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1  |   INTRODUCTION

Voxelwise modeling (VM) is a powerful framework to 
model single-voxel functional selectivity for the multi-
tude of stimulus features that exist in natural stimuli (Kay, 
Naselaris, Prenger, & Gallant,  2008; Naselaris, Prenger, 
Kay, Oliver, & Gallant,  2009). Previous studies have 

used this approach to sensitively model a broad range 
of representations from low-level spatiotemporal fea-
tures to high-level object and action categories (Çukur, 
Nishimoto, Huth, & Gallant,  2013; Huth, Nishimoto, Vu, 
& Gallant,  2012; Lescroart, Stansbury, & Gallant,  2015; 
Nishimoto et al., 2011). In VM, an encoding model is con-
structed that contains stimulus features hypothesized to 
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Abstract
Voxelwise modeling is a powerful framework to predict single-voxel functional se-
lectivity for the stimulus features that exist in complex natural stimuli. Yet, because 
VM disregards potential correlations across stimulus features or neighboring voxels, 
it may yield suboptimal sensitivity in measuring functional selectivity in the presence 
of high levels of measurement noise. Here, we introduce a novel voxelwise modeling 
approach that simultaneously utilizes stimulus correlations in model features and 
response correlations among voxel neighborhoods. The proposed method performs 
feature and spatial regularization while still generating single-voxel response predic-
tions. We demonstrated the performance of our approach on a functional magnetic 
resonance imaging dataset from a natural vision experiment. Compared to VM, the 
proposed method yields clear improvements in prediction performance, together with 
increased feature coherence and spatial coherence of voxelwise models. Overall, the 
proposed method can offer improved sensitivity in modeling of single voxels in natu-
ralistic functional magnetic resonance imaging experiments.
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elicit blood-oxygen-level-dependent (BOLD) responses in 
cortical voxels. For each voxel, a weighted linear combi-
nation of model features that best explain measured BOLD 
responses is computed via regularized regression. To avoid 
over-fitting and ensure generalizability to new data, it is 
common to perform L2-norm regularization over model 
features with a uniform prior to penalize large model 
weights (Bishop,  2013). The regularization parameter is 
separately selected for each voxel based on a cross-valida-
tion procedure. Following parameter selection, the result-
ing model weights characterize the functional selectivity of 
single voxels.

Classical VM performs independent modeling to maxi-
mize sensitivity to single voxels, yet it disregards potential 
response correlations among neighboring voxels across 
cortex (Erwin, Obermayer, & Schulten,  1995; Zarahn, 
Aguirre, & D’Esposito, 1997) as well as potential stimulus 
correlations among model features (Nunez-Elizalde, Huth, 
& Gallant, 2018). This in turn might reduce the sensitivity 
of VM in capturing functional selectivity in the presence of 
high levels of measurement noise. To better utilize response 
correlations, we recently proposed a spatial regularization 
term for VM via a graph Laplacian approach where neigh-
borhoods were defined in volumetric brain space (Çelik, Dar, 
Yılmaz, Keleş, & Çukur,  2019). Spatially regularized VM 
models were found to improve model performance broadly 
across cerebral cortex. Yet, the proposed approach still uses 
L2-norm regularization over model features—a uniform 
Gaussian prior—that reflects the assumption that model 
features are uncorrelated (Hoerl & Kennard, 1970). This as-
sumption might be suboptimal for models of natural stimuli. 
For example, in a category model that contains distinct ob-
ject and action categories within natural scenes, the stimulus 
time courses for similar categories are correlated (e.g., “hu-
man”-“hand,” “kid”-“run,” “building”-“road” and “park”-
“tree”; Huth et  al.,  2012). Moreover, a voxel selective for 
humans will typically yield elevated responses to body parts, 
animate categories or human-related tools compared to unre-
lated categories (Huth et al., 2012). As voxelwise functional 
selectivity profiles for related categories are expected to be 
similar, model weights are not truly uncorrelated (Nunez-
Elizalde et al., 2018).

In this study, we propose a new VM approach to increase 
sensitivity in modeling functional selectivity (Figure  1). 
First, we introduce an informed feature regularization that 
takes into account correlations among model features. This 
is accomplished by enforcing similarity of model weights 
among features that are correlated to each other. To further 
boost model performance, we introduce a new spatial regu-
larization term. We had previously proposed to define voxel 
neighborhoods based on Euclidean distances in volumetric 
brain space (Çelik et al., 2019). Yet, distances along the cor-
tical surface are more likely to capture functional similarities 

among neighboring voxels (Tucholka, Fritsch, Poline, & 
Thirion,  2012; Van Essen, Drury, Joshi, & Miller,  1998). 
Therefore, here we select voxel neighborhoods using geode-
sic distances on the cortical surface. To achieve this goal, we 
measured intervoxel distances using inflated cortical spaces 
(Gao, Huth, Lescroart, & Gallant, 2015).

To independently evaluate improvements enabled by in-
formed feature regularization and spatial regularization, we 
implemented three variants of VM together with Classical 
VM: a method that only uses informed feature regularization 
(feature-informed voxelwise modeling, FI-VM), a method 
that only uses spatial regularization (spatially informed vox-
elwise modeling, SI-VM) and a method that simultaneously 
uses feature and spatial regularizations (jointly informed vox-
elwise modeling, JI-VM). Demonstrations were performed 
on a category model fit to whole-brain BOLD responses re-
corded while subjects watched natural movies. To measure 
correlations among 1,705 object and action category features 
in the model, we evaluated the pairwise similarities of the 
categories in a word embedding space obtained from a large 
text corpus. These similarities were then input to a graph 
Laplacian term, to form the feature and spatial regularization 
terms. The VM variants were compared in terms of their pre-
diction scores and spatial and feature coherence of the result-
ing model weights.

2  |   MATERIALS AND METHODS

2.1  |  MRI protocols

Magnetic resonance imaging (MRI) data were collected 
on a 3T Siemens Tim Trio scanner at the University of 
California, Berkeley, using a 32-channel Siemens volume 
coil. Functional scans were collected using a gradient EPI se-
quence with repetition time = 2.00 s, echo time = 31 ms, flip 
angle = 70°, voxel size = 2.24 × 2.24 × 4.1 mm3, slice thick-
ness = 3.5 mm with 18% slice gap, matrix size 100 × 100, 
and field of view = 224 × 224 mm2 and 32 axial slices.

Anatomical data for three subjects were collected using 
a T1-weighted multi-echo MP-RAGE sequence on the same 
3T scanner. Anatomical data for the other two subjects were 
collected on a 1.5T Philips Eclipse scanner.

2.2  |  Subjects

Functional data were collected from five healthy male 
subjects: S1 (age 25), S2 (age 25), S3 (age 25), S4 (age 
32) and S5 (age 29). All subjects had normal or cor-
rected-to-normal vision. The experimental protocol was 
approved by the Committee for the Protection of Human 
Subjects at the University of California, Berkeley. Prior 
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to scanning, written informed consent was obtained from 
all subjects.

2.3  |  Experimental procedure

The movie stimulus was identical to the set used in Nishimoto 
et al. (2011). The stimulus contained short clips (10–20 s) of 
color natural movies taken either from Apple QuickTime 
gallery (http://trail​ers.apple.com/) or from YouTube (http://
www.youtu​be.com/). The list of selected movies is as follows: 
“Artbeats HD,” “Australia,” “Bolt,” “BBC Motion Gallery,” 
“Bride Wars,” “Changeling,” “Duplicity,” “Fuel,” “Hotel for 
Dogs,” “IGN Game of the Year 2008,” “Ink Heart,” “JAL 
Boeing 747 landing Kai Tak,” “King Lines,” “Madagascar 
2,” “Mall Cop,” “Mammoth HD,” “Pink Panther 2,” “Proud 
American,” “Role Models,” “Shark Water,” “Star Trek,” “The 

American Recovery and Reinvestment Plan,” “The Macaulay 
Library,” “The Tale of Despereaux,” “Warren Miller Higher 
Ground,” “Where the hell is Matt?” and “Yes Man.” Original 
movie frames were cropped to square form and downsampled 
to 512 × 512 pixels. The stimulus was presented on 24°×24° 
degrees of visual angle. A fixation spot (0.16° square) was su-
perimposed on the center of the screen and its color was al-
ternated at 3 Hz, to make it continuously visible. For model 
estimation, 7,200 s (3,600 time samples, TR = 2  s) of mov-
ies were presented to the subjects in 12 separate 10-min runs. 
For model validation, a different collection of 9 separate 1-min 
movie clips were selected. The selected clips were aggregated 
in randomized order to create in 9 separate 10-min runs. As 
such, each 1-min validation clip was presented to the subjects 
10 times, and functional magnetic resonance imaging (fMRI) 
data were averaged across the 10 repeats to alleviate noise. 
These procedures resulted in 270 time samples of validation 

F I G U R E  1   Natural movie experiment and model fitting. (a) Whole-brain BOLD responses were acquired while subjects viewed natural 
movies. To estimate functional selectivity in single voxels, we fit voxelwise models that optimally predict measured BOLD responses in terms 
of the category features present in the movie stimuli (Huth et al., 2012). The resulting models describe how each of the 1,705 object and action 
categories in the movie stimulus evokes BOLD responses. (b) Classical voxelwise modeling (VM) ignores potential correlations in stimulus 
features and correlations among neighboring voxels. Feature-informed voxelwise modeling (FI-VM) takes into account correlations among model 
features to increase accuracy in predicting single-voxel selectivity. The resulting models have increased feature coherence. Jointly informed 
voxelwise modeling (JI-VM) further incorporates shared information between neighboring voxels. The resulting voxelwise models have both 
increased feature and spatial coherence [Colour figure can be viewed at wileyonlinelibrary.com]

http://trailers.apple.com/
http://www.youtube.com/
http://www.youtube.com/
www.wileyonlinelibrary.com
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data. To minimize the effects of hemodynamic transients, data 
obtained in the first 10 s of each run were omitted. Note that 
the same data were analyzed in several previous studies (Çelik 
et al., 2019; Çukur, Huth, Nishimoto, & Gallant, 2013; Çukur, 
Nishimoto, et al., 2013; Huth et al., 2012).

2.4  |  ROI abbreviations

Regions of interest (ROIs) used in our study are as follows: 
visual areas (V1–V4, V7), fusiform face area (FFA), extrastri-
ate body area (EBA), occipital face area (OFA), parahippocam-
pal place area (PPA), occipital place area (OPA), retrosplenial 
cortex (RSC), intraparietal sulcus (IPS), lateral occipital visual 
area (LO), frontal eye fields (FEF), supplementary eye fields 
(SEF), frontal operculum (FO), primary motor and somatosen-
sory foot areas (M1F, S1F), primary motor and somatosensory 
hand areas (M1H, S1H), primary motor and somatosensory 
mouth areas (M1M, S1M), supplementary motor hand area 
(SMHA) and supplementary motor foot area (SMFA).

2.5  |  Functional localizers

For each subject, we defined boundaries of common functional 
ROIs by using three sets of functional localizers: a visual cat-
egory localizer, a retinotopic localizer and a motor localizer.

In the visual category localizer, each subject was shown 
colored images of either places, faces, human body parts, 
animals, household objects or spatially scrambled household 
objects. The localization data were collected in 6 4.5-min 
runs. A single run consisted of 16 blocks, each 16 s long and 
separated with 500-ms interblock intervals. In each block, 20 
images of either places, faces, human body parts, animals, 
household objects or spatially scrambled household objects 
were displayed. Each image was shown for 300 ms after a 
500-ms interstimulus interval. Fusiform face area (FFA) and 
occipital face area (OFA) were defined using the faces ver-
sus objects contrast (Kanwisher, McDermott, & Chun, 1997). 
Extrastriate body area (EBA) was defined using the human 
body parts versus objects contrast (Downing, Jiang, Shuman, 
& Kanwisher, 2001). Parahippocampal place area (PPA), ret-
rosplenial cortex (RSC) and occipital place area (OPA) were 
defined using the scenes versus objects contrast (Epstein & 
Kanwisher, 1998; Nakamura, 2000).

Retinotopic mapping data were collected in four 9-min scans. 
The subjects were shown clockwise and counterclockwise rotat-
ing wedges in two scans, expanding and contracting rings in the 
remaining two scans. V1, V2, V3, V4, V7 and LO were defined 
based on visual angle and eccentricity maps. Using V1, V2 and 
V3, a broad retinotopic area (RET) was defined.

Motor localizer data were collected in a single 10-min scan. 
Each subject performed 6 separate motor tasks in random 

blocks of 20 s. During the “hand” cue, the subject made small 
finger-drumming movements with both hands. During the 
“foot” cue, the subject made small toe movements. During 
the “mouth” cue, the subject made small mouth movements 
mimicking the syllable balabalabala. During the “speak” cue, 
the subject subvocalized self-generated sentences. During the 
“saccade” cue, the subject performed rapid saccades between 
different targets on the screen. During the “rest” cue, the sub-
ject did not perform any motor tasks. Contrast between the 
“saccade” and “rest” conditions was used to define intraparietal 
sulcus (IPS), frontal operculum (FO), frontal eye fields (FEF) 
and supplementary eye fields (SEF). Contrast between “foot” 
and “rest” was used to define primary motor and somatosen-
sory foot areas (M1F, S1F) and supplementary motor foot area 
(SMFA). Contrasts between “hand” and “rest” were used to 
define primary motor and somatosensory hand areas (M1H, 
S1H) and supplementary motor hand area (SMHA). Contrast 
between “mouth” and “rest” was used to define primary motor 
and somatosensory mouth areas (M1M, S1M). In this study, 
we aimed to examine how object and action features in natural 
movies modulate BOLD responses in single voxels. As it is 
commonly considered that motor and somatosensory areas do 
not play a major role in visual category representation, voxels 
within these regions were excluded from subsequent analyses.

2.6  |  Data preprocessing

Motion correction and image realignment were done using 
the Motion Correction FMRIB Linear Image Registration 
Tool (MCFLIRT) in FSL (Woolrich et al., 2009). Functional 
images of each subject were registered to a preselected image 
of that subject. The final time series data were manually 
checked for accuracy. The resulting time courses were z-
scored individually for each voxel. No spatial smoothing was 
applied to the fMRI data.

Detrending was used to remove low-frequency drifts in 
BOLD responses. The drifts were estimated using a median 
filter with a 120-s window and then subtracted from mea-
sured BOLD responses.

Brain Extraction Tool in FSL was used to eliminate 
non-cortical voxels. The set of voxels within a 4 mm radius of 
the cortical surface were defined as cortical voxels. Following 
analyses were done on a total of 35,158 ± 887 cortical voxels 
(mean ± SD across subjects).

2.7  |  Cortical flat maps

Cortical flat maps of subjects were generated using 
FreeSurfer (Dale, Fischl, & Sereno, 1999). These flat maps 
are based on T1-weighted anatomical scans. Anatomical sur-
face segmentations were manually checked and corrected 
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using Pycortex (Gao et al., 2015). Relaxation cuts were made 
into the surface of each hemisphere, and the surface crossing 
the corpus callosum was removed. The calcarine sulcus cut 
was made at the horizontal meridian in V1. Functional im-
ages were aligned to the cortical flat maps using boundary-
based registration (BBR) in FSL. For visualization of flat 
maps, the mid-cortical surface that lies halfway between the 
pial and white matter surfaces was selected.

2.8  |  Category model

To extract category information present in the natural movie 
stimulus, we used a category model (Çukur, Nishimoto, 
et al., 2013; Huth et al., 2012). We tagged object and action 
categories in each 1-s portion of the natural movies using 
the WordNet lexicon (Miller & Miller,  1995). Finally, a 
list of features including 1,705 distinct object and action 
categories was formed. Note that, the same list of object 
and action categories (1,705 features in total) was used in 
all four modeling methods. The time courses of the features 
were resampled using a 3-lobe Lanczos filter with a cutoff 
frequency of 0.249 Hz (the Nyquist frequency of the fMRI 
acquisition). To reduce dimensionality and improve model 
fits, we applied PCA onto the resulting stimulus matrix. 
We selected only the first 300 PCs that explain 89.2% of 
the variance in the stimulus. To rule out possible biases due 
to correlations between category model and global motion 
energy, we added a nuisance regressor that reflects the total 
motion energy in the movie stimulus. To obtain the total 
motion energy, we summed the output of all spatiotempo-
ral Gabor filters used in a separate motion energy model 
(Çelik et al., 2019).

2.9  |  Voxelwise model 
estimation and validation

We used a voxelwise modeling framework to fit between 
stimulus and BOLD responses (Çukur, Nishimoto, et al., 
2013; Huth et al., 2012). In the Classical VM approach, L2-
regularized linear regression is used to predict how each 
feature modulates measured BOLD responses. A category 
model was fit to measure voxelwise selectivity for high-level 
object and action categories (Huth et al., 2012). To account 
for hemodynamic delays, a finite-impulse-response (FIR) fil-
ter with three time delays (4, 6 and 8 s) was applied to each 
model feature before fitting the model.

where Y is the response matrix of size (number of TRs × num-
ber of voxels), X is the stimulus matrix of size (number of 

TRs × (3 × number of features)), and W is the weight matrix of 
size ((3 × number of features) × number of voxels). In VM, L2-
regularized regression is used to minimize the cost function:

where wi is the vector containing category model weights for 
voxel-i, and yi is the vector containing the time course of BOLD 
responses of voxel-i. Cost function can be expressed in matrix 
form as follows:

Data from single voxels were aggregated into matrix form 
to speed up computations. Note that the minimization was 
still performed for each voxel separately as each column 
of the weight matrix (W) is the vector containing category 
model weights for the corresponding voxel and the minimi-
zation procedure does not involve any interaction among the 
columns. In Equation 3, by setting the gradient with respect 
to W to zero, we have:

To obtain model weights and to measure prediction 
scores, a 100-fold cross-validation was used. In each fold, a 
total of 3,600 samples were split into a contiguous block of 
3,000 samples for model fitting and a remaining contiguous 
block of 600 test samples for selection of L2 regularization 
parameter (λ). Separate models were fit for 30 different regu-
larization parameters in the range of 10–2 to 107 (spaced log-
arithmically). We calculated prediction scores based on the 
coefficient of determination (i.e., explained variance, R2) be-
tween measured and predicted BOLD responses. Separately 
for each voxel, we picked the regularization parameter that 
maximized the average prediction score across folds. Final 
voxelwise models based on the optimal parameters were refit 
using the entire 3,600 time samples.

To measure final prediction scores, a 1,000-fold jackknife 
resampling at a rate of 80% was used on a separate validation 
data (270 samples). Separately for each voxel, final predic-
tion score was taken as the average prediction score across 
jackknife folds. For assessment of model performance, we 
then computed the average prediction score across five sub-
jects in each functional ROI.
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2.10  |  Parameter optimization

In the proposed approach, there are five hyperparameters 
to be optimized. Three of these parameters (λ, λf and λs) 
are set separately for individual voxels in each method. 
The remaining two hyperparameters (the standard devia-
tion of Gaussian filter and the feature similarity threshold) 
determine the feature Laplacian matrix (F). The feature 
Laplacian matrix F is of size Nfeat×Nfeat, where Nfeat is the 
number of category features. F = T – S, where sjk (entries 
of matrix S, see Equation 5) is the relatedness metric of the 
feature-j and feature-k (high for related features, and low 
or zero for distant features), and T is a diagonal matrix with 
Tjj =

∑
k sjk.

sjk is calculated within a word embedding space 
(Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990; 
Lund & Burgess,  1996; Mitchell et  al.,  2008; Turney & 
Pantel,  2010; Wehbe et  al.,  2014). The word embedding 
space was formed based on word co-occurrence statistics. 
The assumption here is that words with similar meaning tend 
to occur in nearby positions in text. The co-occurrence sta-
tistics were taken from a large corpus of text. This corpus 
contained words from transcripts of many popular books, 
Wikipedia pages and user comments gathered from reddit.
com (604 popular books, 2,405,569 Wikipedia pages and 
36,333,459 user comments scraped from reddit.com). In the 
corpus, 10,470 distinct words appeared 1,548,774,960 times 
(Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016). Co-
occurrences among the words from a lexicon of 10,470 words 
and the 985 basis words (from Wikipedia's List of 1,000 
Basic Words) were calculated. The appearance of a lexicon 
word within a 15-word neighborhood of the basis word was 
taken as a single co-occurrence. We reduced the word em-
bedding space by projecting onto the PC space obtained in 
Category Model. As a result, each of the 1,705 category fea-
tures had a 300-dimensional vector representing its location 
in the reduced word embedding space. We then computed 
the similarity (cosine similarity, csjk) of each feature pair. We 
eliminated feature pairs that have a similarity smaller than the 
feature similarity threshold (dsim). Later, we fed those simi-
larity values into a Gaussian filter, to get the final form of the 
relatedness metric (sjk) as in Equation 5.

Standard deviation (σ) and feature similarity threshold 
(dsim) were optimized a priori via a cross-validation proce-
dure on the training data. To do this, we computed voxelwise 
prediction scores of separate JI-VM models with standard de-
viations of [0.1, 0.2, 0.4, 0.8, 1.2, 2.0] and feature similarity 

thresholds of [0.1, 0.2, 0.3, 0.5]. The model with a standard 
deviation (σ) of 0.4 and a feature similarity threshold (dsim) of 
0.2 outperformed others in most ROIs; thus, we fixed these 
parameters throughout our study.

To incorporate spatial regularization into VM, we con-
structed a spatial Laplacian matrix that represents correlated 
information across neighboring voxels. The spatial Laplacian 
matrix (L) is of size Nvox×Nvox, where Nvox is the number 
voxels in the subject. L = P  – C, where cil (entries of ma-
trix C) corresponds to the proximity of voxel-i and voxel-l in 
three-dimensional space (high for immediate neighbors, and 
low or zero for voxels far away), and P is a diagonal matrix 
with Pii =

∑
l cil. The weight cil represents the cost of having 

weights of voxel-i and voxel-l more dissimilar to each other. 
To compute cil, first the distance between voxel-i and voxel-l 
is calculated as the Euclidean distance between those voxels 
in inflated cortical space (Gao et al., 2015). Calculated dis-
tances are then input to a Gaussian filter. We have two hyper-
parameters in constructing the spatial Laplacian matrix L: the 
proximity limit after which two voxels are treated as spatially 
uncorrelated and the standard deviation of the Gaussian filter. 
Here, we prescribed these hyperparameters reported by Çelik 
et al. (2019) by converting into millimeter scale to use in our 
approach.

The other three hyperparameters are regularization parame-
ters of L2 regularization, feature regularization and spatial reg-
ularization: λ, λf and λs, respectively. λ indicates the degree of 
L2 regularization across model features. λf indicates the degree 
of penalization applied to the differences within the weights of 
related feature pairs. λs indicates the degree of spatial regular-
ization across category features of neighboring voxels. As vox-
els across cortex may need varying degrees of regularization, 
we optimized these parameters separately for each voxel.

2.11  |  JI-VM model 
estimation and validation

Cost function for the regularized regression in the proposed 
approach can be expressed as follows:

where the third term is the feature regularization term, and 
the last term is the spatial regularization term. In the feature 
regularization term, the weighted sum of Euclidean distances 
between each feature pair is calculated for each voxel sepa-
rately. sjk represents the cost of having model weights for fea-
ture-j and feature-k dissimilar to each other (Equation 5). In 
the spatial regularization term, the weighted sum of Euclidean 
distances between weights of voxels is calculated. The weight 
cil represents the cost of having vectors containing category 
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model weights of voxel-i and voxel-l dissimilar to each other 
(see Section 2.10).

Cost function can be expressed in matrix form as follows:

Then, by setting the gradient with respect to weight matrix 
(W) to zero, we now have:

To simplify Equation 8, we define K=XTX, M=XTY  and 
B=�sL:

2.12  |  Pseudo-code for JI-VM 
implementation

Equation 9 cannot be solved with a single pseudo-inverse. An 
efficient algorithm for the solution from Çelik et al. (2019) is 
given in Table 1.

2.13  |  FI-VM and SI-VM model 
estimation and validation

In FI-VM, we only include feature regularization term; there-
fore, λs is set to 0 in Equation 8:

Solution to this equation is as follows:

As the solution can be expressed via a single pseudo-in-
verse, we implemented the same cross-validation procedure 
as in Classical VM. This time, separate voxelwise models 
were fit for 30 × 30 different regularization parameter pairs 
(�,�f ), each in the range from 10–2 to 107 (spaced logarith-
mically). We measured the prediction scores using the same 
jackknife resampling method.

In SI-VM modeling, on the other hand, we removed the 
feature regularization term from JI-VM, equivalently setting 
�f =0 in Equation 8:

The implementation for SI-VM is the same as JI-VM case 
with setting A=(K+�I) and omitting the second loop with λf 
from pseudo-code (see Section 2.12).

(7)

min
wi

Tr
[
(XW−Y)T (XW−Y)

]
+�Tr

(
WTW

)
+�f Tr

(
WTFW

)
+�sTr

(
WLWT

)

min
wi

Tr
(
WTXTXW

)
−2Tr

(
YTXW

)
+Tr

(
YTY

)
+�Tr

(
WTW

)
+�f Tr

(
WTFW

)
+�sTr

(
WLWT

)
for i=1,2,…,Nvox

(8)

2XTXW−2XTY +2�W+2�f F
TW+2�sWL=0

XTXW+�W+�f F
TW+�sWL=XTY(

XTX+�I+�f F
T
)

W+�sWL=XTY

(9)
(
K+�I+�f F

T
)

W+WB=M

AW+WB=M

(10)
(
XTX+�I+�f F

T
)

W =XTY

(11)W =
(
XTX+�I+�f F

T
)†

XTY

(12)
(
XTX+�I

)
W+�sWL=XTY

T A B L E  1   Pseudo-code for JI-VM

Solve: (AW + WB = M)

begin

for λ:

for λf:

Find eigenvalues of A and store them in D

Set Dd  = diag(D), where Dd is a column vector of size (
3×Nfeat

)

Set Dr =
[
Dd , Dd ,…

]
, where Dd repeats Nvox times; Dr is of 

size 
(
3×Nfeat

)
×
(
Nvox

)

Find eigenvectors of A and store them in Q

for λs:

Set Sr =
[
Sd ; Sd ;…

]
, where Sd repeats 

(
3×Nfeat

)
 times; Sr is of 

size 
(
3×Nfeat

)
×
(
Nvox

)

P=1.∕
(
Dr +�sSr

)
, where P is of size 

(
3×Nfeat

)
×
(
Nvox

)

 W* = −Q(P.*(QTMU))UT

Variables:

Input:X: stimulus matrix of size (time points)×
(
3×Nfeat

)

 Y: response matrix of size (time points)×
(
Nvox

)

 K: auto-covariance matrix of size 
(
3×Nfeat

)
×
(
3×Nfeat

)
, where 

K=XT X

 M: cross-covariance matrix of size 
(
3×Nfeat

)
×
(
Nvox

)
, where 

M=XT Y

  λ: regularization parameter for L2-norm regularization

  λf: regularization parameter for feature regularization

  λs: regularization parameter for spatial regularization

 A: auto-covariance matrix of size 
(
3×Nfeat

)
×
(
3×Nfeat

)
, where 

A=
(
K+�I+�f F

)

 F: Laplacian matrix of size 
(
3×Nfeat

)
×
(
3×Nfeat

)
, which stores 

similarity information between category features

 L: Laplacian matrix of size 
(
Nvox

)
×
(
Nvox

)
, which stores 

proximity information between voxels

 B: B=�sL

Output: W: model weight matrix of size 
(
3×Nfeat

)
×
(
Nvox

)

Precompute Schur decomposition of L, L=USUT

Save U and Sd, where Sd = diag(S) is of size 1×
(
Nvox

)
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2.14  |  Alternative voxelwise modeling 
method: graph net regularization

As an alternative to Classical VM, voxelwise models were 
also fit using graph net regularization (Schoenmakers, Barth, 
Heskes, & van Gerven, 2013). Graph net regularization uti-
lizes a coupling matrix to enforce similar model weights 
across related features. As such, the optimization objective 
for Graph-Net VM is given as follows:

Here, G is a non-diagonal matrix that induces coupling between 
model features (Grosenick, Klingenberg, Katovich, Knutson, & 
Taylor, 2013; Schoenmakers et al., 2013). Gjk equals −1 when 
two features (feature-j and feature-k) are coupled, 0 otherwise, 
and Gii equals the number of features that feature-j is coupled 
to. For the category features examined in this study, Gjk is set to 
−1 when the two features are semantically related (i.e., sjk >0,  
see Section 2.10), 0 otherwise (sjk =0). Note that, unlike our 
proposed feature regularization method, the degree of semantic 
similarity is binary-valued in Graph-Net VM.

Solution to Equation 13 is computed as a single 
pseudo-inverse:

Graph-Net VM was implemented via the same procedure 
as in Classical VM (100-fold cross-validation, the hyperpa-
rameter λ was selected from 30 values in the range from 10–2 
to 107). Prediction scores were computed based on the coeffi-
cient of determination (explained variance, R2) between mea-
sured and predicted BOLD responses. To measure prediction 
scores, a 1,000-fold jackknife resampling at a rate of 80% was 
used on a separate validation data (270 samples). Separately 
for each voxel, final prediction score was taken as the average 
prediction score across jackknife folds.

2.15  |  Feature coherence analysis

We hypothesized that the human brain encodes information in 
a way where related features elicit similar responses in single 
voxels (Huth et al., 2012). In the VM framework, this hypoth-
esis would manifest itself as coherent model weights across 
related features for individual voxels. Because Classical VM 
ignores feature correlations, it can have reduced sensitivity 
in capturing coherence among model features. Yet, informed 
feature regularization enforces increased coherence among 
category features. Thus, in FI-VM and in JI-VM, resulting 
model weights are expected to be more coherent. To test this 
hypothesis, we defined a voxelwise feature coherence metric. 

We computed the contribution of voxel-i to the feature regu-
larization cost in the regression analysis:

where the differences between weights of correlated fea-
tures (i.e., for pairs of [feature-j, feature-k] where sjk > 0, see 
Equation 5) are penalized according to a graph Laplacian matrix 
computed in the word embedding space (fjk are the entries of the 
Laplacian matrix F corresponding to feature-j and feature-k, see 
Section 2.10). Voxelwise cost values were then normalized with 
the maximum cost obtained across the three methods (FI-, SI- 
and JI-VM). The normalized cost was inverted to finally obtain 
the feature coherence metric.

2.16  |  Spatial coherence analysis

Human brain encodes information across spatial clusters of 
neural populations (Engel, Glover, & Wandell, 1997; Huth 
et  al.,  2012; Tootell et  al.,  1998). Thus, it is expected that 
neighboring voxels represent correlated information. As 
Classical VM ignores spatial correlations among neighbor-
ing voxels, it is expected to fail in capturing the coherence 
in neighboring voxels. Due to spatial regularization, the 
proposed approach should be more sensitive in capturing 
the spatial coherence. To test this prediction, we computed 
a voxelwise spatial coherence metric. The spatial coherence 
of voxel-i was taken as the mean standard deviation among 
category model weights of the voxels within close spatial 
proximity of voxel-i (i.e., for any voxel-l where cil >0, see 
Section 2.11):

We normalized those values by dividing by the largest 
value computed across the three methods and then inverting 
the resulting value to obtain the final form of the spatial co-
herence metric.

2.17  |  Noise ceiling

The coefficient of determination (R2) between predicted 
response and measured response can be biased downward 
due to high measurement noise in voxel responses (David 
& Gallant,  2005; Hsu, Borst, & Theunissen,  2004; Sahani 
& Linden, 2003). As validation data were recorded a finite 
number of repeats (10 in this study), it is likely to contain 
high measurement noise in addition to signal. We calculated 
a noise ceiling for each voxel following procedures in Hsu 
et al. (Hsu et al., 2004). A voxelwise correction factor was 
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calculated by dividing the maximum possible prediction 
score (called the noise ceiling) by the raw prediction score 
of each voxel. For voxels with very high level of noise, this 
process leads to divergent correction factors. We limited cor-
rection factors of these voxels to the average of correction 
factors across remaining cortical voxels.

2.18  |  Statistical analysis

Models were compared in terms of prediction score, feature 
coherence and spatial coherence. Specifically, changes in 
prediction score or coherence were calculated for various 
modeling methods over Classical VM. A bootstrap procedure 
with 10,000 samples was used to test significant changes in 
a given metric (prediction score or coherence) in each ROI. 
The null distribution was estimated via bootstrap sampling 
on metric values of Classical VM. The significance threshold 
was taken as the 95th percentile of the null distribution for 
each metric (α = 0.05).

3  |   RESULTS

3.1  |  Prediction scores of VM methods

The proposed method employs additional regulariza-
tion terms to consider correlations among model features 
as well as response correlations among voxel neighbor-
hoods. As such, the fit models are expected to better cap-
ture voxelwise functional selectivity than Classical VM. 
As an alternative to Classical VM, we have also imple-
mented Graph-Net VM (see Section 2.14, Schoenmakers 
et  al., 2013). Yet, no significant difference was observed 
between Graph-Net VM and Classical VM in many regions 
of interest (ROIs, see Sections 2.4 and 2.5; Figure S1). Thus, 
subsequent comparisons were provided against Classical 
VM as the reference method. To examine the contributions 
of the individual regularization terms, we separately com-
puted improvements in prediction scores of FI-VM, SI-VM 
and JI-VM over Classical VM (see Section 2.9 for calcula-
tion of prediction score). Figure 2 displays the change in 
explained variance for FI-VM, SI-VM and JI-VM in com-
mon functional ROIs. We find that FI-VM significantly 
improves prediction scores compared to Classical VM 
in all of the examined ROIs except FFA, OFA and OPA 
(p < .05, bootstrap test). The average improvement in pre-
diction scores is 0.020 ± 0.004 (ΔR2, mean ± SD across 
ROIs) for category-selective areas (FFA, PPA, EBA, OFA 
and OPA), 0.017 ± 0.003 for attention control areas (IPS, 
FEF, SEF and FO) and 0.008 ± 0.001 for early visual areas 
(RET, V4). These results suggest that informed feature 
regularization particularly improves model accuracy in 

category-selective areas. These results can be attributed to 
the fact that representations in category-selective areas are 
mediated by object and action category features, whereas 
those in early visual areas are mediated primarily by reti-
notopic features (Connolly et  al.,  2012; Downing, Chan, 
Peelen, Dodds, & Kanwisher,  2006; Engel et  al.,  1997; 
Huth et  al.,  2012; Naselaris et  al.,  2009; Op De Beeck, 
Haushofer, & Kanwisher, 2008; Tootell et al., 1998).

We also find that SI-VM significantly improves prediction 
scores in all ROIs except for FFA, OPA and RSC (p < .05, 
bootstrap test). These improvements are substantial broadly 
across cortex (0.039  ±  0.007 for category-selective areas, 
0.022 ± 0.003 for attention control areas and 0.016 ± 0.002 
for early visual areas). This result implies that spatial cor-
relations among voxel neighborhoods exist across multiple 

F I G U R E  2   Improvement in prediction performance over 
VM by FI-VM, SI-VM and JI-VM. The improvement in prediction 
performances for the three methods (FI-, SI- and JI-VM, see 
Abbreviations) over VM is shown for several well-known functional 
ROIs (see Abbreviations). Bar graphs display improvement in 
prediction scores (ΔR2, mean ± SD across subjects, see Section 2.9 
for the definition of prediction scores). Threshold for significant 
improvement over Classical VM is designated with a blue line for 
each ROI. For FI-VM, the improvement is significant in all examined 
ROIs except FFA, OFA and OPA (p < .05, bootstrap test). For FI-VM, 
improvement in prediction scores is higher in category-selective areas 
(FFA, PPA, EBA, OFA, OPA: 0.020 ± 0.004, mean ± SD across ROIs) 
than in attention control areas (IPS, FEF, SEF, FO: 0.017 ± 0.003) 
and early visual areas (RET, V4: 0.008 ± 0.001). For SI-VM, the 
improvement in prediction scores is significant in all ROIs except for 
FFA, OPA and RSC (p < .05, bootstrap test). The improvement is 
substantial broadly across cortex (0.039 ± 0.007 for category-selective 
areas, 0.022 ± 0.003 for early visual areas and 0.016 ± 0.002 for 
attention control areas). JI-VM yields significantly higher prediction 
scores than Classical VM in all ROIs (p < .05, bootstrap test). 
Improvement in prediction scores is higher in category-selective areas 
(0.057 ± 0.008) than in attention control areas (0.034 ± 0.005) and early 
visual areas (0.019 ± 0.002). These results imply that spatial and feature 
regularization improve model performance particularly across category-
selective areas and partly across attention control areas [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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stages of visual processing and use of spatial regularization 
improves model accuracy across these stages.

As JI-VM simultaneously leverages feature and spatial 
regularization, we reasoned that it should yield the highest 
level of improvement in explained variance over Classical 
VM. Indeed, we find that improvement in explained variance 
with JI-VM is significantly higher than Classical VM in all 
examined ROIs (p  <  .05, bootstrap test). The average in-
crease in prediction scores is 0.057 ± 0.008 for category-se-
lective areas, 0.034 ± 0.005 for attention control areas and 
0.019 ± 0.002 for early visual areas. In many category-selec-
tive areas, JI-VM improves prediction scores as much as the 
sum of individual contributions from FI-VM and SI-VM. On 
the other hand, in RET and V4, additional improvement by 
JI-VM over SI-VM seems to be limited. These results indi-
cate that spatial and feature regularization provide indepen-
dent improvements in model performance particularly across 
category-selective areas.

Regarding computation times, Classical VM and FI-VM 
lead to competing methods in terms of efficiency because both 
methods involve a single pseudo-inverse (see Equations  4 
and 11). Two hyperparameters (λ and λf) are optimized in 
FI-VM, compared to a single hyperparameter in Classical 
VM (λ). Although calculation of the feature Laplacian ma-
trix (F) involves added burden, for a single feature set, F is 
precomputed once and stored for later use. For our feature set 
(1,705 object and action categories), precomputation of the 
matrix F took only 4 min. The solution to SI-VM or JI-VM 
(see Section 2.12) then includes additional eigenvalue de-
compositions and matrix multiplications over a single pseu-
do-inverse. The complexity of the solution and the need for 
optimization of extra hyperparameters (λf and λs) cause a no-
ticeable increase in computation time for SI-VM and JI-VM. 
The reported modeling procedures were implemented on an 
NVIDIA GTX 1080 card with 8 GB of VRAM, with 100-
fold cross-validation, 5 subjects and 30 separate values for 
each hyperparameter λ, λf and λs. The total compute time was 
3 min for Classical VM, 10 min for FI-VM, 10 min for Graph-
Net, 6 hr for SI-VM and 40 hr for JI-VM.

3.2  |  Selectivity for model features

In the presence of high levels of noise in training data, fit 
models will poorly reflect the true functional selectivity of 
voxels. While VM uses L2-norm regularization over model 
features to alleviate over-fitting, high noise levels typically 
lead to excessive regularization that reduces sensitivity in 
estimating functional selectivity. In the proposed approach, 
we incorporate additional regularization terms across fea-
tures and across voxel neighborhoods. As such, the proposed 
method should limit unnecessary penalization of model 
weights with a uniform Gaussian prior. To assess the level 

of weight penalization with each alternative method, in 
Figure 3, we plotted the optimal L2 regularization parameters 
over model features (λ) on cortical flat map of a representa-
tive subject for VM, FI-VM, SI-VM and JI-VM (see Figures 
S2–S6 for all subjects). Among the examined methods, VM 
applies the highest weight penalization broadly across cortex. 
FI-VM reduces the degree of penalization particularly in cat-
egory-selective areas, as well as in attention control areas and 
early visual areas. Overall, JI-VM yields the lowest level of 
weight penalization consistently across cortex. These results 
suggest that both spatial and feature regularization decrease 
the amount of standard L2-norm regularization over model 
features, thereby increasing sensitivity in measuring voxel 
selectivity for individual features.

We reasoned that informed feature regularization that 
incorporates feature correlations should enforce voxelwise 
models to have relatively similar weights on correlated cat-
egory features and yield increased functional selectivity in 
individual voxels. To examine this issue, we visualized the 
selectivity profiles of single cortical voxels estimated with 
JI-VM versus VM. Figure 4 displays the selectivity profiles 
for JI-VM and VM for two representative voxels in EBA (ex-
trastriate body area) and PPA (parahippocampal place area). 
Typically, a voxel in EBA is expected to respond selectively 
to categories related to “human body” while a voxel in PPA 
is expected to respond selectively to categories related to 
“places” (Downing et al., 2001; Epstein & Kanwisher, 1998). 
Indeed, in voxel-1, functional selectivity for categories re-
lated to “body_parts” (e.g., “eye,””hand,” “finger” and 
“arm”) is increased while the evoked BOLD activity by many 
unrelated categories is suppressed (subordinate categories of 
“vehicle,” “artifact,” etc.) in JI-VM compared to Classical 
VM. In voxel-2, functional selectivity for categories related 
to “scenes” (e.g., “road,” “landscape,” “street” and “path”) 
is increased in JI-VM compared to Classical VM. Moreover, 
due to feature regularization, in voxel-1, model weights of the 
subordinate categories of “structure” (e.g., “door,” “room” 
and “building”) or “motion” (e.g., “travel” and “walk”) are 
more similar in JI-VM compared to VM. Likewise, in voxel-
2, model weights of the subordinate categories of “way” (e.g., 
“road,” “landscape,” “street” and “path”) are more similar in 
JI-VM compared to VM. These results together indicate that 
informed feature regularization captures coherence in fea-
tures and decreases weight penalization, and thus increases 
sensitivity in measuring voxelwise selectivity.

3.3  |  Feature coherence and spatial 
coherence of model weights

Classical VM ignores feature correlations, so it has reduced 
sensitivity to capture coherence in model features. FI-VM 
and JI-VM, on the other hand, employ regularization that 
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respects feature correlations, so they should better capture 
feature coherence. To test this prediction, we computed a 
voxelwise feature coherence metric and visualized it on flat 
maps (see Section 2.15). In Figure  5, feature coherence of 
voxelwise models is shown on the posterior part of the cortex 
of a representative subject (see Figures S7–S11 for all sub-
jects). Feature coherence of FI-VM and JI-VM models is sig-
nificantly higher than VM and SI-VM in all ROIs (p < .05, 
bootstrap test). In attention control areas, the increase in 

feature coherence is very high (see Figure 6; 14.11 ± 1.59% 
for FI-VM and 20.45 ± 2.41% for JI-VM). In category-selec-
tive areas, the increase in feature coherence is substantial (see 
Figure 6; 8.66 ± 1.35% for FI-VM and 14.33 ± 1.69% for 
JI-VM). In early visual areas, the increase is relatively mod-
est (4.47 ± 0.67% for FI-VM and 6.65 ± 0.92% for JI-VM). 
These results suggest that informed feature regularization 
increases feature coherence particularly in attention control 
areas and high-level visual areas.

F I G U R E  3   Cortical distribution of optimal L2-norm regularization parameter. The L2 regularization parameters over model features in the 
four VM methods (VM, FI-VM, SI-VM and JI-VM) are visualized on the right hemisphere of subject S1 (see Abbreviations). VM strictly penalizes 
model weights broadly across cortex. High regularization parameters reduce sensitivity in measuring voxelwise functional selectivity. Here, we 
incorporate additional regularization terms across features and across voxel neighborhoods. As such, the proposed method should limit unnecessary 
penalization of model weights by L2 regularization. As a result, compared to VM, FI-VM applies less weight regularization particularly in category-
selective areas, early visual areas and frontal gyrus. Overall, JI-VM enforces the lowest weight penalization among the competing methods 
consistently across cortex. These results imply that both spatial and feature regularization alleviate the need for L2 regularization, thereby increasing 
sensitivity in measuring voxelwise functional selectivity [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4   Functional selectivity in a single voxel. Functional selectivity of two well-modeled voxels in EBA (extrastriate body area, 
voxel-1, S1) and PPA (parahippocampal place area, voxel-2, S2) is visualized for several object and action categories organized under the 
WordNet hierarchy. Each node represents the estimated response of the voxel to the labeled object (circles) or action category (squares). Red nodes 
correspond to categories that evoke above-mean responses, and blue nodes correspond to categories that evoke below-mean responses. Sizes of 
the nodes indicate the magnitude of the evoked responses. For visualization purposes, the model weights are normalized within each voxel. In the 
proposed approach, we incorporate feature and spatial regularization that limit unnecessary penalization of model weights by L2 regularization 
while improving prediction scores (R2 = .677 vs. R2 = .839 for voxel-1 and R2 = .029 vs. R2 = .105 for voxel-2). Typically, a voxel in EBA is 
expected to respond selectively to categories related to “human body” while a voxel in PPA is expected to respond selectively to categories related 
to “places.” Indeed, in voxel-1, functional selectivity for categories related to “body_parts” (e.g., “eye,” “hand,” “finger” and “arm”) is increased 
while the evoked BOLD activity by many unrelated categories is suppressed (subordinate categories of “vehicle,” “artifact,” etc.) in JI-VM 
compared to Classical VM. In voxel-2, functional selectivity for categories related to “scenes” (e.g., “road,” “landscape,” “street” and “path”) is 
increased. Furthermore, feature regularization enforces more similar weights in correlated categories. For example, in voxel-1, model weights of 
the subordinate categories of “structure” (e.g., “door,” “room” and “building”) or “motion” (e.g., “travel” and “walk”) are more similar in JI-VM 
compared to VM. Likewise, in voxel-2, model weights of the subordinate categories of “way” (e.g., “road,” “landscape,” “street” and “path”) 
are more similar in JI-VM compared to VM. Taken together, these results imply that feature and spatial regularization increase sensitivity in 
assessment of functional selectivity by enforcing functionally coherent model weights [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Spatial regularization enforces spatially coherent model 
weights for neighboring voxels, so SI-VM and JI-VM should 
yield higher spatial coherence compared to the alternative 
methods. To test this prediction, we computed a voxelwise spa-
tial coherence metric and visualized it on flat maps (see Section 
2.16). In Figure 7, spatial coherence of voxelwise models on the 
posterior part of the cortex of a representative subject is shown 
(see Figures S12–S16 for all subjects). SI-VM significantly in-
creases and FI-VM significantly decreases spatial coherence 

consistently in all ROIs (p < .05, bootstrap test). Meanwhile, 
JI-VM has significantly increased spatial coherence in all ROIs 
except RSC, FEF and FO (p < .05, bootstrap test). Yet, JI-VM 
shows significantly decreased spatial coherence in SEF. For JI-
VM, the level of increase in coherence is higher in category-se-
lective areas (10.19 ± 1.59%) than in attention control areas 
(2.38 ± 2.91%) and early visual areas (3.06 ± 0.85%; Figure 8). 
These results imply that spatial regularization yields improved 
spatial coherence broadly across cortex.
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4  |   DISCUSSION

Voxelwise modeling (VM) is a powerful tool to model sin-
gle-voxel selectivity for natural stimulus features with high 
sensitivity (Kay et  al.,  2008; Naselaris et  al.,  2009). Still, 
VM can yield suboptimal performance in the presence of 
high levels of measurement noise. Classical VM does not 
consider potential correlations among model features and 
spatial correlations among neighboring voxels. To improve 
performance, here we first introduced an informed feature 
regularization that considers feature correlations. We also 
introduced a spatial regularization approach that constructs 
voxel neighborhoods based on cortical distances. Our results 
indicate that the proposed approach provides more predictive 
voxelwise models for a natural vision experiment in many 
regions across cortex. We further measured the coherence of 
fit models, and our results suggest that improvements in pre-
diction performance can be attributed to increased spatial and 
feature coherence across cortical representations.

Voxelwise modeling aims to estimate single-voxel func-
tional selectivity from stimulus-driven fMRI data. Yet, VM 
may show suboptimal sensitivity in measuring selectivity 
in the presence of high noise levels and for complex stimu-
lus models with thousands of features. Here, two sources of 
prior information were examined to alleviate this limitation, 
namely correlations among stimulus features and correlations 
among voxel responses. These priors were incorporated to 

the VM framework as added feature and spatial regulariza-
tion terms (both in JI-VM, feature reg. in FI-VM and spa-
tial reg. in SI-VM). Note that regularized problem solutions 
require a careful trade-off between information from col-
lected data (stimulus–response data) and prior knowledge. 
As FI-VM is constrained to only leverage feature regular-
ization, it may alleviate noise at the expense of excessively 
increased feature coherence. Likewise, SI-VM can alleviate 
noise at the expense of over-increase in spatial coherence. (A 
similar problem is observed in traditional VM with excessive 
L2 regularization, Figure 3.) In contrast, JI-VM has increased 
diversity in the type of prior information it can leverage. The 
success of a model in measuring functional selectivity should 
be primarily judged by the prediction scores. Thus, higher 
prediction scores of JI-VM compared to competing methods 
suggest that it can maintain a better balance between feature 
and spatial coherence while alleviating noise. However, it 
should also be noted that higher prediction performances of 
SI-VM and JI-VM over FI-VM come at the expense of in-
creased computation time. Trade-off between high prediction 
performance and low computation time can be an important 
criterion in deciding which method to use.

With similar motivations to treat feature correlations, a 
recent study calculated a linear transformation of a category 
model to impose regularization with a non-uniform prior 
on model features (Nunez-Elizalde et al., 2018). The trans-
formation was defined based on the dimensions of a word 

F I G U R E  5   Feature coherence for VM, FI-VM, SI-VM and JI-VM. Feature coherence for subject S1 is shown on the posterior part of 
the right hemisphere (see Abbreviations). VM ignores potential feature correlations in the stimulus, so it has reduced sensitivity to coherence in 
stimulus features. Informed feature regularization enforces similar model weights for correlated model features. Therefore, feature coherence of 
FI-VM and JI-VM is higher than that of VM and SI-VM across many cortical regions including category-selective areas, attention control areas and 
early visual areas. These results indicate that informed feature regularization better captures feature coherence broadly across visual cortex [Colour 
figure can be viewed at wileyonlinelibrary.com]
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embedding space constructed using co-occurrence statistics 
in a large text corpus. It was reported that the proposed trans-
formation approach yielded improved prediction scores for 
category models across significantly predicted cortical vox-
els. As opposed to a transformation of model features, here 
we leave the model features in their original space and lever-
age potential correlations through a graph Laplacian-based 
regularization term. Avoiding an additional transformation 
might offer an advantage in terms of interpretability of result-
ing model weights. Our approach also allows for independent 
weighing of differences of model weights for each pair of cat-
egory features. It remains important future work to compar-
atively demonstrate the transformation versus regularization 
approach for treatment of feature correlations.

Regularization across model features has also been lev-
eraged in neuroimaging studies beyond fMRI (Tran, Phung, 
Luo, & Venkatesh,  2015; Zhu, Suk, Wang, Lee, & Shen, 
2015) or studies that focus on modeling natural stimuli 
(Sandler, Blitzer, Pratim Talukdar, & Ungar, 2008; Zhang 
& Ostendorf, 2012). A typical way that feature correlations 
are leveraged is to reduce dimensionality by eliminating 
redundant features from subsequent analyses. A previous 
study incorporated feature regularization to improve AD 
diagnosis performance with both regression and classifi-
cation models (Zhu et  al.,  2015). The authors estimated 
similarity of neuroimaging features on MRI and PET im-
ages, and then used these estimates to regularize correlated 
features during modeling. They have reported increased 

FIGURE 6  Feature coherence across functional ROIs. Bar graphs 
display increases in feature coherence by the three methods (SI-VM, FI-
VM and JI-VM) over VM (mean ± SD across subjects). Feature coherence 
of FI-VM and JI-VM models is significantly higher than that of VM in 
all functional ROIs (p < .05, bootstrap test). Threshold for significant 
improvement over Classical VM is designated with a blue line for each 
ROI. The average increase in attention control areas is 14.11 ± 1.59% for 
FI-VM and 20.45 ± 2.41% for JI-VM, whereas the average increase in 
category-selective areas is 8.66 ± 1.35% for FI-VM and 14.33 ± 1.69% for 
JI-VM and the average increase in early visual areas is 4.47 ± 0.67% for 
FI-VM and 6.65 ± 0.92% for JI-VM. In contrast, SI-VM that lacks feature 
regularization has relatively limited increase in feature coherence across all 
ROIs. These results suggest that informed feature regularization increases 
functional coherence in cortical representations particularly in areas that 
take part in attention control and high-level visual functions [Colour figure 
can be viewed at wileyonlinelibrary.com]

FIGURE 7  Spatial coherence for VM, FI-VM, SI-VM and JI-VM. Spatial coherence for subject S1 is shown on the posterior part of the right 
hemisphere (see Abbreviations). VM ignores correlations among voxel neighborhoods, so it has reduced sensitivity to spatial coherence in cortical 
representations. Spatial regularization enforces increased spatial coherence among cortical representations within voxel neighborhoods. Although 
FI-VM and VM have relatively similar spatial coherence values, SI-VM and JI-VM yield higher spatial coherence consistently across many cortical 
regions. These results suggest that spatial regularization better captures spatial coherence broadly across visual cortex [Colour figure can be viewed 
at wileyonlinelibrary.com]
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regression and classification performance in AD diagnosis. 
In another study on medical risk stratification, the authors 
implemented feature regularization on various features ex-
tracted from electronic medical records (EMRs) on differ-
ent timescales during ordinal regression (Tran et al., 2015). 
They have reported that suicide risk can be better predicted 
by a model of EMR-derived features compared to clini-
cians. In both studies, the authors discarded redundant 
features via an L1-norm regularization. Unlike these pre-
vious studies, here we retained all stimulus features in the 
model. Several previous studies have employed a feature 
regularization approach similar to the one proposed here 
for robust text classification (Sandler et al., 2008; Zhang & 
Ostendorf, 2012). In Zhang et al., the authors regularized 
the correlated subtopics for a discriminative classifier. They 
constructed a feature affinity matrix using subtopic co-oc-
currences on a large unlabeled dataset as in our method. 
Later, they included a feature regularization term based on 
the feature affinity matrix into maximum entropy training 
objective. They have reported that feature regularization 
on subtopic features improved text classification accuracy 

over other semi-supervised learning approaches. In Sandler 
et al., the authors incorporated feature regularization into 
sentiment classification and newsgroups document classi-
fication via logistic regression. Similar to our approach, 
they used a graph Laplacian-based regularization by using 
both word co-occurrences and prior domain information to 
compute feature similarities. They have reported improved 
classification performances over many other semi-super-
vised learning methods.

The proposed method leverages a linguistic model to 
guide feature regularization on a visual category model. 
Indeed, several recent studies suggest that category infor-
mation in natural visual scenes is well captured by semantic 
features in natural language. Clarke et al. reported that visual 
objects that shared a superordinate category yielded more 
similar activation patterns in perirhinal cortex than those that 
did not (Clarke & Tyler, 2015). Carlson et al. reported that se-
mantically related objects had similar neural representations 
in inferior temporal cortex (Carlson, Simmons, Kriegeskorte, 
& Slevc, 2014). Semantic relatedness was measured using hi-
erarchical word relations and distributional patterns of words 
in large text corpora. More recently, Wen et al. reported a 
significant correlation between representational similarity 
and semantic similarity across cortex for a pair of visual ob-
jects (Wen, Shi, Chen, & Liu, 2018). In that study, seman-
tic similarity was measured based on the distances in word 
embedding models (Landauer, 2006; Pennington, Socher, & 
Manning, 2014).

Here, we used a common set of hyperparameters for con-
structing the feature Laplacian matrix and spatial Laplacian 
matrix. A potential avenue for improvement for the proposed 
method is to consider voxelwise optimization of these pa-
rameters. Note, however, that this will require considerably 
higher computational load. Improving performance in feature 
regularization might also be viable via different approaches 
to computing similarity of model features. Here, we calcu-
lated them in the word embedding space constructed using 
co-occurrence statistics. One can typically utilize another 
word embedding space constructed by word2vec or LSA 
to find the similarities of model features (Landauer,  2006; 
Mikolov, Yih, & Zweig, 2013).

In summary, we introduced a novel voxelwise modeling 
approach that simultaneously utilizes stimulus correlations in 
model features and response correlations among voxel neigh-
borhoods. Our results indicate clear improvements in predic-
tion performance, spatial coherence and feature coherence of 
category models in a natural vision experiment, specifically 
across visual category areas and attention control areas. With 
little increase in computation time, a significant albeit mod-
est improvement in prediction performance is obtained with 
feature regularization compared to spatial regularization. 
Meanwhile, concurrent use of spatial and feature regulariza-
tion yields even higher prediction performance with further 

FIGURE 8   Spatial coherence across functional ROIs. Bar graphs 
display increases in spatial coherence by the three methods (FI-VM, SI-
VM and JI-VM) over VM (mean ± SD across subjects, see Abbreviations). 
Spatial regularization enforces increased spatial coherence among 
cortical representations of neighboring voxels. Threshold for significant 
improvement over Classical VM is designated with a blue line for each 
ROI. SI-VM has significantly higher spatial coherence than VM in all 
functional ROIs (p < .05, bootstrap test). JI-VM has significantly higher 
spatial coherence than VM in all functional ROIs except RSC, FEF, SEF 
and FO (p < .05, bootstrap test). The average increase in category-selective 
areas is 17.00 ± 0.69% for SI-VM and 10.19 ± 1.59% for JI-VM, whereas 
the average increase in attention control areas is 14.89 ± 1.29% for SI-VM 
and 2.38 ± 2.91% for JI-VM and the average increase in early visual areas 
is 7.89 ± 0.22% for SI-VM and 3.06 ± 0.85% for JI-VM. Meanwhile, 
FI-VM that lacks spatial regularization does not yield any improvement 
in spatial coherence. These results indicate that spatial regularization 
increases spatial coherence among cortical representations of voxel 
neighborhoods across many cortical regions [Colour figure can be viewed 
at wileyonlinelibrary.com]
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increase in computation load. These improvements are best 
attributed to prevention of crude, unnecessary penalization 
of model weights, and thereby increased accuracy in mea-
surement of functional selectivity. While demonstrations 
were primarily for a category model, the proposed approach 
can also be beneficial to modeling of other types of stimulus 
features known to exhibit correlations. Overall, the proposed 
approach can offer improved sensitivity in modeling of single 
voxels in naturalistic fMRI experiments.
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