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Motivated by the state of the art method for fabricating high-density periodic nanoscale defects in graphene,
the structural, mechanical, and electronic properties of defect-patterned graphene nanomeshes including diverse
morphologies of adatoms and holes are investigated by means of first-principles calculations within density
functional theory. It is found that various patterns of adatom groups yield metallic or semimetallic, even
semiconducting, behavior and specific patterns can be in a magnetic state. Even though the patterns of single
adatoms dramatically alter the electronic structure of graphene, adatom groups of specific symmetry can maintain
the Dirac fermion behavior. Nanoholes forming nanomesh are also investigated. Depending on the interplay
between the repeat periodicity and the geometry of the hole, the nanomesh can be in different states ranging
from metallic to semiconducting including semimetallic states with the bands crossing linearly at the Fermi level.
We showed that forming periodically repeating superstructures in a graphene matrix can develop a promising

technique for engineering nanomaterials with desired electronic and magnetic properties.
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I. INTRODUCTION

Propagation of electron waves through a honeycomb lattice
confers exceptional features to graphene.! Conduction of
electrons within a one-atom-thick layer with minute scattering
makes observation of quantum effects possible even at room
temperature.”? Experimental investigations have reported the
observation of a half-integer quantum Hall effect for carriers in
graphene and possible magnetoelectronic device applications.*
Most of the unique properties of graphene are related to its
monolayer lattice structure, linearly crossed w bands at the
Fermi level with electron-hole symmetry. Recently, we showed
that the honeycomb structure with linear band crossings at
Dirac points is also common to Si and Ge.>*

In an effort to make semimetallic graphene suitable for
electronic applications, it has been functionalized to generate
band gaps. It was theoretically shown that it is possible to
induce band-gap opening produced by the adsorption of atomic
hydrogen on graphene by choosing a specific adsorption
periodicity.” It was also experimentally shown that B- and
N-doped graphenes can be synthesized to exhibit p- and
n-type semiconducting properties that can be systematically
tuned with the dopant concentration.® The effect of hydro-
genation and transition metal atom adsorption on the transport
properties of graphene was also investigated theoretically.”!°
Using symmetry arguments and tight binding calculations, it
was shown that the periodic structure of defects (such as B
and N impurities) on graphene can exhibit semimetallic and
semiconductor behavior.'! Moreover, a weak perturbation po-
tential forming a large hexagonal lattice in a two-dimensional
(2D) electron gas was shown to lead to a massless Dirac
fermion Hamiltonian with linearly crossing bands at Dirac
points. >4

The majority of the current studies on graphene is devoted
to its chemical modification to create derivatives with different
structures and properties. So far three known derivatives
of graphene have been successfully achieved in chemical
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reactions: graphene oxide (GO),'>~!® graphane (CH),'*~?? and,
recently, fluorographene (CF).>>">> Although GO is a wide-
band-gap material that is important for device applications, its
atomic structure, wherein the carbon atoms are decorated with
epoxides, alcohols, and carboxylic acid groups, is not suitable
for nanoscale manipulations. CH, obtained by exposing a
carbon honeycomb structure to hydrogen plasma, is another
example of a graphene-based chemical derivative. Upon
hydrogenation, semimetallic graphene is converted into an
insulator. CF, the 2D counterpart of Teflon, is the most recent
focus of graphene research.

Much recently, the fabrication of large graphene sheets
having a high-density array of nanoscale holes, called graphene
nanomeshes (GNMs),2° has been the landmark in controlling
electronic properties at the nanoscale. Additionally, the for-
mation of one-dimensional periodic Stone-Wales-type defects
producing metallic nanowires on a graphene matrix has also
been reported.?” These recent advances have made the mesh
configuration a controllable parameter for monitoring physical
properties of nanostructures.’®>® Earlier, interesting effects of
periodically repeating holes on the electronic and mechanical
properties of graphene nanoribbons were predicted from first-
principles calculations.?’

In this paper, we apply a supercell method to reveal the
electronic, magnetic, and mechanical properties of graphene,
which is patterned by various adsorbates or holes. The
atomic structure of all adsorbates and holes are obtained after
extensive structure optimization. These periodically repeating
superstructures or nanomeshes display properties which are
rather different from those of graphene. We showed that not
all patterns of adsorbates or holes with a 2D hexagonal lattice
on graphene have linear band crossing—only those which have
specific rotation symmetries. However, depending on the size
of patterns or holes and the repeat periodicity, a GNM can be in
different states, ranging from semiconducting to semimetallic
(with linear band crossings at the Fermi level).
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II. COMPUTATIONAL METHODOLOGY

The present study revealed crucial effects of the point-group
symmetry of nanomesh on the resulting properties. Here, we
start with a brief discussion of hexagonal symmetry and apply
a simple tight-binding model of & orbitals to reveal the effect
of lattice symmetry on the band crossing.’*3! Graphene has
the space group P6/mmm and the point-group symmetry Dy .
At the I" point, the group of the wave vector is isomorphic to
the point group Dg;,.>> However, irreducible representation
of the wave-vector point group turns into D,, and D3, at
high symmetry points M and K (or K'), respectively. It
was shown that the tight-binding Hamiltonian with nearest-
neighbor hopping parameter, t = 2.7 eV,

H=> ecjci+1Y (cle;+He), 1

iJj

well approximates the 7 bands of perfect graphene.’*3! Here

cj (c;) is the creation (annihilation) operator of a 7 electron
at lattice site i. The first term is the on-site energy of each
carbon atom and equals the energy of the 2p, orbital. Energy
eigenvalues of graphene and another two hypothetical crystals
having square and hexagonal lattices with a single atom in
the cell are calculated, and contour plots of their energy
band gaps in the Brillouin zone (BZ) are shown in Fig. 1.
For graphene, the energy dispersion is linear in the vicinity
of the K symmetry (Dirac) points, and the Fermi velocity,
which is linearly dependent on the nearest-neighbor interaction
parameter, can be given by the expression vy = 3td /2h.33

A hypothetical square lattice has a semimetallic band
structure as shown in Fig. 1(b). In the reciprocal space the
band gap is closed along the boundaries of squares. However,
differing from graphene, these bands do not have a linear
dispersion. A structure having a hexagonal lattice with a single
7 orbital per unit cell is shown in Fig. 1(c). Such a structure,
having a single 7 orbital in each unit cell, may also be realized
by adatom saturation of one type (A or B) of the carbon atoms
of graphene. In this case, the structure has threefold rotation
symmetry and hence six nearest neighbors. In this case, while
saturation yields a dramatic change in the electronic structure,
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FIG. 1. (Color online) Contour plots for band gap. (a) Perfect
graphene. (b) A crystal having a square lattice with a single atom in
the unit cell. (c) A crystal having a hexagonal lattice with a single
atom in the unit cell. Band crossing occurs along the yellow (light)
contours on which the band gap becomes 0. The band gap takes its
maximum value at the brown (dark) contours.
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linear band crossings at the Fermi level still occur at points
on a circle of radius R = % in BZ. As shown in Fig. 1(c),

this circle passes through the corners of the hexagonal BZ of
graphene. The Fermi velocity is calculated to be of the order
of 10° m/s in the vicinity of band crossing points.

While the tight-binding model allowed us to understand
the general features of the band gap in different lattices, it
fails to account for the reconstruction and rebonding near the
defect. In the rest of the paper we perform calculations from the
first principles to investigate various types of defects. To this
end we carried out spin-polarized plane-wave calculations**3
using the local density approximation (LDA)® and projector
augmented wave (PAW)?7 potential. Patterns of defects are
treated using supercell geometry, where a minimum of 10-A
vacuum spacing is kept between the adjacent graphene
layers. The kinetic energy cutoff is determined after ex-
tensive convergence analysis. For the plane-wave basis set,
the kinetic energy cutoff is taken to be %%k + G|>/2m =
500 eV. For partial occupancies the Methfessel-Paxton smear-
ing method®® is used. The convergence criterion of self-
consistent field calculations is 107> eV for the total energy
values. Using the conjugate gradient method, all atomic
positions and sizes of unit cells were optimized until the atomic
forces were less than 0.05 eV /A. Pressures on the lattice unit
cell were decreased to values less than 1 kB.

III. ADATOM PATTERNED GRAPHENE NANOMESHES

In this section we show how a periodic decoration of
graphene by adatoms modifies the electronic structure. Here
we considered H, F, O, and Mn adatoms, which are adsorbed
at different sites and form (4 x 4) supercells on a graphene
host matrix as shown in Figs. 2(a)-2(d). We did not consider
interstitial or substitutional decoration, since experimental
studies treating various foreign atoms, such as N2 0,15 H,”?
E2 C,* Co0,*° Fe and Gd,*! and Au and Pt,*? revealed that
these atoms prefer to be adsorbed at various sites on the surface
of graphene, but none of them is adsorbed at interstitial sites
or is substituted for a carbon atom.

Owing to the unpaired electron, a single hydrogen adatom
adsorbed to a (4 x 4) supercell has a spin-polarized, semi-
conducting ground state with a net magnetic moment of y =
1 wp. Upon adsorption of a hydrogen atom, the band structure
of graphene changes dramatically. Instead of linear crossing
of m and 7 * bands at the Fermi level, dispersionless impurity
bands occur, with a 0.1-eV indirect band gap. Similarly to
hydrogen atoms, the most favorable adsorption site for a F
atom on graphene is the top site of carbon atoms. Upon the
adsorption of a F atom, sp? bondings of three C-C bonds
below the F atom are dehybridized and form four tetrahedrally
coordinated sp3-type bondings. Differing from the decoration
of H adatom, ground state is nonmagnetic and as a result of odd
number of electrons F decorated graphene becomes metalized
as shown in Fig. 2(b). The band crossing at the K points does
not occur, since F adsorbed at the top of a C atom changes the
sixfold rotation symmetry to the threefold rotation symmetry.

An oxygen atom favors the bridge site between two
underlying C atoms. Upon the adsorption of an oxygen at
the bridge site, two underlying C atoms become buckled by
0.36 A. C-C and C-O bonds are calculated to be 1.51 and
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FIG. 2. (Color online) Spin-polarized energy band structure of periodic patterns consisting of (4 x 4) supercells, each having a single (a)
hydrogen, (b) fluorine, (c) oxygen, and (d) manganese adatom. (e) A similar hydrogen pattern forming a (2 x 2) supercell on a graphene host
matrix allowing significant coupling between adatoms. (f-h) Periodic patterns of two, eight, and six hydrogen atoms in a (4 x 4) graphene
supercell, respectively. Insets: Isosurface of charge density of bands crossing near the K point. For comparison, linearly crossing = and 7*
bands of a perfect graphene host matrix are also superimposed on the band structures. Zero energy is set at the Fermi level Er. Band gaps are
shaded yellow. All bands presented in the BZ corresponding to the (4 x 4) supercell.

1.44 A, respectively. The resulting structure is a nonmagnetic
semiconductor with a 0.63-eV direct band gap [Fig. 2(c)].
Valence and conduction band edges occur between the K and
the I" points. The adatom at the bridge site breaks the sixfold
rotation symmetry and hence hinders the linear band crossing.

The situation is different in the case of Mn, which is
adsorbed above the center of a hexagon in a graphene matrix
and induces negligible deformation. Only the six nearest C
atoms rise to a slightly higher (0.02 A) position relative to the
plane. Localized, nonbonding Mn-3d orbitals form flat bands
near the Fermi level. Besides, the sixfold rotation symmetry
is maintained even after a Mn atom is adsorbed at the hollow
site above the center of the hexagon. Accordingly, the metallic
structure with a net magnetic moment of 3 up per cell allows
linear crossing of graphene bands at the K points in Fig. 2(d).

Having discussed the effect of periodic decoration by single
adatoms, we next consider the periodic patterns of adatom
groups. In Fig. 2(e) we show an electronic band structure
corresponding to a relatively denser hydrogen coverage (C :
H = 8). Such a nanomesh created by one-sided decoration
of four hydrogen atoms in a (4 x 4) supercell gives rise to
relatively dispersive bands and a net magnetic moment of 4 5
per supercell. Since the sixfold rotation symmetry of graphene
is broken by adsorbed H atoms, linear crossing of bands does
not occur. In a decoration involving two sides of graphene, two
adjacent C atoms of different sublattices are saturated from
different sides as shown in Fig. 2(f). Since equal numbers
of A- and B-sublattice atoms are saturated, the structure is
a nonmagnetic semiconductor with a band gap of 0.8 eV.
Another pattern derived from a CH-like domain consisting of
eight H atoms in Fig. 2(g) results in a band gap of 0.7 eV at the
I" point but a larger gap of 1 eV at the K point. This nanomesh
presents an electronic structure rather different from that of
both graphene and CH. The electronic structure is, however,
different for a pattern of six H atoms, which saturate six carbon

atoms at the corner of a hexagon alternatingly from different
sites: that is, three of them adsorbed to the A sublattice from
one side and the remaining three adsorbed to the B sublattice
from the other side. Even though the sixfold rotation symmetry
has changed to Sg symmetry, both point-group symmetries
allow linear band crossing as shown in Fig. 2(h). This case
demonstrates the crucial role played by the intrinsic symmetry
of the pattern in determining the electronic structure.''~3

Let us now take a closer look at the triangular patterns of
adatom groups that have hexagonal symmetry. In Fig. 3, we
plot these 77 and 7* bands in the vicinity (Ak = 0.03 A~1)
of the K-symmetry point for different patterns on supercells
of different sizes, that is, (4 x 4) and (8 x 8) (Cjps and
C3;) supercells. Hg and Hj, patterns, which have 0.06- and
0.09-eV band gaps at the K point, indicate that the band
gap opening increases with increasing pattern size, hence
increasing coupling. In the (8 x 8) supercell the interaction
between periodically repeating Hg patterns is hindered, and
hence linear crossing of = and 7 * bands at the K-symmetry
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FIG. 3. (Color online) Band structures showing the effects of
coupling between various patterns as a function of their size and the
mesh size (supercell). Linearly crossing = and 7 * bands of graphene
are shown by dashed (red) lines.
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point similar to that in bare graphene is attained. By expressing
these bands as k = K+ q and neglecting the second-order
terms with respect to g2, the dispersion of the energy bands
can be given as E(q) =~ vgh|q|. Here the Fermi velocity vp is
calculated as 0.7 x 10° m/s (i.e., ~0.6 of the Fermi velocity
calculated for Dirac fermions in perfect graphene).

We also present an example of an Og pattern analogous to
Hj, decoration of a (4 x 4) supercell (C3;H;,) of graphene in
Fig. 3. In this pattern three O atoms are bound alternatingly
to the bridge site at one site, and the remaining three atoms,
to another site. Here it is seen that denser O patterns are not
favored due to strong O-O repulsion. Linear crossing of bands
at the K point can also be achieved by O adatoms forming
a periodically repeating O¢ pattern. The small band gap in
Fig. 3 can be closed if the supercell size is increased, to hinder
coupling between them. This example implies that patterns
similar to that obtained using H atoms can be created by the
passivation of p-orbital electrons with O atoms. In the case
of fluorination of (4 x 4) graphene by F¢ decoration, similarly
to Hg, linear 7w and 7* bands gets closer with a very small
(0.01-eV) band gap at the K point. Finally, the isosurface
charge densities of these linearly crossing bands near the K
point indicates that they mainly originate from graphene 7
orbitals, with a small amount of mixing from the adatom [see
Fig. 2(h)].

IV. HOLE-PATTERNED GRAPHENE NANOMESHES

Similarly to adatom patterns on graphene, nanomeshes
generated from holes periodically patterned on a graphene
matrix also exhibit interesting features. This conclusion, drawn
from theoretical calculations, is in line with the findings
obtained from the fabrication of GNMs by means of the
block-copolymer-assisted nanopatterning process. It has been
shown that GNMs having a high-density periodic array of holes
display promising advantages relative to existing graphene
devices.?*?” Thanks to the advances in the preparation of
high-quality nanoscale hard masks?®?’*3 under laboratory
conditions, theoretical studies in this field become more
relevant for applications. Here we carry out calculations for
holes with a 1- to 2-nm repeat period and a 2- to 10-A
diameter. In Fig. 4(a) we describe the geometric parameters of
C, hole defects forming a hexagonal lattice, where n denotes
the number of C atoms removed from the graphene matrix to
make a hole. For nanoholes, we define the hole size as the
maximum diameter of the C, hole defective region. After the
creation of a C; defect (i.e., single C vacancy), Jahn-Teller-type
distortion changes the positions of the surrounding C atoms
slightly. The resulting structure attains a net magnetic moment
of 1 up. The origin of magnetism in defective graphene sheets
and the character of electronic states induced by the vacancy
resulting in flat bands around the Fermi level have been
investigated in some recent studies.***® Upon the removal
of C atoms (n > 1), graphene is reconstructed to result in a
significant modification of the atomic configuration around
the hole. For example, after relaxation of the atomic structure,
the C, defective region becomes an octagon-shaped hole
surrounded by two pentagons and six hexagons. Similarly,
as a result of Stone-Wales-type transformation, each C4 defect
region also turns into a nonagon-shaped hole. As reported
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FIG. 4. (Color online) (a) Structural parameters for the nanomesh
of a C, hole. (b) Large supercells of a hexagonal lattice, each
containing a single hole of C;, C,, C4, Cg, Cj2, and Cy4. Nanomeshes
in the third row were obtained by saturating C¢ and C,4 holes with
hydrogen and, also, with alternating B and N atoms.

experimentally,*’ a hole region is surrounded by pentagonal
and hexagonal rings of C atoms to keep the flatness of the sheet.
While the honeycomb lattice symmetry of the graphene matrix
does not change considerably for larger defects, Cg and Cy4, the
hole region of Cj, takes an almost-circular shape surrounded
by regular pentagons and hexagons. Apparently, the trend in
the shape of the hole region is determined by whether the edges
of the domain are zigzag or armchair shaped.

The energy band structures of GNMs exhibit interesting
variations with respect to their sizes, diameters, and nanohole
shapes as illustrated in Fig. 4(b). While nanomeshes of the
C, defect show metallic behavior, the periodic structure of
the C, defect becomes an indirect band gap semiconductor of
0.65 eV. However, m and 7* bands above the Fermi level are
still very close to each other (0.09-eV gap) at the K point.
The C4 defective GNM shows metallic behavior. The situation
becomes even more remarkable for larger defects: Cg, Cy2,
and Cy4. GNMs including either a Cg or a Cyq hole have
zigzag edges and are metals with an antiferromagnetic ground
state. We note that defect-induced flat electronic bands around
the Fermi level occur if the electron spins become unpaired.
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FIG. 5. (Color online) Band structure of nanomeshes of C,
forming in (n x n) supercells of graphene, withn =4...11.

Besides, the reconstruction or the dimerization of dangling
carbon bonds around the defect can cause the flat bands in
the gap to disappear. Interestingly, nanomeshes of C¢ and
Cy4 holes, which are metallic, become semimetal upon the
saturation of dangling bonds of carbon atoms around the hole
with hydrogen atoms. This metal-semimetal transformation
can have applications in graphene-based nanoelectronics. On
the other hand, GNM of Cg turns semiconducting with a band
gap of 0.1 eV upon the termination of the dangling bonds of
C atoms around the hole by B and N alternatingly to from a
B3Nj3 hexagon. The band opening is explained by the breaking
of sixfold symmetry due to B3N3 hexagon. The formation
extended B, N,, honeycomb structure can be achieved directly
in the course of epitaxial growth of graphene and single
layer BN.#849

As for a GNM with Cy,, it is a nonmagnetic semimetal
because the carbon atoms at the edge are dimerized. Analysis
of the orbital character of linearly crossing = and 7* bands
near the K point using isosurface charge densities suggests
that these bands originate from bonding and antibonding
combinations of m orbitals at the neck and around the Cg
hole. Here we discuss an important aspect of GNMs with Cy;:
that the size of the hexagonal supercell or repeat periodicity
of Cyp is crucial for the resulting electronic structure.
Figure 5 shows band structures of GNMs including a single
Ciz holeinan (n x n) supercell wheren = 4...11.Forn =4,
the GNM has a neck region consisting of a single hexagon
and is a semimetal. For n = 5, the GNM is a metal and has a
neck region which is relatively thicker but its C-C bond angles
deviate strongly from 120°. Surprisingly, a GNM with n = 6
is a semiconductor having a 1.3- eV band gap. The bond
angles continue to deviate from those of graphene. However,
above n = 7 the bond angles in the neck region start to be
graphene-like, with a regular honeycomb structure. GNMs
with both n = 7 and n = § are semimetals and have 7= and 7*
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FIG. 6. (Color online) (a—c) Rectangular patterns of C;, holes
repeatedin (3 x 6), (4 x 8),and (5 x 10) graphene supercells. Insets:
Atomic structures of nanomeshes. (d) Semimetallic electronic struc-
ture and isosurface charge densities of valence (V) and conduction
(C) bands of (5 x 10) nanomesh are also shown.

bands which cross linearly at the Fermi level at the K point.
The isosurface charge densities of these bands near K points
demonstrate that they, in fact, originate from the combination
of graphene 7 orbitals. As n increases, GNMs exhibit a similar
trend for n = 6-9; namely, they are semiconductors forn = 9
but semimetals for » = 10 and 11. This variation of band gaps
is reminiscent of the family behavior of graphene nanoribbons
and is related to the variation in the thickness of necks between
periodically repeating C;, holes.?>> Here, even if the sixfold
rotation symmetry is conserved, the band gap opens for every
n =3 x N, with N being an integer >2. However, this gap
becomes smaller and eventually is closed as n — oco. We also
note that the family behavior of GNMs is related to the edge
structure of the hole. With regard to the size of the GNM of
Cj2, we also note that the lattice constants of the corresponding
(n x n) supercell are modified with size. For example, for
n = 11, the lattice constant of the supercell is contracted by
1%, the contraction is 4% for n = 5 and 40% for n = 4.

Finally, in addition to triangular defect patterns, we also
discuss the electronic structure of holes arranged in a rectan-
gular lattice. In Fig. 6 we show the electronic band structures
of Cy; nanomeshes realized by (3 x 6), (4 x 8), and (5 x 10)
supercells. While Cj, holes in small rectangular supercells
with a low-repeat periodicity (leading to significant coupling)
become semiconducting, a semimetallic nature indigenous to
that of graphene is achieved in large supercells. As shown in
Fig. 6(c), even if the rotation symmetry required for band
crossing is absent, graphene-like Bloch wave functions in
the rectangular mesh of sparse patterns of C;, holes show
a semimetallic behavior. This indicates that as the size of the
supercell increases and the neck gets wider relative to the size
of the hole, the symmetry requirement necessary for linear
band crossing can be relaxed.

V. MECHANICAL PROPERTIES OF NANOMESHES

A honeycomb structure with sp? bonding underlies the
unusual mechanical properties providing a very high in-plane
strength but transversal flexibility. Here we investigate how
the mechanical properties of nanomeshes are generated with
patterns of adatoms or holes. We focus on the harmonic range
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of the elastic deformation, where the structure responds to
strain € linearly. Here € is the elongation per unit length.
The strain energy is defined as E; = E7(e) — Er(e = 0);
namely, the total energy at a given strain ¢ minus the
total energy at zero strain. Normally, the Young’s modulus
is the value which characterizes the mechanical strength
of a bulk material. Owing to ambiguities in defining the
Young’s modulus of 2D structures like a GNM, one can
use the in-plane stiffness C = (1/Ao)(d?>Eg/d€?) in terms of
the equilibrium area of the supercell, A(.>'> We calculate
the in-plane stiffness of graphene, and nanomeshes consisting
of C;,Hg, BN-substituted graphene (i.e., C[(BN)s], and a
Cs hole in graphene using a (4 x 4) supercell in Fig. 3.
The stiffness of bare graphene is calculated to be 334 N/m,
which is in good agreement with the experimental value of
340 £ 50 N/m. Furthermore, the in-plane stiffness values of
nanomeshes generated on graphene through B3 N3 substitution,
an Hg adatom pattern, and a Cg hole are 308, 283, and
167 N/m, respectively. Apparently, the bare graphene matrix
is weakened by the formation of any of these nanomeshes.
In addition to the calculation of in-plane stiffness, we extend
our analysis to include the plastic deformation region, where
the honeycomb-like structure is destroyed after the yielding
point (i.e., the onset of plastic deformation), and the GNM
undergoes a massive structural deformation. Our preliminary
simulations indicate that the yielding strain of a Cg-hole
GNM is significantly lower than the yielding strains of both
C26 [(BN);] and C32H6 GNMs.

VI. CONCLUSIONS

While graphene and its various derivatives, GO, CH,
and CF, are important nanomaterials with diverse electronic,
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magnetic, and mechanical properties, their properties can be
modified and multiplied using different methods of func-
tionalization. The most pronounced property of graphene,
namely, linearly crossing bands at the Fermi level, and
the electron-hole symmetry arising therefrom, is usually
destroyed when graphene is functionalized through dopant
or vacancy defects. In this work we have demonstrated that
the electron-hole symmetry, even Dirac fermion behavior,
can be recovered for periodically repeating superstructures
or nanomeshes having special point-group symmetry. In this
study we have considered nanomeshes, which are generated by
decoration of adatoms, adatom groups, or holes which repeats
periodically in a graphene matrix. We found that the types of
adatoms and their patterns, the geometry of the holes of carbon
atoms, and the sizes and lattice symmetries of nanomesh
provide us with several parameters with which to engineer
the electronic and magnetic properties of nanomeshes. In
particular, we have shown that by varying only the size of
the nanomesh including a specific hole, one can tune between
metallic and semiconducting states including semimetal with
linearly crossing bands. This is reminiscent of the family
behavior of graphene nanoribbons.
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