimization method achieves
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more accurate PCR results. The parameter µ used in the objective in the FGR op-

timization method controls which correspondences significantly affect the objective.

Therefore it is more successful in dealing with outlier correspondences.

4.6 Local Refinement via ICP

The resulting alignment of the source and the target point clouds from our global

registration algorithm requires further refinement to achieve a more accurate regis-

tration result. The point-to-plane ICP method [16] is used in our implementation

for local refinement. We will use the same notation in Section 1.1 to explain the

point-to-plane ICP method. First, the correspondence set is established by match-

ing each point in the source cloud to its closest neighbor point in the target point

cloud. The point-to-plane ICP method considers the surface normal of the target

scan. The following optimization problem is solved:

min
R∈R3×3

t∈R3

∑
(i,j)∈C

||((Rpi + t)− qj) · nj||2,

where nj is the surface normal of the point qj. This error function is minimized

using the least squares approach. The Gauss-Newton method is used to compute

the least squares solution, and the resulting transformation is applied to the source

cloud. This process is iterated until the error function is below a certain threshold

(see [16] for details).
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4.7 PCR Tests

The registration performance of our algorithm is tested by running our algorithm

on three different datasets and comparing our results with some of the state-of-

the-art PCR methods. We used a synthetic dataset containing commonly used 3D

models, one indoor benchmark dataset (3DMatch), and one outdoor benchmark

dataset (KITTI). The evaluation of our method for each dataset is analyzed in this

section. All tests were performed on a PC with 64-bit Operating System, x64-based

Intel(R) E5-2620 v4 processor, CPU @2.10GHz, and with installed memory (RAM)

equal to 64.00 GB.

4.7.1 Synthetic Dataset

We ran our point cloud registration algorithm on 150 pairs in our synthetic dataset

described earlier in this chapter and compared our results with a state-of-the-art

optimization-based method, Fast Global Registration algorithm [34]. We performed

the registration for each point cloud pair after using both voxel and uniform down-

sampling with several different downsample parameters. The overlap ratio is com-

puted easily for each cloud pair in our experiments since the point clouds are man-

ually created, and our α parameter is set accordingly. The recall plots for different

downsampling sizes for each model in our synthetic dataset and for each noise level

can be found in Figures 4.13, 4.14, 4.14, 4.16, 4.17. The average recall values of the

two methods are compared in Table 4.1.
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Figure 4.13: Registration results of Quantile Assignment and Fast Global Registra-

tion on Angel
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Figure 4.14: Registration results of Quantile Assignment and Fast Global Registra-

tion on Buddha
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Figure 4.15: Registration results of Quantile Assignment and Fast Global Registra-

tion on Bunny
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Figure 4.16: Registration results of Quantile Assignment and Fast Global Registra-

tion on Dragon
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Figure 4.17: Registration results of Quantile Assignment and Fast Global Registra-

tion on Horse
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Table 4.1: Average recall values of Quantile Assignment (QA) and Fast Global Reg-

istration (FGR) on the synthetic dataset

Average Recall (%)

With voxel downsampling With uniform downsampling

QA FGR QA FGR

Angel

σ = 0 82 80 43 33

σ = 0.0025 78 74 28 28

σ = 0.0050 62 66 25 15

Buddha

σ = 0 52 56 42 50

σ = 0.0025 28 30 22 20

σ = 0.0050 2 4 2 4

Bunny

σ = 0 74 70 82 80

σ = 0.0025 78 68 78 76

σ = 0.0050 84 70 78 78

Dragon

σ = 0 78 76 62 62

σ = 0.0025 78 76 62 64

σ = 0.0050 86 82 56 52

Horse

σ = 0 78 82 81 79

σ = 0.0025 68 70 73 71

σ = 0.0050 62 60 67 69

For the synthetic dataset, the Fast Global Registration method is selected for

comparison since it is one of the state-of-the-art optimization-based algorithms like

our approach, and the implementation was available online [46]. The average recall

values are computed for a total of 30 cases where registrations are performed with

different 3D models, noise levels, and downsampling method combinations for each

case. Out of these 30 cases, our algorithm outperforms the Fast Global Registration

method in 17 of them and results in a tie in 3 of them. Overall, average recall values
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for the two methods are comparable.

4.7.2 3DMatch Dataset

3DMatch benchmark [24] is a large-scale real-world indoor dataset that contains

eight sets of indoor scene fragments captured by the RGBD sensor. Sample fragment

visuals of each set can be found in Figure 4.18. Each set contains 37 to 66 fragments;

each fragment is a 3D point cloud of a surface. The point clouds are integrated

using the volumetric representation method Truncated Signed Distance Function

(TSDF) [49].

Figure 4.18: Some scene fragments from the 3DMatch dataset

We followed the evaluation protocol described in [50] to obtain the recall and

precision results of our method where

Recall =
# of true positives

# of ground truth loop closures
,
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Precision =
# of true positives

# of detected loop closures

(see [50] for details).

Unfortunately, computing the overlap ratio of the point cloud pairs in 3DMatch

was not possible, however, it is known that the pairs in the dataset have > 30%

overlap [51]. Therefore, we set our parameter α as 0.3 in our experiments for all

point cloud pairs.

We first compare our average and maximal recall and precision results with Fast

Global Registration (FGR) [34] in Table 4.2. We obtained the results for FGR using

the implementation in [46]. The registration result for one sample point cloud pair

in the 3DMatch dataset is shown in Figure 4.19.

Table 4.2: Our evaluation results of Quantile Assignment and Fast Global Registra-

tion on 3DMatch

Method Average Maximal Average Maximal

Recall (%) Recall (%) Precision (%) Precision (%)

Quantile Assignment 9.25 15.56 11.62 34.85

Fast Global Registration 35.02 47.80 27.30 53.37
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(a) Source (b) Target (c) Transformed source and

target

Figure 4.19: Registration result of Quantile Assignment on a point cloud pair in the

3DMatch dataset

Registration recall values for some of the state-of-the-art learning-based PCR

methods on 3DMatch can be found in Table 4.3.

Table 4.3: Feature Matching Recall (FMR) values of some learning-based PCR meth-

ods on 3DMatch

Method Feature Matching Recall (%)

IMFNet [52] 98.6

MS-SVConv [53] 98.4

GeDi [54] 97.9

SpinNet [55] 97.6

We observed that our registration results were not comparable with the state-of-

the-art methods. The overlap ratio is a piece of critical information for our approach

since we use it to set our parameter α, and our algorithm is highly sensitive to

this parameter. The overlap ratio for each pair in the dataset we performed the

registration on varies a lot, and we could not set the α parameter differently for
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different pairs. Therefore, the 3DMatch dataset is a particularly challenging dataset

for our Quantile Assignment algorithm.

4.7.3 KITTI Dataset

Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)

benchmark is a large-scale real-world outdoor dataset containing 555 point cloud

pairs. The scenes in the dataset are captured by driving around the city of Karlsruhe

with two high-resolution color and grayscale video cameras using the autonomous

driving platform Annieway [56]. Figure 4.20 shows some of the point clouds in the

dataset.

Figure 4.20: Some examples from the KITTI dataset

We used the evaluation metrics relative rotation error (RRE), relative translation

error (RTE), and registration recall (RR) in our experiments on KITTI where RRE

is the geodesic distance between estimated and ground-truth rotation matrices and

RTE is the Euclidean distance between the estimated and ground-truth translation

vectors. A registration result is considered successful if RRE is below 5◦ and RTE is

below 2m.

Computing the exact overlap ratio between the source and the target cloud again

was not possible for the KITTI dataset. In our experiments, there is at least 10
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meters of distance between each point cloud pair, and the range of the sensor used

for collecting the point clouds is 120 meters [57]. Therefore, we expected the overlap

ratio to be high for any two cloud pairs in our experiments and set our parameter α

equal to 0.95.

The comparison of our algorithm’s registration results and some state-of-the-art

methods can be found in Table 4.4.

Table 4.4: Registration results on KITTI

Method RTE (cm) RRE (◦) RR (%)

GeoTransformer [51] 6.8 0.24 99.8

DGR [29] ∼ 32 0.37 98.7

FCGF [58] 9.5 0.30 96.6

FMR [59] ∼ 66 1.49 90.6

Quantile Assignment 84.7 1.63 60.36

Even though our framework could not outperform the state-of-the-art methods,

our results for the KITTI dataset were much better than the 3DMatch dataset. We

believe this may be due to the overlap ratio between the source and the target point

cloud pairs in KITTI having much less variation than 3DMatch. Thus, we were able

to set our parameter α in a more precise manner. The state-of-the-art methods in

Table 4.4 are all learning-based registration methods except ours. We recognize that

our results can be improved by combining our Quantile Assignment algorithm with

a feature learning method.
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Chapter 5

Conclusion

We propose a new pairwise point cloud registration framework. Our main contri-

bution is introducing a new algorithm for establishing the correspondence between

the source and the target point clouds. The performance of our framework is eval-

uated using three datasets, and we observed that our registration results were most

successful on the synthetic dataset.

A possible reason for achieving better results with the synthetic dataset compared

to the other two real-world datasets is that we could accurately estimate the overlap

ratio between each point cloud pair in the synthetic dataset. As explained in Sec-

tion 3.1, we set our parameter α as the overlap ratio, and during our experiments,

we observed that the Quantile Assignment algorithm is susceptible to the α param-

eter. Estimating the overlap ratio is difficult for real-world datasets like 3DMatch

and KITTI. Thus, setting the parameters that achieve the best possible results is

challenging. Developing a method for overlap ratio estimation given any two input

point clouds using a learning model may be a possible future research direction.

One key observation from our experiments is that our framework has better results
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with smaller datasets. The reason for this is the reduced need for downsampling,

allowing us to preserve crucial features during registration. Large real-world datasets

like 3DMatch and KITTI require substantial downsampling to perform the registra-

tion reasonably, reducing registration accuracy. Therefore, the computational time

is a limitation for our method in practical applications.

Our Quantile Assignment algorithm is computationally costly since the affinity

matrix constructed is generally dense for real applications. One possible future re-

search direction is to explore sparser affinity matrix construction techniques to reduce

computational complexity while maintaining accuracy.

Our registration performance for real-world datasets needs to improve compared

to learning-based point cloud registration frameworks. We recognize that combin-

ing it with a feature learning method could enhance our algorithm’s performance.

Using the Quantile Assignment algorithm, we could extract more informative and

discriminative features by incorporating feature learning techniques, leading to more

accurate correspondence matching.
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Appendix A

Comparison With Standard

Assignment

To show the contribution of the quantile assignment approach in point cloud reg-

istration, the standard maximum cost assignment is integrated into our framework

for correspondence search. Registration experiments are conducted on the synthetic

dataset using both quantile assignment and standard assignment, and recall values

are compared for a series of different downsampling sizes.

A.1 Accuracy Comparison

Recall plots for each model and noise level are presented in Figures A.1,A.2,A.3,A.4,A.5.

Some example visuals of registration results can be seen in Figure A.6.
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Figure A.1: Registration results of Quantile Assignment (QA) and standard assign-
ment (SA) on Angel

Figure A.3: Registration results of Quantile Assignment (QA) and standard assign-

ment (SA) on Bunny
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Figure A.2: Registration results of Quantile Assignment (QA) and standard assign-
ment (SA) on Buddha

Figure A.4: Registration results of Quantile Assignment (QA) and standard assign-

ment (SA) on Dragon
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Figure A.5: Registration results of Quantile Assignment (QA) and standard assign-

ment (SA) on Horse
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(a) Standard assignment on Angel (b) Quantile assignment on Angel

(c) Standard assignment on Bunny (d) Quantile assignment on Bunny

(e) Standard assignment on Dragon (f) Quantile assignment on Dragon

Figure A.6: Comparison of registration results of Quantile Assignment (QA) and

standard assignment (SA)
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It can be observed that significant improvement in registration accuracy can be

achieved by using the quantile assignment approach instead of the standard assign-

ment for correspondence estimation.

A.2 Time Comparison

Average computation times in terms of seconds of our framework, our framework with

standard assignment instead of quantile assignment, and the Fast Global Registration

framework on the Bunny model for different downsampling sizes are compared in

Table A.1.

Table A.1: Average computation times of Quantile Assignment (QA), standard as-

signment (SA) and Fast Global Registration (FGR) on Bunny

Average Computation Time (seconds)

Voxel size (.10−3) Average number of points QA SA FGR

5 1778.8 19.9 10.9 5.6

7.5 830.0 12.9 7.9 4.9

10 472.2 10.6 6.6 4.5

12.5 312.4 8.8 5.8 4.3

15 216.6 7.3 5.4 4.1

It can be observed that our algorithm runs slower on the synthetic dataset com-

pared to standard assignment and Fast Global Registration, however, achieves reg-

istration results with higher accuracy.
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