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Abstract

AN INVENTORY MODEL FOR RECYCLABLE GOODS
WITH A DISPOSAL OPTION

Cerag Pinge
M. S. in Industrial Engineering
Supervisor: Prof. Ulkii Giirler
September 2002

In this study, we develop and analyze a control policy for a continuous review
inventory system of recyclable goods with a disposal option. We assume that
the return and demand flows are independent and the net demand pattern is
governed by a Brownian motion process. Under the fixed procurement lead-time
and backordering assumptions, we derive the analytical expressions of the cost
rate function for the cases where the net demand rate is zero and positive. A
numerical analysis is conducted to see the effects of the net demand rate over the

policy parameters and to illustrate the advantages of using the model.

Keywords: Inventory Control, Reusable products, Recycling, Disposal,

Brownian Motion, Cash flow management
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GERI DONUSUMLU MALLAR ICIN ELDEN CIKARMA
SECENEKLI BIR ENVANTER POLITIKASI

Cerag Pinge
Endistri Mithendisligi Yiksek Lisans
Tez Yoneticisi: Prof. Ulkii Giirler
Eylil 2002

Bu calismada, surekli gozden gegirilen envanter sistemlerinde, geri donugumlu
mallar i¢in, elden ¢ikarma secenekli bir kontrol politikasi gelistirilmis ve analiz
edilmistir.  Geri dontis ve talep akiglarimin birbirinden bagimsiz oldugu ve
net talebin Brownian rassal stirecine gore hareket ettigi varsayilmigtir. Sabit
tedarik siiresi ve geri 1smarlama varsayimi altinda, net talep oraninin sifir
ve pozitif oldugu degerler i¢in ortalama maliyet fonksiyonun analitik ifadesi
bulunmustur. Net talep oranimin politika parameterleri tizerindeki etkisini ve

modelin kullaniminin yaralarini gorebilmek i¢in sayisal analiz verilmigtir.

Anahtar sozcukler: Envanter kontroli, Geri kullamlabilir mallar, Geri

dontigim, Elden ¢ikarma, Brownian rassal stuireci, Nakit akigi yonetimi
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Chapter 1

Introduction and Literature

Review

Reuse of products and materials becomes more and more important as a
result of growing environmental and economical concerns due to increasing
industrialization. In many countries governments set recycling quotas and take-
back obligations for producers. Waste reduction techniques are used more
intensively to prevent landfilling or incineration of reusable goods. Beside the
governmental restrictions and environmental legislation, customer expectations
for a 'green’ image have become an important marketing strategy. Not only these
environmental motivations but also the economical concerns play an important
role in reuse activities. Companies want to retrieve the useful parts or materials
integrated in used products. These separated parts and materials can be used in
production of new products or sold in other markets.

The efforts for the reuse of products and materials present many complications
that affect production systems. Unlike the conventional production environment,
the reuse of materials requires the management of the flow of returned items. The
field that deals with the issues on distribution planning, inventory management
and production planning of systems with return flows is called reverse logistics.

Another new area called Product Recovery Management (PRM) has emerged

to arrange reuse efforts in a more systematic manner. The objective of PRM 1is
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given by Thierry et al. [29] as “recovering the economical and ecological value as
reasonable as possible, thereby reducing the ultimate quantities of waste”. First
step in achieving this objective is to classify the types of returned items. A review
paper on reverse logistics by Fleischmann [4] defines three main categories for
returned items as packages, spare parts and consumer goods. This categorization
determines the forms of reuse.

According to Thierry et al. [29] a returned item can be directly reused /resold,
recovered or disposed. It can be reused or resold directly after simple cleaning
operations. Packages, bottles and containers are the most common examples
of direct reuse. Alternatively, they can be recovered according to the product
recovery options: repair, refurbishing, remanufacturing, cannibalization and
recycling.

In the repair option, a used product is brought to working order by mending
or changing some parts; but the repaired product has lower quality than a new
product. Refurbishing option is similar to repair with higher quality standards
but less strict than those for new products. Also, in refurbishing, the product is
disassembled into modules, inspected and replaced, if necessary.

Contrary to repair and refurbishing options, the goal of remanufacturing is to
bring used products to the same quality levels as for new products. Therefore, a
used product is disassembled into modules and parts; and, each part or module
is rigorously tested to replace the critical components with new ones.

Different from the first three options, the purpose of cannibalization is to
recover reusable parts in a used product rather than the product itself. Hence, in
cannibalization, limited disassembly of a used product occurs to find the reusable
parts.

Finally, in the recycling option, the aim is to recover materials from used
products. With this property, it is the most different recovery option from the
others since other options try to save all features of the used product or its parts.
However, in recycling the goal is to separate product into materials to use them
in production of new parts or sell in secondary markets.

Another important issue for a company applying the concept of reuse is the
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control of its inventories. Producers have to integrate their existing inventory
system with the return flow of used items. In a typical inventory system of
reusable products, the materials can be supplied from an outside supplier or
recovered from returned items. As a result of this, the inventory level does
not always decrease but may also increase due to returns. Hence, this makes
the analysis of the inventory process more complicated. Also, this fluctuating
structure is the main difference between the traditional inventory systems and the
inventory systems of reusable items. However, similar to conventional inventory
systems, the decision maker wants to know when to order and how much to
order. The objective of inventory management of reusable products can be stated
as minimizing the associated costs with respect to required service level while
controlling the outside orders together with inside recovery process.

The earlier models proposed in the literature of reverse logistics are the
adaptations of the well known EOQ formula to the systems with returns. The
studies on this framework begin with Schrady [26]. He considers a system with
deterministic demand and return rates with fixed procurement and recover lead-
times. He suggests a control policy and provides the EOQ) type expressions for the
optimal order and recovery lotsizes . A similar model is proposed by Richter [23],
[24] with a disposal option and variable setup numbers per cycle. He derives the
optimal policy parameters and discusses the relationship between the production
and repair setup numbers and waste disposal rates.

Although the FOQ type models provides intuition about the relationship
between the disposal rate and the cost function, the main drawback of these
models is that the demands and returns are assumed to be known with certainty.
For many real life cases, this assumption does not hold.

For stochastic demand and return patterns we can divide the literature into
two main categories according to the forms of reuse. These are the well-known
repair/maintenance systems and general product recovery systems. Although
we mentioned repair as a recovery option, the repair/maintenance systems in
the inventory literature differ by two characteristics from the general product

recovery systems. The main distinction of these systems is that the demand
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and return patterns are perfectly correlated such that every return is followed
by a demand or vice versa. Therefore, the fluctuations caused by returns is
not observed in inventory levels. Secondly, the repair/maintenance systems are
closed-loop systems which means that the number of items circulating in the
system is constant. The objective of these models is to determine the optimal
number of spare parts while minimizing the total cost with respect to required
service level. Good surveys on repair/maintenance models are [21], [18], [1] and
[15].

From the point of product recovery management, proposed models in the
inventory literature of the reusable items can be classified according to their
complexities in many ways. However, the major distinction is between the studies
considering the recovery and the storage facilities separately and the studies
considering only the storage facility where the returned items enter the serviceable
inventory upon arrival. We base our literature review on this distinction from
the perspective of the periodic review and continuous review models.

One of the first models considering the recycling option is given by Cohen et
al. [2]. They deal with a periodic review inventory system with lost sales in which
after a fixed number of periods a fixed portion of items return to the inventory.
The recycling facility is not considered separately so that the returned items
enter the serviceable inventory directly. It is also assumed that a fixed fraction
of the on-hand inventory decays at the end of each review period. Demands are
assumed to be independent and identically distributed random variables with
known density functions. The outside procurement of items is possible with zero
lead-time. The optimal policy is given as a one parameter order-up-to policy. Due
to the limitations of dynamic programming, a myopic approximation is derived
and shown that it provides good approximations for different recycle periods.

Kelle and Silver [13] proposes a similar model given by Cohen et al. [2] without
the decay. They offer a periodic review model for reusable containers to obtain the
purchasing policy for a finite time horizon. Different from Cohen et al. [2], they
work with the net demand which is the demand minus the number of returned

containers. The cumulative net demand is approximated by a normal distribution
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and a stochastic model is derived and transformed into the deterministic, dynamic
lot-sizing problem to determine the optimal order quantities.

The first model that separates the serviceable and recoverable inventories is
proposed by Simpson [27]. He considers a periodic review repairable inventory
system with back-ordering in which the joint probability density function of
demand and return patterns is known. It is assumed that only the repairable
items are returned and enter the repairable inventory upon arrival. The testing
and repair operations are assumed instantaneous. The serviceable inventory is
decreased by demands and increased by purchasing new items from an outside
supplier and/or repairing items available in the repairable inventory. The
repairing and purchasing lead-times are assumed to be zero. The repairable
inventory is decreased by repairs and/or disposed units and increased by returns.
At the beginning of each period purchase, repair and/or disposal orders are given
with the fixed purchase and repair costs per unit and zero salvage value. For
an n-period repairable inventory system a three parameter (0,,6,,&,) policy is
proposed. According to this policy whenever the serviceable inventory level is
less than 6, repairs take place to bring the inventory level up-to 8,. After the
repair decision if the serviceable inventory is less than 6, a purchase order is
given to increase the serviceables up-to 6,. Finally, if the total of repairable and
serviceable inventories is greater than 6, + ¢, the unrepaired units are disposed to
decrease the repairable inventory level down-to 8, +&,. He proved the optimality
of this policy by using the Kuhn-Tucker saddle point theorems.

Inderfurth [8] extends the work of Simpson [27] for remanufacturable items
when there exist fixed lead-times for procurement and recovery. He develops
different policies according to the relationship between remanufacturing and
procurement lead-times. For simplicity he considers a special case in which
each of the returned items which is not remanufactured in the preceding period
is disposed of. When the lead-times are identical he offers an optimal (L, U)
policy. According to this policy when the inventory position is smaller than L, all
returned items are remanufactured and a procurement order is given to increase

the inventory position up to L. When the inventory position is greater than U,
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then a disposal order is given to decrease the inventory position down to U and
the remaining recoverable products are remanufactured. Between this limits all
returned items are remanufactured and neither disposal nor procurement order
is given. Then, he derives the functional equations of dynamic programming and
suggests an extension of the (L, U) policy when stockkeeping of returned items is
allowed. For identical lead-times this policy is same as the one offered by Simpson
[27].

Recently, Inderfurt et al. [11] considers a product recovery system where
returned items are either disposed of or recovered according to different
remanufacturing options. The outside procurement of serviceables is not allowed;
and, hence, only the lead-times of different remanufacturing options are taken into
account. The objective is to determine the number of items remanufactured for
each option and amount of disposal in each period while minimizing the total cost
function including remanufacturing, disposal, backordering and holding costs.
They show that the structure of the optimal policy is quite complicated and
not suitable for practical use. For that reason a near-optimal remanufacture-
up-to, dispose-down-to, (nM,U), control policy is offered and its properties are
discussed for different period and cost structures.

Another recent study by Toktay et al. [30] presents a periodic review, one-
parameter policy to control the supply chain for Kodak’s single-use flash camera
in which only a portion of used cameras return. The system is modelled as
a closed queueing network including vendor, shipping, production, distribution,
retailer and customer nodes. It is assumed that unsatisfied demands are lost
and fixed ordering cost is ignored. For various cases return flow parameters and
unobservable inventory are estimated with different methods and procurement
quantities are determined. The simulation results are provided to investigate the
effects of informational structure and the accuracies of approximation methods.

The literature that we have reviewed so far comprises the periodically reviewed
models. However, most of the literature on the inventory management of reusable

products is devoted to the continuously reviewed models.
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The earliest work in this area belongs to Heyman [7]. He proposes a one-
parameter disposal policy for a single-item, continuous review inventory system
with purchase, repair and disposal options. It is assumed that repair and purchase
times are negligible. Demands and returns occur according to independent
processes and only the serviceable inventory is considered. If the inventory level is
smaller than the keep level - maximum number of items allowed in the inventory
- returned items enter the inventory. Otherwise they are disposed. For Poisson
demand and return processes the system is modelled as an M/M/1/N queue and
the optimal keep level is derived analytically. Approximate results are obtained
for general demand and return processes.

Yuan and Cheung [40] suggests an (s, .S) control policy for a continuous review
system with dependent Poisson demand and return streams in which each item
returns to inventory with positive probability. The replenishment lead-time is
assumed to be zero and backorders are allowed. The system is modelled as a two
state Markov process and an algorithm is developed to search the optimal policy
parameters. For positive lead-times and with disposal probability, Kiesmiller
and Van der Laan [14], study the same model for periodic review case. They
propose a two parameter order-up-to policy and discuss the effects of regarding
the dependency between the return and demand processes.

Muckstadt and Isaac [17] analyze an inventory system for repairable items
with distinct modelling of repair and storage facilities. All returned units enter
the repair facility which works as a first-come, first-served queuing system with
Poisson arrivals. No assumption about service time distributions or the number of
repair servers is made. Serviceable inventory is increased by repaired units and /or
outside procurement and decreased by Poisson demands. The procurement lead-
time is fixed and backorders are allowed. To control the inventory system,
continuous review (@), r) policy is offered. Inventory position is modelled as a
Markov chain and the steady-state distribution is stated. Since it is analytically
intractable to obtain the joint distribution of inventory position and number
of units in the repair system, the net inventory is approximated by a normal

distribution to derive the optimal policy parameters. In the second part of the
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paper the results are extended for a two echelon system and an algorithm is
introduced to find the optimal policy parameters.

Van der Laan et al. [33] study the same model stated by Muckstadt and Isaac
[17]. They propose two alternative approximation methods to find the expected
number of backorders and extend them with the disposal option. In the first
approximation the net demand during lead-time is assumed to have a normal
distribution. Whereas in the second one the difference between demand and the
output process of the repair facility is assumed to have Brownian motion with
drift. Both approximations are compared with the results of Muckstadt and Isaac
[17] and it is found that the second method gives near optimal results for all cases.
Similar to the one proposed by Heyman [7], the disposal option is imposed on the
model by restricting the number of items allowed in the repair shop. A returned
item 1is disposed if there is no waiting room in the repair shop. Repair facility
is modelled as an M/M/c/c + N queueing system and an heuristic optimization
procedure is given to find the optimal parameters of (s, @, N) policy.

Van der Laan et al. [34] discuss a numerical comparison of three different
control policies for the system studied by Van der Laan et al. [33] by
including non-zero holding costs for remanufacturables. These policies are
the (sp,@p, 54, N), (8p,@p, N) and (sp,Qp,sq4) policies in which s, is the
inventory position where the procurement order of size (), is given, sq is the
inventory position where the returned products are disposed and N is the
capacity of the remanufacturing facility. The exact cost rate expression for
the (sp, @Qp, sq, N) strategy is derived and compared with the costs of other two
strategies numerically with respect to varying return and remanufacturing rate
scenarios. It is found that the (s,, @,,sq) policy operates more efficiently than
the (s,, @y, sa, N) policy in most of the situations. Moreover, the (s,, Qp, sS4, N)
policy gives a lower bound for the other two strategies and provides a reasonable
cost reduction.

Two continuous review PUSH and PULL strategies are suggested by Van
der Laan et al. [35] for a single-product, hybrid production/inventory system

with different stocking points for remanufacturables and serviceables. Under the
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(S, @m, @r) PUSH-strategy, whenever remanufacturable inventory contains @,
modules remanufacturing starts and all (), modules enter the remanufacturing
process. Manufacturing takes places in batches of size (J,, and starts whenever
the serviceable inventory drops to the level s,,. Under the (s,,, @, s,, S,) PULL-
strategy, remanufacturing starts whenever the serviceable inventory position
is at or below s, and remanufacturable inventory contains sufficient products
to increase the serviceable inventory position to S,. Manufacturing starts
whenever the serviceable inventory position drops to the level s, and the
manufacturing batch size equals @),,. They extend the model of Muckstadt
and Isaac [17] by considering correlated Coxian-2 distributed demand and return
flows, deterministic remanufacturing and manufacturing lead-times with nonzero
fixed remanufacturing costs. Also, an exact procedure to calculate the expected
total cost is derived. Traditional systems are compared with the systems with
remanufacturing and the cases are discussed when the PUSH or PULL strategies
may be economically favorable.

Under the same PUSH and PULL control strategies and model assumptions,
the effects of lead-time duration and lead-time variability on total costs are
investigated by Van der Laan et al. [36] with correlated Poisson demands and
returns. In the numerical studies the costs for both strategies are observed
when the lead-time durations are varied and the distributions are assumed to
be Bernoulli. They show that the manufacturing lead-times have a larger effect
on costs then remanufacturing lead-times.

Van der Laan and Salomon [37] include the disposal option to the model
offered by Van der Laan et al.[35]. They propose (su,@m,®,,s4) PUSH-
disposal and (8., @m, S, Sy, s4) PULL-disposal policies. For the PUSH-disposal
policy sg4 is the serviceable inventory position level where the returned products
are disposed upon arrival. Under the PULL-disposal policy whenever the
remanufacturable inventory level hits sy, disposal occurs. They identify the cases
when one of the policies outperforms the other and conclude that these disposal
strategies are not very robust to the changes in demand and return patterns.

Recently, Inderfurth and Van der Laan [10] apply the (sm,,Qum,Qr,54)
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PUSH-disposal policy to a periodic review production/inventory system with
independent Poisson demands and returns. The remanufacturing lead-time is
considered as a planning variable and they offer a policy improvement due to
lead-time variation.

Further extensions can be found in the related articles (see Van der Laan [38],
Van der Laan and Teunter [39], Teunter et al. [31])which consider average cost
and net present value analysis of hybrid systems.

There is some similarity between the so called cash-balancing models and
reusable product inventories in terms of the model dynamics and the tools used
for the analysis. In cash-balancing models the objectiveis to control the cash level
of a bank which is affected by customer withdrawals and deposits. The money
deposits and withdrawals correspond to the return of used products and the
demand for new products in an inventory system with returns, respectively. Also
in cash management models, there is the possibility of transferring the money
from or to the central bank due to the intensity of money inflows and outflows.
These operations correspond to the outside procurement and disposal options in
the inventory management context. However, there is an important distinction
between these models, regarding the procurement lead-time and holding costs
of reusable products. Most of the time, considering lead-time for transactions
in cash-balancing models may be meaningless due to very fast Electronic Data
Interchange opportunities or small transportation times of money from the central
bank to a local branch. Besides, a recovery process does not exist for these models
since returned money is directly added to the cash inventory of a bank. There
is a vast literature on cash-management models. Although they propose similar
policies, most of the time they have different emphases on solution procedures,
cost structures and control mechanisms. Since the detailed review of these models
is beyond the scope of our study, below we cover the most related papers with
our problem in terms of the structure and the control policy.

Constantinides [3] studies a continuous-time cash management system with
stochastic demands and returns. The analysis is based on the net demand,

(demand minus return) which is assumed to be generated by a Wiener process.
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He considers the optimal (d, D,U,u) policy in which d is the lower bound to
transact up-to D and w is the upper bound to transact down-to UU. He discusses
properties of the optimal policy parameters for the cases when the expected net
demand is zero and non-zero.

Penttinen [20] presents closed form myopic and stationary solutions for a
periodic-review stochastic cash-balance model. The optimal policy addressed by
Constantinides [3] is used to control the transactions. The exact and approximate
solutions are given for myopic policy parameters when demand has the logistic
distribution. For comparison, stationary results are presented for exponentially
distributed inflows and outflows. As a result of numerical studies, it is found
that, for high shortage costs, myopic solutions perform almost same and in case
of no fixed costs, stationary model gives better results for disposal level.

Hinderer and Waldmann [9] extend the same policy when there exist randomly
varying factors influencing cash flow environment. It is assumed that the cash
flow in each period is a random variable with a discrete density which depends
on the environmental process. Structural results are given and the optimality of
this transfer rule is discussed for different cash flow and environmental processes.

There is also an independent class of models in the inventory theory literature
in which the demand is modelled by the Brownian motion process. Although
these studies are not in the context of the inventory management of reusable
items, we mention the most significant ones for completeness of our literature
review. For instance, an interesting study by Sulem [28] offers an (s,.S) control
policy for a system in which the demand is modelled by the Wiener process.
The lead-time is assumed to be zero and the backordering is allowed. The cost
structure includes the fixed and variable ordering costs, the shortage cost and
the holding cost which are discounted with a constant interest rate. Under the
impulse control assumption, the solution of the optimal (s, S) is given by two
algebraic equations. Finally, the expressions for the deterministic demand and
the zero discount factor cases are provided.

Nieobber and Dekker [19] proposes a model for refinery tankage assessment

and stock control problem. They offer a periodic-review target-stock control
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policy where the demand for small parcels are modelled by a Brownian motion
process.

Moinzadeh and Nahmias [16] consider a continuous review system where
there is an agreement between buyer and seller for fixed deliveries. They offer a
two parameter (s,5) control policy for adjustments. Since the exact analysis is
analytically intractable, demand process is approximated by a Brownian motion
process. By using the deterministic version of the problem and the results from
the Brownian motion theory, simple expressions for the optimal policy parameters
are obtained.

Finally, Girlich [5] applies the Brownian motion approximation for demand
process to a simple example and discusses the advantages of using this
approximation for complex inventory systems.

In this study, we consider a model similar to the one proposed by
Constantinides [3] with non-zero fixed procurement lead-time. Returns and
demands are assumed to be stochastic where the net demand constitutes a
Brownian motion process. Only the serviceable inventory is considered and an
(S, s,7,Q) policy is proposed to control the order quantity and timing of disposal
and procurement decisions. Unlike the models with disposal option discussed
so far, the disposal of items occur in the serviceable inventory. The objective
is to determine the policy parameters which minimize the total expected cost
while satisfying the required service level. The required expressions of Brownian
motion moving in a strip and the general closed-form structural expressions are
derived explicitly. By using these results, the long-run expected cost per unit
time is derived for both zero net demand and positive net demand cases which
correspond to Brownian motion process without drift and with drift respectively.
Then, the numerical optimization techniques are employed to find the optimal
policy parameters and the optimal cost rate function.

The rest of this thesis is organized as follows:

In Chapter 2, we introduce the inventory model in detail, explain the control
policy and present some structural expressions. In Chapter 3, we provide

preliminary results for Brownian motion which are used in the following chapters.
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In Chapter 4, operating characteristics of the inventory system are derived for
the zero net demand case. In Chapter 5, we extend the model for the positive net
demand case and derive the explicit expressions for the total cost function. In
Chapter 6, a detailed numerical study is provided and the behavior of the total
cost function is discussed for both zero and positive net demand cases. Finally,

in Chapter 7 concluding remarks are presented.



Chapter 2

Model Description and Control
Policy

We study a single-item, single-location continuous review inventory system of
reusable items with independent, continuous stochastic demand and return flows.

In the inventory literature of reusable items the vast amount of attention
is given to the systems including remanufacturing and manufacturing operations
together. The continuous review models in this context, separate the recovery and
storage facilities and offer approximate solutions by using the results from queuing
theory (see, e.g. Muckstadt and Isaac [17], Van der Laan et al. [33], Van der
Laan et al. [35]). Although these models elaborate the remanufacturing concept
in detail, there exist simpler systems for reusable products in which the separate
modelling of recovery is not needed. These are the systems allowing direct reuse
and recycling operations. Such systems are first modelled by Cohen et al. [2] and
Kelle and Silver [13] from the periodic review perspective. The first and the only
study which considers one stocking point for continuous review inventory system
with returns is proposed by Heyman [7]. He offers a one-parameter optimal
disposal policy for Poisson demands and returns. However, the proposed model
does not include the procurement lead-time and fixed costs for ordering, recovery
and disposal.

As outlined above, it is clear that the existing reverse logistics literature

14
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includes very limited number of studies on continuous review inventory systems
with a single stocking location. Most of the studies consider sophisticated hybrid
manufacturing/remanufacturing systems. Hence, our major motivation in this
study is to offer a control policy for the systems which apply the reuse concept
with less complicated processes.

With this motivation we address the systems including direct reuse or
recycling options. The most common examples of direct reuse are bottles and
containers which can be reused after simple cleaning and maintenance operations.
For the recycling option typical examples may be plastic packages, waste papers
and metals in discarded cars.

In the system that we consider a returned item enters recovery process,
upon return from the customer. This process includes cleaning, maintenance
or recycling operations. After the recovery process, each recovered item has the
same quality as a new product or material, and enters the inventory. However,
the parameters such as holding cost of returned items, recovery cost and recovery
lead-time are neglected. Therefore, it is assumed that a returned item 1is
instantaneously recovered and enters the serviceable inventory with a holding
cost per unit per time, h.

We only consider the serviceable inventory which is decreased by the customer
demands and disposal of items and increased by recovered items and outside
procurement of new products. However, the output of the recovery process, in
general, is not enough to satisfy all the customer demands. Hence, the outside
procurement of new items is possible with a fixed positive procurement lead-
time, L. The procurement cost structure includes fixed and variable ordering
costs denoted by K, and C, respectively . It is also assumed that the unsatisfied
demands during lead-time are backordered.

The disposal of the items is possible when the inventory level hits the
predetermined threshold disposal level after the lead-time. Moreover, the
threshold disposal level can be interpreted as a physical capacity constraint on a
warehouse or stocking point. Each time the disposal order is given a fixed number

of items are disposed with the unit disposal cost, C; and the ordering cost, K.
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Most of the models that we have discussed in the previous chapter apply the
disposal upon arrival of returned items. Unlike these models, we consider disposal
on the serviceable inventory. This kind of disposal policy seems more reasonable
when there exists significant legal restrictions on producers. Due to the new
arrangements in the environmental legislation of many developed countries, the
companies producing goods sold in glass, metal or plastic packages are responsible
for collecting and recycling those packages in specified portions according to their
types. For instance, in Turkey, the quota proportions of year 2001 are given as
30% for plastic and glass, 25% for metal and 20% for paper packages (see [32]).

As mentioned above, we consider continuous demand and return flows.
Consequently, the net demand, the difference between the returned items and the
customer demands at any time, is used to define the inventory level. This netting
approach is very common in most of the cash-balancing models. Furthermore,
we assume that the increments in the inventory level during small time units are
normally distributed. Hence, the inventory level constitutes a Brownian Motion
process where the drift parameter is denoted by, . Unlike the classical inventory
processes, there exist decreases and increases in the inventory level due to the
fluctuating structure of the Brownian motion. It is also assumed that the return
rate is smaller than the demand rate, since the loss or breakage of issued items
is possible. Hence, the p can take zero or negative values. Clearly, the net
demand rate should be interpreted as the absolute value of the drift parameter.
In Chapters 4 and 5 we will present the operating characteristics for both cases.

After stating the motivation of the study and some basic characteristics of

the model, we can summarize the main assumptions of the model as follows:

Assumptions:
1. Inventory system is reviewed continuously.
2. The procurement lead-time is positive and fixed.

3. Inventory level process is governed by a Brownian Motion.
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4. Demands that are not satisfied during the lead-time are back ordered.
5. Disposal is instantaneous.

From the cash management perspective, our model can be seen as an extension
of the model proposed by Constantinides [3]. Below we propose the extension of
the four parameter optimal control policy of this model when there exists fixed
positive lead-time. Under the assumptions given above, the inventory policy we

consider is stated as follows:

Policy: A replenishment order of size () is placed when the inventory position
drops to the reorder point r and, whenever the inventory position hits the disposal
trigger level S, the excess inventory is disposed to bring the inventory position

down-to s immediately, except during the lead-time period L.

We will refer to this policy as the (S, s,r, Q) policy. The decision variables are
the order size (), the reorder point r, the disposal trigger level S and the dispose
down-to level s. All policy parameters are assumed to be non-negative and there
is at most one order outstanding at any time.

Furthermore, we assume that no units are disposed of when there is an
outstanding order. The main reason for this assumption is that the inventory level
may hit the reorder point multiple times during lead-time due to its fluctuating
structure. If we allow for disposals during lead-time, this may cause order
crossing which conflicts with the one order outstanding assumption. Moreover,
the disposal of items does not seem realistic when there is an order outstanding
since it would further decrease inventories.

Since the policy is not imposed during lead-time, there exist two different
paths for the process before and after the lead-time. After the lead-time period
the process can be seen as a Brownian motion moving within different strips.
These strips are determined by the position of the inventory at the end of the
lead-time period and the policy parameters S, s and r. Whereas during the lead-

time period it can be seen as a released Brownian motion moving between minus



Chapter 2. Model Description and Control Policy 18

and plus infinity. Also, it is assumed that the inventory level after a batch of @)
units arrives ,namely x, is between the reorder point and the threshold disposal
level; that is r < 2 < 5. If we let * < r, according to the structure of the
Brownian motion, it is possible that the process stays under the reorder point
forever. On the other hand when = > S, the disposal policy may be applied at
the end of the lead-time by disposing the excess inventory down-to s, and the
model can be solved by relaxing this part of the assumption. However, regarding
the negative and the zero pus, the probability of this event becomes negligible.
Hence, we hold this additional assumption for the simplicity of derivations of the
operating characteristics.

Under the control policy stated above, the inventory process repeats itself
at specific epochs where the inventory process hits the level r to initiate the
order of () units. We define these epochs as regenerative points. This repetitive
structure enables us to derive the long-run characteristic of the system. Therefore,

a regenerative cycle can be defined as follows.

Cycle: A regenerative cycle is the time between two consecutive reorder

instances.

To derive the long-run characteristics of the system and formulate the
optimization problem, we need to define the expected total cost per unit time,
TC(S,s,r,Q) as a function of the decision variables S, s, r, ). We denote the
expected cycle cost, expected cycle length, expected on-hand inventory carried in
a cycle, expected on-hand inventory carried during lead-time, expected number of
disposals occuring after the lead-time period and time-weighted expected back-
order carried during lead-time with E(CC), E(CL), E(OH), E(OH), E(N)
and F(BO), respectively. A detailed notation is given at the end of this chapter.

According to renewal reward theorem (see Ross [25]) we can represent our
expected total cost function as follows:

cCC(t) FECO)

TC(S,5,7,Q) = Jim — ~ E(CL)
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Where C'C(t) is the total cycle cost incurred by time t. Hence, we can state

the optimization problem as follows:

Ko+ hE(OH) + [Kq+ Cy(S — s)|E(N) + C,Q
E(CL)

min TC(S,s,r,Q) = (2.1)

s.t.

E(BO)
E(BO) + E(OH,)

Note that, the conventional service level measures can not be used in our

<(1-a) (2.2)

model since we are not able to derive the expected unit backorder during lead-
time due to the complex structure of the Brownian Motion. Therefore, we define
a new service level measure «, which is defined according to the expected time
weighted backorder and the expected on-hand carried during the lead-time. The
ratio given by (2.2) can be seen analogous to the cost tradeoff of the newsboy
problem where E(BO) and E(OHy,) correspond to the understocking and the
overstocking costs of the newsboy problem, respectively.

Before the derivation of the structural expressions, we need to define some
random variables which are crucial for our analysis. Therefore, let the position of
the inventory level at time ¢ be denoted by X (t). At any time ¢, let T, be the time
needed to complete the regenerative cycle, if the inventory level X (1) = u. We will
call this the remaining cycle time at inventory level u. Recall that the inventory
level right after the replenishment order has arrived is denoted by z. Then, T,
is the time until the cycle is completed immediately after the replenishment lead
time.

Also, let T),, be the time the inventory process, starting at u, hits the level v
for the first time. Moreover, let T)7  be the time it takes the process, starting at
u, hits the level v the first time, without hitting z. Finally, let T, ., be the time
the process, starting at u, escapes from the strip [v, 2] for the first time.

For the derivation of the expected on-hand inventory expressions, we adopt
the trapezoidal area approximations used commonly in the classical inventory

literature. We observe that a better approximation is obtained, if two possible
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locations of x as r < x < s and s < x < S are considered separately. These cases
are considered below. It will become clear in the sequel that both cases yield the
same expected cycle length expression unlike the expected on-hand inventory.

This point will be further discussed in the course of the derivations.
Case l: r<zx<s

According to the proposed control policy, whenever the inventory level hits
S, the excess inventory is disposed and the inventory level is reduced to s.
This allows a repetitive behavior for the process within a regenerative cycle.
In particular, the inventory level may hit S and is reduced to s several times
before the regenerative cycle is completed. Hence, we analyze the process after
the lead time in two stages.

The first stage corresponds to the first escape time from the strip [r, s|. If the
escape is at the level r; that is, if the process, starting at z, hits r before s, then
the cycle is completed. Note that for this scenario T} equals to T . A typical

realization of this scenario can be seen in Figure 2.1.

X(t)
A
Cycle |

Figure 2.1: Realization of the inventory level process for Case 1

Otherwise the second stage starts, which is the time until the cycle is
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completed if the process is at level s. We refer this stage as T;. Similarly, at

the second stage, if the process starting at s, hits r before S then the cycle 1s
completed (see Figure 2.2).

X(1)

Tx |

r
‘e s —| Ts
L I

Figure 2.2: Realization of the inventory level process for Case 1

Otherwise, the level S is reached before r and it is immediately reduced to s.
Clearly, since the process repeats itself; whenever it reaches S, a new T starts.
Figure 2.3 illustrates an example of this realization.

It is clear that for both realizations given by Figure 2.2 and Figure 2.3, T} is
equal to T;;S + 7.

According to the realizations given above, there exist two possible scenarios

for T, which can be seen more clearly with the following relation.

TS f Tz‘ T < Ta: s
Tz. — T,T 1 ’ ? (2.3)
T 4T, if Toy< T,
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X(1)

Cycle

AAAA AM/
A

| L

r
‘e xS —| Ts i
| X |

Figure 2.3: Realization of the inventory level process for Case 1

Case 2: s<z <S8

In this case we again consider the behavior of the process in two stages. The
first stage corresponds to the first escape time of the process, from the strip [s, 5],
starting at . We denote this time by T, ;5. Due to the proposed disposal policy,
regardless of the inventory level from which the escape is realized, the second
stage, T, starts at s and continues until the cycle is completed.

Hence, at the end of the first stage, a second stage as defined in Case 1 starts
for all realizations, unlike the previous case where the second stage starts only
if the process hits s before r. Therefore, in Case 2, the first stage i1s always
terminated at level s. Possible realizations of this case can be seen in Figure 2.4
and Figure 2.5.

From Figure 2.4 and Figure 2.5 we observe that for all possible realizations

T, can be given as follows:

To=Toss+Ts (2.4)

Note that, due to the disposal policy, there is not any difference between
hitting S before s or vice versa. Therefore, T, includes first escaping time from

the strip [s, 5], T ss-
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X(1)

S
‘e TX,S } Ts |
I

! L Tx ‘

Figure 2.4: Realization of the inventory level process for Case 2

X(1)

Cycle

AMM
1]

L

AAAA AM/
A

S
‘e TS —| Ts i
| TX

Figure 2.5: Realization of the inventory level process for Case 2
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2.1 Structural Expressions

In this section we state the structural expressions for both cases which will be
used in the derivation of the operating characteristics when the net demand takes
zero or positive values. We start with the expressions for the expected on-hand
after the lead-time for Case 1 and Case 2. Then, we derive the common expression

of the expected cycle-length after the lead-time.

2.1.1 Expected On-Hand Inventory After The
Lead-Time

Case l: r<zx<s

To derive the expected on-hand inventory after the lead-time, the trapezoidal
areas are used for the realizations given above. This kind of linear approximation
is common in the inventory literature and convenient for analytical derivations
(see Hadley and Within [6]).

Let OH, be the inventory carried until the end of the cycle if the process is at
point u. Then, the inventory carried until the end of the cycle after the lead-time

can be written as:

(e4r) ps it 1,,<T
OHr:{ 2 L B Ser S S (2.5)

etlpr 4 OH, it Ty < Ty,

In the first line of (2.5) the product of T, with the average of x and r gives
the trapezoidal area Al in Figure 2.6, which corresponds to the case where the
process hits r before s.

The second line corresponds to the case where s is hit before r (see Figure
2.7 and Figure 2.8). The first term of the second line is the trapezoidal area,

A2, found by multiplying the average of z and s by the time until the process,
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X(t)

Cycle |

Figure 2.6: Trapezoidal areas of Case 1

starting at , hits s before r for the first time, namely 7 ; whereas the second
one is the inventory carried until the end of the cycle from the point s, denoted

by OH,.

X(1)

Cycle

r
‘e x5 —| Ts
| T |

Figure 2.7: Trapezoidal areas of Case 1

The derivation of OH, requires the computation of the trapezoidal areas Bl
and B2 given in Figure 2.7 and Figure 2.8. B1 is found by multiplying the average
of s and S by T{ 5, whereas B2 is found by multiplying the average of s and r by



Chapter 2. Model Description and Control Policy 26

TS‘S;,. Also note that, in each cycle, there is always only one B2, while the number

of B1 may be zero in some realizations.

X()

Cycle
VWV W\N VAVAVA‘AWM | :
B1 : : B2
i
A
t

r
‘e TX,S } Ts |
| Tx

Figure 2.8: Trapezoidal areas of Case 1

Let P7?, be the probability that the process, starting at u, hits v before z.
Also, let I(-) denote the indicator function. Then, we can give the expectations

of on-hand inventories by the following results.

Lemma 2.1

i) E(OH,) = 3= [WEE(TS I(To, < Tos) + S E(TI5 I(Tos < Toy))]

s,

it) Forr<az<s:

E(OH,) = @E(T;J I(T,, < T,,) + (“-‘;S)E(T;s Ty, < Ty,))
+ FE(OH,)P;,

Proof : See Appendix A.
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Case 2: s<zx < S

The on-hand inventory carried during 7, can be defined as a random variable

as follows:

CEVS 4 OH, il Toy < Tos
CAD s+ OH, if  Tos < Toy

2

OH,

Il
—_—N—

The first line of (2.6) corresponds to the case where s is hit before S.
Therefore, the product of T with the average of x and s gives the trapezoidal

z,s

area A3 shown in Figure 2.9.

X(1)

A3

Tx

S
‘e TX,S } Ts |
I

Figure 2.9: Trapezoidal areas of Case 2

Similarly, in the second line of (2.6), the trapezoidal area A4 depicted in
Figure 2.10 is found by multiplying 7, ¢ with the average of z and s for the case

where the process hits S before s.
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X(1)

Cycle
VAVMWN VAVAVA‘AWM ol :
A2 BL 3 B2
i
i
t

S
‘e TX,S } Ts |
| Tx |

Figure 2.10: Trapezoidal areas of Case 2
Since the second stage, T}, is common in Casel and Case2, the corresponding

expected on-hand inventories will be the same. Therefore, using the part (z) of

Lemma 2.1 and the equation (2.6), we provide the following result without proof.

Lemma 2.2 for s <z < S5:

E(OH,) = YRRTS (T, < Ths)) + BT s (Ths < Ty )
+ FE(OH;,)

As we mentioned earlier, separate analysis according to the position of the
process at the end of the lead-time provides a better approximation of the
expected on-hand inventory. In particular, if we had considered the two cases
jointly by assuming that, r < x < 5, then for the realizations where the process
hits the level S first, the corresponding trapezoidal area between x and s would
have been disappeared. As a result of this, expected on-hand would have been
approximated roughly. So, in order to increase the precision, this partition is
imposed to the problem. However, we can not make the same claim for the cycle
length. It is an intuitive result that the cycle length is independent of any kind
of partition. One can show that the expected cycle length expressions will be the

same not only for both cases but also when there exists no partition. For this
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reason, in the next section we will introduce the derivation of the expected cycle

length after the lead-time just for Case 1, when r < z < s.

2.1.2 Expected Cycle-Length After The Lead-Time

According to (2.3), we can give the expectations of T, and T with the following

result.

Lemma 2.3

E(TS,TS)

i) E(T,) =

i) Forr<a<s:

E(T,) = E(T,,)+ E(T,)P;

z,s

Proof : See Appendix A.
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Notation

S : Disposal trigger level

s Dispose down-to level

r Reorder point

Q Order quantity

L Fixed lead-time

@ Service Level

Yy The position of the inventory level at the end of the fixed lead-time

x The position of the inventory level immediately after the order
arrived (z =y + Q)

CL : Cycle Length (Time between two consecutive reorder instances)

OH :  Total inventory carried in a cycle

OHyp  : Inventory carried during lead-time

BO :  Time weighted back order during lead-time

N : Number of disposals in a cycle

K, . Fixed ordering cost per order

C, : Variable ordering cost per unit

Ky . Fixed disposal cost per disposal batch

Cy : Variable disposal cost per unit

h :  Holding cost per unit per time

TC : Cost rate

ccC . Cycle cost

CC(t) : Total cycle cost within a cycle incurred by time t since beginning
of a cycle

X(t) : Position of the Brownian Motion (B.M.) at time t since beginning
of a cycle

7 Drift coefficient of the B.M.

T, :  Remaining cycle length for a B.M. starting at «

T, :  The time until the B.M. hits v for the first time starting at u
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z
u,v

Tu,uz
PZ

u,v

OH,

The time until the B.M. hits v before z

for the first time starting at u

The time until the B.M. escapes from strip [v, 2]

for the first time starting at w, min(7y ., Ty..)

Probability that the B.M. hits v before z

for the first time starting from u

Inventory carried until the end of cycle for a B.M. starting at u

Indicator Function

31



Chapter 3

Preliminary Results for

Brownian Motion

In this chapter we introduce the basic characteristics of the Brownian motion
and present some preliminary results which will be used in the derivation of the
operating characteristics.

As we mentioned above, for the systems of recyclable or reusable items, if
return and demand flows are assumed to be continuous then the Brownian Motion
is one of the most suitable process for this kind of systems since it has normally
distributed, independent increments.

Brownian motion is a symmetric random walk in which the step size and the
time interval needed to take this step go to zero in the limit. The formal definition

of Brownian motion is given by Ross [25] as follows:

Definition 3.1 A stochastic process {X(t),t > 0} is said to be a Brownian
Motion process if:

i) X(0)=0;

i) {X(1),t >0} has stationary and independent increments;

i17)  For every t > 0, X(t) is normally distributed with mean 0 and variance ot

32
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The independent increments property assumes that the increment of one
interval is not affected by the increment realized in the previous interval.
Moreover, the stationary increments property states that the distribution of those
increments depends only the length of the time interval in which the increment
occurs.

The positive constant o, the variance parameter of X (¢), can be interpreted as
a time scaling factor. The process is usually called as standard Brownian motion
when o = 1. In the sequel of this study we will assume o = 1.

As can be seen from the figures given in the previous chapter, the general
structure of the inventory level at time ¢, X (), is governed by Brownian motion.
However, there are some jumps in order arrival and disposal instances which
prevent the direct analysis of a cycle. Hence, we analyze the lead-time period
and after the lead-time period separately.

Since we do not impose the (5,s,r, Q) policy during the lead-time period
no jumps occur and the inventory level process behaves as a Brownian motion
without any boundaries. Also, recall that in our model the net demand rate,
i, corresponds to the drift coefficient of Brownian motion and can take zero or
negative values. When p is equal to zero, by using the Definition 3.1 the density

of X(t) during lead-time can be given as

1 2
Ixp(z) = e~/ ,—o0 < 1 < 00 (3.1)

\ 27t

Note that the mean parameter of the normal distribution is equal to r, since

the starting point of the cycle is r, X(0) = r.
If we consider a negative drift coefficient, 4 < 0, then the mean is equal to
r+ pt and the density of X(t) is given as
1
Ixw(e) = 5=
In the previous chapter we discussed the analysis of the period after the

lead-time and presented the structural expressions of F(OH,) and E(T,). The

—(z—r—pt)? /2t

,—00 < & < 0 (3.2)

possible paths of this period are nothing but the same Brownian motion starting

from different points and moving in different strips. In the sequel, using the
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results from Resnick [22], Karatzas and Shreve [12] and Ross [25], we give the
expressions of the expected hitting times and the hitting probabilities which will
be used in the derivation of the expected cycle-length and the expected on-hand

inventory for zero and negative drift cases.

Proposition 3.1 Let b < & < a. Then for a Brownian motion {X(t),t > 0}
with X(0) = z, p = 0 and moving in strip [b, a], we have:

z—b a—z

d P, =
a—>b an wh TG b

i) P,

(x —b)(a+ x—2b)(a —x)

i) B(T!, [(Ts, < Top)) = 3a )

(x —b)(2a —z — b)(a — )
3(a —b)

E(T, I(Typ < Tru)) =

i) B(Tpp) = (x—0)(a— 1)

Proof : See Appendix B.

Proposition 3.2 Let b < x < a, then for a Brownian motion {X(t),t > 0} with

X(0) = z, nonzero drift  and moving in strip [b, a], we have:

e—?,:mv . e—2,ub —2pa _ —2ux

iy P,o= and P, =

e—2ua _ e—2,ub

€ €

e—2ua _ e—Z,ub

T (G—Z,ux + 6—2,ub)

Iu (6_2“0‘ _ 6_2'“())

2h e~ _ ¢ (e=2me 4 e‘Q“b)
U (e—Q;LEL _ e—2,ub)2

ae 4 (a — 2b) e~ 2lath)

i (6—2;“1 _ e—2,ub)2

i) B(T), I(Teu < Tey)) =

—2uzx
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—x (e—Q;Lx _I_ 6—2#&)
7 (6—2;“1 _ e—Q;Lb)

2a et — b (e7 2 4 e‘“b)

E(T;, [(Tep < Tpa)) =

—2uzx

h e 2Ha _ g g 2ub

—I_ 7 (6_2#0‘ _ 6—2#6)2
be 44t 4 (b — 2a) e”2mth)
+ i (6—2;“1 _ 6_2“6)2
. T (a B b) —2ux
Z”) E(Tl’vba) - _; + 7 (6—2,ua _ 6—2#6) i (6—2,ua _

Proof : See Appendix B.

6—2#6)
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Chapter 4

Operating Characteristics for
Zero Net Demand Rate

In this chapter we derive the operation characteristics of an inventory system for
recyclable/reusable items in which the expected net demand, y, is equal to zero.
In this particular case it is assumed that the return and the demand rates are
equal. Actually, this is a special case of a more general problem in which will
be presented and discussed in the following chapter where the demand rate 1is

greater than the return rate.

4.1 Expected Cycle Length

If at the end of the lead-time, the inventory process is as x, then the expected

remaining cycle time F£(7T;) is given by the following lemma:

Lemma 4.1
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Proof :
Recall from Lemma 2.3 that the structural expression of the expected length of

stage two is given as

E(TS,TS)

E(TS) = PS

and, from Proposition 3.1 (z) and (2i¢), we have

E(Ts,s) = (s—r)(S—s)

Ag — S
P> =
ST S—r
Thus
E(Ts) = (s=r)(S—r) (4.1)
Similarly, from Proposition 3.1
E(Te.s) = (z—r)(s—2x) (4.2)
pr,o= T (4.3)
’ s—r

Also, recall from Lemma 2.3 that for r < z < s
E(T,) = E(T,,)+ E(T,)P,, (4.4)
Therefore, by substituting (4.1),(4.2),(4.3) in (4.4), we find
ET,) = (z=r)(S+s—xz—r)
Q.E.D.

For both cases defined in Chapter 2, the expected cycle length is the sum
of the fixed lead-time, L, and the expected remaining cycle time after the lead-
time, K(T;), given that X (L) =y, where y is the position of the inventory level
at the end of lead-time before the arrival of an order. If we rewrite X(L) by

conditioning on x and use the results of Lemma 4.1, we can provide the following

result without proof.
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Corollary 4.1

i) E(CLIX(L)=2—-Q) = L4+(z—r)(S+s—z—r1)
it) Forx=r+Q,

E(CL) = L42Q(S+s—0Q—2r)

To hedge against stockouts during the lead-time and satisty the required
service level, usually more than the expected lead-time demand is hold in the
inventory. This excess amount is called as “safety stock”, denoted by S, and is

equal to the reorder point minus the expected lead-time demand.
SS =r—|ulL

Moreover, we can state that on the average y = 5. Hence, for the tractability
of the analytical derivations, we can make the substitution x = r — |u|L + Q.
Since we are considering the case when g = 0 in this chapter, we substitute z by

r+ ) in Corollary 4.1.

4.2 Expected On-Hand

The following lemma gives the expected on-hand inventories after the lead-time
period for Case 1 and Case 2. Recall that the structural expressions of these

expectations are provided by Lemmas 2.1 and 2.2.

Lemma 4.2

i) Forr <a<s

E(OH,) = (x—7r)[(s—2)(s —|—r—|—4g) + (S —=7)(S +r+4s)] (4.5)

ir) Fors <z < S

E(OH,) = (S—T)(S—T)(S—I—T—I—48)—6(S—$)(5—$)(5+8+4$) (4.6)
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Proof : See Appendix C.

The on-hand inventory during a cycle is defined as the on-hand inventory
during lead-time, E(OHy), plus the on-hand inventory carried after the lead-
time, F(OH,), according to Case 1 and Case 2. Using the results of Lemma 4.2,

the expected on-hand can be given by the following corollary without proof:

Corollary 4.2

i) E(OH|X(L) =2 — Q)
(z=7)[(s=z)(s+r+4z)+(S—r)(S+r+4s)] Zf
6

= E(OH) +

(5—7’)(S—T)(S—|—7’+4s)—65(5—1‘)(5—17)(5+5+4z) Zf s S . S g

ir) Forx =r 4 Q,

E(OH)

Q52+35Q2—67’2Q—97’6Q2—4Q3—|—S2Q+455Q Zf r< (T’+Q) S s

= FK(OHp)+

3952 —-6Ssr+6sr2 —3527‘—37‘3—255Q+65Q7‘+s2Q+35Q2

6
+65rQ+3Sr2—12Qr2—126rQ2+52Q+35Q2—4Q3 zf s < (r + Q) < g

In order to complete the derivation of K(OH), we need to derive the expected
on-hand inventory during the lead-time, E(OHp,). Recall that we employed the
trapezoidal approximation in the derivation of E(OH, ) for tractability. However,
the analysis of the lead-time period is much simpler than after the lead-time
period since there are no disposal during this period. Hence, E(OHy,) is derived

exactly. The following theorem provides the result explicitly.
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Theorem 4.1

E(OH) / f - /Qtdt—l-r (%) (4.7)

Proof :

According to the assumption that the control policy is not imposed during the
lead-time, the inventory process behaves as a free Brownian Motion fluctuating
around r. This assumption enables the exact derivation of the FE(OH;p).
Therefore, to calculate the E(OHjp,), we should find the expectation of the positive
inventory level at time ¢, F ([X(t)]+), and then take the average of this value

over the lead-time period. Thus we have

E(OH;) = /OL E(IX(0)]") di (4.8)

Recall from Chapter 3 that X () is normally distributed with mean r and variance
t and its density is given by (3.1). Therefore,

E(XW) = [ afx(e)ds

_ \/; e 4 @ (%) (4.9)

where ¢ (%) is the cumulative density function of Standard Normal distribution.
Substituting (4.9) in (4.8) yields

E(OH;,) / f -2 gy r (%)

Q.E.D.

Clearly, E(OHp) is a function of the reorder point, r, and it needs to be

computed numerically since it can not be represented as an implicit function.
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4.3 Expected Backorder

The expected backorder, E(BO) is derived exactly and presented in Theorem
4.10.

Theorem 4.2

E(BO) = E(OH)—rL (4.10)

Proof :
The method for the derivation of E(BO) is same as the method used to derive

E(OHr). However, this time we need to derive the expected negative inventory

level at time t, F ([X(t)]_) Therefore,

— —ALEQXaﬂjdt (4.11)

Using the density function (3.1), we obtain

E(XOF) = [ afspd

e e(z)]

Substituting (4.12) in (4.11) yields

E(BO) = / \r ‘TQ/QfdtJrr (%) di —rlL

= OHL —rl

Q.E.D.
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4.4 Expected Number of Disposals

If the inventory level increases too much due to returns then the disposal of items
occurs. In order to follow-up the average disposal cost, we need to derive the
average number of disposals £(N) in a cycle. Therefore, given that the inventory
level at the end of lead-time is y = x — @), the probability mass function of the

number of disposals V is:

Py, ,n=0
P(N=n|X(L)=z—Q) = (4.13)
Pl sP3(Prg)™)  n >0

If there is no disposal, (n = 0), then it means that the process goes directly down
to r from z without hitting S which occurs with probability , Pfﬂ,. If there is only
one disposal, then it means that the process goes up to S from = without hitting
r which occurs with probability P, ¢ and after disposal it directly goes down
to r from s without hitting S, which occurs with probability PS‘?T. If there are
n disposals before the cycle ends, then the probability of them are given by the
term (P;S)(”_l). The following corollary states the expected number of disposals,
E(N) explicitly. The derivation of the E(N) is exact, however for simplicity we

use the x = r + () approximation.

Corollary 4.3
r—r

S—s

1) EINIX(L)=2-Q) =

it) Forx=r+Q:

E(N) =

Proof :
i) From Proposition 3.1 (¢) we know

pr T —r pr s PS_S—S
z,S S—T’ .s,S_S_rv s,T_S_r
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and by using (4.13) we can write the conditional expectation as

E(NIX(L)=2-Q) = Y.n P(NIX(L) =2 - Q)

n=0

= E n P;,SPSS,(T(P;,S)(H_I)
n=1

= PIgPS [1+2PIs+3(Pls) +

Pls

PSST

T—T

= 4.14
S—s (4:14)

ii) By simply substituting z = r 4+ @ in (4.14), we obtain

Q.E.D.

4.5 Expected Cycle Cost

The expected cycle cost under the (5, s,r, @) policy can be obtained by using the
(72) of Corollary 4.2 and 4.3 and the cost parameters. Hence, the general form of
the expected cycle cost when g = 0 with the approximation z = r + () is given

as

E(CC) = K,+hE(OH)+ K;E(N)+ (C, 4+ Cy)@Q (4.15)

Using Corollary (4.1) (¢¢) and (4.15), we can construct the objective function
given by (2.1). Moreover, the constraint (2.2) can be constructed by using (4.7)
and (4.10).



Chapter 5

Operating Characteristics for

Positive Net Demand Rate

In this chapter we extend the results of Chapter 4 for more general case in which
the inventory level process is governed by a Brownian motion with negative drift
coefficient, . In this case, the demand rate is greater than the return rate
resulting in positive net demand. Compared to the zero net demand case, in
the long-run when g < 0 the effects of some characteristics such as outside
procurement, backorders and number of disposals may increase due to high
demand flows. To analyze these effects in detail we need to derive the operating
characteristics of the model. In our derivations we apply the methods used in the

previous chapter with minor modifications.

5.1 Expected Cycle Length

The expected remaining cycle time after the replenishment lead-time can be given

by the following lemma.

Lemma 5.1
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Proof : See Appendix D.

Employing the result of Lemma 5.1, we give the conditional and the
approximate expected cycle length when p < 0 with the following corollary

without proof.

Corollary 5.1

e—2/up_e—2/u"

i) B(CLIX(L) =2 —Q) = L-t=0 00 (on-er)

it) Forx=r—|u|l +Q,

(S—s) e~2ur(e=2u(@=Iull) 1)
) (6_2“5—6_2“5)

E(CL) = -24

p 7

5.2 Expected On-Hand

The expected on-hand inventories after the lead-time period for Case 1 and Case

2 are given by the following lemma.

Lemma 5.2

i) For r<z<s

LL’2 (S — T'),’L' 6_2MT
E(OH;) = —- ) 2w (8 :
( ) 2# + 7 (e—QMS _ 6_2“7’) t+e 1( y S, T /L)
+ G1(S,s,7; 1) (5.1)
where
sr 6_2“5(6—2#5 + 6—2#7‘) — 9e—4us ]

Fl(S,S,T;,M> = 2

1 _(G—Q;LS o 6—2,&8)(6—2,&8 o e—?m‘) |

2T 6—2;“’(6—2;15 o e—2ps)

1 _(e—Z,uS o e—Z,uT)(e—Zps o e—?;w’)Q_
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GI(S7 51 [L)

32 6—2#5 I:(e—Q;LS o 6—2#5) + (Q—QMS o 6—2#7’)]

ﬂ (e—Z,uS o e—Z,u.S)(e—Zps o 6_2;“’)2
G_QMT(G_Q'“S _ 6—2,@7‘)
(6—2;LS o 6_2“5)(6_2'“5 o 6—2#7‘)2‘|

S's e=2Hs

s ) (6—2;LS o G_QMS)(G_Q'MS o 6—2#7’)

5'2 (6—2,LLS_|_ 6—2,:“‘)

ﬂ ) (6—2;LS o 6—2#5)(6—2;LS o 6—2#7’)
Sr e~ 2mS

7 l(e—QuS o 6_2“5)(6_2#5 o 6—2,:“‘)

€

—2ur
(e—Q;LS o e—Z,uT)(e—Z,us o e—Qur)]

82 |:e—2,u(s+7‘) [(Q—Q;LS o 6—2#5) T (6—2,15 o 6—2,17‘)]

ﬂ (e—Z;LS o e—2ps)(e—2ps o 6—2;LT)2

e—4;¢7‘(6—2,u5 - 6—2,@7’) ]

(6—2;LS o 6_2“5)(6_2'“5 o 6—2;Lr)2

7,.2 [ e—4,u.s(e—2p5 o 6—2;”’)

ﬂ (e—Z;LS o S_ZHT)(G_Q'“S o e—2m’)2

J— [(6_2#5 . 6_2“5) o (6_2“5 _ e—QMT)]:|

(e—Q;LS o e—Q;LT)(e—ZuS o 6—2;”’)2

(6—2,LLS o 6_2“5)(6_2'“5 o G_QMT)Z

Sr [6—2,u(s+7’) [(6—2,us o e—?m‘) o 2(6—2,LLS . 6—2#5)]]

Ss e~ 2u(s+r)

7 ) (e—Z;LS o S_ZHS)(G_Q'“S o e—ZW’)

5'2 6—2/@7’(6—2,15 + 6—2;Lr)

ﬂ ) (6—2;LS o 6—2#5)(6—2;LS o 6—2#7’)
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Sr e~ 20(S+r)

7 (6—2,u5 o 6_2#5)(6_2#5 o 6—2,:“’)

e—4,u7’

(6—2;LS o e—?m‘)(e—Q,us o 6—2;Lr)

it) For s<z<S

22 (S —s)x e _our
E(OH,) = o + PR =T e HEEY(S, 85 1)
+ GQ(S,S,T;/L)
where
S_—g 2 G_QMS + 6—2#5
Fy(S,s ) = (5—5) (_ - )2
21” (6 2uS e 2#5)
82 e—Q;LS 6—2#5 + 6—2;” + 6—2#5 6—2#5’ o 6—2#7’
Ga(S,s,mip) = 5 ( ; (2 )
2,& (Q—Q;L.b o 6_2M8)
N T2 (6—2;LS_|_ 6—2;Lr) ST 6—2#5
2,& (6—2,LLS . 6—2;LT) M (6—2,15 - 6—2,@5)
SS 'e—2us(e—2,u5 + e—2,us)
o (6_2“5 o 6—2#5)2
SQ [ 26—2;L(S+s)(6—2,u5 o 6—2;Lr)
+ ﬂ _(e—Q;LS - e—Qus)Q(e—QuS - 6—2;”’)
6—2#7‘(6—2#S_I_ e—?,:n‘)
+ (6—2,LLS o 6—2#5)(6—2;LS o 6_2#71)‘|
Sr e R e e~ 2T
_I_

7 (6—2,&5 o 6_2#5)(6_2'“5 o G_QMT) o (6—2,LLS o 6—2#7’)

Proof : See Appendix D.
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Using Lemma 5.2, we give the expected on-hand inventory carried during a

cycle with the following corollary without proof.

Corollary 5.2

i) E(OH|X(L) =z — Q)

2 (s=r)z e—2un
- 24 —I_ P (e—2ps_e—2pr)
+e e F (S, s, ) + Gi(S, s, ) if r<az<s
= FE(OHp)+
_x? (S—s)z e—2n
20 —I_ 1 (e—2us_e—2,us)
—e 7Y (S, 55 1) + Ga(S, s, 1) if s<x<S8S

it) For x =r — |p|L + Q,

E(OH) = E(OH,,)

S G 71125 ) U € ol 21225 ) Il )
2u 1 (e—2us_e—2pr)

e ILFR) By (S s ryp) + G (S, s,m5p)  if r<(r—|pu|L+Q)<s

| ColplQ) | (S=a)(rlplitQ) | e+
2,& o (6_2“5—6_2HS)

—e Iy (S, 53 1)) + Go(S,s,mip) if s < (r—|ulL+Q) < S

Finally, to complete the derivation of E(OH), the expected on-hand during

lead-time is derived exactly and given as follows:

Theorem 5.1

L t 2 L t L t
E(OHp) = /0 Vg e /Qtdt—l—r/o q)<rjr/iu) dt—l—/t/o td)(r—l\_/;) di
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Proof :
To calculate the expected on-hand during lead-time we use the same procedure

employed when g = 0. Therefore, we can give the structural expression as

E(OH,) = /OL E(IX(0)]") di (5.3)

From Chapter 3 we know that X(¢) is normally distributed with mean r + pt and
variance ¢t and its density is given by (3.2). Thus,

B(XO) = [ afxole)ds

t 2 r+ ut
_ o (rtut)? /2t ) ® 4
Vs € +(r+ pt) ( ¢g) (5.4)

Substituting (5.4) in (5.3) yields

+ pt L r+ pt
E(OHr) / —(rut)? /2 g / o[ di / 1 di
2 \/ o i), NG

Q.E.D.

E(OH7p) is a function of the reorder point, r and the drift coefficient, y. Note

that when g = 0 the above expression converges to (4.7).

5.3 Expected Backorder

The expected backorder is given by the following theorem.

Theorem 5.2
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Proof :
Recall that the structural expression of E(BO) is given as follows

E(BO) = —/OLE([X(t)]_)dt (5.6)

Using the density function (3.2), we obtain

EOX0N) = [ e

1 \2 [
= 50 €T (4 ) ll—é(rf/f )] (5.7)

Substituting (5.7) in (5.6) yields

L [+ 2 L r 4 ut L r+ pt
— (r4ut)?/2t
E(BO) /0 ,/—%e dt—|—r/0 @( 7 ) dt—l—,u/o t<I>( 7 ) di

2
— rL— nh
2
LZ
= B(OHL)—rL - ”2

Q.E.D.

If 1 < 0, the second part of (5.5) can be interpreted as the difference between
the area of a triangle which has the base length of L and the height |g|L and the
area of a rectangle having sides r and L. In other words if we consider merely
the lead-time period, (rl — %) is the area under the drift line. Therefore, as

much as the F(OHp,) approaches to this area, the F(BO) converges to zero.

5.4 Expected Number of Disposals

Using the probability mass function given by (4.13), the expected number of

disposals is given by the following result.
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Corollary 5.3

—2uzx —2ur

i) ENIX(L) =2 - Q) = po——a

(& (&

it) For x =r — |p|L + Q,

6—2M7‘(6—2M(Q—|M|L) —1)

E(N) = 6—2;¢S _ 6_2“5
Proof :
i) From Proposition 3.2 (¢) we know
o= I pathor o
: e—2uS _ p=2ur ; e—2uS _ o=2ur 7w T g=2uS _ g=2ur
and by using (4.13) we can write the conditional expectation as
B(VIX(L)=2-Q) = S:n P(NIX(L) =2 - Q)
n=0
= Y.n Ps(Pls)" VP
n=1
= PIgPS [14+2P1s+3(PLs) + ..
Pls
6—2,uz _ 6—2;“’
= 6—2,15 — e~ 2us (58)

ii) Substituting x = r — |p|L + @ in (5.8) yields

6—2M(6—2u(Q—IuIL) —1)
—2uS

E(N) = —2us

(& (&

Q.E.D.
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5.5 Expected Cycle Cost

The expected cycle cost under the (5, s,r, @) policy can be obtained by using the
(72) of Corollary 5.2 and 5.3 and the cost parameters. Hence, the general form of
the expected cycle cost when y < 0 with the approximation z = r — |p|L + Q is

given as
E(CC) = K,+hE(OH)+[Kq+ Cy(S—3s)]E(N)+ C,Q (5.9)

Using Corollary (5.1) (¢¢) and (5.9), we can construct the objective function
given by (2.1). Moreover, the constraint (2.2) can be constructed by using
Theorem 5.1 and 5.2.



Chapter 6
Numerical Analysis

In this chapter we present the results of the numerical study and discuss the
sensitivity and the performance of the (5, s,r, Q) policy. The chapter consists of
three sections.

In the first section, we aim to examine the essential features of the policy
parameters for the zero expected net demand case. During the analysis of
this case, we treat the disposal trigger level as the physical warehouse capacity
to identify the interesting properties of the policy. Hence, we construct our
numerical analysis to study the sensitivity of the policy parameters under various
values of warehouse capacity, lead-time and service level with respect to a wide
range of cost parameters.

In the second section, we try to isolate the important characteristics of the
model for the positive expected net demand case. We conduct a similar analysis
presented in the first section by relaxing the warehouse capacity assumption. The
numerical results provided in this section reflects the sensitivity of the policy
parameters with respect to various values of lead-time, service level and expected
net demand rate under different cost structures.

In the final section, we focus on the performance of the (5, s,r, Q) policy vis a
vis other simpler control policies when the expected net demand rate is positive.
To highlight the advantages of our model, we introduce two new policies based

on the (S, s,r, Q) policy. We compare the performances of the policies with the
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original policy and discuss over the numerical results.

6.1 Sensitivity Analysis for Zero Expected
Net Demand Case

For our numerical study, we developed a computer program in MATLAB
programming language. We used the nonlinear optimization routines to optimize
the objective function (2.1) subject to (2.2) given in Chapter 2. Additional
constraints are added to the code regarding the policy parameters and the
position of the inventory at the end of the lead-time. As mentioned in Chapter
2, the policy parameters must satisfy the condition r < s < S. Also, recall
that the position of the inventory at the end of the lead-time must satisfy the
condition r < z < S and is approximated by r 4+ ). Hence, we have three
additional constraints given as s —r >0, S —s >0 and S —(r+Q) >0
which have to be satisfied during the optimization process. However, to prevent
the computational errors in case of equalities, the numerical accuracy is set to
10=* . This substitution avoids the optimal policy parameters being too close
to each other. The MATLAB Optimization Toolbox function “fmincon’, which
implements an iterative optimization algorithm, is used by setting the termination
tolerance on the function value to 107%, the maximum number of iterations and
the maximum number of function evaluations to 400.

To analyze the sensitivity of the (S, s,r, Q) policy when y = 0, we design an
experiment held in two stages. For both stages, we fix the holding cost, h = 1 and
the variable purchasing cost per unit €', = 0. Moreover, the dispose trigger level
S is assumed to be the warehouse capacity and considered as a given parameter
during the optimization.

The objective of the first stage is to observe the effects of different cost
arrangements, various service levels and warehouse capacities on the decision
variables and the cost rate. Therefore, the lead-time is fixed to an arbitrary

value, I = 5. The rest of the parameters of this stage is given in Table 6.1.
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H Parameter ‘ Value H
Ordering Cost (K,) 500, 1000

Fixed Disposal Cost (K;) 250, 500, 1000, 2000
Variable Disposal Cost (Cy) | 5, 10, 25

Service Level («) 0.95, 0.99, 0.999
Warehouse Capacity (.5) 60, 40, 15, 5

Table 6.1: Parameter Set 1

To observe the effects more clearly, we use relatively high ordering and fixed
disposal costs; where, the values of K; are taken as 0.5K,, K, and 2K,.

The results for the first stage are given by Table A.1 and Table A.2.

From the results we observe that as C; increases, s* increases to decrease the
number of units to be disposed, (S — s*). Moreover, an increase in K, causes
a decrease in s* to reduce the expected number of disposals. Also, we observe
an increase in s* as K, increases. However, s* is quite insensitive to the changes
in K,,K, and Cy for small S values (see Table A.2) since the effect of S on the
expected number disposal and the number of units to be disposed decreases and
Q) emerges as the dominating factor. Therefore, when S = 15, s* equals to the
half of the S and does not change neither with the service level «, nor with the
cost parameters. On the other hand, for all other S values, the s* increases as «
increases.

When g = 0 the left-hand side of the constraint (2.2) is the function of the
lead-time and the reorder point, r. Hence, r* is determined by L and service level
a. Since L is fixed in the first stage, r* increases as a increases to reduce the
backorders and does not change as S and/or the cost parameters increase.

Similar intuitive results can be seen for the replenishment quantity, (). We
observe that (Q* increases as K, increases to obtain more units in each order and
decrease the frequency of orders. Moreover, an increase in K; and/or C; causes a
decrease in Q* to balance the expected number of disposals together with s*. As

we mentioned above, the reorder point increases as the service level increases. If
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the capacity of the warehouse is small then the probability of hitting S increases
as r* increases. Therefore, for small S and high «, Q* approaches zero (see Table
A.2). Especially, when S =5 and a = 0.999, Q* equals zero for all cost values
since r* is very close to S. Also, we observe that as a increases, )* increases for
S = 60,40 and decreases for S = 5, 15.

The cost rate, T'C', is unimodal in S it first decreases and then increases as S
decreases. The smallest T'C*s are found for S = 40. As we expected, we observe
an increase in T'C"* as the cost parameters and service level increase.

In the second stage, we set the values of the ordering cost and the warehouse
capacity as K, = 500 and S = 40, in order to analyze the effects of the lead-
time over the optimization parameters and the cost rate function. The other

parameters are taken according to Table 6.2.

H Parameter ‘ Value H

Fixed Disposal Cost (Kj) 250, 500, 1000, 2000
Variable Disposal Cost (Cy) | 5, 10, 25

Service Level («) 0.95, 0.99, 0.999
Lead Time (L) 1, 5,15

Table 6.2: Parameter Set 2

From Table A.3 we observe that when I increases r* increases to reduce the
backorders. Also, there is a slight decrease in * as L increases to decrease the
number of disposals caused by high reorder point. Similarly, s* increases with L
in order to adopt itself to the increase in r*. The results for the cost rate function
are also very intuitive. TC™ increases as L increases. Note that, for high service

levels, the increase in T'C* is greater.

Below, we give Figure 6.1 to illustrate a typical realization of the cost rate
function for the zero net demand case when S = 40 and r* = 1.85. Note that, it

is a unimodal smooth shaped function for the cases that we encountered.
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Figure 6.1: Realization of the cost rate function when y =0

Finally, in Table A.4, we provide the numerical results for the case when
the decision maker does not give any order. Hence, we set () equal to zero and
optimize the policy parameters S, s and r subject to the constraint (2.2).

From the analytical expressions it can be seen that when () — 0, the cycle
length equals L, and the expected on-hand inventory after the lead-time period
and the expected number of disposals become zero. There remain only K, and
hE(OHp) in the expected cycle cost expression. Therefore, from Table A.4, we
see that T'C* increases as « and/or K, increases.

However, our mathematical model is designed for the cases where ) > 0.
Also we observe that, there is a discontinuity in the cost rate function when
@) = 0. The limit from the right according to () does not exist. Moreover, as ()
approaches zero, the cost rate function goes to infinity. Therefore, we can state

that for our cost rate function do nothing policy is not optimal.
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6.2 Sensitivity Analysis for Positive Expected
Net Demand Case

The numerical analysis of the negative expected net demand case is similar to
the zero expected net demand case. We use the same MATLAB optimization
function “fmincon” with the same tolerance, iteration and evaluation settings.
Recall that for nonzero p we substitute « with (r — |u| L+ Q). Therefore, the two
of the additional constraints are found as S —(r—|p|L+@Q) > 0 and Q — |p|L > 0.
The other additional constraints are the same with the zero expected net demand
case and equal to s —r > 0 and S — s > 0.

We investigate the sensitivity of (.5,s,r, Q) policy when y < 0 according to
the cost parameters, the service level, the lead-time and the net demand rate.
Throughout the analysis, the fixed parameters are h = 1 and C, = 0. Unlike the
previous case, the disposal trigger S is considered as an optimization parameter.

First, we analyze the sensitivity of the optimization parameters and the cost
rate function to the changes in the cost parameters and the service level. For this
stage, the lead-time and the net demand rate are fixed as L. = 15 and g = —0.01,
respectively. The parameter set of the first stage is given by Table 6.3 and the

results are presented in Table A.5.

H Parameter ‘ Value H

Ordering Cost (K,) 500, 1000

Fixed Disposal Cost (Kj) 250, 500, 1000, 2000
Variable Disposal Cost (Cy) | 5, 10, 25

Service Level («) 0.95, 0.99, 0.999

Table 6.3: Parameter Set 3

From Table A.5, we observe that S* generally increases as Ky and 'y increases.
Also note that, s* decreases as K, increases to decrease the expected number of
disposals together with S*. However, when o = 0.999 , S* and s* remain constant

as K, increases . Since a decrease in s* creates an exponential increase in the
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denominator of the expected number of disposals, we expect a decrease in s* as
(g increases. Nevertheless, this intuitive result can be seen only when K, = 1000.

Note that, when the drift is nonzero, the left-side of the constraint (2.2) is the
function of the lead-time, the net demand rate and the reorder point. Therefore,
r* is effected only by L, g and «. Since L and p are fixed, r* increases as «
increases to reduce the backorders.

As we expected, Q* increases as K, increases. For small K,, Q* is very
insensitive to the changes in the service level and the disposal costs. However,
when K, = 1000, @* decreases as Ky and Cy increase to reduce the expected
number of disposals. Moreover, we observe that as « increases, Q* first decreases
and then increases.

Secondly, we examine the effects of the lead-time over the policy parameters.
We studied the case in which K, = 500 and g = —0.01. We use the parameter
set given in Table 6.2. The results of the second stage are presented in Table A.6.

From Table A.6, it can be seen that as I increases, r* increases to reduce the
backorders whereas ()* decreases to balance the disposals. We do not observe a
specific pattern for S* and s* as the lead-time increases. Also note that, for small
lead-times, S* and s* are more sensitive to the changes in K; and Cj;. For all
lead-time settings, when a = 0.999, we observe that the policy parameters are
very insensitive to the disposal costs.

Finally, we study the effects of the net demand rate over the policy parameters.
The fixed parameters are . = 5 and K, = 500. We analyze the system under the

following parameter set.

H Parameter ‘ Value H

Fixed Disposal Cost (Kj) 250, 500, 1000, 2000
Variable Disposal Cost (Cy) | 5, 10, 25

Service Level («) 0.95, 0.99, 0.999
Net Demand Rate (y) -0.01, -0.1, -1

Table 6.4: Parameter Set 4
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The results are given in Table A.7. Note that, as net demand rate increases,
(p decreases), the effect of Ky and Cy disappears since the probability of hitting S
during a cycle approaches zero. Therefore, the optimization algorithm converges
to an arbitrary value according to the initial guesses of S and s. Throughout
the numerical analysis, the initial guesses of the policy parameters are taken as
So =175, so =40, ro = 15 and Qo = 10. From Table A.7, it is clear that when
p=—1,5 and s* are equal to their initial guesses for any cost and service level
setting. Also note that the results for the reorder point and the order quantity
are quite intuitive. As p decreases, r* increases to decrease the expected number
of backorders and Q* increases to satisfy the demand.

Further results related with the negative net demand case can be found in
Tables A.8-A.13.

Figure 6.2 illustrates a typical realization of the cost rate function for the
positive net demand case when S* = 33.9 and r* = 1.88. We observe a unimodal

smooth shaped cost rate function.

TC(S,s.1.Q)
= [ N N
o oo o N

[N
i

i
N

N
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Figure 6.2: Realization of the cost rate function when p = —0.01



Chapter 6. Numerical Analysis 61

6.3 Performance Analysis for Positive

Expected Net Demand Case

In this section, we compare the (5, s,r, Q) policy when p < 0 with two different
policies: 1) The FOQ based heuristic policy , 2) The no-disposal policy. Then,
we discuss over the results to highlight the advantages of using the (S5,s,r, Q)
policy. In the first comparison, we asses the performance of the (5, s, r, @) policy
when it is compared with a very rough approximation based on the well-known
EOQ formula. To differentiate our policy parameters from the heuristic policy
parameters, we denote the heuristic policy with (Sz, s2, 79, Q2) and rewrite the
(S,s,7,Q) policy as (Si, s1,71, Q1).

According to the heuristic policy, the order quantity, ()2 and the disposal
quantity, (S2 — s2), are approximated by the FOQ formula with the appropriate
costs. Then, Sy, s3 and ry are optimized subject to the constraints defined in the
previous section.

The heuristic order quantity and the heuristic disposal quantity can be given

QQ = H 2[XZ|H| and SQ — 89 = V QIXZ|/L| (61)

Note that, the heuristic disposal quantity (52 — s3) is analogous to the order

as follows:

quantity since a disposal order is nothing but a symmetric replenishment order.
Therefore, the only difference in (S; — s2) is the fixed disposal cost Kj.

The policies are compared with respect to the parameter set given by Table
6.5.

We define our performance measure as the percentage decrease in the cost
rate function obtained by the (S1,s1,71, Q1) policy which can be computed as

follows:

TO?(S; 337 T;, QQ) - Tcl(va 5; TT, QT)

A% =
! TO?( ;753774;7@2)

x 100 (6.2)
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H Parameter ‘ Value H
Ordering Cost (K,) 500

Fixed Disposal Cost (Kj) 250, 500, 1000
Variable Disposal Cost (Cy) | 5, 10, 25
Service Level («) 0.95, 0.99, 0.999
Lead Time (L) 5
The Net Demand Rate (z) | -0.01

Table 6.5: Parameter Set 5

The results are presented in Table A.14.

We first observe that A% values are quite significant for all cost parameters
and service levels. The main reason of this observation is that the heuristic policy
underestimates the optimal order quantity and the optimal disposal level.

The underestimation of the optimal order quantity follows from the fact that
there are no backorders in the KO@ formula. Since it is worthwhile to increase
the order quantity moderately to reduce the backorders, Q)7 is always greater
than Q3.

Similarly, for all cost and service level settings, S5 is smaller than ST and sJ is
greater than s] resulting in the underestimation of the optimal disposal quantity.
This result arises because our policy tends to decrease the frequency of disposals
as much as possible. Moreover, FO(@) based policy is not sensitive enough to the
increases in disposal costs.

Also, note that r* is same for both policies since it is determined by the
binding constraint (2.2).

From Table A.14, we note that as K increases, (S} — s7) increases and Q7
decreases to reduce the number of disposals. On the other hand, for the heuristic
policy, since @3 is fixed and the increase in (S5 — s3) is not enough to decrease
the number of disposals, T'C increases more than T'Cy. Therefore, A% increases
with K.

The (S1,81,71,Q1) policy responds similarly to the changes in Cy as it does

for the changes in K. However, when (' increases, the increase in T'CY is greater
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than the increase in T'C; causing a slight decrease in A%. Also, we observe that
A% decreases as « increases.

Finally, we find that for higher net demand rates, A% first decreases and
than increases. Also, we observe that the affect of the disposal option disappears
for high net demand rates. For this case, A% values are very insensitive to the
changes in the disposal costs (see Table A.15 and Table A.16).

In the second comparison, we aim to highlight the importance of the disposal
option. Therefore, we propose the no disposal policy in which S and s are fixed.
When we set S and s to very high values, the probability of giving a disposal order
in a cycle approaches to zero. Consequently, the affect of the policy parameters
S and s over the cost rate function becomes negligible and the (5, s,r, Q) policy
behaves as the conventional (@, r) policy. We denote the no disposal policy by
(S35, 83,73, Q3) and compare it with the (Sy,s1,7m,Q1) policy. Throughout the
analysis, we fix 53 = 200 and s3 = 190, then optimize the r3 and ()3 respectively.

The rest of the parameters used in the analysis are given by Table 6.5.

Similar to the previous comparison, we can give the performance measure as

follows:

TC3(53, 83, Tg, Q;) — Tcl(Sf, SI, T’I, QI)
TC3(S37 53, r§7 Qg)

A% = % 100 (6.3)

The results of the numerical comparison are presented in Table A.17.

From Table A.17, we observe that the improvement in the cost rate function
obtained by the (51, s1,71, Q1) policy is quite significant for all cost and service
level settings. As we expected, the (Ss, s3, 73, @3) policy is very insensitive to the
changes in the disposal costs since the affect of the disposal parameters becomes
negligible due to fixed S5 and s3. Note that, the behavior of the (53, s3,73, Q3)
policy is same with the the typical (@, ) policy in which r} increases as « increases
to reduce the backorders whereas ()5 decreases as backorders decrease.

Moreover, it can be seen from Table A.17 that the (S3,ss3,r3,Q3) policy

underestimates the optimal order quantity causing a greater cost rate function.
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Also, it is clear that r* is same for both policies due to the binding constraint of
the objective function.

From Table A.17, we can state that as Ky and/or Cy increases, generally,
A% decreases since T'C; remains constant while T'CY increases. However, for
a = 0.999, T'C increases slightly while T'CT remains constant as K increases.
Hence, for this service level, A% increases somewhat as K, increases. Finally,

we observe a small decrease in A% as « increases.



Chapter 7
Conclusion

In this thesis, we develop and analyze a control policy, the (S,s,r, Q) policy,
for a continuous review inventory system of recyclable goods with a disposal
option. We assume that the return and demand flows are independent and the
inventory process is governed by the Brownian motion process. Under the fixed
procurement lead-time and backordering assumptions, we derive the expressions
of the operating characteristics for the cases where the net demand rate is zero
and positive. Then, we optimize the cost rate function with respect to the service
level criterion.

The existing reverse logistics literature includes mostly the models considering
distinct inventories for serviceables and recoverables.  These models are
mathematically quite complex and consider the systems including sophisticated
recovery options. However, the (S,s,r, @) policy proposed in this study is
designed for simpler systems applying recycling or direct reuse. Therefore, we are
able to provide the analytical cost rate expressions using very general simplifying
assumptions employed commonly in the inventory theory literature. On the
other hand, it is the first model in the literature of the inventory management of
recyclable items using the Brownian motion to define the inventory level process.
From this point of view, it can be seen as the extension of the cash management
models to the positive lead-time case.

An interesting extension of the (S,s,r, @) policy is found when the average

65
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number of returns is equal to the average number of demands. This is the case
where the expected net demand is equal to zero. Although the zero net demand
case seems unrealistic, we give the analysis of this case to provide an insight
to the special case of a more general problem. From the numerical study, we
conclude that, when g = 0, no disposal option is not optimal. However, it would
be interesting to compare this result against simulation.

For more realistic systems where the demand rate is greater than the return
rate, we conclude that using the (5, s,r, Q) policy is meaningful when the |y|/o
is small (¢ = 1). This result is quite intuitive since for high demand flows
the significance of the disposal option disappears and the system behaves as
the typical (@,r) model. However, for the systems where the demand rate
is somewhat greater than the return rate (i.e. p = —0.01), the performance
comparison with a similar model to (@,r) shows that the (5,s,r, Q) policy
outperforms that policy in all experimental points with the mean improvement
of 29.7% in the cost rate function. The maximum improvements (i.e. 32.38%) in
this experiment are observed when the service level is equal to 95%. Moreover,
we also see that when the order and disposal quantities are approximated by the
EOQ formula, the system incurs higher number of disposals and backorders. The
numerical results show that, of all the experimental points tested for different
net demand rates, the performance of the (S5,s,r, @) policy outperforms the
EOQ based policy with the mean improvement of 12.64%. The maximum
improvements (i.e. 37.94% ) in this experiment are observed when p = —0.01.

Although the (S,s,r, @) policy provides some nice results for the positive
net demand case, the analytical expression of the cost rate function seems quite
tedious. To eliminate this mathematical complexity, one extension may be to
apply the Taylor approximation to the exponential terms in the cost rate function.
Finally, we can state that an interesting suggestion for future research may be

the incorporation of the nonlinear cost structure into the model.
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A.1 Appendix A

Proof of Lemma 2.1
¢) In the following derivations, for any random variable 7', we use the notation

T, T., ... to denote a sequence of independent random variables identical to 7',

So that, OH,.1, OH,, ... will denote independent random variables identical to
OH,. Similarly, T} .1, Ty 42, ... are independent and identical to 7, , and Ty 1
TZ

w2y -+ are independent and identical to T ,. Then, the on-hand inventory

carried during T can be written as:

OH 1= (S;T) Tss:rzl if Ts,r:l < Ts,S:l
) 645 e L OH, if Tysa < T
2 5,5:1 5:2 5,5:1 s,r:1
OH _ S;T Tss,yr:2 if TS,T:Q < Ts,S:Q
512 —
(5‘}2'5) TST,S:Q + OHS:3 if T57S;2 < TSJ,:Q

According to the stochastic equations given above we can write

E(OH,,) = E (1) ps

9 s,r:1

](TS,T:I < TS,S:I)]

[((s+ S
+ K ((S 2 ) T;S;l + OHS:Q) I(TS,S:I < Ts,r:l)]
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s+r
- %E(Tgr;l ](Ts,rzl < TS,S:I)) +

+ E(OHS:Q)E(](TS,SJ < Ts,r:l))

s+ S .
( 9 )E(TS,S:l ](TS,S:I < Ts,r:l))

s+ s+.5 ,
- %E(TS‘S’YTJI(TS,T:I < TS,S:I)) + ( 9 )E(T57S;1](TS,SZI < Ts,r:l))
+ E(OHS:Z)P(TS,S:I < Ts,r:l)
and in general
S
E(OH,.:) = ¢ —QI_ T)E(ij](Tsm < Tis:)) + ¢ J; )E(Tsisn'f(Ts,S:z’ < Ts i)
+ E(OHsz(i+1))P(T5,S:i < Ts,r:i)
Since for 2 = 1,2,. ..
P(TS,S:Z' < Ts,r:i) - P;S
E(TS?TZi](TS7T:i < Ts,S:i)) = E(TS?T](TsvT < T57S))
E(T;S;i](TS,SZi < Ts,r:i)) - E(T;S](TS,S < Ts,r))
We let
S
W= @E(Tj I(T,, < Tys)) + (S; ) p(1rs 11, < T.s))

If we substitute each equation in the previous one, we obtain

E(OH,) = W+ W+ [W[.].PL] Pl .Prs

= W.[1+Pls+ (Pls)* + (Pls)’ +.. ]
w
1 —Pg

(s+59)
2

1
= [(S —g T)E(Tfr I(Ts,r < TS,S)) + E(Té:S I(TS’S < TS’T))

pPS
it)  From the relation (2.5) the expected on-hand inventory carried after the

lead-time can be written as:

won) = g 1w, <)+

+ E(OH,).E(I(T,, < T,,))

(z+5)
2

E(T; (T, < Typ))
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+ E(OH,).P.,

(z+5)
2

BT, , [(Tys < Ty,))

Q.E.D.

Proof of Lemma 2.3
i) As before, let Ty 21, Typsa, ... be independent and identical to T,,.; and
Ty, Tya, ... be independent and identical to 7T,,. Then, Ty can be written as

follows:

Tssr~1 if Ts,r:l < Ts,S:l
Tsq = v .

T;S;l + Ts:2 if Ts,S:l < Ts,r:l

T.ssr~2 if TS,T:Z < TS,S:Q
T5'2 = v .
T;S;Q + TS:3 if TS,S:Q < TS,‘T‘:2

Thus, according to the relations given above we can write:

E(Tszl) = E(Tgr;l ](TS,T:I < TS,S:I)) + E [(T;S;l + TS,T:Z) ](TS,S:I < Ts,r:l)]

- E(Tgﬁl ](Ts,r:l < TS,S:I)) + E(T;Sﬂ ](TS,S:I < Ts,r:l))

+ E(TS:Q)-E(](TS,S:I < Ts,r:l))

= E(Ts,rs:l) + E(TS:Q)-P(TS,SJ < Ts,r:l)

in general forz =1,2,...
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Similarly,

E(TS,TS:i) - E(TS,TS)

Then, we have

E(T) = B(Tups)+ [B(Tops) + [E(Tops) + 1] PLs| Pls| Pl
= B(Tups). [L+ Pls+ (PLs)? + (PLs) +...]
E(Ty,s)

7‘

ﬁ

1 —Pg

(TS,TS)
Pssr

=

it) From (2.3) the expected length of T, can be written as:

E(T:)

BT, 1(Tey < Tas)) + BT I(Tr s < Try))
+ B(T).E(I(Tys < Toy))
F(Tyr) + E(T.).PL,

Q.E.D.
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A.2 Appendix B

Proof of Proposition 3.1
i) From Karatzas and Shreve [12], we have the following Moment Generating

Functions (M.G.F.) for a Brownian motion moving in strip [0, al.

0 e% 200 e—z\/ﬂ
¢—T£,a(a) = E(e“aTmya ](Tm,a < Tr,O)) = ot %0 6_,1\/% (AQl)
_aT® e(u“_x)\/ﬂ — 6_(‘1_1‘)\/ﬂ
b-ra(0) = E(eT0 (T < Tpn)) = e (A22)

Observe that

lim B(e™ e [(Tyo < Tog)) = P(Tpa < Top) = P2,

a—0

lim E(e o0 [(Ty0 < Tpa)) = P(Top < Tpa) = Py

a—0

Hence,

zV2a -\ 2«

. € —e 0
P’ = lim = —
0y a—0 ea\/ﬂ — e~V 2a 0

If we apply LL’Hopital’s rule by taking derivatives, we find

L(er\/ﬂ_l_e—x 2a)

PO = lim Y2 ==
z,a a0 \/%(ea\/ﬁ—l—e_“ 204) a
Similarly,
6((1—3:)\/2_01 . e—(a—az)\/ﬂ 0
Pao - llm e
z a—0 ea\/ﬂ _ e—a\/ﬁ 0
e W
a—0 \/LQ_Q(ea\/ﬁ_l_ e—a\/ﬂ) a

If we convert the strip from [0, a] to [b, a] we obtain

z—b a—z

p— and Pr’b:a—b

b —
Pr,a -
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ii) To derive the E(Tﬁa ITyo < Typ)) and E(T} o I(Tro < Ts.4)), we employ the
M.G.F property

S (0) = B(=T0, I(Ton < Toy)

¢I_T;70(0) = E(-T13701(To0 < 1))

We can write the first derivative of (A.2.1) with respect to « as follows:

) za(er\/ﬂ_l_e—r. 2a)(6a 201_6—[1 2a)
g (a) = Y=

(- o/

L(er 2a_e—a: 211)(6&\/%+6_a 2a)

V2o

=)
(:l? — CL) [e(w+a)\/2_a _ e—(w+a)\/ﬂ] _ (.TL‘ + CL) [e(r—a)\/ﬂ N 6_(3‘"_&)@
(ea o _ gma 2“)2 V2a

) 0
. (0) = -
¢_Tx,a( ) 0

Using the I’Hépital’s rule, we find

¢ ro (0) = lim

a—0

{ (22 — a?) [e(r+a)m n e—(w@@]

24 (¢2VEr — e~20VIR) /2 4 (VB8 — emaVER)’
(22 — a?) {e(r_a)\/ﬂ + 6—@:_&)@]

2 (350 — c=2VE) \fq 4 (eVE — eamf]

0

0

([172 . CLQ)(.Z' + Cl) [€(r+a)\/ﬂ o 6—(r+a)\/ﬂ]

= lim

a—0 La2 (620,\/5 + e—2a\/ﬂ) V2a + 4a (eQa\/ﬂ - e—2a\/ﬂ)
(2% — a*)(z — a) [e(m_“)m — e_(x_“)\/ﬂ]
_4a2 (6211\/% 4 6_2”‘@) \/Z‘I‘ da (6241\/% _ 6—2&\/%):|

0
0
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r~ —a

( 2 2)(1: —|—Cl)2 [€($+a)\/ﬂ—|— 6—(m+a)\/ﬂ]

= lim

a—0 | 843 <€2a\/ﬂ _ 6—211\/2_oz) V2a + 1242 (6211\/% + Q—Qam)
2 2)($ _ a)2 [e(x_a)\/ﬂ_l_ e_(x_a)\/ﬂ]

(2 —a

_8a3 (62"“\/ﬂ — 6‘2”“@) V2a + 1242 (62"“\/ﬂ + 6_2”‘\/%)

(22 —a?)[(z + a)’ — (z — a)?]
12a?

2 .2
= M = E(_qua ](Tx,a < Ta:,o))
3a 7
Hence,
a’? — z?)

E(T, I(Tya < Tho)) = 2
’ 3a

When we write this equation for the [b, a] strip, we get

(z —b)(a+ 2z —2b)(a—2))

E(T® I(T,,<T, =
(10 1(Tow < Tip)) 3

Similarly, the first derivative of (A.2.2) with respect to a can be written as follows:

(a—l’)(e(a—m)\/ﬂ_l_ e—(a—m)\/ﬂ)(ea 200 e~ 2a)
¢—T§70(O‘) = e

(eam _ e_am)Q
(e(a—z)\/ﬁ . e—(a—z)\/ﬂ)(ea\/ﬁ 4o 2a)

B
Q

2
(ea 200 e—? 201)

(20 — z) |:6w 20 _ - 2a] _ [e(m—r)\/ﬂ _ e (2a-)V2a

(e“ % _ p—a 2a)2 V2a

0

¢’I_T;70(0) )

From the IL’Hopital’s rule, we find

¢_re (0) = lim 2(2a — x) [e7V2 4 ¢=/7]
h 0 |20 (20— VB B g (@B o)

$(2CL o [l?) [6(2a—a:)\/2_a T e—(?a—r)\/ﬂ]

2 (egam _ e_zam) V2a + (ea % _ p-a 2a)2
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Therefore,

For the [b, a]

0

0

— $2(2a — :1;) [ef 20 _ - QQ]

= lim Laz (62a\/2_a i e_zam) V2a + 4a (ezam _ e—%v%)
2(2a — x)? [e@erIVEE _ o= (2amr)V2a] ]

_4a2 (eza\/ﬂ + 6_20‘@) V2a + 4a (620‘\/2_0‘ - 6_20‘@)
0

0

o 23(2a — ) [e”\/Z +e® 2“]

a—0 [8&3 (e2a\/2_a _ e—2a\/ﬂ) V2a + 1242 (eQa\/ﬂ + e—2a\/ﬂ)
2(2a — $)3 [6(%_9;)\/% + 6-(%-@@]
_8a3 <€2a\/ﬂ . 6_2,1\/%) \/%‘I‘ 1242 (62a\/2_a + 6—211\/%)]

z(2a — z) [2? — (2a — 7)?]
12a?

20 — _
_ z(2a ;’)(a ?) _ E(=T% [(Typ < Ty))
a )

z(2a — z)(a — )

E(T o (Tro <Tru)) = ™

strip, we have

r—b0)(2a — 2z —b)(a— )
3(a —b)

E(T, I(Top < Tpu)) = (

First escaping time from strip [0, a], F(T;0.) can be found by

E(Tr0.) = E(nga (T, n <Top)) + E(T I(Tro < Tr4))

z(a* — 2%) + 2(2a — x)(a — 2)
3a

= z(a—z)

iii) Using the same conversion we found

E(Tep) = (x—=0)(a—2) Q.E.D.

79
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Proof of Proposition 3.2
Let X; = pt 4+ By, t > 0, be a Brownian motion with constant drift ¢ € R , on
some probability space (2, F, P). Fix some interval [b,a], —c0 < b < a < +o0,

and calculate

f(2) & B [TuIir,emy), @ € [byd]

where T, 2 imnft>0: X, =r.
We shall heuristically derive a differential equation which is satisfied by f(.).
Then we shall solve it for f(.). Can argue that

EXin — Xe|Xe =2] = ph+o(h)
El(Xiyn — X)) Xs =2] = h+o(h) (A.2.3)
El(Xuyn — X)) | Xy =2] = o(h), k>3
We apply Taylor’s expension to f(.) (assuming f(.) is smooth enough):

F(X0) = J(X0) + I (X)X — Xo) + 1" (Xo)(X0 — Xo)? + -+

and take conditional expectation, given Xo = = € (b,a), of both sides. Using
(A.2.3), we find

ELf(X0] = £(2) + [f (@) + 57" ()] b+ o(h) (A2.4

Next calculate E.[f(X4)]. Suppose h > 0 is so small that P.(T, AT, < h) is
negligible, i.e. the process does not leave the interval [b,a] by time A with high
probability.

Let 6, : @ — Q be the shift-operator, defined by X (¢)(0n(w)) 2 X(t+ h)(w),
t > 0. Geometrically, the shift-operator “shifts” the time origin A time units into
the future, and cuts off the history of path before h. The Markov property is

often expressed by using shift-operators:

Bl (Xa) - 91(X,,) 0 01]X,,0 < 5 < ]
= E[(gl(Xh) .- 'gk(th))]7 PXh — a.s. (A25)
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for every k£ > 1, any bounded Borel functions ¢1,...,¢r, and 0 < #; < -+ < 1.
By the Markov property of X, we have

J(Xh) = Ex, [Tolir,cry] = El(Talir,<my) © 001X (5),0 < s < A (A.2.6)

(It can be shown that 7,17, <7} is o(X¢ : & > 0)-measurable. Therefore it is the
limit of random variables in the form of g1( X4, )+ gx(X3,)).

Take any w € € such that X (w) € [a,b] for all 0 < s < h. Then T,(w) =
h+ T,(0,(w)), and Ty(w) = h + Tp(0r(w)). Therefore,

Tolir, <1} 0 On(w) = (Ta — W) 7, ner,-ny(w) = (To — h) [1ocr3 (w).

By plugging this into (A.2.6), and taking conditional expectation of both sides

given Xg = z, we find
Ez[f(Xh)] = Ew[(Ta - h)]{Ta<Tb}] + O(h) = f(‘T) - th(Ta < Tb) + 0(h>

Recall that A is chosen so that P.(T, ATy < h) is negligible. Finally, together
with (A.2.4), we obtain

—hP(T, <Ty) = |ufi(z)+ %f{’(x) h + o(h)

When we divide both sides by h, and let h go to zero, we see that f(.) must

satisfy the second order differential equation

1 " !

@l @) = P <T).  ze(wd  (A27)
together with boundary conditions f(a) = f(b) = 0.

By a similar heuristic argument, one can show that g(z) 2 P.(T, <Ty), z €[b,a],

is the solution of the differential equation

%g”(x)Jrﬂg'(;c) = 0, z € (a,b) (A.2.8)

with the boundary conditions g(a) =1 and ¢(b) = 0.

Z) Let gl(l’) = Pa:(Ta < Tb) =P}, and 92($) = Pr(Tb < Ta) = Pa?,b'

z,a
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Clearly, g1(z) can be found by solving the differential equation (A.2.8). Therefore,

we find
Pb 6—2#33 o e—2,ub
r,a e—2una _ e—2,ub
Since gy(z) =1 — g1(x)
—2pa 2z
PO‘ a € €
b —

e—2ua _ 6_2‘“6

i) Let fi(x) = EulTul(nyery] = E(T2, I(Ty, < Tap)).

Therefore, by substituting (A.2.9) in (A.2.7), we obtain

—2ux —2ub

1 . /
§f1($)‘|‘ﬂf1($) = -

(& — €

e—2ua _ 6—2ub

Let

e—2ua _ 6—2,ub

—2ub

e—2ua _ e—2,ub

Rewrite (A.2.11)

(@) +2ufi(x) = 2pe™ 4 2¢

Denote r = fi(z), 1% = J{(x) and F(z) = 2pe™= + 2,

the reduced equation when F(z) = 0 as follows

r? +2ur = 0

(A.2.9)

(A.2.10)

v € (a,b) (A2.11)

(A.2.12)

. Hence, we can write

The roots of this equation are 1 = —2p and ro = 0. Therefore, the general

solution of the homogeneous equation can be given as

yn = Cie™* + O,
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Using the variation of parameters method, we obtain the functions

u, = e 7, ug =1
vy = —E;c——(hQ e 4 4
I 2p
vy = LR e 4 (O
1 2 p?

If we substitute these functions in the general solution of the form y = vyu;+vou,,

we get

X X
fl(fl/’) = —MNn ; G_Q'MS + q1 ; + Cl 6_2ﬂx + 02 (A213)

fila) = —p % e 4 gy % O e L0y =0 (A2.14)
b b

Ab) = —p—e 4 —+Cre ™+ 0 =0 (A.2.15)
! !

Side by side summation of (A.2.14) and (A.2.15) yields
pila e — b e — gy (a — b)

Ol - U (6—2;1@ _ e—?,mb)
= be 2 p e — qi] —a e [py e — g
2 = —2pa __ p,—2ub
p (e e=2)
Substituting p; and ¢; yields
o - 20 €720 — g (e210 4 e720b)
1 = i (6_2“0‘ _ e—?,ub)?
o - @ et 4 (a — 2b) e~ 2mlath)
2 = s (6—2;141 _ 6—2,@?))2
Finally, by plugging pi1, ¢1, C1 and Cy into (A.2.13), we find
fl(x) T (6—2;Ll‘ + 6_2’Mb) 2% 6—2#6 —a (6—2,ua + 6_2’Mb) 6_2#33

U (e—Q;LEL _ e—?,ub) i (6—2;“1 _ e—2,ub)2
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a e~ 4 (a — 2b) e~ 2at)

7 (6—2,ua _ 6—2;16)2

_|_

Similarly, let fo(x) = EI[TbI{Tb<Ta}] = E(Tib I(Tep < Tra)).
Then, f(z) is the solution of the following differential equation with the boundary
conditions fy(a) = f2(b) =0

S @) b ufie) = Pl (A:2.16)

Using (A.2.10), we get

1 —2ua —2uzx

€ — €

§f2 (z) + pfy(z) = TR (A.2.17)
Let
1
p2 = e—2ua _ o—2ub
6—2,ua
2 = _6—2,:m — e—2ub
Rewrite (A.2.17)
Fo (@) +2ufy(x) = 2pae™™ 42, (A.2.18)
The roots of the reduced equation are equal to ry = —2p and ro = 0. Hence, the

functions required to apply the variation of parameters method are found as

—2z

Uur = € ; u2:1
S RN T )
1 2 p?
vy = 2, P2 e 4 (O

I 2 p
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Substituting these functions in y = viuy + vouy yields

x x
fa(z) = —p2 ; e 4 2 ; + Cy 72 4 (O

Since fa(a) = f2(b) =0

fala) = —pp ety Ly e 0y=0
o u
b b

f2(b) = —py — e L2 — 4+ Cre” ™ 10y =0
o N

Side by side summation of (A.2.20) and (A.2.21) yields

pala e — b 6_2“’] — q2(a — b)

01:

i (6_2“0‘ _ e—2,ub)

02:

85

(A.2.19)

(A.2.20)

(A.2.21)

be 2 [py e — qy] — a e [py e — g

U (6_2#0‘ _ 6_2“6)
If we substitute p,; and ¢,
2a e7 2 — p (em e 4 6_2“1’)

1 (6_2/:“1 _ e—2,mb)2

01:

be=*#e 4 (b — 2a) e=21(a+h)

© (6—2;m, _ 6_2“b)2

C

Finally, putting the pieces together we obtain

fo(z)

—r (e—Q;LI + e—Q;La) 2a e—2ua —b (e—Q;La + e—Q;Lb)

7 (e—Q,ua _ e—Q,ub) U (6—2;m _ 6—2,ub)2
be th 4 (b— 2a) e~ 2nlat?)

1 (6_2/:“1 _ e—2,ub)2

_|_

iii) First escaping time from strip [b, a], £(Tp.) can be found by

E(Typ,) = E(T;a I(Tou <Top))+ E(Te, I(Tep < Tsa))

6—2/.”1’
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x  2beb _ g (e=2me 4 6_2‘“}) + 2a e7H — | (e7 4 e_Q“b)
W 7 (6—2;“1 _ e—2,ub)2

a e 4 4 (a — 2b) e721a ) L pemthe 4 (h— 2q) em2ath)

U (6—2;1@ _ e—2,ub)2

6—2,ux

(a —b) ouz h e 2Ha _ g g 2ub

7 (6—2,ua _ €—2ub) 7 (6_2“0‘ _ 6_2“6)

T
= ——+
4

Q.E.D.
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A.3 Appendix C

Proof of Lemma 4.2
From Lemma 2.1 (7) the structural expression for the expected on-hand carried

during stage two is given as

E(OH,) = PLS @E(Tfr 1T, < Tys)) + BF S)E(T;S I(Tys < Ts,))
(A3.1)
Employing the results from Proposition 3.1 we have
B 1, <1 = I e
BT (Tos < Tyy)) = U5 r)(SJSS__TQ)T)(S =
= e
Substituting these in (A.3.1) gives
B(OH,) = (S—r)(s—r6)(5+r+4s) (A32)
i) Recall that for r < z < s, from Lemma 2.1
pon,) = = ;“ T)E(T;’T (T, <To)) + & ;“ S)E(T;s (T, < Ty,))
+ E(OH,)PI, (A.3.3)

Using the results of Proposition 3.1 we obtain

(x—=r)2s —z —71)(s — )

B(T2, I(Toy < T,.)) = -

(x—=r)(s+zx—2r)(s—ux)
3(s—r)

BT, , [(T:s < T,,)) =

r—T

s —
Pw,s -

s—r
Putting them together with (A.3.3) yields

(z—r)[(s—2z)(s+r+4z)+ (S —r)(S +r+4s)]
6

E(OH,) =
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it) Also, recall that for s <z < S, from Lemma 2.2

o) - ¢ . VB, 1Ty < Tos)) + 2 L BT 1(Ts < Tu))
+ E(OH,) (A.3.4)

From Proposition 3.1

(x—38)(25 — 2 —s)(S —x)
3(S —s)

E(Tgs I(T,s<Tys) =

(z—s)(S+z—25)(S —x)

B(T: s I(Ty5 < Tyy)) = 35—

Putting the pieces together with (A.3.4), we get

(s=r)(S=r)(S+r+4s) —(s—2)(S—z)(S+ s+ 4x)

E(OH,) = -

Q.E.D.
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A.4 Appendix D

Proof of Lemma 5.1
From Lemma 2.3 the structural expression of the expected length of stage two is

given as

E(TS,TS)
E(T)=—5s—

Clearly, from Proposition 3.2, for a B.M. with drift g it can be written that

B S (S —r) Cops T =S _ G em2ur
E(TSJ’S) - _; + ,U (6_2#5 —_ 6—2#7’) € —I_ Iu (6—2,“5 —_ 6_2.U‘T)
(S —r)e 2 — (s — r)e_Q““S — (S — s)e~ 2

7 (6—2;LS _ 6—2;“’)

e—Z,uS o e—2ps

s T e—Q;LS — e—2ur
Thus
o —2us __ o —2uS o —2ur
B(T,) = (S —r)e (s —r)e (S —s)e (A1)

" (Q—QMS _ 6_2“5)

Similarly, from Proposition 3.2

E(TI“) _ oz i (5 - r) o2 roe=2ms _ g p—20T

i i (6_2“5 _ 6—2;“’) U (e—Q;LS _ 6—2;”’)

(s — r)e_Q‘“” —(z — r)e‘“s — (s — :v)e_Q‘”’

- 1A.4.2
i (e—Q;Ls _ G—Q;LT) ( )
. 6—2,uz _ 6—2,17‘
Pie = oo (A.4.3)
Also, recall from Lemma 2.3 that for r < z < s
E(T;) = EBE(T.,)+ E(Ts).P;, (A.4.4)

Therefore, by substituting (A.4.1),(A.4.2),(A.4.3) in (A.4.4), we obtain

[(s —r)e™ 2 — (z —r)e™ 2" — (s — z)e 2] (=215 — ¢~ 21s)

i (e—Q;Ls _ 6—2;“‘)(6—2#5 _ 6—2,15)

E(T,) =
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(S —r)e 25 — (s —r)e™ 5 — (S — s)e 27 (e72He — e~ 2ur)

+ i (6_2‘“5 _ 6_2#71)(6_2'“5 _ 6_2“5)
B (S o S)[G_Q“(S-H:) . 6—2u(s+7‘) T e—2p(r+x) + e—4m‘]
- 7 (e—Q;LS _ G—ZMT)(e—Q;LS _ 6—2,15)
([E o T)[e—4,us . 6—2#(5’+s) + 6—2#(S+T) o 6—2,&(8-’-7‘)]
+ 7 (6_2'“5 _ e—Z;LT)(e—Q;LS _ 6_2“5)
_ (S _ S)[e—QMI(e—Qus _ 6—2;Lr) _ e—Q;Lr(e—Q,us _ 6—2;“)]
- i (6_2“5 _ 6—2;LT)(6—2;LS _ 6_2“5)
N ({L’ o r)[e—Qm’(e—Q,uS o 6—2#5) o 6—2#5(6—2u5 o €—2us)]

7 (e—Q;Ls _ e—QW‘)(e—Q,uS _ e—Q;Ls)

(x—r) (S—3) ‘ (e=20= — g=2ur)
H - " (e=215 — e=2us)

Q.E.D.

Proof of Lemma 5.2

Recall that from Lemma 2.1

1 (5 T) S
— 7E T ] Ts r TS +
PSS;T 2 ( 5,7 ( ’ < 75))

(s+9)
2

E(OH,) = E(Tes I(Tss <Tsr))

Employing the results from Proposition 3.2 we have

—2us —2uS 25 —2uS —2uS —2ur
E(Tss;r ](TS,T < TS,S)) - - S(e te ) + € 7"(6 +e ) 6_2#5

M(e—QﬂS o e—?,:n‘) IM(G_Q'LLS o 6—2#7»)2

re” S 4 (r — 25)e~2u(547)
+ 7

M(e—QﬂS o e—?m‘)

—2us —2ur 2 _2;“-_5, —2uS8 —2ur
BT I(Tos < T,,) = S -Fe™)  ore (7 +e7)

[.,L(G_Q'LLS _ 6_2“7,) [u(e—Q,uS _ 6—2;“‘)2

Se~r 4+ (S — 27‘)6_2“(5‘”)

_I_
—2uS _ _—2ur 2
p(e e)
PS 6—2#5 o 6—2#5
8,7 6—2#5 _ 6—2;“’
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For simplicity we will perform the derivation of E(OHy) by dividing it into two

parts as follows:

CENB(TS, I(Toy < Tas)) + S B(TI g (T, s < T,))

BOH,) = = 2
T+11
E(OH,) = +2

First we concentrate on the following equation

1
P—SE(TS?T T, <T,s))

B (6—2,LLS o 6—2;Lr) [ 5(6_2“5 + 6—2#5)

(6—2,u5 o G_QMS) _Iu(e—Q,uS o 6—2,:“’)

2Se~2mS _ r(e‘Q““S + e72H7)

—2uS —2ur 2 6_2#8
w(e — e

re= S 4 (r — 28)e~ 25 +7)
+ 7

/L(e—Q,uS o 6—2;Lr)

8(6—2;1,5 _I_ 6—2,&5) 256_2#(5"'5) — rl:e_Q:U‘(S'i'S) _I_ 6_2#(5+T):|

_#(e—ZMS o e—2ps) /L(B_QMS o e—2ps)(e—2p5 o 6—2;”’)

re= S 4 (1 — 25)e21(5+7)

+ M(G—Q,us o 6_2#5)(6_2'“5 o G_QMT)
B S(e—ZuS_I_ e—Q;Ls)
- _N(e—Q,uS - 6—2#5)
r [S—Qu(5+7‘) o e—Q;L(S+s) T 6—4#5 . 6—2#(5%—7’)]
+ M(e—Q,uS o 6_2“8)(6_2#5 o 6—2#7‘)
29 [6—2;L(S+s) o e—Q;L(S+7‘)]
_I_

M(G—Q;LS - 6_2#5)(6_2#5 - 6—2;“")

8(6_2“5 + 6—2#5) r(e—Z,uS o 6_2#5)(6_2'“5 + G_QMT)

_#(e—ZMS o e—2ps) + N(e—Z,uS o e—2ps)(e—2p5 o 6—2;”’)
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29 6—2#5(6—2,&8 o e—?,:n‘)

#(6—2,&5 o e—Qus)(e—ZuS o e—2m’)

5(6—2;LS_|_ 6—2,@5) r(e—Q,uS_I_ 6—2,@7’)

_Iu(e—Z;LS o €—2ps) Iu(e—Q,uS o 6—2;”)

29 6—2;15(6—2,15 o 6—2;”’)

M(e—Q;LS o 6—2;148)(6—2,&5 o 6—2;“")

(A.4.5)

To obtain I we multiply (A.4.5) with (s 4 r). Hence,

s(s+r)(e™25 fe72s)  p(s4r) (e 47

Iu(e—Q,uS o €—2ps) M(G—Q,us o G_QMT)

25(s+r) 6_2“5(6_2“5 — e~2H7)
[u(e—Q,uS . G_QMS)(G_Q#S . 6—2;Lr)

82(6_2“5 + G_QMS) dsr 6—2#5(6—2,15 o 6—2;“’)

o /L(e—Z;LS o e—Z;LS) o /L(B_QMS o e—Zus)(e—ZpS o 6—2;”’)

r2(6—2,u5' + 6—2#7‘) 285 G_Q#S(G_QMS o 6—2;“")

Iu(e—Q,uS o 6—2#7’) Iu(e—Q;LS o e—Q;Ls)(e—Q,:LS o e—?m‘)

2S7r 6_2“5(6_2“5 — e um)

/L(e—Q,uS o 6—2#5)(6—2;145 o 6—2;Lr)

(A.4.6)

Similarly for 71, we begin by computing

1 T ! 7
S5 B(T]s I(T.s < T.y))

s,T

B (6—2;LS . 6—2,17‘) S(e—Z,us + 6—2;“’)
(6—2;LS o 6—2,15) Iu(e—Z;LS o 6—2;“’)

Qre2Hr — 5(6_2“5 + e72H7)

—2us
+ [u(e—Z,uS o 6—2#7’)2 €
Se=tr 4 (S — 2r)e=2u(5+7)
+ N(e—Q,uS o 6—2/.“’)2
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S(e—Q;Ls + e—2u7’) 2746_2#(5+7’) — 5[6_2“(S+5) + 6—2#(5+T)]

/L(e—Q;LS o G_QMS) M(e—Q#S o 6—2#5)(6—2#5 o e—?m‘)

Se~4 4 (S — 27“)6_2“(5“)

+ [u(e—Q,uS o 6_2“5)(6_2#5 o 6—2,:“‘)
8(6_2#5 4 6_2}”,) S [6—2;L(S—|—7’) . 6—2#(5—}-5) + 6—4#7’ o 6—2#(5{—7’)]
= /L(e—Z;LS o e—Z;LS) + /L(e—Z;LS o e—Z;LS)(e—Z;LS o e—?m’)
o0 [e—Q;L(s-I-T) o e—?,u(S+7‘)]
_I_

/L(e—Z;LS o e—2us)(e—2;¢5 o e—?,:w’)

8(6_2#5 + G—Q;Lr) S(e—Qﬂs o e—Q;LT)(e—Q;LS + e—?,:n‘)

[.,L(G_Q'LLS o 6—2#5) o [.,L(G_Q'LLS o 6—2#5)(6—2;LS o 6—2;LT)

Or =27 AT
/L(e—Q,uS o 6—2;“") ( sk )
Multiplying (A.4.7) with (s + 5) yields
- s(s+ 9)(e72 + e 2y S(s+ 9)(e7 2 — 6_2‘“’)(6_2““5 + e72H7)
- Iu(e—Z,uS . 6—2,15) - Iu(e—Q,uS . 6_2“8)(6_2'“5 . 6—2;”)
2r(s + 9) e
o M(e—QﬂS o 6—2;Lr)
82(6—2/15 _I_ 6—2#7’) 258 6—2;“’ SQ(G—Q;LS _ 6—2;LT)(6—2;LS _I_ 6—2;LT)

M(G—Z;LS o 6—2,@5) [L(G_Q'LLS o 6—2#7’) o Iu(e—Q,uS o 6_2#5)(6_2“5 o 6—2#7’)

B 251 e 2T B 281 e=2mr (A48)

Iu(e—Q,uS o 6—2;LT) N(e—Q,uS o 6—2#7’)

Summation of (A.4.6) and (A.4.8) gives

rarr = & [(6_2‘“‘ tet) (e 4 6‘2“5)]
7

(e—Z,uS o e—2,us) o (e—Q;LS o e—Q;Ls)

285 e—?,uS(e—Q;Ls o e—?,:n‘) 6—2,:L7‘
(6—2,LLS o 6_2“5)(6_2'“5 o 6—2;LT) + (6—2;LS o 6—2#7’)
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D51 e—Q;LS(e—Z,:Ls o 6—2;“’) 6—2;“’
II—L (e—Z;LS o e—2us)(e—2;¢5 o 6—2,17’) + (e—Z,uS o e—ZW’)
TQ(Q—Q;LS + 6—2;“") SQ(e—Q;Ls o e—QW‘)(e—Q,uS + e—?m‘)
N(e—Q,uS o 6—2;Lr) o Iu(e—Q;LS o e—Q;Ls)(e—Q,:LS o e—?m‘)
28y 6—2;15(6—2,15 o 6—2;”’) e—2m’
M (Q—QMS . 6_2#5)(6_2#5 . 6—2,:“’) o (6—2;LS - 6—2#7‘)
82(6—2,15 o e—?m‘) 2S¢ 6—2#(S+s) o 6_2M(5+T)
o [L(G_Q'LLS o 6—2#5) + M (6—2,LLS o e—QMs)(e—QMS o 6—2;“)
251 6—2#(5—}-5) . 6—2#(5—}-7‘) r2(6—2,u5 + e—2m‘)
II—L (e—Z;LS o e—2us)(e—2;¢5 o 6—2,17’) + /u(e—Q,uS o e—ZW’)
52(6_2““5 o G_QMT)(G_Q'MS + 6—2;Lr)
M(G—Q,us o 6_2#5)(6_2'“5 o G_QMT)
28y 6—2;15(6—2,15 o 6—2;”’) e—2m’
M (6_2'%5 o 6—2#5)(6—2;145 o 6—2;Lr) o (Q—Q;LS o 6—2#7‘)
52(6_2““5 — e~ 2K 2S5 218 2sr s
/L(B_Q'LLS - e—Q,us) )u(e—Q,:LS - e—?,ms) /L(G_Q'MS - e—2,us)
TQ(Q—Q;LS + 6—2;“") SQ(e—Q;Ls o 6—2;”‘)(6—2#5 + e—?m‘)
N(e—Q,uS o 6—2;Lr) o Iu(e—Q;LS o e—Q;Ls)(e—Q,:LS o e—?m‘)
28y G_QMS(G_QMS o 6—2,@7’) 6—2;“‘ (A49)

1 (6—2,u5 o 6_2#5)(6_2#5 o 6—2,:“’) o (e—Z;LS o 6—2;”)

Dividing (A.4.9) by two yields E(OHy). Hence,

E(OH,)

S2 (6—2,15 o 6—2,@7’) S's 6—2#5
_Q_/L ) (6—2,15 o 6—2,15) /_L ) (6—2;LS o S_QMS)
Sr e—2us T‘2 e—Z;LS_I_ e—2,u7’

L )

; ' (e—QMS . 6_2‘“5) ﬁ ) (6—2#5 _ G_Q‘W)

SQ (6_2“8 o 6—2#7‘)(6—2#5 + 6—2;“‘)

ﬂ (6—2;LS o 6_2“5)(6_2'“5 o 6—2#7’)
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Sr 6_2'MS(6_2M5 o 6—2;”) 6—2;“’

7 (e—Q;LS o e—Qus)(e—Q,uS o 6—2;”’) o (e—Q;LS o e—?,:w’)

_|_

i) Recall that for r < z < s, from Lemma 2.1

E(OH,) = @%lhﬂﬁfﬂﬂw<fmﬁ+

+ E(OH,).P!,
= L+ 11,411,

(z+5)
2

E(T;7s I(TI‘VS < TI7T))

Using the results of Proposition 3.2 we obtain

—2ux —2us 9 —2us —2us —our
B(T2, I(T,, < Ty,)) = _x(e + e7%) 4 Zse r(e + e72H7) .

Iu(e—Q,us o G_QMT) ILL(G_Q'LLS _ 6—2;”-)2

re” s 4 (r — 25)e21(547)

#(6—2,15 _ 6—2;”’)2

—2uzx —2ur 2 —2ur —2us —2ur
BT, 1Ty < Tyyp)) = (e t+ e )+ re s(e7 + ) o

#(6—2#5 _ e—QW’) N(e—Q,us . 6—2#7‘)2

se~ 4 (5 — 27“)6_2“(5'”)

N(e—Qﬂs _ 6—2;“")2

6—2,ul? _ 6—2;“’

P, = (A.4.11)

6—2#5 _ 6—2#7’
Concentrate on the first summand 7,, we have

(x+71) z(e™2e 4 em215)  QgeT S —p(eT S eT )

I = -
2 [ pe” s — e?7) * G 6_2*“’)2

6—2,uas

+ 2

re” s 4 (r — 25)6_2“(5“)]
Iu(e—Q;Ls _ e—?m‘)

z(x +r)(e e 4 e725) s(z+r) [e—Qﬂ(sﬂ‘) _ 6—2u(8+r)]

QIM(Q—QMS _ 6_2“7’) Iu(e—Q,:Ls o 6—2#7’)2

T(.’L’ + T) [6—2,u(s+1‘) + G_QM(T-HS) — e~dus _ 6—2#(5{—7’)]

2,&(6_2#8 _ 6—2/.“’)2

(A.4.10)
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x?(e—Z,uz + e—2p5)
2#(6_2#8 _ 6—2;“‘)
rr (6—2,ur. + G_QMS) (G—Z;L(s—}-x) + €—2u(7’—|—z) o 6—4#5 . 6_2M(5+T))
(e—Q;LS o e—?;ﬂ’) (6—2Ms _ 6—2/.“‘)2
ST [G—Q;L(s—}—r.) . 6—2#(5—}-7‘)] Sr [e—Q;L(s—I—z) . e—Q;L(s—I—T)]
Iu(e—Q,:Ls _ 6—2#7’)2 —I_ M(G—Q,@s _ 6—2;”)2
r2 [6—2p(5+r) + 6—2#(7‘+1‘) — e~ _ 6_2M($+T)]
2#(6_2#5 _ 6—2;“’)2
xZ(e—Q,uz _I_ 6—2#5) (S _ T)ZL’ 6_2M5(6_2ﬂx _ 6—2,:“‘)
2,&(6_2#8 _ 6—2/1“’) H(G—Q,us - 6—2;“‘)2
Sr e—2us(e—2,uz _ 6—22;17’) 7"2(6_2“5 _ 6—2;&1)(6—2#5 _|2_ e—?,:w’) (1A412)

/u(e—Qus _ 6—2;”’) 2,&(6_2#5 _ 6—2;”’)

Similarly 71, can be derived as follows

11, =

(x +s) [x(e‘“z + 7Y 2reT T — (eI 4 T2

9 N(e—m _ 6—2w) ,u(e_Q“S _ e—2w)2

se™ M 4 (s — 27‘)6_2“(5“)]

Iu(e—Q,us _ 6—2;LT)2

oo+ s)(e77 &) | r(ats) [0 — o)

e—?,uz‘

2,&(6_2#8 _ 6_2“7,) N(e—Q,us . 6—2;LT)2

S({L’ + S) [6—2,u(5+z) + €—2p(7’—|—z) — e~dnur _ 6_2M(5+T)]

2,&(6_2#8 _ 6—2;LT)2

:EQ(G—Q;LQS _I_ 6—2;Lr)

2,&(6_2“8 _ 6—2#7’)

ﬂ (e—QMS _ 6_2/1“’) o (6—2;Ls . 6—2;“‘)2

ST [(e—mz + e—2m~) (e—Zﬂ(s+x) + e 2u(r+z) _ —dur _ e—?u($+7‘))‘|
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- [6—2,u(7’+'r) _ e_zﬂ(sw)]

7 +

ST [6_2“(7’+f) _ 6—2#(S+7’)]

2

#(6—2;15 _ e—ZW’) Iu(e—Z,us _ e—?,:w’)

52 |:6—2,LL(S+:L‘) + e—2g(r+w) o 6—4;“‘ o 6_2#(S+T)]

2#(6—2#5 _ 6—2;”)2

{L’2(6_2'MS _I_ 6—2;“’) (S _ T)ll’} 6—2#7’(6—2u5 _ 6—2;LI)

2#(6—2H5 _ e—QMT) Iu(e—Z,:Ls . 6—2#7’)2

Sr e—QW‘(e—Q,us _ e—?#x) 82(6_2#1‘ _ 6—2#7‘)(6—2;&9 + e—?,:n‘)

ﬂ(e—Qus _ 6—2/:L7‘)2 o 2#(6_2#5 _ 6—2;Lr)2

(A.4.13)

Summation of (A.4.12) and (A.4.13) yields

] —I_ ]] _ _ZL’_Q (6_2“1‘ _I_ 6—2#5) _ (G—Z,ux _I_ 6—2;Lr)
r r 2:” (6_2“8 o G_QMT)
(S _ T’)ZE e—Qus(e—Zuz _ e—ZW’) _I_ 6—2;”’(6—2#5 _ e—Q;Lz)
+ 2 2ur\2
p (e — )
ST G_QMS(G_QMI _ G_QMT) _ 6—2;”(6—2#5 _ e—2;m:)
—I_ - 9 2
] (6_ us 6—2;“)
N T.Q(G—Q;Ls _ G_QHI)(G_QMS + 6—2;“")
2 —2us _ ,—2ur 2
p(e e*)
32(6—2;@ _ 6—2;“’)(6—2#5 + 6—2;“‘)
QIM(e—Q;Ls _ 6—2#7’)2
2 (s—r)x e
2p poo (e —emi)
ST G_QMS(G_QMI _ G_QMT) _ 6—2;”(6—2#5 _ e—2;m:)
—I_ - 9 2
7 (6_ us 6—2;”)
N T2 —(6—2;Ls - 6—2#1‘)(6—2#5 + 6—2;“‘)_

2[,6 I (6—2,us _ 6—2;“")2

2 [(,—2px _ —2ur —2us —2ur\]
_ sl e (e + T (A.4.14)

2# I (e—Z,us _ 6—2;”)2
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To obtain [11,, we multiply (A.4.10) with (A.4.11).Therefore,
T B (6—2,u1? o 6—2#7’) 82 (e—Q;LS o 6—2;“) S's G_QMS
r (6—2,us . 6—2;LT) 2,& (e—Q;LS . e—Q;Ls) [ (6—2,LLS . 6—2#5)
Sr e—2us T‘2 (e—Z;LS_I_ e—ZW’)
M (e—Q;LS o e—?#s) 2# (e—Q;LS o e—?m‘)
5'2 (6_2“8 o 6—2#7‘)(6—2#5 + 6—2;Lr)
o ﬂ (6—2;LS o 6_2#5)(6_2“5 o 6—2#7’)
Sr 6_2#5(6_2#5 o G—Q;Lr) 6—2,LLT
+ /_L (6—2,15 o e—Q;Ls)(e—Q,:LS o e—?m‘) o (6—2;LS o 6—2;LT)
S2 (6—2,LLS o G_QMT)(G_Q'MI o 6—2;Lr)
- _Q_IM [(6_2“8 - 6_2“8)(6_2'“8 . 6_2#7’)‘|
—I_ SS e—Q;Ls(e—Q,u:E _ 6—2#7’)
[ (6—2,LLS - 6_2#8)(6_2#8 - 6—2#7‘)
Sr 6—2#5(6—2,uz _ 6—2#7’)
1 (e—Q;LS o e—Qus)(e—Q,us o e—ZW’)
N T2 '(G—Q;LS + 6—2;LT)(6—2;L1‘ - 6—2,LLT)
2/,6 _(G—Q;LS o G_QMT)(G_Q'MS o 6—2#7’)
SQ '(e—ZuS + e—Z,uT)(e—Zuz o e—2m’)
o 2# _(6—2;LS o 6_2#5)(6_2#5 o e—?m‘)
Sr ) e—Q;LS(e—Q;L'r o e—?m‘)
+ [_l (6—2,15 o 6—2#5)(6—2,15 o 6—2,@7’)
6—2#7‘(6—2;&‘ _ e—?,:n‘)
R e (A.4.15)

Finally by summing (A.4.14) and (A.4.15), we get E(OH,) when r < z < as

follows:

—2uzx

6—2;Lr)

€

) (6—2,u5 _

(s —r)x

I
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Sr e—2ps(6—2,ur. _ 6—2,:“’) _ 6—2#7’(6—2,u5 _ G—Quz)

7 (6_2#5 _ 6—2;“’)2

e—?ps(e—Q,ur _ e—?m‘)

(6—2,15 o e—?gs)(e—Q,ms o 6—2#7’)

7,.2 —(e—Zus _ S_ZHI)(G_Q'“S _I_ 6—2;”’) (e—Z;LS _I_ e—Q;LT)(e—ZuI. _ e—ZW’)

99

2# I (e_QMS N 6_2;“,)2 (6—2;LS - 6—2;”’)(6—2#5 o 6—2;“’)_

82 '(6—2,w1? o 6_2“7’)(6_2“5 + 6—2;LT) (6—2;LS o 6—2#7‘)(6—2,uw o G_QMT)-

2_# (6_2“5 — Q—QW’)Q + (e—QMS _ e—QMS)(e—Q;As _ 6_2;”1)
SS [ €—2p5(6—2;¢z _ 6—2,;“»)
7 (6—2,“5 _ e—Q,u.S)(e—Z,us . 6—2;”»)‘|

5'2 —(6—2,LLS + 6—2#7‘)(6—2;@' - 6—2;“’)‘|

2;“ _(6_2#5 o 6_2#5)(6_2'“5 o 6—2;“’)

Sr [ e—ZMS(e—Zuz o 6—2;”’) e—Q;LT(e—Z,uz o

6—2;”’)

2 (s—r)z e

_ﬁ i ) (e—Q;Ls _ 6—2;“)

—2uzx

Sr [Q—Qp(z+5+s) + 6—2#(3:+S+7‘) . 26—2,u(z‘+25)

(6—2;145 o 6_2#5)(6_2#8 o 6—2;“")2

p

36—2,u(7‘+25) o 26—2;L(S+S+7’) o 6—2#(5+27’)‘|

(6—2,15 o 6_2“5)(6_2“5 o 6—2#7’)2

T2 26—2,u(w+s+7‘) o 26—2;L('L‘+S+7‘) T 6_2M(5+25) . G_Q'M(T+28)

(6—2;LS o G_QMT)(G_Q'MS o 6—2#7’)2

6—2#(5—1—27’) . 26—2,u(s—|—27’) + 6—6,17"|

(6—2,&5 o 6_2"“’)(6_2“5 o 6—2;”)2

s [26—m<x+s+s) I

2p

(Q—Q;LS o 6_2#8)(6_2'“5 o 6—2;Lr)2

(e—Q;LS o 6_2“8)(6_2'“5 o 6—2#7‘) o (6_2'%5 o 6—2,&7‘)(6—2#8 o e—?,:n‘)



Appendix 100

26—2;L(S+S+7’) . 6—2#(7’—}-25) o 26—2,u(5+27‘) + 6—6;“"|

(e—Qp,S o e—2us)(e—2ps o 6—2;“‘)2

S's [ e—2ps(e—2;¢z o e—?,:w’)
+ 7 (e—Q;LS o e—?,u.s)(e—Q,us o 6—2;Lr)
5'2 —(6—2,LLS + 6_2#7’)(6_2“1‘ - 6—2;“’)
o 2_# (6—2,LLS o 6_2“5)(6_2'“5 o 6—2;“‘)
Sr ) 6—2#5(6—2,ux o 6—2#7‘) 6—2#7‘(6—2,uz o e—?m‘)
+ 7 (Q—QMS o G_QMS)(G_QMS o 6—2;Lr) o (6—2,LLS o 6—2;LT)(6—2;L5 o e—?m‘)
_ 2 (s—r)z e~ 2nT
TR
s e—Z,uz I:e—Q;LS(e—Q;LS + e—?,:w’) o 26—4p5]
+ ? (e—Qp,S o e—Q;Ls)(e—Q,us o 6—2#7’)2
6—2u(s+7’) [36—2,15 . 26—2p5 . 6—2;”’]
+ (e—Z;LS o e—2us)(e—2us o 6—2;”’)2
T2 _26—2;Lz6—2m‘(6—2,u5 o Q_QMS) + 6_4MS(6_2“S o 6—2;LT)
+ 2# (6—2;LS o G_QMT)(G_Q'MS o 6—2#7’)2
6—4#7‘(6—2#5 o 26—2;@ o 6—2;Lr)
+ (6—2,15 o e—?m‘)(e—Qus o 6—2/.“’)2

82 [6—2,ux [6—2u5(26—2u5 _ 6—2;“’ _ e—Qp,S) _ 6—2#7‘(6—2,u5 _ 6—2,LLT):|

2p

(e—Q;LS o e—?,u.s)(e—Q,us o e—Q;LT)Z

6—4#7‘(6—2,u5 . 6—2;Lr) o 6—2#(5—1—7’) (26—2,LLS . 6—2;“‘ o 6—2#5)‘|

+ 2

(6—2,15 o 6_2“5)(6_2“5 o 6—2;”)

Ss [ 6—2#1‘6—2,u.5 . 6—2#(5%—7’)
_I_ -

1 (6—2,LLS o 6_2“5)(6_2'“5 o 6—2,:“‘)

2u | (6_2“5 — 6—2;@)(6—2#5 — 6_2“7’)

5'2 '6—2,uz(6—2,u5 + 6_2“71) o e—2p7‘(6—2u5 + 6—2;“’)‘|
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Sr e—2yr6—2;¢5 o 6—2#(5—}-7‘) G—Zuxe—Qm‘ o 6—4;“’
+ 7 (6—2,LLS o e—2ps)(€—2u5 o 6—2;”) - (6—2;LS o 6—2#7‘)(6—2,15 o 6—2;“’)
_ 2 (s—r)z e~
2 T G

sr _6—2,LL;L‘ I:e—Q;LS(e—Q;LS + 6—2;LT) o 26—4;L5]
+ ? (e—Z;LS o S_ZHS)(G_Q'“S o e—2m’)2

7 _6—2,u(s+7‘) {(6—2p5 . 6—2;LT) o 2(6_2“5 o 6—2#5)]
+ ? (Q—QMS - Q_ZMS)(G_Z'“S . 6—2;“’)2

T2 e—2pre—2;¢7’(6—2,15 o G_QMS)
- /_L (6—2,&5 o 6—2#7’)(6—2u5 o 6—2;”)2

T2 _6—4;Ls(6—2,us o 6—2;Lr) + 6—4#7‘ [(Q—Q;LS o 6—2#5) o (6—2,15 o e—?m‘)]
+ 2_# (6—2;LS o 6_2;“’)(6_2'“8 o 6—2ur)2

82 _6—2,@1‘ |i€—2,us |:(e—2,u5' o e—?,us) T (Q—Q;LS o 6—2#7‘)]
- Q_/L (6—2;LS - 6_2#8)(6_2“8 - 6—2ur)2

6_2“7’(6_2#5 _ G_QMT)]

- (6—2,15 o 6_2“5)(6_2“5 o 6—2#7’)2

82 e—2,u(s—|—7’) [(e—ZuS . e—?,us) T (e—Q;LS . e—?,:w’)]
+ Q_IM (6—2,LLS o 6—2#5)(6—2,us o 6—2;“’)2

6—4;LT(6—2;L8 _ 6—2;Lr)

- (6—2,15 o e—?gs)(e—Q,ms o 6—2#7’)2‘|

S's e~ 2HE o= 2us
_I_ - .

[ (e—Q;LS o e—Qﬂs)(e—Z,us o 6—2;”’)

Ss e~ 2u(s+)

[ ) (6—2;LS . 6_2#8)(6_2#8 - 6—2,:“‘)

52 e—ZMI(e—Q,uS + 6—2;”’)

Q_/L ) (Q—QMS o e—Q;Ls)(e—Q,:LS o e—?m‘)
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52 6—2#7‘(6—2;¢S + e—?m‘)

2#’ ) (e—2u5 o e—Qus)(e—Q,uS o 6—2;”’)

Sr 6_2“1‘6_2“5 G—Zuxe—Qm‘

1 (6—2,LLS o e—2ps)(€—2u5 o 6—2;”) o (6—2;LS o 6—2#7‘)(6—2,15 o 6—2;“’)

Sr [ e—21(S+r) e—4ur

[ (e—Q;LS o 6_2“8)(6_2'“5 o 6—2#7‘) o (Q—QMS o 6—2,&7‘)(6—2#8 o e—?m‘)

x (s —r)x g2

W p (e

e e 6—2#5(6—2,&8 + e—?m‘) o 26_4#5
€ 1 (Q—QMS o 6—2,&8)(6—2,&8 o 6—2,17‘)2
7,.2 e—2pr(e—2u5 o e—Z;LS)

/_L (6—2,15 o 6—2;“’)(6—2#5 o 6—2;”)2

2 e—2,us [(e—Q;LS o e—Q;LS) + (e—Q;LS o 6—2;”’)] o e—Z,uT(e—Zps o e—ZW’)
(e—Q;LS o e—?,us)(e—Z,us o 6—2;”’)2

Ss e 2Hs

1 ) (6—2;LS o 6—2#5)(6—2,us o 6—2,@7’)

52 (6—2/@5 + G—Q;Lr)

Q_N . (G_QMS _ 6—2,“8)(6—2,&5 _ 6_2.‘”’)

6—2#5

6—2;“’
7 l(e—QuS o e—2ps)(€—2p5 o 6—2;”) o (6—2;LS o 6—2#7‘)(6—2,15 o 6_2#7’)‘|}

{sr [e—m(s-l—r) [(6_2“5 _ e—2m’) _ 2(6—%5 _ 6_2“5)]]

L (6—2,15 o 6_2“5)(6_2“5 o e—2m‘)2

2 [e—4,us(e—2,u5 . 6—2,17’) + e—4p7’ [(e—ZpS o e—2ps) . (e—Q;LS o 6—2;”’)]]

2# (e—Q;LS . e—Q;LT)(e—Q,us - 6—2;“‘)2
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82 e—2g(s+7‘) |:(6—2,LLS . G_Q’MS) T (6—2;LS . 6—2;LT):|

‘|‘ Q_H (6_2“5 o 6—2,&5)(6—2#5 o 6_2"”)2
6_4M(6_2‘“5 _ 6_2‘“)
— (6_2“5 _ 6—2#8)(6—2;@ o 6_2“T)2]
S's 6_2/“(5"'7’)
_ 7 . (6_2;LS _ 6_2#8)(6_2#5 . 6_2;“)
N 5'2 6—2;A7‘(6—2;LS + 6—2W»)
2:“ (e—ZMS _ 6—2#5)(6—2,15 . 6_2“7’)
ST 6_2M(5+T) 6—4,@7‘
_ 7 (e—ZuS — e—ms)(e—ms _ 6—2;“-) B (6—%5 _ 6—2;LT)(6—2;L5 . 6_2;“»)
:172 (S — T')[E 6_2#I )
T T ' “e [ (S, 8,5 ) 4+ Ga(S, 8,75
2,& + 7 (e—QMS_e—QM’) te 1( ,S,r,,u)—|— 1( ,S,T,M)

it) We have for s <z < S from Lemma 2.2

E(OH,) = @;QE@;unﬁ<n@yy

+ FE(OH)
I+ 11, +111,

(z+59)

E(T; s I(Tys <Tsys))

Similarly from Proposition 3.2

(=2 —2uS 2, —2uS __ —2uS —2us
B(TS, (T, < Tog)) = —S_4eT™) | 25¢ S5 p e

/L(e—zus _ 6—2%) /1(6_2“5 . 6—2#5)2

se™HS 4 (5 — 28)e~21(5+9)

_I_
Iu(e—Q,uS o 6—2#5)2
l,(e—Q,um + 6—2#5) 286_2“5 o S(G—Q;LS + 6—2,@5)
FE T; I T.LS < TIVS = — — + e—Q;LI‘
( S ( )) Ilt(e 2uS e 2;1,5) IM(G_Q'“S B 6_2#5)2
N Se=4s 4 (S — 25)e~2u(5+3)

lu(e—ZMS o 6—2;15)2
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Thus, the first summand I, can be obtained as follows

Io— (x +3) _:1;(6_2‘“‘" + 6_2“5) 28215 _ 5(6_2“5 + e729) o2

5 p(e“Q“S — 6—2#5) + M(e_zps . 6—2p8)2

se~ S 4 (s — 25)6_2“(5"'5)]

[.,L(G_Q'LLS o 6—2#5)2

z(z + s)(e72HT 4 e7219) S(z+s) [e‘Qﬂ(Sﬂ‘) — e—2n(5+8)]

2p(e215 — em21s) p(e=2mS — 6—2ns)2

S(LL' + S) I:e—Q;L(S+:Z?) T 6—2u(s+w) o 6_4MS o 6_2M(5+5)]

Z;L(e_Q“S — 6_2“5)2

,172(6_2#1; + 6—2#5)

Z;L(e_Q“S — 729

ST [(6—2;@ + e—mS) (6—2#(S+w) 4 e=2u(str) _ g=auS _ e-m(s+s))]
5. +
2p

(6_2“5 o 6—2#5) (G_Q'MS _ 6_2“5)2

Sz [e_zﬂ(sw) _ e_zu(sjus)] Ss [G—Q;L(S—}-r) _ 6—2/@(5—}-5)]

_|_

#(e—Q;LS o 6_2“5)2 #(e—ZMS o 6—2;15)2

32 |:6—2,LL(S+I‘) + 6_2M(5+I) o 6—4#5 o 6—2#(5—}-5)]

2#(6—2p5 o e—Q;Ls)Z

IZ(e—Z;m; + e—Q;LS) (S o S)CE e—ZMS(e—Qﬂf o e—Z;LS)

_Q/L(e_Q“S — 6_2“5) ,u(e‘“s _ 6—%5)2

S's 6—2#5(6—2,uz o G_QMS) 82(6_2“5 o S—Quz)(e—ZpS + 6—2#5)

/L(e—Q,uS o 6—2#5)2 2#(6_2#5 o 6—2#5)2

+ (A.4.16)

Likewise, for 11, we have

1 - (x+8) [z(e 2 4 e725)  2ge72H5 — 5(6_2”5 + e7249) .
T 2 ,u(e"“s — e~ 1) + M(e—ms . 6—2#5)2 €

Se=s 4 (S — 25)e~2u(5+3)
+ Iu(e—Z,uS o 6—2#5)2
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o(@ £ §)(ee 4 72) sz + §) [em2l+e) — em2ulSH)]

2#(6_2#5 _ e—Q;Ls) '[,L(G_Q“S _ 6—2#5)2

S(CU T S) [6—2/1(54-1") + e—2g(s+z‘) o 6—4#5 - 6—2,&(5-}-5)]

2/1(6_2“5 — 6_2“5)2

1,2(6—2,u1‘ _I_ €—2ps)

Z/L(e_Q“S — e72m9)

Sz l(e—Q#w + G—QMS) (6—2#(S+I) + e—?#(s-i—w) . 6_4“5 - e—2p(S+s))‘|

ﬂ (Q—QMS _ Q—QMS) - (6—2,LLS _ 6—2#5)2

st [G—Q;L(s+x) _ 6—2#(5%—5)] Ss [6—2,u(s+z) _ 6—2#(5—}—5)]

—2uS e—Q;Ls)Z + —2uS e—Q;Ls)Z

(e (e

5'2 [6—2;L(S+1?) + G_QM(S—}_I) o 6_4M5 . 6—2#(5—}—5)]

QH(e—ZuS o e—Q;Ls)Z

.I.Z(e—?,uz + e—2ps) (S o S)CE e—Z;LS(e—Z,uS o e—Z,uz)

Q/L(e_Q“S — 6_2“5) ,u(e‘“s _ 6—%5)2

S's 6—2#5(6—2,15 o 6—2,:Lz) 52(6—2}LI o 6_2#5)(6_2'“5 + G_QMS)

M(e—Q;LS o e—Q;Ls)Q 2#(6_2#5 o e—Q,LLs)Q

(A.4.17)

Summation of (A.4.16) and (A.4.17) yields

$2 (6—2;1;1‘ + e—Q,LLS) o (G—Q;La: + 6—2#5)
2/,6 (6—2;LS o 6—2#5)
N (S o S)CL' e—Z,uS(e—ZuI. o e—Z,u.S) + e—2ps(e—2u5 o e—Z;LI.)
] (6_2“5 o 6—2#5)2
S's G_QMS(G_Q#'I o 6—2#5) o 6—2#5(6—2/15 o e—?,:mv)
_I_ -
4 (G—Q;LS o 6—2#5)2
82(6_2“5 o S—Quz)(e—ZpS + G_QMS)
_I_

2#(6_2“5 . 6—2#5)2

SQ(G—Q;Lx o 6_2“5)(6_2#5 + G_QMS)

Z/L(e_Q“S — 6_2”5)2
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22 (S —s)z e~ 2w

NG

S's '6—2;LS(6—2,:L$ o 6—2#5) o 6—2#5(6—2;LS o G—qu)
+ 7 I (e—Q;LS o e—?,us)Z ]
32 [ e—Z,uS o e—Z,uz 6—2,15 + e—2,us
A et 4 )
21“ I (6—2,15 - 6—2,@5)

2 [(,—2ux _ _—2us —2uS —2us
G e e e )] (A.4.18)

2# I (Q—QMS o 6—2#5)2

Note that 111, = F(OH,) is given by (A.4.10). Thus, by adding (A.4.10) to
(A.4.18) we get

22 (S —s)z e~ 2K
E(OHZ') = _ﬁ —I_ m ’ (6—2,LLS o G_QMS)
SS 'e—Q;LS(e—Q,:LI o €—2ps) o 6_2“5(6_2“8 o 6_2“1‘) e—2ps
+ wo| (e—Q;LS - e—?,us)Q + (e—Q;LS o 6—2;1,5)
N S2 —(6—2,LLS - G_Q'MS)(G_Q'“S + G_QMS) (6—2,15 - 6—2;Lr)
2p | (e—ZuS _ e—zus)Q (6—2#5 — e72)
52 '(e—Zuz o e—Zus)(e—ZuS + 6—2,15) (e—Z;LS o S_ZHT)(G_Q'“S + 6—2;”’)
B 2;1/ L (6—2}1»5 _ 6_2M8)2 (e—Q,LLS _ e—?#s)(e—Qﬁs _ 6_2‘“)
ST e s N r?  (e75 4 emur)
1 (6—2;LS o 6—2#5) 21” (6—2;LS o 6—2,:“‘)
ST’ 6—2#5(6—2#5 o 6—2;Lr) 6—2#7
+ 7 l(e—Q#S . G_QMS)(G_QMS - 6—2;Lr) o (6—2,LLS o 6—2,u7=)‘|
B 22 (S —s)z e~ 2m
- 21” u (6—2,u5 o G_QMS)

Ss [Q—QM(S+$) o 6—2#(.54—1?) . 6—2#(S+5) o 6—4us‘|
_I_ -

(6—2,u5 o 6—2#5)2
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(e—Q;LS o 6—2#8)2(6—2#5 o 6—2#7‘)
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22 (S —s)z e~ 2w
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Sr e R C e e~ 2nr
+ 7 (6_2#5 - e—2ps)(e—2p5 _ 6—2}17’) - (6—2;1,5 - e—Zp,T)‘|}
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A.5 Tables of the Sensitivity Analysis for
Zero Expected Net Demand Case
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L=5u=0 o =0.95 o = 0.99 o = 0.999

| Ko | Kd [[Cd ]S [s* [r [Q* [TC* [[S s [r* Q@ [TC* |5 [s* [r* [QF
5 60 | 3.82 | 1.85 | 3.74 | 15.76 60 | 494 | 294 | 3.77 | 16.71 60 | 6.44 | 441 | 3.8
250 10 60 | 3.83 | 1.85 | 3.73 | 15.85 60 | 494 | 294 | 3.77 | 16.80 60 | 6.44 | 441 | 3.8

25 60 | 3.84 | 1.85 | 3.72 | 16.10 60 | 495 | 2.94 | 3.75 | 17.07 60 | 6.45 | 4.41 | 3.8
5 60 | 3.82 | 1.85 | 3.73 | 15.84 60 | 493 | 2.94 | 3.77 | 16.79 60 | 6.43 | 4.41 | 3.8

500 500 10 60 | 3.82 | 1.85 | 3.72 | 15.92 60 | 494 | 2.94 | 3.76 | 16.88 60 | 6.44 | 4.41 | 3.8
25 60 | 3.83 | 1.85 | 3.71 | 16.18 60 | 495 | 294 | 3.75 | 17.15 60 | 6.45 | 4.41 | 3.8
5 60 | 3.81 | 1.85 | 3.72 | 15.99 60 | 493 | 2.94 | 3.75 | 16.95 60 | 6.43 | 4.41 | 3.8
1000 10 60 | 3.82 | 1.85 | 3.71 | 16.08 60 | 493 | 2.94 | 3.75 | 17.04 60 | 6.43 | 4.41 | 3.8
25 60 | 3.83 | 1.85 | 3.70 | 16.34 60 | 494 | 294 | 3.73 | 17.31 60 | 6.44 | 4.41 | 3.7

5 60 | 481 | 1.85 | 548 | 17.74 60 | 594 | 2.94 | 5.53 | 18.72 60 | 7.46 | 4.41 | 5.6
500 10 60 | 482 | 1.85 | 547 | 17.83 60 | 594 | 2.94 | 5.53 | 18.81 60 | 7.46 | 4.41 | 5.6
25 60 | 483 | 1.85 | 5.46 | 18.09 60 | 596 | 2.94 | 5.51 | 19.08 60 | 7.48 | 4.41 | 5.5
5 60 | 480 | 1.85 | 5.46 | 17.90 60 | 593 | 2.94 | 5.52 | 18.88 60 | 7.44 | 4.41 | 5.5
1000 1000 10 60 | 481 | 1.85 | 546 | 17.99 60 | 593 | 2.94 | 5.51 | 18.97 60 | 7.45 | 4.41 | 5.5
25 60 | 4.82 | 1.85 | 5.44 | 18.25 60 | 595 | 2.94 | 5.49 | 19.24 60 | 7.47 | 4.41 | 5.5
5 60 | 4.78 | 1.85 | 5.43 | 18.22 60 | 591 | 2.94 | 548 | 19.22 60 | 7.42 | 4.41 | 5.5
2000 10 60 | 4.79 | 1.85 | 5.42 | 18.31 60 | 592 | 2.94 | 547 | 19.31 60 | 7.43 | 4.41 | 5.5
25 60 | 4.81 | 1.85 | 5.40 | 18.57 60 | 593 | 2.94 | 5.45 | 19.58 60 | 7.45 | 4.41 | 5.5
5 40 | 4.45 | 1.85 | 4.69 | 13.64 40 | 5.59 | 2.94 | 4.76 | 14.65 40 | 7.13 | 4.41 | 4.8
250 10 40 | 446 | 1.85 | 4.68 | 13.78 40 | 5.60 | 2.94 | 4.75 | 14.79 40 | 7.14 | 4.41 | 4.8
25 40 | 4.49 | 1.85 | 4.64 | 14.18 40 | 563 | 2.94 | 4.71 | 15.20 40 | 7.18 | 4.41 | 4.8
5 40 | 4.43 | 1.85 | 4.66 | 13.83 40 | 5.57 | 2.94 | 4.73 | 14.85 40 | 7.11 | 4.41 | 4.8

500 500 10 40 | 444 | 1.85 | 4.65 | 13.97 40 | 5.58 | 2.94 | 4.71 | 14.99 40 | 7.12 | 4.41 | 4.8
25 40 | 447 | 1.85 | 4.61 | 14.37 40 | 5.61 | 2.94 | 4.67 | 15.41 40 | 7.16 | 4.41 | 4.7
5 40 | 4.40 | 1.85 | 4.60 | 14.21 40 | 5.54 | 2.94 | 4.66 | 15.25 40 | 7.07 | 4.41 | 4.7
1000 10 40 | 4.41 | 1.85 | 4.59 | 14.35 40 | 5.55 | 2.94 | 4.65 | 15.39 40 | 7.08 | 4.41 | 4.7
25 40 | 444 | 1.85 | 4.55 | 14.75 40 | 5.58 | 2.94 | 461 | 15.81 40 | 7.12 | 4.41 | 4.6
5 40 | 5.77 | 1.85 | 6.81 | 16.22 40 | 694 | 294 | 691 | 17.28 40 | 852 | 441 | 7.0
500 10 40 | 5.79 | 1.85 | 6.80 | 16.36 40 | 6.96 | 2.94 | 6.89 | 17.42 40 | 8.54 | 441 | 7.0
25 40 | 583 | 1.85 | 6.75 | 16.78 40 | 7.01 | 2.94 | 6.84 | 17.85 40 | 860 | 4.41 | 6.9
5 40 | 5.73 | 1.85 | 6.73 | 16.63 40 | 6.89 | 2.94 | 6.81 | 17.71 40 | 8.47 | 4.41 | 6.9

1000 1000 10 40 | 5.74 | 1.85 | 6.71 | 16.77 40 | 691 | 2.94 | 6.79 | 17.86 40 | 8.49 | 441 | 6.9
25 40 | 5.79 | 1.85 | 6.66 | 17.18 40 | 696 | 2.94 | 6.74 | 18.29 40 | 8.54 | 441 | 6.8
5 40 | 565 | 1.85 | 6.56 | 17.43 40 | 6.80 | 2.94 | 6.63 | 18.58 40 | 8.36 | 4.41 | 6.7
2000 10 40 | 566 | 1.85 | 6.55 | 17.57 40 | 6.82 | 2.94 | 6.61 | 18.72 40 | 8.38 | 4.41 | 6.7
25 40 | 5.71 | 1.85 | 6.50 | 17.99 40 | 6.87 | 2.94 | 6.57 | 19.15 40 | 8.43 | 441 | 6.6

Table A.1: Sensitivity Analysis when S = 40,60 and g =0
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L=5u=0 o = 0.95 o =0.99 o = 0.999
| Ko || Kd || Cd | S | s* | r* | Q* | TC* S | s* | r* | Q* | TC* | S | s* r* | Q*
5 || 15 ] 75 | 1.85 | 6.45 | 16.39 || 15 | 7.5 | 2.94 | 5.84 | 18.47 | 15 | 7.5 | 4.41 | 5.0
250 || 10 || 15 | 7.5 | 1.85 | 6.33 | 16.77 || 15 | 7.5 | 2.94 | 573 | 1890 || 15 | 7.5 | 4.41 | 4.9
25 || 15| 75| 1.85 | 602 | 1788 || 15 | 75 | 294 | 543 | 20106 || 15| 7.5 | 441 | 46
5 || 15 | 75 | 1.85 | 5.78 | 18.85 || 15 | 7.5 | 2.94 | 5.21 | 21.25 || 15 | 7.5 | 4.41 | 4.4
500 || 500 || 10 || 15|75 | 1.85 | 571 | 19.21 || 15 | 7.5 | 2.94 | 514 | 2165 || 15 | 7.5 | 4.41 | 4.3
25 || 15| 75| 1.85 | 539 | 2027 || 15| 75 | 294|493 | 2284 || 15|75 |44 |42
5 || 15 | 75 | 1.85 | 4.64 | 23.43 || 15 | 7.5 | 2.94 | 438 | 2643 || 15 | 7.5 | 4.41 | 3.7
1000 || 10 || 15 | 7.5 | 1.85 | 4.58 | 23.75 || 15 | 7.5 | 2.94 | 432 | 26.80 || 15 | 7.5 | 4.41 | 3.7
25 || 15 | 75| 185 | 442 | 2473 || 15 | 75 | 294 | 416 | 2791 || 15|75 | 441 |35
5 || 15 ] 7.5 | 1.85 | 6.88 | 24.80 || 15 | 7.5 | 2.94 | 6.23 | 2865 || 15 | 7.5 | 4.41 | 5.3
500 || 10 || 15 [ 7.5 | 1.85 | 6.80 | 25.19 || 15 | 7.5 | 2.94 | 6.15 | 29.10 || 15 | 7.5 | 4.41 | 5.2
25 || 15 | 75| 1.85 | 658 | 2636 || 15 | 7.5 | 2.94 | 5.96 | 3042 || 15 | 7.5 | 441 | 5.0
5 || 15 | 75 | 1.85 | 6.04 | 29.87 || 15 | 7.5 | 2.94 | 5.46 | 3437 || 15 | 7.5 | 4.41 | 4.6
1000 || 1000 || 10 || 15 | 7.5 | 1.85 | 5.99 | 30.24 || 15 | 7.5 | 2.94 | 5.42 | 3479 || 15 | 7.5 | 4.41 | 4.6
25 || 15 | 75 | 185 | 585 | 3133 || 15 | 75 | 294 | 520 | 3602 || 15|75 | 441 | 45
5 || 15 | 75 | 1.85 | 4.92 | 39.22 || 15 | 7.5 | 2.94 | 455 | 4491 || 15 | 7.5 | 4.41 | 3.8
2000 || 10 || 15 | 7.5 | 1.85 | 4.88 | 39.56 || 15 | 7.5 | 2.94 | 452 | 45.29 | 15 | 7.5 | 4.41 | 3.8
25 || 15| 75| 1.85 | 479 | 4056 || 15 | 7.5 | 2.94 | 443 | 4643 || 15 | 7.5 | 4m1 | 37
5 || 5 | 25| 1.85 | 1.20 | 79.52 || 5 | 3.75 | 2.94 | 0.37 | 10033 || 5 | 4.62 | 4.41 | 0.0
250 || 10 || 5 |25 |1.85 | 1.18 | 80.26 || 5 | 3.75 | 2.94 | 0.35 | 10064 || 5 | 4.62 | 4.41 | 0.0
25 || 5 | 25| 1.85 | 1108239 || 5 | 375 | 294|028 | 10145 || 5 | 462|441 |00
5 || 5 | 25 | 1.85 | 0.74 | 92.00 || 5 | 3.75 | 2.94 | 0.00 | 102.97 || 5 | 4.62 | 441 | 0.0
500 || 500 || 10 || 5 |25 |1.85 | 0729251 |5 |375| 294|000 10297 || 5 | 4.62 | 441 | 0.0
25 || 5 | 25| 1.85 | 0669396 |5 | 375 | 294|000 10297 || 5 | 462 | 441 | 0.0
5 || 5 | 25 | 1.85 | 0.00 | 101.96 || 5 | 3.75 | 2.94 | 0.00 | 102.97 || 5 | 4.62 | 441 | 0.0
1000 || 10 || 5 |25 | 1.85 | 0.00 | 101.96 || 5 | 3.75 | 2.94 | 0.00 | 102.97 || 5 | 4.62 | 4.41 | 0.0
25 || 5 | 25| 1.85 | 000 | 10196 || 5 | 3.75 | 294 | 0.00 | 102.97 || 5 | 4.63 | 4.41 | 0.0
5 || 5 | 25| 1.85 | 1.22 | 155.94 || 5 | 3.75 | 2.94 | 0.38 | 197.26 || 5 | 4.64 | 4.41 | 0.0
500 || 10 || 5 |25 | 1.85 | 1.21 | 156.69 || 5 | 3.75 | 2.94 | 0.37 | 19758 || 5 | 4.64 | 4.41 | 0.0
25 || 5 | 25| 1.85 | 117 | 15890 || 5 | 3.75 | 2.94 | 0.34 | 19848 || 5 | 4.64 | 4.41 | 0.0
5 || 5 | 25 | 1.85 | 0.76 | 181.25 || 5 | 3.75 | 2.94 | 0.00 | 202.97 || 5 | 4.64 | 4.41 | 0.0
1000 || 1000 || 10 || 5 | 25 | 1.85 | 075 | 181.77 || 5 | 3.75 | 2.94 | 0.00 | 202.97 || 5 | 4.64 | 4.41 | 0.0
25 || 5 | 25| 1.85 | 072 | 18320 || 5 | 375 | 294 | 0.00 | 202.97 || 5 | 4.64 | 441 | 0.0
5 || 5 | 25 | 1.85 | 0.00 | 201.96 || 5 | 3.75 | 2.94 | 0.00 | 202.97 || 5 | 4.64 | 441 | 0.0
2000 || 10 || 5 | 2.5 | 1.85 | 0.00 | 201.96 || 5 | 3.75 | 2.94 | 0.00 | 202.97 || 5 | 4.64 | 4.41 | 0.0
25 || 5 | 25| 1.85 | 000 | 20196 || 5 | 375 | 2.94 | 0.00 | 202.97 || 5 | 4.64 | 441 | 0.0

Table A.2: Sensitivity Analysis when S = 5,15 and =0



Ko=50,u=0 o = 0.95 o =0.99 o = 0.999
|L | Kd [JCd ]S [s* [r* [@ [TC* S5 |5 T ] [TC* |S [t [ [ QF [TC* |
5 || 40 | 3.52 | 0.83 | 4.87 | 12.97 || 40 | 4.03 | 1.32 | 4.90 | 13.42 || 40 | 4.72 | 1.97 | 4.94 | 14.02
250 || 10 || 40 | 3.53 | 0.83 | 4.86 | 13.10 || 40 | 4.05 | 1.32 | 4.89 | 13.55 || 40 | 4.73 | 1.97 | 4.93 | 14.16
25 || 40 | 3.57 | 0.83 | 4.83 | 1351 || 40 | 4.08 | 1.32 | 4.86 | 13.96 || 40 | 477 | 1.97 | 4.90 | 14.58
5 || 40 | 3.51 | 0.83 | 4.84 | 13.15 || 40 | 4.02 | 1.32 | 4.87 | 13.61 || 40 | 4.71 | 1.97 | 4.92 | 14.22
1 | 500 || 10 || 40 | 352|083 | 483 | 13.29 || 40 | 4.03 | 1.32 | 4.86 | 13.74 || 40 | 472 | 1.97 | 4.90 | 14.36
25 || 40 | 3.56 | 0.83 | 4.81 | 13.69 || 40 | 4.07 | 1.32 | 4.83 | 1415 || 40 | 476 | 1.97 | 487 | 1477
5 || 40 | 3.49 | 0.83 | 4.80 | 13.52 || 40 | 3.7 | 1.32 | 4.82 | 13.99 || 40 | 4.68 | 1.97 | 4.86 | 14.61
1000 || 10 || 40 | 3.50 | 0.83 | 4.79 | 13.66 || 40 | 4.01 | 1.32 | 4.81 | 1412 | 40 | 4.69 | 1.97 | 4.85 | 14.75
25 || 40 | 3.53 | 0.83 | 4.76 | 14.06 || 40 | 4.04 | 1.32 | 478 | 1453 || 40 | 473 | 1.97 | 4.82 | 1517
5 | 40 | 4.45 | 1.85 | 4.69 | 13.64 || 40 | 5.59 | 2.94 | 4.76 | 14.65 || 40 | 7.13 | 4.41 | 4.86 | 16.01
250 || 10 || 40 | 4.46 | 1.85 | 4.68 | 13.78 || 40 | 5.60 | 2.94 | 4.75 | 1479 || 40 | 7.14 | 4.41 | 4.84 | 16.16
25 || 40 | 449 | 1.85 | 4.64 | 1418 || 40 | 5.63 | 2.94 | 471 | 1520 || 40 | 718 | 4.41 | 4.80 | 16.59
5 || 40 | 4.43 | 1.85 | 4.66 | 13.83 || 40 | 557 | 2.94 | 4.73 | 14.85 || 40 | 7.11 | 4.41 | 4.82 | 16.23
5 | 500 || 10 || 40 | 444 | 1.85 | 465 | 13.97 || 40 | 5.58 | 2.94 | 4.71 | 14.99 || 40 | 712 | 4.41 | 4.81 | 16.38
25 || 40 | 4.47 | 1.85 | 461 | 1437 || 40 | 5.61 | 2.94 | 467 | 1541 || 40 | 716 | 4.41 | 4.76 | 16.81
5 || 40 | 4.40 | 1.85 | 4.60 | 14.21 || 40 | 5.54 | 2.94 | 4.66 | 15.25 || 40 | 7.07 | 4.41 | 4.75 | 16.67
1000 || 10 || 40 | 4.41 | 1.85 | 4.59 | 14.35 || 40 | 5.55 | 2.94 | 4.65 | 1539 | 40 | 7.08 | 4.41 | 4.73 | 16.82
25 || 40 | 4.44 | 1.85 | 4.55 | 14.75 || 40 | 5.58 | 2.94 | 461 | 1581 || 40 | 712 | 441 | 469 | 17.25
5 | 40 | 5.50 | 3.21 | 4.17 | 14.23 || 40 | 7.47 | 5.10 | 4.28 | 15.96 || 40 | 10.14 | 7.64 | 4.46 | 18.34
250 || 10 || 40 | 5.50 | 8.21 | 4.15 | 14.36 || 40 | 7.48 | 5.10 | 4.26 | 16.10 || 40 | 10.15 | 7.64 | 4.43 | 18.49
25 || 40 | 5.52 | 3.21 | 4.08 | 1474 || 40 | 7.49 | 510 | 419 | 16,51 || 40 | 1017 | 7.64 | 4.35 | 18.93
5 || 40 | 5.48 | .21 | 4.12 | 14.41 || 40 | 7.44 | 5.10 | 4.23 | 16.17 || 40 | 10.11 | 7.64 | 4.39 | 18.59
15 || 500 || 10 || 40 | 5.48 | 3.21 | 4.10 | 14.54 || 40 | 7.45 | 5.10 | 4.21 | 16.31 || 40 | 1011 | 7.64 | 4.37 | 18.74
25 || 40 | 5.49 | 3.21 | 4.04 | 14.93 || 40 | 746 | 510 | 414 | 1672 || 40 | 1013 | 7.64 | 4.20 | 1918
5 || 40 | 5.43 | 3.21 | 4.04 | 14.79 || 40 | 9.21 | 5.10 | 7.77 | 17.43 || 40 | 10.04 | 7.64 | 4.27 | 19.08
1000 || 10 || 40 | 5.44 | 3.21 | 4.02 | 14.92 || 40 | 7.40 | 5.10 | 411 | 16.73 || 40 | 10.05 | 7.64 | 4.24 | 19.23
25 || 40 | 545 | 321 | 3.96 | 15.30 || 40 | 7.41 | 510 | 4.05 | 1714 || 40 | 10.07 | 7.64 | 417 | 19.67
Table A.3: Sensitivity Analysis when S =40, Ko = 500 and ¢ =0
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L=5,u=0 a = 0.95 a = 0.99 a = 0.999
| Ko | Kd JCd ] s* [ & [ o~ JQlTC* || 5 [ & [ Q] TC" ] S s [ Q] 10 ]

5 74.83 | 39.59 | 1.85 0 101.96 74.83 | 39.59 | 2.94 0 102.97 74.83 | 39.59 | 4.41 0 104.42

250 10 74.83 | 39.59 | 1.85 0 101.96 74.83 | 39.59 | 2.94 0 102.97 74.83 | 39.59 | 4.41 0 104.42

25 74.83 | 39.59 | 1.85 0 101.96 74.83 | 39.59 | 2.94 0 102.97 74.83 | 39.60 | 4.41 0 104.42

5 74.83 | 39.59 | 1.85 0 101.96 74.83 | 39.59 | 2.94 0 102.97 74.83 | 39.59 | 4.41 0 104.42

500 500 10 74.83 | 39.59 | 1.85 0 101.96 74.83 | 39.59 | 2.94 0 102.97 74.83 | 39.59 | 4.41 0 104.42
25 74.84 | 39.59 | 1.85 0 101.96 74.84 | 39.59 | 2.94 0 102.97 74.84 | 39.60 | 4.41 0 104.42

5 74.84 | 39.58 | 1.85 0 101.96 74.84 | 39.59 | 2.94 0 102.97 74.84 | 39.59 | 4.41 0 104.42

1000 10 74.84 | 39.58 | 1.85 0 101.96 74.84 | 39.59 | 2.94 0 102.97 74.84 | 39.59 | 4.41 0 104.42

25 74.84 | 39.59 | 1.85 0 101.96 74.84 | 39.59 | 2.94 0 102.97 74.85 | 39.59 | 4.41 0 104.42

5 74.84 | 39.60 | 1.85 0 201.96 74.84 | 39.60 | 2.94 0 202.97 74.84 | 39.60 | 4.41 0 204.42

500 10 74.84 | 39.60 | 1.85 0 201.96 74.84 | 39.60 | 2.94 0 202.97 74.84 | 39.60 | 4.41 0 204.42

25 74.84 | 39.60 | 1.85 0 201.96 74.85 | 39.60 | 2.94 0 202.97 74.85 | 39.60 | 4.41 0 204.42

5 74.85 | 39.59 | 1.85 0 201.96 74.85 | 39.59 | 2.94 0 202.97 74.85 | 39.60 | 4.41 0 204.42

1000 1000 10 74.85 | 39.59 | 1.85 0 201.96 74.85 | 39.60 | 2.94 0 202.97 74.85 | 39.60 | 4.41 0 204.42
25 74.85 | 39.60 | 1.85 0 201.96 74.85 | 39.60 | 2.94 0 202.97 74.85 | 39.60 | 4.41 0 204.42

5 74.87 | 39.59 | 1.85 0 201.96 74.87 | 39.59 | 2.94 0 202.97 74.87 | 39.59 | 4.41 0 204.42

2000 10 74.87 | 39.59 | 1.85 0 201.96 74.87 | 39.59 | 2.94 0 202.97 74.87 | 39.59 | 4.41 0 204.42

25 74.87 | 39.59 | 1.85 0 201.96 74.87 | 39.59 | 2.94 0 202.97 74.87 | 39.59 | 4.41 0 204.42

Table A.4: Sensitivity Analysis when ) =0, L =5 and =0
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Appendix 115

A.6 Tables of the Sensitivity Analysis for
Positive Expected Net Demand Case



L =15, =001 o =095 o =0.99 o = 0.999

(Ko [Kd [oi[ 5 [+ [~ [ [T [ & [+ [~ [@ [T & [+ [~ [& [T ]
5 | 73.15 | 3.61 | 3.30 | 0.15 | 12.25 || 35.81 | 29.76 | 5.20 | 0.15 | 12.84 || 73.47 | 34.52 | 7.76 | 0.15 | 13.67

250 || 10 | 73.45 | 3.38 | 3.30 | 0.15 | 12.25 || 73.39 | 3.67 | 5.20 | 0.15 | 12.84 || 73.46 | 34.55 | 7.76 | 0.15 | 13.67

25 || 73.47 | 353 | 3.30 | 015 | 12.25 || 73.34 | 376 | 5.20 | 0.15 | 12.84 || 73.30 | 34.60 | 7.76 | 0.15 | 13.67

5 || 73.20 | 3.24 | 3.30 | 0.15 | 12.25 || 69.72 | 30.42 | 5.20 | 0.15 | 12.84 || 73.47 | 34.52 | 7.76 | 0.15 | 13.67

500 || 500 || 10 | 72.87 | 3.29 | 3.30 | 0.15 | 12.25 || 63.73 | 29.31 | 5.20 | 0.15 | 12.84 || 73.46 | 34.55 | 7.76 | 0.15 | 13.67
25 || 7353 | 353 | 3.30 | 015 | 12.25 || 73.38 | 375 | 5.20 | 0.15 | 12.84 || 73.30 | 34.60 | 7.76 | 0.15 | 13.67

5 || 7350 | 3.23 | 3.30 | 0.15 | 12.25 || 72.31 | 31.70 | 5.20 | 0.15 | 12.84 || 73.47 | 34.52 | 7.76 | 0.15 | 13.67

1000 || 10 | 73.34 | 313 | 3.30 | 0.15 | 12.25 || 72.17 | 32.02 | 5.20 | 0.15 | 12.84 || 73.46 | 34.55 | 7.76 | 0.15 | 13.67

25 || 73.50 | 3.3¢ | 3.30 | 015 | 12.25 || 69.30 | 28.66 | 5.20 | 0.15 | 12.84 || 73.30 | 34.60 | 7.76 | 0.15 | 13.67

5 || 41.56 | 5.99 | 3.30 | 4.99 | 13.91 || 42.14 | 7.78 | 5.20 | 4.79 | 15.51 || 36.04 | 10.62 | 7.76 | 5.13 | 17.32

500 || 10 | 42.78 | 5.94 | 3.30 | 4.90 | 13.99 ||329 | 7.73 | 5.20 | 4.70 | 15.59 || 37.37 | 10.53 | 7.76 | 4.97 | 17.44

25 || 46.72 | 579 | 3.30 | 4.64 | 14.22 || 46.96 | 7.59 | 5.20 | 4.45 | 15.82 || 41.29 | 10.30 | 7.76 | 4.58 | 17.74

5 || 47.34 | 5.74 | 3.30 | 4.6 | 14.11 || 47.77 | 7.54 | 5.20 | 4.44 | 15.71 || 36.04 | 10.62 | 7.76 | 5.13 | 17.32

1000 || 1000 || 10 | 48.60 | 5.71 | 3.30 | 4.56 | 14.17 || 48.93 | 7.50 | 5.20 | 4.37 | 15.78 || 37.37 | 10.53 | 7.76 | 4.97 | 17.44
25 || 52.99 | 559 | 3.30 | 4.35 | 14.36 || 52.84 | 7.39 | 5.20 | 4.16 | 15.98 || 41.29 | 10.30 | 7.76 | 4.58 | 17.74

5 || 58.53 | 5.44 | 3.30 | 4.17 | 14.36 || 57.99 | 7.25 | 5.20 | 3.99 | 15.99 || 36.04 | 10.62 | 7.76 | 5.13 | 17.32

2000 || 10 | 60.80 | 5.40 | 3.30 | 4.09 | 14.41 || 59.68 | 7.22 | 5.20 | 3.93 | 16.04 || 37.37 | 10.53 | 7.76 | 4.97 | 17.44

25 || 67.31 | 630 | 3.30 | 4.20 | 14.60 || 67.11 | 7.0 | 5.20 | 3.72 | 1618 || 41.20 | 10.30 | 7.76 | 4.58 | 17.74

Table A.5: Sensitivity Analysis when L =15 and ¢ = —0.01
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Ko =500, = —0.01 a = 0.95 a = 0.99 a = 0.999

| L || Kd | Cd s* ISt [~ [ [71C* || s* [ [ JQ" J71C* || 5* s* [ Q@ [TC* |
5 36.68 | 3.78 0.84 | 5.26 | 11.54 37.14 | 4.27 1.32 | 5.25 | 12.02 3.70 5.18 1.98 | 5.59 | 12.49

250 10 38.10 | 3.73 0.84 | 5.16 | 11.66 38.56 | 4.21 1.32 | 5.15 | 12.14 35.39 | 5.10 1.98 | 5.47 | 12.62

25 42.67 | 3.56 0.84 | 4.87 | 11.96 ||342 4.05 1.32 | 4.87 | 12.44 40.15 | 4.87 1.98 | 5.08 | 12.97

5 40.29 | 3.61 0.84 | 5.02 | 11.70 40.75 | 4.09 1.32 | 5.01 | 12.18 3.70 5.18 1.98 | 5.59 | 12.49

1 500 10 41.67 | 3.56 0.84 | 4.93 | 11.80 42.13 | 4.05 1.32 | 4.93 | 12.28 35.39 | 5.10 1.98 | 5.47 | 12.62
25 46.28 | 3.43 0.84 | 4.69 | 12.07 46.73 | 3.92 1.32 | 4.69 | 12.55 40.15 | 4.87 1.98 | 5.08 | 12.97

5 46.48 | 3.38 0.84 | 4.69 | 11.93 46.94 | 3.87 1.32 | 4.68 | 12.41 3.70 5.18 1.98 | 5.59 | 12.49

1000 10 47.98 | 3.34 0.84 | 4.62 | 12.01 48.43 | 3.83 1.32 | 4.62 | 12.49 35.39 | 5.10 1.98 | 5.47 | 12.62

25 53.58 | 3.22 0.84 | 4.40 | 12.23 54.01 | 3.71 1.32 | 4.40 | 12.71 40.15 | 4.87 1.98 | 5.08 | 12.97

5 3.90 4.51 1.88 | 4.71 | 11.66 34.69 | 5.57 2.98 | 4.66 | 12.67 31.47 | 7.30 4.45 | 4.99 | 13.80

250 10 35.13 | 4.46 1.88 | 4.61 | 11.78 35.91 | 5.52 2.98 | 4.56 | 12.79 32.93 | 7.21 4.45 | 4.83 | 13.95

25 38.95 | 4.31 1.88 | 4.34 | 12.10 39.69 | 5.38 2.98 | 4.29 | 13.12 37.18 | 6.99 4.45 | 4.45 | 14.33

5 37.42 | 4.33 1.88 | 4.46 | 11.84 38.21 | 5.39 2.98 | 4.41 | 12.85 31.47 | 7.30 4.45 | 4.99 | 13.80

5 500 10 38.57 | 4.29 1.88 | 4.38 | 11.94 39.35 | 5.35 2.98 | 4.33 | 12.96 32.93 | 7.21 4.45 | 4.83 | 13.95
25 42.23 | 4.18 1.88 | 4.16 | 12.23 42.97 | 5.24 2.98 | 4.11 | 13.25 37.18 | 6.99 4.45 | 4.45 | 14.33

5 3411 4.11 1.88 | 4.14 | 12.10 ||388 5.17 2.98 | 4.08 | 13.12 31.47 | 7.30 4.45 | 4.99 | 13.80

1000 10 44.25 | 4.08 1.88 | 4.08 | 12.19 45.00 | 5.14 2.98 | 4.03 | 13.21 32.93 | 7.21 4.45 | 4.83 | 13.95

25 48.05 | 3.99 1.88 | 3.91 | 12.43 48.73 | 5.06 2.98 | 3.86 | 13.45 37.18 | 6.99 4.45 | 4.45 | 14.33

5 73.15 | 3.61 3.30 | 0.15 | 12.25 35.81 | 29.76 | 5.20 | 0.15 | 12.84 73.47 | 34.52 | 7.76 | 0.15 | 13.67

250 10 73.45 | 3.38 3.30 | 0.15 | 12.25 73.39 | 3.67 5.20 | 0.15 | 12.84 73.46 | 34.55 | 7.76 | 0.15 | 13.67

25 73.47 | 3.53 3.30 | 0.15 | 12.25 73.34 | 3.76 5.20 | 0.15 | 12.84 73.30 | 34.60 | 7.76 | 0.15 | 13.67

5 73.20 | 3.24 3.30 | 0.15 | 12.25 69.72 | 30.42 | 5.20 | 0.15 | 12.84 73.47 | 34.52 | 7.76 | 0.15 | 13.67

15 500 10 72.87 | 3.29 3.30 | 0.15 | 12.25 63.73 | 29.31 | 5.20 | 0.15 | 12.84 73.46 | 34.55 | 7.76 | 0.15 | 13.67
25 73.53 | 3.53 3.30 | 0.15 | 12.25 73.38 | 3.75 5.20 | 0.15 | 12.84 73.30 | 34.60 | 7.76 | 0.15 | 13.67

5 73.50 | 3.23 3.30 | 0.15 | 12.25 72.31 | 31.70 | 5.20 | 0.15 | 12.84 73.47 | 34.52 | 7.76 | 0.15 | 13.67

1000 10 73.34 | 3.13 3.30 | 0.15 | 12.25 72.17 | 32.02 | 5.20 | 0.15 | 12.84 73.46 | 34.55 | 7.76 | 0.15 | 13.67

25 73.50 | 3.34 3.30 | 0.15 | 12.25 69.30 | 28.66 | 5.20 | 0.15 | 12.84 73.30 | 34.60 | 7.76 | 0.15 | 13.67

Table A.6: Sensitivity Analysis when Ko = 500 and p = —0.01
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T =5,Ko = 500 o = 0.95 o =0.99 o = 0.999
| v | Kd JJCd [ s* s [~ 1 Q [1C* ] s* s e [T s s o] @ [TCr]
5 ][ 390 | 451 | 1.88 | 4.71 | 11.66 || 34.69 | 5.57 | 2.98 | 4.66 | 12.67 || 31.47 | 7.30 | 4.45 | 4.99 | 13.80
250 || 10 | 35.13 | 4.46 | 1.88 | 4.61 | 11.78 || 35.91 | 5.52 | 2.98 | 4.56 | 12.79 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95
25 || 38.95 | 431 | 1.88 | 434 | 12,10 || 39.69 | 5.38 | 2.98 | 4.20 | 1312 || 3718 | 6.99 | 4.45 | 4.45 | 14.33
5 || 37.42 | 433 | 1.88 | 4.46 | 11.84 || 38.21 | 539 | 2.98 | 4.41 | 12.85 || 31.47 | 7.30 | 4.45 | 4.99 | 13.80
2001 || 500 || 10 || 38.57 | 4.29 | 1.88 | 4.38 | 11.94 || 39.35 | 5.35 | 2.98 | 4.33 | 12.96 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95
25 || 42.23 | 418 | 1.88 | 416 | 12.23 || 42.97 | 5.24 | 2.98 | 411 | 13.25 || 3718 | 6.99 | 4.45 | 4.45 | 14.33
5 [[341 411 | 1.88 | 4.14 | 12.10 ||388 517 | 2.98 | 4.08 | 13.12 || 31.47 | 7.30 | 4.45 | 4.99 | 13.80
1000 || 10 || 44.25 | 4.08 | 1.88 | 4.08 | 12.19 | 45.00 | 5.14 | 2.98 | 4.03 | 13.21 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95
25 || 48.05 | 3.99 | 1.88 | 391 | 12.43 || 48.73 | 5.06 | 2.98 | 3.86 | 13.45 || 37.18 | 6.99 | 4.45 | 4.45 | 14.33
5 || 75.04 | 74.04 | 2.17 | 8.89 | 10.55 || 75.04 | 74.04 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
250 || 10 | 75.04 | 74.04 | 217 | 8.89 | 10.55 || 75.04 | 74.04 | 3.20 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 861 | 12.91
25 || 75.04 | 74.04 | 217 | 8.89 | 10.55 || 75.05 | 74.05 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
5 || 75.04 | 74.04 | 2.17 | 8.89 | 10.56 || 75.04 | 74.04 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
0.1 || 500 || 10 || 75.04 | 74.04 | 217 | 8.89 | 10.56 || 75.05 | 74.05 | 3.20 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 861 | 12.91
25 || 75.05 | 74.05 | 217 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
5 || 75.05 | 74.05 | 2.17 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
1000 || 10 || 75.05 | 74.05 | 217 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
25 || 75.05 | 74.05 | 217 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
5 ][ 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
250 || 10 | 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
25 || 75.00 | 40.00 | 5.23 | 2312 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
5 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
1 500 || 10 | 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
25 || 75.00 | 40.00 | 5.23 | 2312 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
5 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
1000 || 10 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
25 || 75.00 | 40.00 | 5.23 | 2312 | 23.35 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59
Table A.T: Sensitivity Analysis when L =5, Ko =500 and p = —010—0.1, —1

Xipuoddy

8L



T=1,p=—-01 o =095 o =0.99 o = 0.999
| Ko [ Kd [JCd ] s* [5s* [~ J@ J1Cc* [[s5* s [~ [ 710" [[s* [s* [ Q@ [71TC* ]

5 || 75.04 | 74.04 | 0.89 | 9.79 | 10.58 || 75.04 | 74.04 | 1.39 | 9.77 | 11.06 || 75.04 | 74.04 | 2.05 | 9.76 | 11.71

250 || 10 || 75.04 | 74.04 | 0.89 | 9.79 | 10.58 || 75.04 | 74.04 | 1.39 | 9.77 | 11.06 || 75.04 | 74.04 | 2.05 | 9.76 | 11.71

25 || 75.05 | 74.05 | 0.89 | 9.79 | 10.58 || 75.05 | 74.05 | 1.39 | 9.77 | 11.06 || 75.05 | 74.05 | 2.05 | 9.76 | 11.71

5 | 75.04 | 74.04 | 0.89 | 9.79 | 10.58 || 75.05 | 74.05 | 1.39 | 9.77 | 11.06 || 75.04 | 74.04 | 2.05 | 9.76 | 11.71

500 || 500 || 10 || 75.04 | 74.04 | 0.89 | 979 | 10.58 | 75.05 | 74.05 | 1.39 | 9.77 | 11.06 || 75.04 | 74.04 | 2.05 | 9.76 | 11.71
25 || 75.05 | 74.05 | 0.89 | 9.79 | 10.58 || 75.05 | 74.05 | 1.39 | 9.77 | 11.06 || 75.05 | 74.05 | 2.05 | 9.76 | 11.71

5 | 75.05 | 74.05 | 0.89 | 9.79 | 10.58 || 75.05 | 74.05 | 1.39 | 9.77 | 11.06 || 75.04 | 74.04 | 2.05 | 9.76 | 11.71

1000 || 10 || 75.05 | 74.05 | 0.89 | 9.79 | 10.58 || 75.05 | 74.05 | 1.39 | 9.77 | 11.06 || 75.04 | 74.04 | 2.05 | 9.76 | 11.71

25 || 75.05 | 74.05 | 0.89 | 9.79 | 10.58 || 75.05 | 74.05 | 1.39 | 977 | 11.06 || 75.05 | 74.05 | 2.05 | 9.76 | 11.71

5 || 75.06 | 74.06 | 0.89 | 13.93 | 14.73 || 75.07 | 74.07 | 1.39 | 13.92 | 15.21 || 75.06 | 74.06 | 2.05 | 13.91 | 15.87

500 || 10 || 75.06 | 74.06 | 0.89 | 13.93 | 14.73 || 75.07 | 74.07 | 1.39 | 13.92 | 15.21 || 75.06 | 74.06 | 2.05 | 13.91 | 15.87

25 || 75.06 | 74.06 | 0.89 | 13.93 | 14.73 || 75.07 | 74.07 | 1.39 | 13.92 | 15.21 || 75.07 | 74.07 | 2.05 | 13.91 | 15.87

5 | 75.07 | 74.07 | 0.89 | 13.93 | 14.73 || 75.07 | 74.07 | 1.39 | 13.92 | 15.21 || 75.06 | 74.06 | 2.05 | 13.91 | 15.87

1000 || 1000 || 10 || 75.07 | 74.07 | 0.89 | 13.93 | 14.73 || 75.07 | 74.07 | 1.39 | 13.92 | 15.21 || 75.06 | 74.06 | 2.05 | 13.91 | 15.87
25 || 75.07 | 74.07 | 0.89 | 13.93 | 14.73 || 75.07 | 74.07 | 1.39 | 13.92 | 15.21 || 75.07 | 74.07 | 2.05 | 13.91 | 15.87

5 | 75.07 | 74.03 | 0.89 | 13.93 | 14.73 || 75.08 | 74.03 | 1.39 | 13.92 | 15.21 || 75.06 | 74.06 | 2.05 | 13.91 | 15.87

2000 || 10 || 75.07 | 74.03 | 0.89 | 13.93 | 14.73 || 75.08 | 74.03 | 1.39 | 13.92 | 15.21 || 75.06 | 74.06 | 2.05 | 13.91 | 15.87

25 || 75.08 | 74.03 | 0.89 | 13.93 | 14.73 || 75.08 | 74.04 | 1.39 | 13.92 | 15.21 || 75.07 | 74.07 | 2.05 | 13.91 | 15.87

Table A.8: Sensitivity Analysis when L =1 and p = —0.1

Xipuoddy

611



L=56pu=—01 o =095 o =0.99 o = 0.999
| Ko [ Kd [JCd ] s* [5s* [ r* Q* [Tr1C* || s* [s* [~ [ 710" [[s* [s* [ Q@ [71TC* ]

5 || 75.04 | 74.04 | 2.17 | 8.89 | 10.55 || 75.04 | 74.04 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

250 || 10 || 75.04 | 74.04 | 217 | 8.89 | 10.55 || 75.04 | 74.04 | 3.29 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

25 || 75.04 | 74.04 | 217 | 889 | 10.55 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

5 | 75.04 | 74.04 | 2.17 | 889 | 10.56 || 75.04 | 74.04 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

500 || 500 || 10 || 75.04 | 74.04 | 217 | 8.89 | 10.56 | 75.05 | 74.05 | 3.29 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91
25 || 75.05 | 74.05 | 217 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

5 | 75.05 | 74.05 | 2.17 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 8.77 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

1000 || 10 || 75.05 | 74.05 | 2.17 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

25 || 75.05 | 74.05 | 217 | 8.89 | 10.56 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91

5 || 75.06 | 74.06 | 2.17 | 13.06 | 14.73 || 75.06 | 74.06 | 3.29 | 12.98 | 15.78 || 75.06 | 74.06 | 4.80 | 12.87 | 17.17

500 || 10 || 75.06 | 74.06 | 2.17 | 13.06 | 14.73 || 75.06 | 74.06 | 3.29 | 12.98 | 15.78 || 75.06 | 74.06 | 4.80 | 12.87 | 17.17

25 || 75.06 | 74.06 | 217 | 13.06 | 14.73 || 75.06 | 74.06 | 3.29 | 12.98 | 15.78 || 75.07 | 74.07 | 4.80 | 12.87 | 17.17

5 || 75.06 | 74.06 | 2.17 | 13.06 | 14.73 || 75.06 | 74.06 | 3.29 | 12.98 | 15.78 || 75.06 | 74.06 | 4.80 | 12.87 | 17.17

1000 || 1000 || 10 || 75.06 | 74.06 | 217 | 13.06 | 14.73 || 75.07 | 74.07 | 3.29 | 12.98 | 15.78 || 75.06 | 74.06 | 4.80 | 12.87 | 17.17
25 || 75.06 | 74.06 | 217 | 13.06 | 14.73 || 75.07 | 74.07 | 3.29 | 12.98 | 15.78 || 75.07 | 74.07 | 4.80 | 12.87 | 17.17

5 | 75.07 | 74.00 | 2.17 | 13.06 | 14.73 || 75.07 | 74.00 | 3.29 | 12.97 | 15.78 || 75.06 | 74.06 | 4.80 | 12.87 | 17.17

2000 || 10 || 75.07 | 74.01 | 2.7 | 13.06 | 14.73 || 75.07 | 74.00 | 3.29 | 12.97 | 15.78 || 75.06 | 74.06 | 4.80 | 12.87 | 17.17

25 || 75.07 | 74.01 | 217 | 13.06 | 14.73 || 75.08 | 74.00 | 3.29 | 12.97 | 15.78 || 75.07 | 74.07 | 4.80 | 12.87 | 17.17

Table A.9: Sensitivity Analysis when L =5 and p = —0.1

Xipuoddy

0¢l



L=15,u4=-0.1 o = 0.95 o = 0.99 o = 0.999

[Ko [ Kd [cd[ & [ [~ [@ [T [5 [ [~ [@ [7C [5 [ [~ [@ [TC° ]
5 75.03 | 74.03 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

250 10 75.03 | 74.03 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

25 75.04 | 74.04 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

5 75.03 | 74.03 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

500 500 10 75.04 | 74.04 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38
25 75.04 | 74.04 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

5 75.04 | 74.04 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

1000 10 75.04 | 74.04 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

25 75.04 | 74.04 | 4.16 | 6.68 9.33 75.04 | 74.04 | 6.16 | 6.01 10.67 75.04 | 74.04 | 8.81 5.07 | 12.38

5 75.05 | 74.05 | 4.16 | 10.91 | 13.57 75.06 | 74.06 | 6.16 | 10.46 | 15.12 75.06 | 74.06 | 8.81 | 9.85 | 17.17

500 10 75.05 | 74.05 | 4.16 | 10.91 | 13.57 75.06 | 74.06 | 6.16 | 10.46 | 15.12 75.06 | 74.06 | 8.81 | 9.85 | 17.17

25 75.05 | 74.05 | 4.16 | 10.91 | 13.57 75.06 | 74.06 | 6.16 | 10.46 | 15.12 75.07 | 74.07 | 8.81 | 9.85 | 17.17

5 75.05 | 74.05 | 4.16 | 10.91 | 13.57 75.06 | 74.06 | 6.16 | 10.46 | 15.12 75.06 | 74.06 | 8.81 | 9.85 | 17.17

1000 1000 10 75.05 | 74.05 | 4.16 | 10.91 | 13.57 75.06 | 74.06 | 6.16 | 10.46 | 15.12 75.06 | 74.06 | 8.81 | 9.85 | 17.17
25 75.06 | 74.06 | 4.16 | 10.91 | 13.57 75.06 | 74.06 | 6.16 | 10.46 | 15.12 75.07 | 74.07 | 8.81 | 9.85 | 17.17

5 75.06 | 73.99 | 4.16 | 10.91 | 13.57 75.07 | 73.97 | 6.16 | 10.46 | 15.12 75.06 | 74.06 | 8.81 | 9.85 | 17.17

2000 10 75.06 | 73.99 | 4.16 | 10.91 | 13.57 75.07 | 73.97 | 6.16 | 10.46 | 15.12 75.06 | 74.06 | 8.81 | 9.85 | 17.17

25 75.06 | 73.99 | 4.16 | 10.91 | 13.57 75.07 | 73.97 | 6.16 | 10.46 | 15.12 75.07 | 74.07 | 8.81 | 9.85 | 17.17

Table A.10: Sensitivity Analysis when L =15 and p = —0.1

Xipuoddy

1et



L=1,pu=-1 a = 0.95 a = 0.99 o = 0.999

| Ko [ Kd [[Cd ] s*Ts* [ [ JT1C* [[5*]s* [~ J @ J71C* [[5*]5s* [ [ QF [T1TC* ]
5 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

250 10 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

25 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

5 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

500 500 10 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34
25 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

5 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

1000 10 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

25 75 40.00 | 1.48 | 29.66 | 30.14 75 40.00 | 2.04 | 29.62 | 30.66 75 40.00 | 2.77 | 29.58 | 31.34

5 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

500 10 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

25 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

5 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

1000 1000 10 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46
25 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

5 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

2000 10 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

25 75 39.99 | 1.48 | 42.75 |3482 75 40.36 | 2.04 | 42.72 | 43.76 75 39.75 | 2.77 | 42.69 | 44.46

Table A.11: Sensitivity Analysis when I =1 and p = —1

Xipuoddy

GGl



L=5u=-1 a = 0.95 a = 0.99 o = 0.999
| Ko [ Kd [[Cd ] s*Ts* [ [ JT1C* [[5*]s* [~ J @ J71C* [[5*]5s* [ [ QF [T1TC* ]

5 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

250 10 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

25 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

5 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

500 500 10 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59
25 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

5 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

1000 10 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

25 75 40.00 | 5.23 | 23.12 | 23.35 75 40.00 | 6.69 | 22.66 | 24.35 75 40.00 | 8.50 | 22.09 | 25.59

5 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

500 10 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

25 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

5 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

1000 1000 10 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55
25 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

5 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

2000 10 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

25 75 44.33 | 5.23 | 35.79 | 36.02 75 45.02 | 6.69 | 35.46 | 37.15 75 46.43 | 8.50 | 35.05 | 38.55

Table A.12: Sensitivity Analysis when L =5 and p = —1

Xipuoddy

€cl



L=15p=-1 o =095 o =0.99 o = 0.999
(Ko [Kd a5 [& [~ [& [0 [& [+ [~ [& [T [& [+ [~ [& [70 ]

5 || 75 | 40.00 | 13.72 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

250 || 10 || 75 | 40.00 | 13.72 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

25 || 75 | 40.00 | 1372 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

5 || 75 | 40.00 | 13.72 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

500 |l 500 || 10 || 75 | 40.00 | 13.72 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35
25 || 75 | 40.00 | 1372 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

5 || 75 | 40.00 | 13.72 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

1000 || 10 || 75 | 40.00 | 13.72 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

25 || 75 | 40.00 | 13.72 | 15.00 | 13.30 || 75 | 40.00 | 16.71 | 15.00 | 14.21 || 75 | 40.00 | 20.21 | 15.00 | 15.35

5 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

500 || 10 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

25 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

5 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

1000 || 1000 || 10 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08
25 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

5 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

2000 || 10 || 75 | 40.00 | 13.72 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

25 || 75 | 40.00 | 1372 | 24.65 | 23.38 || 75 | 40.00 | 16.71 | 22.92 | 24.63 || 75 | 40.00 | 20.21 | 20.87 | 26.08

Table A.3: Sensitivity Analysis when L =15 and ¢ = —1

Xipuoddy

14!
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Appendix 126
L =5, Ko=500, y = —=0.01

o [ Kd [[od]l st [ sf [ »f [ [TOT [ S [ &5 [ rf [Q [TOF ] &%

5 || 33.90 | 4.51 | 1.88 | 4.71 | 11.66 || 20.14 | 17.90 | 1.88 | 3.16 | 17.28 || 32.53

250 || 10 || 35.13 | 4.46 | 1.88 | 4.61 | 11.78 || 20.34 | 18.10 | 1.88 | 3.16 | 17.39 || 32.29

25 || 38.95 | 431 | 1.88 | 4.34 | 12.10 || 20.94 | 18.70 | 1.88 | 3.16 | 17.73 || 31.76

5 || 3742 | 4.33 | 1.88 | 4.46 | 11.84 || 22.36 | 19.20 | 1.88 | 3.16 | 18.27 || 35.21

095 || 500 || 10 || 38.57 | 4.20 | 1.88 | 4.38 | 11.94 || 22.55 | 19.39 | 1.88 | 3.16 | 18.37 || 35.01

25 || 42.23 | 418 | 1.88 | 4.16 | 12.23 || 23.13 | 19.96 | 1.88 | 3.16 | 18.67 || 34.53

5 || 43.11 | 4.11 | 1.88 | 4.14 | 12.10 || 25.36 | 20.88 | 1.88 | 3.16 | 19.50 || 37.94

1000 || 10 || 44.25 | 4.08 | 1.88 | 4.08 | 12.19 || 25.54 | 21.07 | 1.88 | 3.16 | 19.59 || 37.79

25 || 48.05 | 3.99 | 1.88 | 3.91 | 12.43 || 26.09 | 21.61 | 1.88 | 3.16 | 19.86 || 37.43

5 || 34.69 | 5.57 | 2.98 | 4.66 | 12.67 || 21.09 | 18.85 | 2.98 | 3.16 | 18.26 || 30.60

250 || 10 || 35.91 | 5.52 | 2.98 | 4.56 | 12.79 || 21.29 | 19.06 | 2.98 | 3.16 | 18.37 || 30.38

25 || 39.69 | 5.38 | 2.98 | 4.29 | 13.12 || 21.90 | 19.66 | 2.98 | 3.16 | 18.71 || 29.91

5 || 38.21 | 5.39 | 2.98 | 4.41 | 12.85 || 23.32 | 20.16 | 2.98 | 3.16 | 19.26 || 33.25

0.99 || 500 || 10 || 39.35 | 5.35 | 2.98 | 4.33 | 12.96 || 23.51 | 20.35 | 2.98 | 3.16 | 19.36 || 33.07

25 || 42.97 | 5.24 | 2.98 | 4.11 | 13.25 || 24.09 | 20.93 | 2.98 | 3.16 | 19.67 || 32.64

5 || 43.88 | 5.17 | 2.98 | 4.08 | 13.12 || 26.32 | 21.85 | 2.98 | 3.16 | 20.50 || 35.98

1000 || 10 || 45.00 | 5.14 | 2.98 | 4.03 | 13.21 || 26.51 | 22.03 | 2.98 | 3.16 | 20.59 || 35.85

25 || 48.73 | 5.06 | 2.98 | 3.86 | 13.45 || 27.05 | 22.58 | 2.98 | 3.16 | 20.86 || 35.52

5 || 31.47 | 7.30 | 4.45 | 4.99 | 13.80 || 22.37 | 20.14 | 4.45 | 3.16 | 19.57 || 29.48

250 || 10 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95 || 22.58 | 20.34 | 4.45 | 3.16 | 19.69 || 29.17

25 || 37.18 | 6.99 | 4.45 | 445 | 14.33 || 23.19 | 20.95 | 4.45 | 3.16 | 20.04 || 28.48

5 || 31.47 | 7.30 | 4.45 | 4.99 | 13.80 || 24.61 | 21.45 | 4.45 | 3.16 | 20.59 || 32.95

0.999 || 500 || 10 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95 || 24.81 | 21.65 | 4.45 | 3.16 | 20.69 || 32.60

25 || 37.18 | 6.99 | 4.45 | 4.45 | 14.33 || 25.39 | 22.22 | 4.45 | 3.16 | 21.00 || 31.76

5 || 31.47 | 7.30 | 4.45 | 4.99 | 13.80 || 27.63 | 23.16 | 4.45 | 3.16 | 21.84 || 36.81

1000 || 10 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95 || 27.81 | 23.34 | 4.45 | 3.16 | 21.94 || 36.41

25 || 37.18 | 6.99 | 4.45 | 445 | 14.33 || 28.36 | 23.89 | 4.45 | 3.16 | 22.20 || 35.46

Table A.14: Comparison of the (5, s,r, Q) policy with the EOQ based heuristic

policy when L =5, Ko =500 and g = —0.01




Appendix 127
L =5, Ko=500, u = -=0.1

o [ Kd [[ad] st [ s [ [ Q@ [TCT ] S s; [ [ Q [T || A%
5 || 75.04 | 74.04 | 2.17 | 8.89 | 10.55 || 121.07 | 114.00 | 2.17 | 10.00 | 10.61 || 0.52

250 || 10 | 75.04 | 74.04 | 2.17 | 8.89 | 10.55 || 121.71 | 114.63 | 2.17 | 10.00 | 10.61 || 0.52

25 || 75.04 | 74.04 | 2.17 | 8.89 | 10.55 || 122.67 | 115.60 | 2.17 | 10.00 | 10.61 || 0.52

5 || 75.04 | 74.04 | 2.17 | 8.89 | 10.56 || 126.30 | 116.30 | 2.17 | 10.00 | 10.61 || 0.52

095 || 500 || 10 || 75.04 | 74.04 | 2.17 | 8.89 | 10.56 || 126.30 | 116.30 | 2.17 | 10.00 | 10.61 || 0.52
25 || 75.05 | 74.05 | 2.17 | 8.89 | 10.56 || 126.30 | 116.30 | 2.17 | 10.00 | 10.61 || 0.52

5 || 75.05 | 74.05 | 2.17 | 8.89 | 10.56 || 127.82 | 113.68 | 2.17 | 10.00 | 10.61 || 0.52

1000 || 10 || 75.05 | 74.05 | 2.17 | 8.89 | 10.56 || 127.82 | 113.68 | 2.17 | 10.00 | 10.61 || 0.52

25 || 75.05 | 74.05 | 2.17 | 8.89 | 10.56 || 128.46 | 114.32 | 2.17 | 10.00 | 10.61 || 0.52

5 || 75.04 | 74.04 | 3.29 | 8.77 | 11.56 || 122.47 | 115.39 | 3.29 | 10.00 | 11.63 || 0.58

250 || 10 || 75.04 | 74.04 | 3.29 | 877 | 11.56 || 123.14 | 116.07 | 3.29 | 10.00 | 11.63 || 0.58

25 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 122.46 | 115.38 | 3.29 | 10.00 | 11.63 || 0.58

5 || 75.04 | 74.04 | 3.29 | 8.7 | 11.56 || 125.27 | 115.27 | 3.29 | 10.00 | 11.63 || 0.58

0.99 || 500 || 10 | 75.05 | 74.05 | 3.20 | 877 | 11.56 || 127.54 | 117.54 | 3.29 | 10.00 | 11.63 || 0.58
25 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 124.95 | 114.95 | 3.29 | 10.00 | 11.63 || 0.58

5 || 75.05 | 74.05 | 3.20 | 8.77 | 11.56 || 129.08 | 114.94 | 3.29 | 10.00 | 11.63 || 0.58

1000 || 10 || 75.05 | 74.05 | 3.29 | 8.77 | 11.56 || 129.08 | 114.94 | 3.29 | 10.00 | 11.63 || 0.58

25 || 75.05 | 74.05 | 3.29 | 877 | 11.56 || 128.70 | 114.55 | 3.29 | 10.00 | 11.63 || 0.58

5 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 12557 | 118.50 | 4.80 | 10.00 | 13.00 || 0.66

250 || 10 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 123.96 | 116.89 | 4.80 | 10.00 | 13.00 || 0.66

25 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 126.19 | 119.12 | 4.80 | 10.00 | 13.00 || 0.66

5 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 127.80 | 117.80 | 4.80 | 10.00 | 13.00 || 0.66

0.999 || 500 || 10 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 127.81 | 117.81 | 4.80 | 10.00 | 13.00 || 0.66
25 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 125.55 | 115.55 | 4.80 | 10.00 | 13.00 || 0.66

5 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 130.55 | 116.41 | 4.80 | 10.00 | 13.00 || 0.66

1000 || 10 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 131.51 | 117.37 | 4.80 | 10.00 | 13.00 || 0.66

25 || 75.05 | 74.05 | 4.80 | 8.61 | 12.91 || 129.95 | 115.81 | 4.80 | 10.00 | 13.00 || 0.66

Table A.15: Comparison of the (5, s,r, Q) policy with the EOQ based heuristic

policy when L =5, Ko =500 and g = —0.1




Appendix 128
L =5, Ko=500, y = -1

o [ KdJodf] st [ sf [ o7 [ @ [TO [ 57 [ 55 [ 5 [ Q [TC] || A%
5 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 68.68 | 46.32 | 5.23 | 31.62 | 24.22 || 3.59

250 || 10 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 68.68 | 46.32 | 5.23 | 31.62 | 24.22 || 3.59

25 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 68.68 | 46.32 | 5.23 | 31.62 | 24.22 || 3.59

5 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 73.42 | 41.80 | 5.23 | 31.62 | 24.22 || 3.59

0.95 || 500 || 10 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 73.42 | 41.80 | 5.23 | 31.62 | 24.22 | 3.59
25 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 73.42 | 41.80 | 5.23 | 31.62 | 24.22 || 3.59

5 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 84.28 | 39.56 | 5.23 | 31.62 | 24.22 || 3.59

1000 || 10 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 84.28 | 39.56 | 5.23 | 31.62 | 24.22 | 3.59

25 || 75.00 | 40.00 | 5.23 | 23.12 | 23.35 || 84.28 | 39.56 | 5.23 | 31.62 | 24.22 || 3.59

5 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 68.68 | 46.32 | 6.69 | 31.62 | 25.32 || 3.81

250 || 10 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 68.68 | 46.32 | 6.69 | 31.62 | 25.32 | 3.81

25 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 68.68 | 46.32 | 6.69 | 31.62 | 25.32 | 3.81

5 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 73.41 | 41.79 | 6.69 | 31.62 | 25.32 || 3.81

0.99 || 500 || 10 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 73.41 | 41.79 | 6.69 | 31.62 | 25.32 | 3.81
25 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 73.41 | 41.79 | 6.69 | 31.62 | 25.32 | 3.81

5 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 86.05 | 41.33 | 6.69 | 31.62 | 25.32 || 3.81

1000 || 10 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 86.05 | 41.33 | 6.69 | 31.62 | 25.32 | 3.81

25 || 75.00 | 40.00 | 6.69 | 22.66 | 24.35 || 86.05 | 41.33 | 6.69 | 31.62 | 25.32 || 3.81

5 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 68.68 | 46.32 | 8.50 | 31.62 | 26.68 || 4.09

250 || 10 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 68.68 | 46.32 | 8.50 | 31.62 | 26.68 | 4.09

25 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 68.68 | 46.32 | 8.50 | 31.62 | 26.68 || 4.09

5 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 73.37 | 41.75 | 8.50 | 31.62 | 26.68 || 4.09

0.999 || 500 || 10 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 73.37 | 41.75 | 8.50 | 31.62 | 26.68 | 4.09
25 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 73.37 | 41.75 | 8.50 | 31.62 | 26.68 || 4.09

5 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 79.84 | 35.12 | 8.50 | 31.62 | 26.68 || 4.09

1000 || 10 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 79.84 | 35.12 | 8.50 | 31.62 | 26.68 || 4.09

25 || 75.00 | 40.00 | 8.50 | 22.09 | 25.59 || 79.84 | 35.12 | 8.50 | 31.62 | 26.68 | 4.09

Table A.16: Comparison of the (5, s,r, Q) policy with the EOQ based heuristic
policy when L =5, Ko =500 and p = —1




Appendix 129
L =5, Ko=500, y = —=0.01

o [ Kd [[Cedf] sf [ s [ rf [ [TOT S [ ss [ v [Q [TCF [ &%
5 || 33.90 | 451 | 1.88 | 4.71 | 11.66 || 200 | 190 | 1.88 | 2.12 | 17.24 || 32.38

250 || 10 || 35.13 | 4.46 | 1.88 | 4.61 | 11.78 || 200 | 190 | 1.88 | 2.12 | 17.24 || 31.69

25 || 38.95 | 4.31 | 1.88 | 4.34 | 12.10 || 200 | 190 | 1.88 | 2.12 | 17.24 || 29.84

5 || 3742 | 4.33 | 1.88 | 4.46 | 11.84 || 200 | 190 | 1.88 | 2.12 | 17.24 || 31.35

0.95 || 500 || 10 || 38.57 | 4.29 | 1.88 | 4.38 | 11.94 || 200 | 190 | 1.88 | 2.12 | 17.24 || 30.75
25 || 42.23 | 418 | 1.88 | 4.16 | 12.23 || 200 | 190 | 1.88 | 212 | 17.25 || 29.11

5 || 43.11 | 4.11 | 1.88 | 4.14 | 12.10 || 200 | 190 | 1.88 | 2.12 | 17.25 || 29.85

1000 || 10 || 44.25 | 4.08 | 1.88 | 4.08 | 12.19 || 200 | 190 | 1.88 | 2.12 | 17.25 | 29.36

25 || 48.05 | 3.99 | 1.88 | 3.91 | 12.43 || 200 | 190 | 1.88 | 2.12 | 17.26 || 28.00

5 || 34.69 | 5.57 | 2.98 | 4.66 | 12.67 || 200 | 190 | 2.98 | 2.07 | 18.40 || 31.13

250 || 10 || 35.91 | 5.52 | 2.98 | 4.56 | 12.79 || 200 | 190 | 2.98 | 2.07 | 18.40 || 30.48

25 || 39.69 | 5.38 | 2.98 | 4.29 | 13.12 || 200 | 190 | 2.98 | 2.07 | 18.40 || 28.73

5 || 38.21 | 5.39 | 2.98 | 4.41 | 12.85 || 200 | 190 | 2.98 | 2.07 | 18.40 || 30.15

0.99 || 500 || 10 || 39.35 | 5.35 | 2.98 | 4.33 | 12.96 || 200 | 190 | 2.98 | 2.07 | 18.40 | 29.58
25 || 42.97 | 5.24 | 2.98 | 4.11 | 13.25 || 200 | 190 | 2.98 | 2.07 | 18.41 || 28.03

5 || 43.88 | 5.17 | 2.98 | 4.08 | 13.12 || 200 | 190 | 2.98 | 2.07 | 18.41 || 28.72

1000 || 10 || 45.00 | 5.14 | 2.98 | 4.03 | 13.21 || 200 | 190 | 2.98 | 2.07 | 18.41 | 28.26

25 || 48.73 | 5.06 | 2.98 | 3.86 | 13.45 || 200 | 190 | 2.98 | 2.07 | 18.42 || 26.97

5 || 31.47 | 7.30 | 4.45 | 4.99 | 13.80 || 200 | 190 | 4.45 | 2.00 | 19.95 || 30.82

250 || 10 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95 || 200 | 190 | 4.45 | 2.00 | 19.95 | 30.10

25 || 37.18 | 6.99 | 4.45 | 4.45 | 14.33 || 200 | 190 | 4.45 | 2.00 | 19.96 || 28.20

5 || 8147 | 7.30 | 445 | 4.99 | 13.80 || 200 | 190 | 4.45 | 2.00 | 19.96 || 30.84

0.999 || 500 || 10 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95 || 200 | 190 | 4.45 | 2.00 | 19.96 || 30.12
25 || 3718 | 6.99 | 4.45 | 4.45 | 14.33 || 200 | 190 | 4.45 | 2.00 | 19.96 | 28.22

5 || 3147 | 7.30 | 445 | 4.99 | 13.80 || 200 | 190 | 4.45 | 2.00 | 19.97 || 30.88

1000 || 10 || 32.93 | 7.21 | 4.45 | 4.83 | 13.95 || 200 | 190 | 4.45 | 2.00 | 19.97 || 30.16

25 || 37.18 | 6.99 | 4.45 | 4.45 | 14.33 || 200 | 190 | 4.45 | 2.00 | 19.97 || 28.26

Table A.17: Comparison of the (S5, s,r, Q) policy with no-disposal option



