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ABSTRACT

TRANSACTION EXECUTION
IN
MULTIDATABASE SYSTEMS

Timucin Devirmis
M.S. in Computer Engineering and Information Science

Advisor: Asst. Prof. Dr. Ozgiir Ulusoy
July, 1996

Most work in the multidatabase systems (MDBSs) area has focused on the
issues of transaction management and concurréncy control. It is difficult to
implement traditional transaction management techniques in a MDBS due to
the heterogeneity and autonomy of the connected local sites. In this thesis.
we present a new transaction execution model that captures the formalism
and semantics of various extended transaction models and adopts them to a
MDBS environment. The proposed model covers nested transactions. various
dependency types among subtransactions, and commit-independent transac-
tions. The execution model does not make any assumnption regarding the con-

currency control protocols executed at the local sites connected to the MDBS.

We also present a detailed simulation model of a MDBS to analvze the
performance of the proposed model. The performances of both the traditional
transaction model and the proposed transaction model are evaluated under
a range of workloads and system configurations. The performance impact of

global transactions’ behavior on local transactions is also discussed.

Keywords: Multidatabases systems, distributed databases, transaction mo-

dels, performance evaluation.
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OZET

COKLU VERITABANI SISTEMLERINDE
HAREKETLERIN ISLETILMESI

Timugin Devirmis
Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans

Damsman: Yrd. Do¢. Dr. Ozgiir Ulusoy
Temmuz, 1996

(foklu veritabani alaninda yapilan calismalar genellikle hareketlerin yoneti-
mi ve kontrold lzerine yogunlasmistir. Klasik hareket yonetimi tekniklerini
coklu veritabani sistemlerinde uygulamak, sisteme katilan verel veritabanlar-
nin disaridan kontrol edilemeyisi ve heterojenliginden dolay1 ¢ok zordur. Bu tez
caligmasinda, ¢oklu veritabanlan ile ilgili, bir¢ok genigletilmis hareket model-
lerinin anlamsal ézelliklerini ve formatini igeren yeni bhir hareket modeli sunul-
maktadir. Onerilen model i¢ ice gecmis hareket modellerini, alt hareketlerin
bagimhliklarmi ve bagimsiz sona erebilen hareket bi¢imlerini kapsamakuadir.
Sunulan igletim modeli yerel veritabanlar: hakkinda herhangi bir ongort gerek-

tirmemektedir.

Onerilen hareket modelinin performans degerlendirilmesi i¢in avrica detayh
bir simulasvon modeli de sunulmugtur. Simulasyon modeli kullanilarak. klasik
hareket modeli ile beraber 6nerilen modelin performans degerlendirmeleri vapil-
mistir. Yeterli sistem kaynaklar: oldugunda, onerilen hareket modelinin. klasik
hareket modelinden ¢ok daha iyi sonuglar verdigi gozlemlenmistir. Yapilan
denevlerde, coklu veritabani hareketlerinin yerel hareketler uzerindeki etkisi de

ncelenmigtir.

Anahtar sozcikler: Coklu veritabani sistemleri, dagitik veritabanlar:, hare-

ket modelleri, performans degerlendirmeleri.
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Chapter 1

Introduction

The recent progress in communication and database technologies has facili-
tated the sharing of information from different sources. The globalization of
enterprises has also started to enforce existing information systems to coop-
crate with each other. As a result of these facts, a need has arisen for the

integration of pre-existing database systems.

A multidatabase system (MDBS) is an integrated database system that
provides a global view and uniform access to different local components with-
out requiring the users to know the individual characteristics of the partici-
pant databases. Each local database system (LDBS) can have a different data
model. and different transaction management and concurrency control mecha-
nisms. Integration of those heterogerieous components should not violate the
antonomy of LDBSs. This 1s the most important feature of MDBSs that dis-

tinguishes it from conventional distributed database systems.

Heterogeneity of the components in a MDBS leads to a requirement for
flexible and powerful ways of accessing the data. The need for the coordi-
nation of the activities that belong to the independent data sources makes it
difficult to adopt traditional transaction control methods in a MDBS environ-
ment. Since the control of a MDBS is totally dependent on LDBSs. designing
a transaction model and control mechanism for MDBSs requires to cousider

LDBS transaction management functions.

Traditional transaction models developed for distributed database systems

are quite restrictive for multidatabases. Traditional models generally assume
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a competition among transactions, but in a MDBS sometimes a cooperation
besides the competition is also required for efficient processing of transactions.
Defining and observing dependencies among the transactions executed over
different sites can significantly affect the system performance. The variance
among the execution tine of transactions over different local DI3MSs also
forces the existing models to be reorganized accordingly. Also the propertics
like atomicity and isolation introduced by the traditional transaction model
are sometimes inapplicable in a MDBS environment. Under all those consider-
ations, we can safely argue that it is necessary to modify and extend existing

distributed transaction models for MDBS environments.

In this thesis, we propose a new transaction execution model that captures
the formalism and semantics of various extended transaction models and adopts
them to a MDBS environment. The proposed model covers nested transactions
[13], the flexible transaction model that provides various dependency types
among subtransactions [24], and the model that involves a relaxed version
ol transaction atomicity, namely semantic atomicity, to increase the level of
concurrency [9, 17]. While including the semantics of all those transaction
models, the global serializability in our execution model was ensured through

the use of the ticketing method [13].

We also describe a detailed simulation model of a MDBS to analyze the
performance of the proposed transaction model. We discuss the performance
implications of both the classical transaction execution model and the proposed
execution model. We state the range of workloads and the system configura-
tions under which our model can provide performance improvements over the

tracitional transaction model.

The remainder of this thesis is organized as follows. Chapter 2 discusses
the previous work on MDBS transaction models and introduces our extended
transaction model. Chapter 3 presents the execution architecture of the pro-
posed transaction model and provides how global serializability and atomic-
ity are achieved with this execution architecture. This chapter also includes
detailed execution strategies for commit-independent transaction types. The

global deadlock problem and its solutions are also discussed in this chapter.

Chapter 4 describes a simulation model of a MDBS and gives the imple-

mentation details of this model. Chapter 5 explains the simulation experiments
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carried out and presents the results obtained. In the experiments, first the per-
formance implications of the ticketing method with the classical transaction
model are studied; then the performance results with the extended transac-
tion model are presented. Comparison of various global deadlock detection
algorithms is also provided in this chapter. The experimental results that
compare the classical transaction model with the extended transaction model
are discussed at the end of the same chapter. Finally, Chapter 6 includes the

concluding remarks.



Chapter 2

Transaction Model

2.1 Related Work

[n the literature, a number of models that extend the traditional transaction
model have been proposed. An extended transaction model called Sagas was
introduced by Garcia-Molina and Salem [12] for the long-lived transactions to
increase the level of concurrency. In this model, a global transaction consists
of a number of subtransactions 5y,.57,...,5v and corresponding compensai-
ing transactions ', Cy,...,Cn. In Sagas, either all of the subtransactions are
committed, or partially committed ones are undone using their compensating
transactions. Furthermore, the subtransactions do not need to see the same
database state. If a subtransaction is ready-to-commit, it can be committed
without waiting for the other subtransactions of the same transaction. Con-
currency is increased in Sagas model in the expense of relaxing the isolation
property. This model can be well suited for the environments where the sub-

transactions are relatively independent.

The nested transaction model introduced by Moss [L8] is another alterna-
tive for the traditional transaction model. In the nested transaction model,
flat transactions are enhanced by a hierarchical control structure. Each nested
transaction consists of either primitive transactions or some nested transac-
tions that are called subtransactions of the containing transaction. The whole
transaction structure can be represented by a tree and the top-level transaction

is called the root of the tree. The transaction that contains subtransactions is
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(o]

called a parent, and the subtransactions are called its children. In the nested
transaction model, a child starts after its parent, and terminates hefore the
parent terminates. The parent is not allowed to terminate before all of its
child transactions are terminated. However, if a child is aborted, parent doces
not need to be aborted. A two level version of the nested transaction model
has been adopted to a MDBS environment [7].

The transaction model developed for the Interbase MDBS [9] allows compo-
sition of flexible transactions. In this model, subtransaction failures can be dis-
carded if a given function can be accomplished by more than one local database
component. [urthermore, both compensatable and non-compensatable sub-
transactions can be defined within a multidatabase transaction. The execution
dependencies among the subtransactions are specified as negative and positive
dependencies. If a negative dependency is defined between subtransactions .S,
and S, it means that 57 cannot start until S, fails. A positive dependency, on

the other hand, means that 5; cannot start until S5 succeeds.

The DOM transaction model that has been developed at GTE laboratories
is another possible model that can be applied to MDBSs [6]. DOM allows both
nested and compensating transaction models to work together. This model also
malkes it possible to define contingency transactions which can be executed
as an alternative when a subtransaction fails. The subtransactions can be
classified as vital and non-vital in the DOM model. If a vital subtransaction
aborts, its parent should also be aborted. However, if a non-vital transaction
aborts, its parent may continue. Consequently, if a child transaction fails,
the parent has the following alternatives: ignoring the condition, retryving the
child transaction, executing a contingency subtransaction. or abort. The DOM
model seems to be promising and should further be investigated in detail for

MDBSs.

In a recent work by Rusinkiewicz, Kiychniak, and Cichocki [19], a multi-
database transaction, also called a global transaction, consists of subtransac-
tions that can be in one of the following execution states: initial, executing,
aborted. prepared to commit, or committed. Scheduling pre-conditions are as-
sociated with each subtransaction according to their execution states. In order
to complete the execution of a global transaction, an acceptable termination
state is defined using the execution states of its subtransactions. Although the
model is powerful enough to express various types of transactions in a MDBS,

an efficient scheduling of the subtransactions is a major problem.
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In [17], the following types are defined for the subtransactions of a dis-
tributed transaction. A compensatable transaction can commit before its con-
taining transaction commits, and if that transaction aborts, its effects on the
local database can be undone by executing the associated compensating trans-
action. The relriable transactions are subtransactions that eventually succeed
il they are retried a sufficient number of times. A retriable subtransaction
can be allowed to commit later than its containing transaction. The compen-
satable and retriable transactions, which are also called commit independent

transactions, reduce the blocking effects of the commitment protocols.

An integration of the flexible transaction model [10] and the transaction
model of [17] has been proposed in [24] as an alternative model for NMDBS
transactions. The commit dependencies among the subtransactions have been
investigated and a transaction execution model has been introduced to take
the advantage of those dependencies in scheduling subtransactions. Two kinds
of dependency relation, precedence and preference, have been examined in that
work. The relaxed version of atomicity provided in [17] has also been extended

to support flexible transactions. ,

2.2 Proposed Transaction Model

In this section, we introduce a new transaction model for MDBSs. In this
model, we aim to_capture the formalism and semantics of various extended

transaction models and adopt it to a MDBS environment.

In a MDBS, two kinds of transactions can coexist: local transactions and
global transactions. A transaction that is executed at a single site is called a
local transaction. A global transaction on the other hand, can submit opera-
tions to multiple sites, and at each of those sites a subtransaction is executed
on behalf of the global transaction. A subtransaction of a global transaction

is not different from a local transaction from the LDBS point of view.

[n a multidatabase environment, some subtransactions can be committed
independent of its global transaction. If a subtransaction’s elfects on the
database can be semantically undone by executing a compensating transac-
tion, the subtransaction can be allowed to commit earlier. A subtransaction

that reserves a seat in an airline reservation system is compensatable by a
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transaction that cancels the reservation. Another kind of commit independent
transactions is the retriable transactions which eventually commit if they have
been retried a sufficient number of times. A retriable transaction can be al-
lowed to commit later. Crediting a bank account is an example of retriable
transactions.  Cousequently, as stated in [17] and [21], the transaction type

('I"') of a subtransaction can be either

e Compensatable (C),
e Retriable (R), or

e Ordinary (O) (neither compensatable nor retriable).
A formal definition for a subtransaction can now be provided:

Definition 1 A subtransaction S is a 2-tuple S=(TT,CT) where

o T'T is the transaction type of S;

o (T is the set of compensating transactions of S, if TT is compensatable

(an empty set, otherwise).

Since a global transaction is executed over multiple sites in the form of
subtransactions, we cannot ignore the dependencies that can occur among the
subtransactions. A possible dependency among subtransactious is the execu-
tion order dependency in which a subtransaction cannot be executed before
some others complete their executions. That kind of dependency relation is
olten referred to as precedence relation between subtransactions. Another kind
of dependency can be specified if some subtransactions are alternative of some
others. In an alternative dependency, one of the functionally equivalent sub-
transactions needs to be executed. If the user assigns priority to alternative

subtransactions, a preference relation exists among the subtransactions.

Definition 2 Let S; and S; be two subtransactions. We define fouwr types of

dependency relation between S; and S;:

o Precedence relation (<), S; < S; means that S; cannot begin execution

until S; successfully finishes its execution.
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o Alternative relation (o), S; o S; means that S; and S; are alternative of
cach other and any of them can be executed. It is also possible to execute

them together, but only one of them should be committed.

o Preference rdlalion (b), S;v S; means that among two alternative sub-
transactions S; and S;, S; is preferred (o S;. If they are executed together,

S; can be committed only if S; fails. [f they are not allowed to execute

together, S; should execute first, and if it fails, S; can be executed.

o No-dependency relation (Q), S;0S; means that S; and S; can execute

independently.
Now a formal definition of a global transaction can be provided as follows:

Definition 3 A4 global transaction G is a 3-tuple G=(ST,DT,TO) where

o ST is the set of global transactions and/or subtransactions that are the
children of G

o DT is the dependency type among the transactions in ST

o 10 is the total order on ST according to the dependency specified in DT.

A global transaction in our model is syntactically a nested transaction with
extended semantics. A global transaction is a set of child transactions each of
which is either a subtransaction or again a global transaction. This transac-
tion model can be represented as a tree where the internal nodes are global
transactions and the leaf nodes are subtransactions. The root of the tree is the
overall global transaction. The level of a global transaction is not fixed at 2,

but it can vary depending on the transaction complexity.

The transaction model introduced here is simply a mixture of three ex-
tended transaction models: the nested transaction model [18], the flexible
transaction model that provides the dependency relations types [24], and the
model described in [9, 17], that provides the commit independent transaction
tvpe. We can give some real-life examples to demonstrate the practicality of

the proposed transaction model.
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Example 1 Consider a travel agent information system [9]. In this system,
a transaction may consist of the agent’s negotiation with airlines for the flight
licket, the negotiation with car rental companies for car reservation, and the
negotiation with hotels to reserve rooms. Assume for a given trip that the
only airlines avadable are Northwest and Uniled, the only car rental company
is Hertz, and the only hotels in the destination city are [{ilton, Sheraton and
Ramada. The agent can order a ticket from cither Novthwest or ['nited, but
Northwest is preferred, a car is mandatory for the trip and any of the three
hotels is suitable for the customer needs. Further, only the reservation of the
hotel room can be canceled. The following subtransactions can be defined for a

global transaction that should be executed for this application:

o S.: Order a ticket at Northwest airlines;

o Sy: Order a ticket at United arrlines;

o S3: Rent a car at Hertz;

o Sy: Reserve a room at Hilton;

o S:: Reserve a room at Sheraton;

e Sy: Reserve a room at Ramada:

o S-: Clancel a room reservation at Hilton;

o Ss: Cancel a room reservation at Sheraton;

e Sy: Cancel a room reservation at Ramada.

The global transaction G can be specified as follows:

Girip(ST = {Gairtines(ST = { S{(TT = O0,CT = {}),
So(TT =0,CT = {})},
DT = Preference,
TO = S1p 5,),

Ss(TT = C,CT = {Ss}).

{

Grotet( ST = { Sy(TT = C,CT = {S:}).
(
(TT =C,CT = {Se})},

S6
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DT = Alternative,

TO = 540550 .5)},
DT = No — dependency,
O = Guirtines0.530G hou)

/é\ Preference Relation

/é\ Alternative Relation

/A\ Precedence Relation

/A\ No dependency Relation

5 S, S, S5 Se

IPigure 2.1: A transaction tree representation of Example 1.

Example 2 Consider a banking system [2/]. A client at bank by wants to
withdraw $50 from his account ay, and deposit it in his friend’s account ay in
bank by. If this is not possible he wants to withdraw $50 from his account as in
bank by and deposit it in a,. We assume that depositing an account is always
successful if it is rvetried sufficient number of times. The sublransactions cun

be described as follows:

Withdraw $50 from account ay in bank by,

[ ]
Y
—

o Sy Deposit $50 in account as in bank by;
o Sy Wilhdraw $50 from account az in bank bs;
o Sy: Deposit $50 in account ay in bank by;
e Ss5: Deposit $50 in account az in bank bs.

A global transaction Girensfer can be constructed using these subtransac-

tions:
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Clirams er (ST = {Guithara(ST = { SI(TT = C,CT = {S,}),
$3(TT = C,CT = {$5])),
DT = Preference,
T0O=S15),
SA{TT = R.CT = {}),
DT = Precedence,
TO = Gyithdraw < S2)

@ /é\ Preference Relation

/N Precedence Relation

Cuaniny :

L

S S3

Figure 2.2: A transaction tree representation of Example 2.



Chapter 3

Execution Architecture

Due to the autonomy of local sites, the local transactions are directly submitted
to the LDBSs, while global transactions use a common MDBS interface. The
execution of local transactions is controlled by the local transaction manager
(LTN) that exists at each site, and the execution of global transactions is

controlled by the global transaction manager (GTM).

The objectives of GTM are to avoid inconsistent retrieval of data, and to
preserve global consistency and atomicity [13]. These objectives are difficult

to achieve, because:

Local database systems are not aware of each other and the MDBS.

e Both local and global transactions can run concurrently at each site.
e LTMs do not export any concurrency control information to GTM.

From the local database systems’ viewpoint, a global subtransaction is

not different from a local transaction.

LTM at each site ensures the local consistency and isolation properties by
eenerating serializable schedules. GTM can achieve the global serializability
by coordinating the participant LDBSs. Global serializability can be provided
by obtaining the information of relative serialization order of subtransactions
at each local site and guaranteeing the same relative order at all those sites
[19]. Achievement of global serializability is difficult, because the execution

12
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order of global subtransactions may not be cousistent with the serialization
order due to the local transactions. Even though the global subtransactions do
not conflict with each other at a particular site, local transactious can cause

indirect conflicts among them.

[n the literature, several approaches have been proposed to solve this prob-
leni. Some of those approaches suggest a relaxed version of the global serializ-
ability, like quasi serializability [8], and two level serializability [L6], which can
maiuntain global consistency in restricted applications. Some other approaches
assume that the local serialization information can be available to some degree,
and propose some techniques based on this assumption. Another solution to
the global concurrency control problem is to assume conflicts among global
subtransactions whenever they are executed at the same site, but this method

has some drawbacks due to its low degree of concurrency.

The ticketing method proposed in [13] seems to be the first method to show
successfully that the serialization order of global subtransactions at a local site
can be determined at the global level without violating the autonomy of that
site. The ticketing method uses a regular data object, called a ticket. to deter-
mine the serialization order of global subtransactions. A ticket in a database
can be seen as a logical timestamp. One ticket value is maintained at each lo-
cal site. Multidatabase concurrency controller forces each subtransaction read,
icrement and update the ticket value at the site it executes. The ticket value
obtained by a subtransaction reflects the relative serialization order at that
site. This approach eliminates the effects of indirect conflicts generated by lo-

cal transactions even if the multidatabase system cannot detect their existence.

Accomplishing the atomicity of global transactions is another problem in
MDBS transaction management. In traditional distributed database systems.
atomicity can be achieved by using the two phase commit (2PC) protocol. In
a MDBS. due to the heterogeneity of local components, we can not expect
every participant site to support 2PC. One possible solution to this problem
is using a simulated 2PC protocol. An additional set of application programs
called agents can be built on top of each site to establish this necessary pro-
tocol. The agents in our model are responsible for controlling the execution of
subtransactions that are sent to its site. The MDBS architecture assumed for

this mmodel is given in Figure 3.1.

Now, we can start discussing proposed execution model. We assume that
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Global transaction
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GT™M

Subtransaction Subtransaction

l.ocal transaction

Local transaction
\ Agent | o o o o Agentn /

LDBS 1 ¢ LLDBSn

BN

Local Database 1

Local Database n

I'igure 3.1: The architecture of the MDBS

each global transaction has at most one subtransaction at each local site. We

14

r

also assume that a local transaction or a subtransaction consists of four basic

operations: r(z), w(x), ¢, and a. r(z) and w(x) are read and write operations

on data item x, and ¢ and « are commit and abort operations. Similar to the

execution model presented in [19] ,the execution state of a transaction can be

one of the following tvpes:

e Initial (I),

Executing (L),

Ready-to-commit (R),

Committed (C),

Aborted (A).

A transaction is assumed to be in the ready-to-commit state after it com-

pletes all of its read and write operations. It stays in this state until a commit

or an abort operation is issued.

We have to reconsider the concepts of the global serializability and the

atomicity of a global transaction to establish the correctness of our execution

model.
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3.1 Ensuring Global Atomicity

[n a MDBS environment, a relaxed version of atomicity, namely semantic atom-
icity. has been discussed in [24, 17]). In traditional atomicity, a global trans-
action can be atomic if either all or none of its subtransactions complete their
execution successfully.  However, in semantic atomicity subtransactions can
commit at different times. A global transaction can commit if all of its sul-
transactions commit; otherwise the effects of committed subtransactions are
undone, and global transaction is aborted. We need to extend this definition
to capture the semantics of dependency relations among subtransactions. The
exccution of a global transaction &' preserves the semantic atomicity, if the

following conditions are satisfied:

e When a precedence or a no-dependency relation exists among its children,
(¢ can commit if all of its child transactions commit. If one of its child
transactions is aborted, (¢ is aborted and the other child transactions are

either aborted or the effects of committed ones are undone.

o [f an alternative or preference relation exists, G' can commit if one of
its child transactions commits!. When a child transaction is committed.

other child transactions that are executing are aborted.

The execution of a global transaction containing only ordinary children?

proceeds as follows:

o ["irst, the global transaction is constructed with the initial execution
state.
o GTM spawns the children of the global transaction according to the spec-

ified dependency type:
— If either a no-dependency, or an alternative dependency, or a pref-
erence dependency exists, all of the child transactions are created.

— Otherwise (if a precedence relation was specified), the children are

created on the basis of the given total order.

I Remember that, with the preference relation, if 5; > Sj, then S; can be committed only

if S; fails.
2The execution of a global transaction that can have commit independent (compensat-

able/retriable) transactions is described in Section 3.3.
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o [[ GTM reaches a leal node in the nested transaction tree and creates a
subtransaction, it submits the subtransaction to the corresponding site

through the agents.

o When asubtransaction [inishes its database operations. the agent of that

site sends a ready-to-commit message to the GTM.

o After receiving a ready-to-commmit message for a subtransaction, GTM
checks the dependency type associated with the parent of the subtrans-

action to find out what to do next.

— It a precedence relation exists among its children, the next child
transaction in the given order is created by the GTM. If all of the
child transactions enter the ready-to-commit state. the parent also

enters the ready-to-commit state.

— If an alternative relation exists, the parent enters the readv-to-
commit state and GTM sends messages to the relevant agents to

abort the other child transactions.

— If a preference relation exists, the parent enters the ready-to-commit
state if the completed subtransaction is the most preferred one.
When the parent becomes ready-to-commit, GTM broadcasts the

abort message for the other child transactions.

— If a no-dependency relation exists, the execution state of the parent
becomes ready-to-commit after all of its children enter the ready-

to-commit state.

o If the root transaction reaches the ready-to-commit state, G'TM decides
to commit or abort the transaction according to the concurrency control

algorithm executed.

o After a commit or abort is issued for the root transaction, GTM broad-
casts a message to child transactions down to the leaves of the transaction

tree to commit or abort the subtransactions at local sites.

As we can understand from this execution protocol, the ready-to-commit
messages are sent in a bottom-up fashion, from leaf transactions to the root
transaction, and the commit or abort messages are transmitted in a top-down
fashion from the root transaction to leaf transactions. By that way, atomic

commitment of a global transaction is ensured.
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3.2 Ensuring Global Serializability

A global schedule 5 is serializable if each local restriction of S is serializable,
and there is a total ovder O on the global transactions in S such that in cach
local schedule of 5, the serialization order must be consistent with the order
O [I1]. We need to have additional requirements that the serialization order
of child subtransactions in .5 must be cousistent with the serialization ovder of
their parent global transaction. Specifically, it is sulficient to guarantee that
the relative order of subtransactions in local sites is the same as their parents’

order in O.

To provide concurrency control, we can apply the ticketing method which
ensures the serialization of global transactions. The ticket values obtained by
subtransactions are transferred to their parents up to the root transaction.
(GTM ensures the same relative serialization order at all sites of the global root
transaction using the ticket values obtained. Two possible methods that can
be used for concurrency control are the optimistic ticketing method (OTM),

and the conservative ticketing method (CTN) [13].

3.2.1 Employing The Optimistic Ticketing Method
(OTM)

O'TM allows subtransactions of global transactions to be executed as soon as
they are submitted to the local sites. A global transaction is committed when
all of the tickets obtained by its subtransactions have the same relative order in
all participant LDBSs. If OTM is adopted. a global transaction ( is processed

as lollows:

e [irst, a time-out period is set for (& (for the detection of a potential

deadlock).

e The GTM spawns the child transactions of GG according to the rules given

above up to the subtransactions executed at local sites.

o Subtransactions are allowed to execute under the coutrol of agents until

they become ready-to-commit.

N

e When G enters the ready-to-commit state, it is validated by GTM.
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o If the validation of G is successful, it is committed; otherwise, it is aborted

and then restarted.

G'TM uses a global serialization graph (GSG) to validate the commitiment
of transaction G GS5G is a directed graph which contains nodes for recently
committed global transactions. TFor any pair of recently committed glohal
transactions (; and G, there is a directed edge G — Gy, if G obtained a

smaller ticket value than (7 at a site they were executed together.

A global transaction G in the ready-to-commit state can be validated as

follows:

e [irst, a node is created for G in GSG.

¢ Then GTM attempts o insert an edge between G and other nodes in

GSG.

o [f G has obtained a smaller (larger) ticket value than a recently committed

global transaction G. at a site, an edge G — G. (G, — G) is inserted.

o If all such edges can be added to GSG without creating a cvcle, (& is

validated.

o Otherwise, the node for GG and all related edges are removed from the

graph, and G 1s aborted.
A validation can be performed on GSG either,

o when a global child transaction becomes ready-to-commit (i.e., early val-

idalion), or

e when a global root transaction becomes ready-to-commit (i.e., late vali-

dation).

The aim of early validation is to detect the conflicts among global transac-
tions as early as possible and to minimize the global transaction restarts. If a
global child transaction fails in GSG test, GTM can abort that transaction. If
a preference or an alternative relation exists among the transactions that be-

long to the same parent, GTM can execute an alternative transaction for the
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failed child transaction. If a no-dependency relation or a precedence relation

exists, G'T'M restarts the aborted global child transaction.

[ the validation test for a global root transaction is successful. a commit
message is transmitted to its children. Otherwise. an abort message is sent 1o
its children and the entire global transaction is restarted. To remove a node for
a committed global transaction & from GSG, the lollowing properties should

be satisfied [L3]:

e The node has no incoming edges.

e The transactions that were active when G was committed have all been

terminated.

3.2.2 Employing The Conservative ticketing method
(CTM)

CTM was introduced to eliminate the global restarts experienced by OTM due
to the ticketing conflicts. CTM controls the order in which the subtransactions
take their tickets. In order to apply CTM, we need an additional ready-to-take-
a-ticket state for both global transactions and subtransactions. A subtransac-
tion enters the ready-to-take-a-ticket state after it completes all of the database
operations before obtaining its ticket value. The agents over the local sites are
responsible to detect ready-to-take-a-ticket states of subtransactions and senc
appropriate messages to GTM. Similar to the ready-to-commit messages. the
reacly-to-take-a-ticket messages are also sent [romn leaves of a transaction tree
up to the root to provide atomicity in obtaining a ticket value. CTM processes

a set of global transactions as follows:

e Initially a time-out period is set for each global transaction.

¢ Subtransactions are allowed to execute under the control of LDBSs until

they enter the ready-to-take-a-ticket state.

o A ready-to-take-a-ticket message is transmitted up to the global root
transaction, according to the execution rules specified for the ready-to-

commit message in Section 3.1.
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e Global transactions in ready-to-take-a-ticket state are allowed to take
their tickets according to the order in which they enter the ready-to-
take-a-ticket state. If a global transaction (7; becomes ready to take a
ticket hefore transaction Gy, () is assigned a smaller ticket valne than
that of (5.

o A global transaction that enters the ready-to-commit state is committed
by G'TM. H the time-out of the transaction expires before it is committed,

the transaction is aborted and restarted.

3.3 Commit Independent Subtransactions

Belore the description of the execution model for commit independent sub-
transactions, let us specify the necessary assumptions and restrictions for the

underlying MDBS environment:

e There should be no value dependencies among the commit independent

subtransactions.

o If a compensating transaction is initiated, it completes successfully [15].

The commit independent transaction type was proposed to minimize the
blocking effect of the 2PC global atomic commitment protocol. If a child
subtransaction commits before its parent, it is called an early committed sub-
transaction. Similarly, if a child subtransaction commits after its parent it is
a lale committed subtransaction. Compensatable subtransactions can be early
comimitted, and retriable subtransactions can be late committed. To achieve
semantic atomicity with commit independent transactions, the following con-

ditions should hold for a global transaction G [1T]:

o [[ (¢ is aborted, the effects of early committed subtransactions of (¢ on

the database are not seen by other transactions.

o if (G is committed, the effects of its late committed subtransactions are

seen by the transactions serialized after G.
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Consequently, lor a compensatable subtransaction .5 with its compensating
transaction C'S, if the parent of 5 is aborted. commitment of S is required
to be undone by executing C'S. The ellects of committed subtransactions are
not seen. il no other subtransaction is serialized between the S and ¢S [17).
Therelore, il UM ensures that no other subtransaction takes its ticket hefore

the commitment of €5, consistency of the MDBS is preserved.

The compensating transaction excention is handled by agents. I a global
transaction (¢ has a compensatable subtransaction S with its associated com-
pensating trausaction 5, the execution of S is provided as follows when OTM
is being used:

o ('S is sent to the relevant agent with the submission of S.
o When S enters the ready-to-commit state,

— The agent sends a ready-to-commit message to GTM.

— The ticket value obtained by .S is recorded and S is early committed

by the agent.

o The agent sends an abort message for the other subtransactions that has
obtained greater ticket value than S before a commit message arrives for
S

o If the agent receives an abort message for 5, it submits 'S to LDBS.

o The agent sends an abort message for the other subtransactions that has

obtained greater ticket value than S before (.5 is committed.

It

("I'M is being used for concurrency control:

e ('S is sent to the relevant agent with the submission of 5.

e When S cnters a ready-to-take-a-ticket state, the agent sends a ready-

to-take-a-ticket message to GTNM.

e When a take-a-ticket message arrives for S, the agent does not permit
other subtransactions to enter their ready-to-take-a-ticket states until .5

takes its ticket.
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o 1.5 successlully takes its ticket and completes all its operations, the agent

carly commits .5 and sends a ready-to-commit message for S to (VT'M.

o 'The agent does not allow other subtransactions to take their tickets nntil

a commit or an abort is issued for S,

o Il an abort is issued for S, the agent submits 'S to the LDBSs and does

not submit any other subtransaction operation until 'S is committed.

[n the case of retriable transactions, the global transactions do not see
an inconsistent database, if GTM avoids serialization of any subtransaction
between the commitment of a global transaction and the commitment of a re-
triable subtransaction that belongs to the committed global transaction [17]. A
global transaction ¢ that contains a retriable transaction RS can be commit-
ted without waiting RS to finish its execution. GTM can commit 7, while RS
is still being executed at a site, but it does not permit another subtransaction

to take a ticket at that site until RS takes its ticket.‘

[f OTM is being used, the protocol handling the execution of retriable

subtransaction RS of G can be described as [ollows:

o The state of RS is made ready-to-commit hefore GTM submits it to the
relevant agent. Therefore, the commitment of (¢ does not require .5 to

be completed.

o [f (7 enters the ready-to-commit state before a ready-to-comumit message
arrives for RS, a +oc ticket value is used for & in GSG test. Since the
RS has not taken its ticket yet, the +ac ticket value in GSG test cusures
that no other subtransaction is serialized between the commitment of ¢/

and the commitment of RS.

e When RS is committed, the agent sends a commit message to GTM in

order to update the ticket value of (7.

I[ ("TM is being used, agents are responsible [or the correct execution of
retriable transactions. They simply do not allow other subtransactions to take
ticket until RS successfully commits. The extension to the standard execution

model, for a retriable transaction RS, can be described as follows:
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e Once the agent reccives a take-a-ticket message for RS, it does not
send ready-to-take-a-ticket messages [or other subtransactions execnted

al that site nntil 5 takes its ticket successinlly.

o (I'M makes the state of RS ready-to-commit alter it sends a take-a-ticket

message for i,

o Once G'FM issues a commit for 25, the agent does not submit ticketing

operation of other subtransactions to the LDBS until 25 is committed.

3.4 The Global Deadlock Problem

[n a MDBS environiment. the global deadlock problem can occur if the LDBSs
employ a lock-based concurrency control. The local deadlock detection can be
assumed to be handled by local schedulers. GTM may not be aware of global
deadlock situations since the LDBSs may not export any information about
local deadlocks. Using a time-out strategy for a global transaction is the easiest
way to detect global deadlocks. However, the time-out value set for global
transactions significantly effects the throughput of the system. Using a too
small tune-out value for a global transaction may result in unnecessary global
transaction aborts, while a too large time-out value may result in blocking of

deadlocked transactions for a long time.

ispecially in our transaction model, it is difficult to estimate expected
exccution time of a global transaction due to the extended semantics. One
possible time-out mechanism that can be adopted is to set a time-out for the
cutire global transaction. This method cannot be very effective, because the
number of subtransactions executed in a global transaction can vary according
to the dependencies specified among the subtransactions. Instead of using a
elobal time-out value for the entire global transaction. we can estimate the
sibtransaction execution at each site and calculate the time-out period of a

global transaction as follows:

o [[ child transactions are submitted concurrently, in other words, the de-
pendency tvpe among the child transactions is either no-dependency or
alternative dependency or preference dependency, then the time-out value
for the parent transaction can specified to be the maximurn time-out value

of its children.
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e If the dependency type among its children is the precedence dependency,
the time-out value for the parent transaction is the sum of the child

transactions’ time-out values since the children will be exceuted serially.

Another solution to the global deadlock problem is to apply a deadlock
detection algorithm. One of the deadlock detection algorithms proposed in [3]
is based on the Potential Contlict Graph (PCG). PCG is a divected graph where
the nodes in the graph are the global transactions that have at most one child
transaction that is waiting to obtain lock. The edge Gy — 7} exists in PC(,
il (7;'s subtransaction is in the waiting state and G;’s subtransaction is in the
executing state at the same site. A cycle in PCG represents a potential global
deadlock. A similar algorithm is emploved to estimate the global deadlocks
occurring due to ticket waiting. In our PCG algorithm. an edge is inserted
between (7; and G, if G 1s in the executing state and G is in the ready-to-
take-a-ticket state. The PCG algorithm executed for our transaction model is

as [ollows: .

A timestamp and a time-out value is assigned to global transaction G

when it is submitted to the system.

If one of the children of G enters the ready-to-take-a-ticket state, a node

for G is created and related edges are inserted into PCG.
(=]

e If the time-out of G expires, PCG is checked for cycles including G.

If G appears at least in one cycle then,

— Ifit has the smallest timestamp value among the transactions in the

same cycle it continues to execute with a reinitiated time-out.

— Otherwise, if the dependency type among its subtransactions is the
alternative or preference dependency, only the child transaction of
G that causes the cycle in PCG is aborted. In all other cases. G is

aborted.

o I[ (i enters the readv-to-commit state, its node-and incident edges are

removed [rom the graph.
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Simulation Model

4.1 Introduction

[u this chapter, we study the global concurrency control problem of MDBSs
[rom the performance point of view. In the literature. most of the researchers
have concentrated on the serializability problem of global transactions and de-
veloped various concurrency algorithms for MDBSs. However. the performance
implication of MDBS transaction management and the cost of transaction pro-

cessing in a MDBS environment have not been investigated in detail.

[n a work by Hung et al. [14]. a performance analysis ol various optimistic
and pessimistic global concurrency control algorithms has been provided. They
have made an analysis of throughput, response time and abort ratio of both
LDBSs and MDBSs. In their model, they assumed that all the LDBSs apply
strict two-phase locking (2PL) for local concurrency control. Their performance
results heavily depend on the local concurrency coutrol algorithim. A general

miltidatabase simulation model has also been proposed in [11].

Schaad, Schek and Weikuin have compared the transaction processing that
nses 2P protocol with distributed multi-level transaction ma,llla,g(:‘m(—\nt [20].
They have developed a prototype implementation of a MDBS system. Strict
2PL is also the concurrency control algorithm of LDBSs in their work. They
have performed an analysis of average transaction response time under the
various workloads. The effect of global concurrency control mechanisms on

the performance of LDBSs and the performance impact of local transactions’

25
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behavior on the global transaction response time have not been considered in

their model.

[l we assume cach LDBS applies a rigorous concurrency control algorithm
like strict 2P inowhich all the data Tocks obtained by a transaction are releascd
tosether when the transaction commits or aborts [3], the global serializability
can be easily achieved by controlling the commitment order of subtransactions
(1L I3]0 Consequently, if all of the LDBSs employ strict 2P L. the global concr-
rency control problem is reduced to detect possible global deadlocks. As a re-
sult. the performance of a MDBS transaction management system also depends
on how the global deadlock problem is handled. In the literature, Scheuermanu.
Tung and Teng have stndied the performance of two global deadlock detection
algorithms [21]. They have compared the poteuntial conflict graph (PC'G) [3]
approach with transaction-blocked-at site graph (TBSG) algorithm [22]. In
another work by Baldoni and Salzo, the performance of PCG algorithm and
simple global titne-out method has been studied in a MDBS environment where

participant LDBSs employ only strict 2PL algorithm [2].

In our work, we have focused on the performance analysis of OTM and C'TN
algorithms based on the proposed extended transaction model. Performance
of the ticketing methods has not been investigated by anyone even with the
classical transaction model [21, 13, 14] vet. Therefore, first a performance
implication of OTN and CTM algorithms on the classical transaction model
has. been investigated in detail. and then their performance with the extended
transaction model has been studied. We have also analyzed and compared the
performance results of various global deadlock detection algorithims suitable for
the proposed execution model. Finally, experiments that compare the extended
transaction model with the classical transaction model have been performed.
In our performance study, we did not restrict participant LDBSs to employ
only strict 2PC concurrency control algorithm as the others did. We made the
lollowings assumptions and simplifications about the NDBS simulation model.
as we focus only on the performance of the global transaction model and the

concurrency control algorithms.

e No communication or site failures occur, cousequently the recovery re-

lated issues are ignored in the simulation model.

e A centralized version of MDBS where GTM resides at one site is imple-

mented since the proposed algorithms work on the centralized MDBSs.
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e LDBSs can abort a transaction that executes at its site only due to local

deadlock detection algorithm.

e LLDBSs notify the transaction programs when unilaterally abort a trans-
action. This means that NMDBS will be aware of subtransaction aborts

at local sites.
o LDBSs permit serializable and recoverable schedules.

Subtransactions have a visible ready-to-commit state.

In the next section. we present a detailed simulation model of an MDBS

which 1s similar to the one provided in [L-4].

4.2 MDBS Simulation Model

A MDBS in our system is a closed network with one global site and a fixed
number of local sites. GTM resides at the global site alone as a server to
global clients. All of the global transaction requests are submitted to the
(+'TM interface. \We also assume that only one LDBS resides at each local site.
A elobal transaction agent (GTA) is also built on top of each LDBS. GTAs ave
responsible for submitting global subtransactions to the correspounding LD BSs:
as well as communicating with the GTM. Both local clients and GTAs submit
their requests to LDBS interfaces. The architecture of our MDBS is illustrated

in igure 1.1

The parameters describing the MDBS model are listed in Table 4.1. The
multiprogramming level of the MDBS is the maximum number of global trans-
actions that GTM can process at a time. To keep the global multiprogramming
level (GMPL) constant throughout the simulation. global clients submit their
requests one after another. The local multiprogramming level (LMPL) of cach
LLDBS is the number of local transactions plus the number of global subtrans-
actions submitted to that site. The local clients also submit their requests one
alter another to keep the local transaction load constant. At local sites. the
minimum LMPL is LNumClient, and the maximum LMPL is (LNumClient +
GNumClient). The size of the local database is assumed to be constant for
cach site and LDBsize represents LDBS size in pages. Hot region is the part

of the database which is accessed most frequently. LHotRegion paranieter can
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Figure 4.1: MDBS closed network model

be in between 0 and 1, and used to specify the ratio of the hot region in the
local database. The ratio of the hot region is also assumed to be the same for

every LDBS.

System Parameters | Meaning

NumSites Number of local sites

GNumClient Number of global clierits
LNumClient Number of lOCd-l clients at each site
LDBsize Size of each LDBS in pages
LHotRegion Ratio of the hot region in LDBSs

Table 4.1: System model parameters

4.2.1 Transaction Model

In a MDBS environment, two kinds of trausactions affect the performance of
the svstenm: local and global transactions. A local transaction contains read and
write operations on data pages. It can be modeled in a simulation environment
with few basic parameters. Local transaction model parameters are described

in Table 1.2

A Local transaction size can vary between LTranMinSize and LTranMaxSize
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Local Transaction

Parameters Meaning

LTvandlinlcn Minimum local transaction length in pages
LTranMarlcn Maximum local transaction length in pages
Lol AceessProb Local transaction hot region access probability
[AVrile Prob Local transaction update probability
LThinkTime Local clients’ think time in seconds
LRestartTime Restart time of an aborted local transaction

Table -1.2: Local transaction model parameters

with uniform distribution. LHotAccessProb is used determine local transac-
tions’ access probability to the hot region. LWriteProb represents the proba-
bilitv of update operation. LThinkTime parameter is used to model the client
think time between consecutive local transactions. When a local transaction
finishes its execution. a new one is submitted to the LDBS after LThinkTine

.

seconds.

The global transaction model is more complex due to its semantics. As
discussed in the previous sections a global transaction can be modeled as a
tree where the internal nodes are global transactions and the leal nodes are
subtransactions. In the simulation model, a global transaction is characterized
by the Height and NumChild parameters. These parameters represent max-
imum values for a global transaction and vary depending on the experiment
tvpes. In the experiment that compares the classical model with the extended
model. a global transaction is modeled as a full tree. Each subtransaction.
like a local transaction, contains several read and write operations on data
pages. Ticketing operations of a subtransaction are assumed to be read and a
write operations on specific pages. A representation of a global transaction is

provided in IMigure 4.2,

The global transaction parameters used in our simulation model are listed
in Table 4.3. TreeHeight parameter represents the maximum height of the
tree and NumChild parameter represents the maximum number of children at
cach internal node. The maximum number of subtransactions executed in a
global transaction is then (NumC hild) reeHevht - The number of subtransac-
tions exceuted in a global transaction can vary according to the dependencies

among the subtransactions. Since we assume that at most one subtransaction
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(ilobal Transaction

Parameters Meaning

Treclleight Maximum height of a global transaction tree
NumChild Maximum number of children in cach elobal transaction
NoDependeneyProb Probability of no-Dependency relation

Preccdence Prob Probability of precedence relation

Preference Prob Probability of preference relation

AltcrnativeProb Probability of alternative relation

OrdinaryProb Probability of ordinary subtransactions
Compensatable Prob Probability of compensatable subtransactions
Retriable Prob Probability of retriable subtransactions
(/TranMinLen Minimum global subtransaction length in pages
C(CTranMaxLen Maximum global subtransaction length in pages
(ot AccessProb Global subtransaction hot region access probability
(AW rite Prob Global subtransaction update probability
(ValRestart Time Global transaction restart time after GSG aborts

(i TimeoutRestart Time | Global transaction restart time after timeout aborts
(/RestartTime Global transaction restart time after local site aborts
(;ThinkTime Global clients™ think time in seconds

Table 4.3: Global transaction model parameters

ol a global transaction can be executed at each site, the number of subtransac-
tions executed also determines the number of local database sites that a global

transaction may access.

The dependencies among the children of a global transaction is determined
by the probability of each dependency type. NoDependencyProb, Preceden-
ceProby. PreferenceProb and AlternativeProb represent the distribution of de-
pendencies among the children of global transactions. To analyze the effects of
compensating and retriable transactions, OrdinaryProb, CompensatableProb.
and RetriableProb parameters are defined. Those probabilities represent on the

average the ratio of subtransactions’ types in the overall global transaction.

GTranMinLen and GTranMaxLen parameters are defined to determine the
subtransaction length. Similar to the local transaction parameters. GHot \c-
cessProb and GWriteProb represent the access probabilities of global subtrans-

actions at local sites. GThinkTime parameter is also defined to model the think
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[igure 4.2: Global transaction model

time ol a global client. Restart time of aborted global transactions is deter-
mined according to the abortion type. (:ValRestartTime, GTimeontRestart-
Time. and GRestartTime specify the restart time after a validation, timeout.

and local site aborts, respectively.

We can obtain the classical global transaction model of [14]. [13] by setting
the parameter TreeHeight to 1 and NumChild to the number of subtransactions
in a global transaction. Table 4.4 provides parameter settings to simulate the

classical global transaction model.

Transaction Parameters | Settings

TreeHeight l

Num Child Number of subtransactions
NoDependencyProb 1.0

PrecedenceProb 0.0

Preference Prob 0.0

Alternative Prob 0.0

OrdinaryProb 1.0

Compensatable Prob 0.0

RetriableProb 0.0

Table L-: Parameter settings to obtain classical global transaction model
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4.2.2 Simulation Model Components

Figure 1.3 illustrates the simulation model components. The model is (lexible
to integrate different kinds of concurrency control algorithms and database
components for investigating various aspects of the system. The details of

cach component in the system can be described as [ollows:

Global Transaction Generator (GTG)

T

Global Site GT™ l
Main Module ccC
Manager
Network Managér
GTA Local
Main cc Transaction
Mg - Generator
Module Manager
(LTG)
LTM
Local Site l Main Module
[ [
Data CcC
Manager Manager
A

l

Resource Manager

Figure 4.3: Simulation Model Components

o (llobal Transaction Generator (GTG) : GTG resides at the global site
and simulates the global client behavior by generating global transactions
using the parameters in Table 4.3. At the beginning of the simulation.
GNumClient global transactions are created and submitted to the GTM.

During the simulation, a new transaction can only be created after the
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termination of a global transaction. Tor the last set of experiments,
this component also converts an extended global transaction to a set of

classical global transactions.

o Gilobal Transaction Manager (GTM) GTN accepts elobal transactions

[rom G'TG and models their execution. It consists of 2 modnles:

— Main Module: This module models the transaction execution with
the help of Concurrency Control (C'CY) manager. There are two
main jobs of this module. [irst, it accepts global transactions and
decomposes them to their subtransactions executed at ecach local
site according to the rules in Section 3. Second, it establishes 2PC
protocol with agents and coordinates in-coming and out-going mes-
sages for subtransactions. When a global transaction enters the
reacdy-to-commit state it decides commitment or abortion of that

transaction by communicating with the CC manager.

— Concurrency Control (CC') Manager : CC manager models the exe-
cution of a concurrency control algorithm for serialization of global
transactions. [t also performs the deadlock detection. if it is neces-
sarv. This module enables us to plug-in different global concurrency

control and deadlock detection algorithms for performance stucdies.

o Local Transaction Generator (LTG) : This component simulates the local
client behavior and generates local transactions using the parameters in
Table 4.4. Like GTG. it submits a new transaction when one of the.

previously submitted local transactions completes its execution.

o Global Transaction Agent (GTA): GTA resides at each local site and
models the execution of global subtransactions at that site. Similar to

G'I'M. it consists of two modules.

— Main Module : GTA Main Module is responsible tor controlling sub-
mission of subtransactions at its site. It determines the submission
time of a subtransaction’s operations with the help of the CC man-
ager and the messages coming from GTM. It behaves like a local
client for LDBS. Submission time of the ticketing operation is also
determined in GTA main module according to the local concurrency
coutrol algorithm. GTA submits the ticketing operations at the end.
if LI'M of its site applies the 2PL algorithm [13]. GTA main module
also handles the submission of compensating subtransactions with

the coordination of CC manager.
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— CC Manager : It is the local agent part of the concurrency control
algorithm implemented in GTM. It carries out the global concur-

rency control for subtransactions at its site.

o Network Manager @ It models the network resource between the (VN
and GTA. We defined MessTransTime parameter to simulate the time
duration to transmit a message hetween GTM and GTA. MessTransTime
is assumed to be the same for cach local site. We also assumed that a
subtransaction is transmitted in one MessTransTime. CPUMessTime is

defined to simulate CPU message coding-decoding time.

o Local Transaction Manager (LTM) : LT\ accepts and models the ex-
ecution of local transactions and subtransactions. It consists of three

modules.

— Main Module : Main module models the local transaction execution
with the help of CC manager and data manager.

- CC manager : CC manager models the local concurrency control
algorithm as well as the local deadlock detection algorithm.

— Data manager : Data manager models the data accessing and pro-

cessing by interacting with the resource manager and the main mod-

ule of L'TM.

e Resource manager : This component models the CPU and disk accesses

at 1ts site.

Resource Parameters | Meaning ,

C'PUMessTane ('PU message coding-decoding time in seconds
MessTransTone Message transmission time in seconds
LResowrce Unil Number ol resource units at each site
LCPUTime CPU time for processing one page

LDiskTime Disk time for read/write of one page
(rSCTime IExecution time of GSG algorithm in OTM

Table 14.5: Resource parameters

Disk and CPU resource parameters are included in Table L.3. A resource
unit is modeled as one CPU and two disks as in [1]. Each site has equal number

of resources which is determined with the LResourceUnit parameter. We also
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employ a parameter to model the execution time of a global serialization graph
aleorithim in OTM.



Chapter 5

Simulation Experiments

5.1 Introduction

Our performance model has been implemented on a simulation testbed using
the C'SIM simulation package from MCC [23]. We can categorize our experi-
ments in four sections:

¢ Experiments on the classical transaction model.

e Experiments on the extended transaction model.

e lixperiments to evaluate global deadlock detection algorithins hased on

the extended model.

o Performance comparison of classical transaction model with the extended

transaction model.
Before providing the details of each experiment, we will first discuss the
algorithm settings, performance metrics, and general parameter settings.
5.1.1 Algorithm Settings

In our performance model, we do not restrict local concurrency control algo-

rithms to be either strict or cascadeless. Since we have aimed to cover a wide

36
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range ol local concurrency control algorithms, we have employed the basic
2PL concurrency control algorithm in each LDBS, which is not restricted to
strict or cascadeless schedules. Using a locking-based local concurrency control
algorithm also gave ns a chance to model and compare the global deadlock de-
tection algorithms besides evaluating O1M and ("I'NM. We have implemented
the transaction wait-for graph algorithm [3] to handle local deadlock situations.
[ the performance comparison of OTM and ("I'M algorithms on the classi-
cal global transaction model, we have implemented a simple global time-out
method. In this method, the time-out period was calculated using the lormula
below [11]:

TimeoutPertod = Global ResponseTime + 2 * std(Global Response T ime)

where GlobalResponseTime is the average response time of a global trans-
action. and std( GlobalResponseTime) is the standard deviation of the global
response time. GlobalResponseTime changes dynamicly during the simulation

and reflects the on-line estimation of global transaction execution time.

['or the extended transaction model, we have also implemented the extended
global time-out method mentioned in Section 3.4. In the extended time-out
method, time-out period of each subtransaction was also calculated using the
same formula given above by replacing GlobalResponse Time with subtransac-

tion response time.

5.1.2 Performance Metrics

Primary and secondary performance metrics emploved in the experiments
are provided in Table 5.1. Our experimental results present the mean values ot
the performance measures. We looked only the statistically significant perfor-
mance differences for the evalnation of performance results. In all experiments.
throughputs are measured over a long simulation time periods. The response
times are measured between the transaction submission time and the trans-
action commitment time. Local throughputs are computed as the averages of
all local sites. Local throughputs and response times are measured to investi-
gate the elffects of global transactions on local transactions. Since the global
aborts are composed of validation aborts, global time-out aborts, and local sites
aborts, we also examined the each category of aborts separately. Compensated

transaction ratios are analyzed to comment on the compensatable transaction
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Performance Metrics Meaning

Cilobal/local throughput Number of global/local transactions completed
per second

(/lobal/local response lime | Average response time measured between the
global/local transaction submission time

and completion tune

(lobal/local abort ratio Total number of global/local transaction aborts
over the total global/local transactions
submitted to the svstem

Cilobal/local conflict ratio | Total number of global/local access conllicts
over the total number of global/local
~access requests

Global/local blocking time | Average global/local transaction

waiting time per page request

Resource Utilization Fraction of time that the disk

resources are busy

Table 5.1: Performance metrics

execution in the extended transaction model. False, global deadlock ratio was
measured in the performance analysis of deadlock detection algorithms. We

examined the disk IJO utilization to determine the rate of resource contention.

System Parameters | Settings
NumSites 3 sites

LDBSize 1000 page per site
CPUMessTime 0.02 seconds
MessTransTime 0.05 seconds
LCPUTime 0.10 seconds
LDiskTime 0.20 milliseconds

Table 5.2: System parameter settings

5.1.3 General Parameter Settings

Svstem parameter settings can be seen in Table 5.2. The parameters ave
common in all performance experiments unless specified otherwise. The lo-
cal database size was set to 1000 pages to create high levels of conflicts in the
system. Number of sites was set to 8 to have a reasonable number of sites for

the extended transaction model. All the other system parameter values chosen
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Parameters Settings

G NumClient 20 clients
LNumClient 30 clients
LITolRegion 0.5
LTranMinlen S pages
LTranMaxLen S pages
LHotAccesProb 0.5

LYV rite Prob 0.25
LThinkTime 0.0 second
LRestartTime LResponseTime
TreeHeight 1,3

NumChild 2

G TranMinLen S pages

G TranMaxLen S pages

G HotAccessProb 0.5

G WriteProb 0.25
GThinkTime 0.0 second

G ValRestartTime 0.0 second

G TimeoutRestart Time | GResponseTime
GRestartTime GResponseTime
GSGTime 0.0 second
LResourcelUnit 1.20

Table 5.3: General Workload parameter settings

are similar to those used in [1], [14] to be able to obtain competable results
with the previous performance studies.

The general workload parameter settings ave listed in Table 5.3. Those
are the standard parameter settings of all experiments. Their variations ivill
be given with the description of the relevant sections. The general experi-
ments were performed on both low and high resource contentions by setting
L.ResourceUnit to 20 and 1, respectively. It was observed from the simulation
results that, 20 resource units were enough to avoid resource contention. The
local, global transaction lengths and write probabilities were selected to create
reasonable number of transaction conflicts. Those values are also similar to
those used in the previous performance models. Tor the classical transaction
model experiments we set ThreeHeight to 1. I'or the other experiments, we set

1t to 3.

- Our preliminary experiment results showed that an adaptive restart delay
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depending on the observed average response time is the best for the aborted
Lransactions. Tor an aborted global transaction, we set the validation abort
delay to 0, since the global transaction alrcady completed all its operations
before heing validated. Therefore there is no need to wait for resubmission.
The preliminary experiment results also confirm that no <.lcla._yim;.l'or valida-
tion aborts provides the best performance. However, for the timeont and local
site aborts, an adaptive delay based on the committed global transaction re-
sponse time performs slightly better than zero delay especially on high data
conflict situations. An adaptive delay of one global response time period gave
less global timeout and local abort ratios. Therelore, we chose to employ a
dynamicly changing restart delay value for the timeout and local site abort
situations ol global transactions. In addition, these restart times do not aflect
the performance in low abort and data conflict ratios. We did not employ
parameters related to the hot region in standard experiments. since we did not

want to create high levels of data conflicts in those experiments.

5.2 Experiments on the Classical Transaction

Model

In the following experiments we compare OTM and CTM algorithms using the
classical transaction model. The simple global time-out method is employed
for global deadlock detection. We vary one of the parameters given in Table

5.1 at each experiment, and examine the performance results.

Variable Parameters | Settings

L1Vrite Prob 0.0. 0.25. 0.50. 0.75. 1.0
GWriteProb 0.0. 0.23, 0.50, 0.75. 1.0
G TranMinLen 201, 8. 12, 16 pages

G TranMaxLen 2,108, 12, 16 pages

Table 5.:4: Variable workload parameter settings for classical transaction model

experiments
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I"igure 5.1: Global throughput vs. GWriteProb, LResourceUnit=20
5.2.1 The Impact of Data Contention

We have examined the effects of data contention in both high and low resource
contention situations. The variation in the data contention was achieved by
changing the value of GWriteProb. First, we set LResourcelUnit to 20 to iso-
late the effects of resource contention. Figure 5.1 shows the global throughput
of the two algorithms. When the data contention is very low, OTM performs
hetter than CTM since the global blocking and conflict ratios are low. This sit-
uation minimizes the variation of subtransaction completion time which also
decreases the validation aborts. Further, since we isolate the resource con-
tention. under low conlflict ratios the throughput loss from re-submission ol
aborted transactions is at the minimum values which is in favour of OTM. On.
the other hand. if we do not ignore the execution time of the GSG algorithm.
O'TM loses its performance advantage to CTN even for the low data conflict
ratios. Pligure 3.2 compares the global throughput of the two algorithms when

GSGTime 1s set to 0.05 second.

As the data contention increases, OTM is no longer the winner. because
ol the high validation aborts. Finally, when the data contention is very high
("I'M sulfers from global and local deadlocks. The reason for this result is that
a subtransaction that completes its data operations has to wait its siblings to
cuter the ready-to-take-a-ticket state before taking its ticket and releasing its

locks. Hence the blocking times for both subtransactions and local transactions
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Figure 5.2 Global throughput vs. GWriteProb, LResourceUnit=20. GSG-
Time=0.05

increase which reduces the CTM throughput. On the other hand, OTM sub-
mits the ticketing operation immediately after the subtransaction completes
its data operations. Therefore, the global conflict ratio and the blocking times
are smaller with OTM. Figures 5.3 and 5.4 confirm the OTM'’s lower global

blocking times and conflict ratios under high data contention.
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Figure 5.3: Global blocking time vs. GWriteProb, LResourcelnit=20

[Migure 5.5 illustrates the total global abort ratios of OTM and CTM. OTM
has a higher abort ratio due to validation aborts. Figures 5.6 and 5.7 give the
individual abort ratios of two algorithms respectively. The high abort ratio

of OTM algorithm is mainly due to local and validation aborts. At higher



CHAPTER 5. SIMULATION EXPERIMENTS

Global Conflict Ratio

0.060 T T
1
/l/ —7
o
/’
0.050 r =
0.040 - I//
0.030 N
&—r=n CTM
. - OTM
0.020 % ' : !
0.00 0.25 0.50 0.75 1.00
GWriteProb

Figure 3.4: Global conflict ratio vs. GWriteProb, LResourceUnit=20

data conflicts, the local abort ratio dominates the other abort ratios for both

algorithms. CTM has higher timeout and local abort ratios compared to OTM.
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Figure 5.5: Global abort ratio vs. GWriteProb, LResourceUnit=20

("I'Ms poor performance under high data conflicts becomes more clear

when we repeat the same experiment with the setting of LHotRegion to 0.2.

[Migure 5.8 shows the comparison of the global throughput ratios when the data

coutention among transactions is increased with the new setting of LHotRegion.
For the GWriteProb values that are greater than 0.25, CTM faces a great

performance loss due to very high rate of local and timeout aborts. We can
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conclude that C'TM is much more sensitive to data contention than OTM.

Figure 5.9 compares the global abort ratios of two algorithms.
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[igure 5.7: Global aborts of CTM, LResourceUnit=20

OTM’s problem with large amount of validation aborts is more visible when
we look at the situation where the number of children in a global transaction is
. As we can see from Figure 5.10, OTM performs very bad since around halt
of the submitted transactions are aborted. Figure 5.11 shows the global abort
ratio versus update probability with 4 children. It is very difficult to achieve the

situation that every child subtransaction is serialized at the same order when
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the number of subtransactions in a global transaction increases. CTM is the
algorithm of choice when the number of sites that a global transaction accesses
is Jarge. But again with high data conflict rates, CTM’s performance drops
rapidly as a vesult of the increase in the total global blocking time and conflict
ratio. This sitnation also increases the local aborts of global transactions.
becanse the local abort probability of a global transaction is higher with a

greater munber of subtransactions.
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Iigure 5.8: Global throughput vs. GWriteProb. LResourceUnit=20. LHotRe-
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Figure 5.9: Global abort ratio vs. GWriteProb, LResourceUnit=20. LIlotRe-
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Figure 5.10: Global throughput vs. GWriteProb, NumChild=:, LResourcel:-
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Figure 5.11: Global abort ratio vs. GWriteProb, Nl.ll]l(_.(-llil(l=4, LResourcel -
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5.2.2 The Impact of Resource Contention

In this experiment, we set LResourceUnit to 1 and by changing the update
probability, we examine the effects of data contention under the condition that
a resonrce contention also exists. Figures 5.12 compares global throughput
values of the two algorithms. Although CTM throughput decreases faster than
O'TM as the data contention increases, CTM performs well in the overall. Un-
der high resource contentions, the cost of aborting a transaction is higher, con-
sequently validation aborts significantly affect the global throughput of OTM.
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Figure 5.12: Global throughput vs. GWriteProb, LResourceUnit=1

0.40 T T T

. &—=a CTM

0.30 - G—8 OTM 4

0.20

Global Abort Ratio

0.00 0.25 0.50 0.75 1.00
GWriteProb

Figure 5.13: Global abort ratio vs. GWriteProb, LResourcelnit=1

The abort vatios of OTM and CTM are plotted in IMigure 5.13. The trends
of the abort ratios are nearly the same as the situation where there exists no
resource contention (Figure 5.3). In addition to this. as the data contention
increases, we observed slightly higher abort ratios under high resource cou-

tention.

When we compare OTM and CTM by setting NumChild to - in Figure 5.1 1.
(‘"I'M’s superior performance under low resource contention is noticed clearly.
Waste of resources due to restarts negatively alfects the OTM's perlormance.
OTM has a chance to perform better only when the CTM’s throughput sharply

decreases with the high rate of data conflicts.
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Figure 5.14: Global throughput vs. GWriteProb, NumChild=4, LResourcel -
nit=1

5.2.3 The Impact of Transaction Length
[n this experiment, the performance of two algorithms was measured by vary-

ing the subtransaction length from 2 pages to 16 pages. Again the standard

workload parameter values in Table 3.3 were used throughout this experiment.
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IPigure 5.15: Global throughput vs. transaction length, LResourcelUnit=20

ligure 5.15 shows the thronghput of the algorithms under low resource
contention. When the system has no resource problenr and the subtransaction
length is smaller than 8, OTM performs better. This result is not surprising
since under low resource contention the response time of the global transactions
is short; consequently, restarts with OTM have a little effect on the throughput.
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On the other hand, since CTM is conservative about ticketing time, response
time of a global transaction becomes larger due to the extra waiting time before
ticketing. As the subtransaction length increases. OTM’s throughput decreases
sharply below ("IMs thronghput. Finally, with very large transaction lenaths,
in addition to the transaction execution tine, the data access conflict ratio also
increases which makes C'I'M behave worse. Explanation of this follows that of

Fignre 5.1.
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Figure 5.16: Global throughput vs. transaction length, LResourcelUnit=1
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Figure 5.17: Global abort ratio vs. transaction length, LResourcellnit=20

When we look at the high resource contention situation in Figure 5.10.
OTM losses its advantage with the increase in resource costs. CTM produces
higher throughput rate than OTM in the overall, although it suffers from long

transaction waiting as the subtransaction length increases.
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Figures 5.17 and 5.18 illustrate the total global abort ratios on low and high
resource situations. OTM has an higher abort rate in both figures as expected
die to its GSG aborts. The abort rate of both algorithms slightly increases as

a function of the subtransaction length.
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I'igure 5.18: Global abort ratio vs. transaction length. LResourceUnit=1

5.2.4 The Impact of Local Transaction Behavior on

Global Transactions

The effects of local transaction behavior on global transactions were tested by
changing the update probability of local transactions. We have performed the
experiments by varying LWriteProb from 0 to | using the standard workload

parameter values and setting LResourceUnit to L.

We can understand from Figure 5.19 that both algorithms™ performance de-
creases when the local transactions create more conflicts and hold the resources
longer time. CTM'’s performance is more sensitive to the local transaction be-
havior. As the update probability of local transactions increases, the C'I'M’s
performance sharply decreases. When we look at the global-abort ratios in
I'igure 5.20, both OTM and CTM abort ratios steadily increase as the local
data access conflicts increase. The increase in abort ratios is mainly due to
the local aborts because of the deadlock situations between global transactions

and local transactions.
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Figure 5.19: Global throughput vs. LWriteProb, LResourceUnit=1
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Figure 5.20: Global abort ratio vs. LWriteProb, LResourcelnit=1

5.2.5 Algorithms’ Impact on Local Transactions

In the experiments discussed above, we also examined the impact of OTM and
("I'M algorithims on the local database performance. We can understand from
gure 5.21 that under no resource contention, as we increase G:WriteProb of
¢global transactions, local throughput decreases for both algorithms. However,
OTM has better performance in terms of local throughput under all levels of
data conflicts. The reason for this result is that, with OTM, global transactions

do not hold page locks for very long periods. Global transactions take their
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Figure 5.21: Local throughput vs. GWriteProb, LResourceUnit=20

tickets and release their locks as

thus the local blocking time and

soon as they complete their data operations,

conflict ratio are minimized.
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Figure 5.22: Local blocking time vs. GWriteProb, LResourceUnit=20

On the other hand, CTM follows just the opposite way and preters to hold

locks until it becomes sure about the serialization order of subtransactions

nsing the take-a-ticket command. Figures 5.22 and 5.23 confirm our intuition

about the worse performance of CTM for local transactions.

Especially at

high cdata contention, local transactions have large average blocking times and

counflict ratios.
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Figure 5.23: Local conflict ratio vs. GWriteProb, LResourceUnit=20
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Figure 5.24: Local throughput vs. GWriteProb, LResourceUnit=1, LHotRe-
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The impact of CTM algorithm on local transaction throughput is much
worse when we create high levels of data conflict by setting LHotRegion pa-
rameter to 0.2. In Figure 5.24, the local throughput decreases very sharply with
CTM algorithm, since as the number of global and local deadlocks increases. re-
sponse time of a local transaction becomes longer. From the the subtransaction
length experiments, we can observe similar results. Local transaction behavior
in response to subtransaction length is plotted in ngure 5.25. As the global
subtransaction length increases the local throughput decreases. However, the

local transaction response time is not very sensitive to varying subtransaction
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length with OTM. On the other hand, CTM does not perform well when the
subtransaction length is long.
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Figure 5.25: Local throughput vs. transaction length, LResourceUnit=20
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When we look at the local abort ratios of two algorithms in Figure 5.26, at
high data contention, OTM has higher local abort ratio due to cascade aborts
caused by validation aborts. Figure 5.27 shows the local abort ratios as the sub-
transaction length increases. Although overall performance trends are similar,
at very large subtransaction lengths, CTM causes more local deadlocks. The
reasons for this result is that long transactions increase both the transaction

blocking times and data access conflict rates.
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Overall, our observations indicate that we cannot ignore the global concur-
rency control algorithms’ impact on the local system performance. Algorithms
like C"I'M that holds the data resources for longer periods of time, have a

sienificant effect on the performance of the local transactions.
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Figure 5.27: Local abort ratio vs. transaction length, LResourceUnit=20

5.3 Experiments on the Extended Global Tran-

saction Model

In the experiments of this section, we have iuvestigated the performance im-
pact-of the extended OTM and CTM algorithrs and the extended transaction
model characteristics. We set TreeHeight to 3 and NumChild to 2 where at
most 8 global subtransactions can be executed in a global transaction. [n all
of these experiments, we limited the number of subtransactions required to be
committed in a global transaction to achieve consistent global throughput and
response times measurements. The other workload parameters of these exper-
iments are the same as the settings given in Table 5.3. For global deadlock

detection, simple global time-out mechanism was applied.

5.3.1 The Impact of Subtransaction Dependencies

In this set of experiments , we have investigated the effects of each depen-

dency type individually. For the alternative and preference dependencies, one



CHAPTER 5. SIMULATION EXPERIMENTS 56

Variable Parameters | Settings

NoDependencyProb | 1.00, 0.75, 0.73, 0.50, 0.50, 0.253, 0.25, 0.00, 0.00
Preference Prob 0.00, 0.25, 0.00, 0.50, 0.00, 0.73, 0.00, 1.00, 0.00
Alternative Prob 0.00, 0.00, 0.25, 0.00. 0.50, 0.00, 0.75. 0.00, 1.00

Table 5.5: Parameter settings for the analysis of the dependency relations

of the dependency probabilities was varied against the NoDependencyProb pa-
rameter and the throughput and average response time of global transactions
were measured. Table 5.5 shows a sample of dependency parameter settings
for this experiment. As the probability of each dependency tvpe increases, the
number of subtransactions executed in the system also increases. However,
the number of subtransactions to be committed is limited to 2 in all settings.

All of these experiments were conducted under both high and low resource

contention.
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Figure 3.28: Global throughput vs. AlternativeProb, LResourcelUnit=20

Figure 5.28 illustrates the effects of the alternative relation on the perfor-
maunce of OTM and CTM when there is no resource contention. The through-
put of the system increases with both algorithms as the number of alternative
transactions in a global transaction increases. However, OTM shows a sharp
climbing and achieves better performance when the AlternativeProb is around
0.5. As we further increase AlternativeProb, both algorithms perform worse,
because the additional alternative subtransactions introduce no advantage, and
even unnecessarily increase the workload of the system. Also, alternative sub-
transactions execute more data operations which increases the global conflict
probability. Consequently, throughput of both CTM and OTM are negatively
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alfected when we increase the number of alternative subtransactions. Figure
5.29 illustrates the total global abort ratios of both algorithms. The rapid
decrease in global abort ratio seems to be the main reason for both algoritlims

to perform better when AlternativelProb is hetween 0 and 0.53.
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I'igure 5.29: Global abort ratio vs. AlternativeProb, LResourceUnit=20

.

[f we concentrate on a situation where there exists a high resource con-
tention (IMigure 5.30). as AlternativeProb increases. both algorithms’ perfor-
mance becomes better. If a global transaction has more alternative subtrans-
actions. it has a chance to select the one which has a shorter response time.
Besides. when an alternative relation is specified, the abortion of a single sub-
transaction does not lead to an immediate abortion of its parent transaction.
As we increase AlternativeProb beyond 0.5, a global transaction accesses more
resotrces and ereates more conflicts which results in a performance loss for hoth
algorithms. Nevertheless. the global throughput of the system is not helow the

situation where no alternative relation is specified.

When we have examined the preference dependency’s effects on the al-
eorithms™ performance, the results obtained were different from that of the
alternative dependency. TFigure 5.31 illustrates the global throughput versus
PrelerenceProb under low resource contention. Initially, the throughput of
both algorithms slightly increases but this does not last long. As the number
of preferred subtransactions increases, OTM’s and C'T'N['s throughputs sharply
decrease. The reason for this result is that, in preference relation GTM sub-
mits all of the alternative subtransactions, but waits for the preferred one.
Executed alternative subtransactions are not committed unless the preferred

one is aborted by the local site. Therefore, subtransactions which are not the
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preferred ones cannot minimize their parents’ response time. although they

have completed their data operations. As we can understand from Figure 5.32.

the global abort ratios slightly decrease as the preference velation probability

increases. This result shows that the abort possibility of preferred transac-

tions is low which makes most of the alternative subtransactions unnecessary.

In addition to these, with CTM algorithm. alternative subtransactions do not

release their locks before the preferred one enters to the ready-to-take-a-ticket
state. Especially when PreferenceProb is high, holding the data locks a long
period of timne negatively affects CTM’s performance. This is the main reason

that throughout of CTM abruptly drops below thé throughput of OTM as
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PreferenceProb increases.
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igure 5.32: Global abort ratio vs. PreferenceProb, LResourceUnit=20
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Figure 5.33: Global throughput vs. GWriteProb, precedence relation. LRe-
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To analyze the impact of precedence relation, we set both PrecedencelProb
and TreeHeight to 1 and by changing GWriteProb, we examined the behavior
of OTM and CTM algorithms. Figure 3.33 shows the global throughput of
O'I'M and C'TM under no resource contention. If the dependency relation
15 precedence, the response time of a global transaction is longer than the
response time of transactions with no-dependency relation. Hence, the abortion
cost of a global transaction is higher. When there is no resource contention,
C'TM performs better than OTM under low data contention. As the data

contention increases, CTM’s performance rapidly decreases due to the same
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reasons mentioned in the section of the classical transaction model experiments.
Abort ratios of two algorithm are plotted in Figure 5.34. OTM suffers from
validation aborts as expected. Under the high resource contention. OTM's
poor performance is also verified in Figure 5.35. All of these results show that
zlobal transactions with precedence relation negatively allect the thronghput

of the systems in which restart rate is higher.
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Figure 3.34: Global abort ratio vs. GWriteProb. precedence relation. LRe-
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5.3.2 The Impact of Commit Independent Subtransac-

tions

[u this set of experiments, we have investigated how compensatable and re-
triable subtransactions alfect the overall performance. Varying Compensat-
ableProh and RetriableProb parameters against OrdinaryProly parameter has
provided us various situations to evaluate the effects of commit independent,
subtransaction types. The settings of the experiments on the commit inde-
pendent types are listed in Table 5.6. To evaluate the performance impact of
commit-independent subtransactions, we employ classical transaction model
by setting Treelleight and NoDependencyProb to L. Thus, we isolate the el-
[ects of subtransaction dependencies. In these experiments, we also isolate the

impact ol resource contention by setting LResourceUnit to 20.

Parameters Settings

OrdinaryProb 1.00. 0.75. 0.75, 0.50. 0.50, 0.25. 0.25, 0.00, 0.00
C'ompensatableProb | 0.00, 0.25, 0.00, 0.50, 0.00. 0.75, 0.00, 1.00, 0.00
Retriable Prob 0.00, 0.00. 0.25. 0.00, 0.50, 0.00, 0.75. 0.00. 1.00

Table 5.6: Parameter settings for the analysis of commit-independent tran-
saction types

Figure 5.36 shows the effects of retriable transactions to the performance
of OTM and CTM. In general both algorithms’ performance slightly increases
as the probability of retriable transactions increases. It can be said that. the
elobal throughput is not very sensitive to the RetriableProb. Since the sub-
transactions executed at the same site have to access the same data item to
take their tickets, the retriable subtransactions indirectly affect performance
of the other subtransactions executed at the same site. Especially, with the
("' algorithm, if GTM decides to commit a retriable subtransaction. other
subtransactions executing at the same site has to wait for that subtransaction
to take its ticket. Figure 5.37 represents the global abort ratios of the two
algorithms. OTM’s abort ratio increases with increasing RetriableProb. The
reason for this result is that OTM uses GSG validation mechanism to ensure
that no other transaction is serialized between a global transaction and its

retriable subtransaction.
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Iigure 5.36: Global throughput vs. RetriableProb, LResourceUnit=20
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Figure 5.37: Global abort ratio vs. RetriableProb, LResourcelinit=20

The impact of compensatable transactions on the global throughput is il-
lustrated in Figure 5.338. CTM’s performance is not very sensitive to the com-
pensatable transactions, while OTM behaves worse as we increase (‘ompen-
satableProb. Compensating transactions have a negative effect on the overall
performance of the OTM algorithm. Like retriable transactions, due to the
ticketing approach, compensatable transactions affect the execution of other
subtransactions at their sites. With the OTM algorithm, GTA aborts the sub-
transactions that have obtained higher ticket values than the compensatable
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transaction before its parents commits. Therefore, these additional aborts to
ensure serializability of compensatable subtransactions decrease the through-
pit of OTM. Global abort ratios of the two algorithms plotted in Figure 5.39

conlirm this observation.
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Figure 5.38: Global throughput vs. CompensatableProb, LResourcelnit=20
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Figure 5.39: Global abort ratio vs. CompensatableProb. LResourcelUnit=20

We should not expect overall performance gains from the compensatable
transactions since the response time of a global transaction does not depend on
the execution of its compensatable children. However, from the local database

point of view, early committed transactions can improve the local transaction
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throughput as the locks are released earlier. This prediction is confirmed by

the experiments of Section 5.3.-1.

5.3.3 The Impact of Data Contention

I order to examine the impact of data contention on the performance of the
extended transaction model, we have compared alternative, prelerence, and
no-dependency relations by varving GWriteProbh. In this experiment. we have
examined the performance results with three different workloads: the one that
only contains Nodependency relation, the one with 0.5 AlternativeProh and

the one with 0.5 PreferenceProb.
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Figure 5.40: Global throughput vs. GWriteProb, CTM. LResourcelUnit=20

Figures 5.40 and 5.11 illustrate throughput of each dependency type with
C'TM and OTM, respectively. From these figures, we can understand that
elobal transactions that have alternative subtransactions provide better per-
formance with both OTM and CTM. Transactions with preference relation
perform better than the transactions that has no dependency when OTM is
cmployed for global concurrency control. Coutrary, throughput of the trans-
actions with the preference relation face a sharp decrease when C("I'M is the
algorithm of choice. This is due to the fact that all of the alternative sub-.
transactions do not release their locks until the preferred one completes its
execution. On the other hand, with OTM, alternative subtransactions do not

have to wait for preferred ones to release their locks. Figures 5.42 and 5.3



CHAPTLR 5.

SIMULATION EXPERIMENTS

6.0 T
L o&—a OTM No-Dependency
5.0 '.'\-‘\' — o—@ OTM Alternative 4
JS \“\\ o—o OTM Preference
S 40 b \ ~.
a *v . o e
= N
3 NV""::M\ “““““
E 3.0 TR e
= ST 7
= T S
R S
8 20+ I ¢
b
)
1.0 |-
0.0 - y :
0.00 0.25 0.50 0.75 1.00
GWriteProb

I"tgure 5.1 Global throughput vs. GWriteProb, OTM, LResourcel nit=20

show global abort ratios obtained with these experiments. The low abort ra-

tios of the global transactions with the alternative relation explain their hetter

performance.

0.40 T T
a&—a CTM No-Dependency
3—=a CTM Alternative
o—o CTM Preference

0.30

2
=
o ey
2 0.20
= -t
0
- i
0.10 " S -
/ //O
P /-%”/
h— o

0.00 hewm======r=o =2 T :

0.00 0.25 0.50 0.75
GWriteProb

Figure 5..12: Global abort ratio vs. GWriteProb, CTM, LResourcelinit=20

5.3.4 The Impact of Extended Transactions on Local

Transactions

Il we look at the performance impact of the alternative and the preference
dependencies from the local database point of view, the local throughput is
negatively affected for both OTM and CTM as shown in Figures 5.44 and 5.45.
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Figure 5.43: Global abort ratio vs. GWriteProb, OTM, LResourceUnit=20

The reason for this result is that global transactions with alternative subtrans-

actions access more data resources and create more conflicts with the local
transactions. In general, OTM performs better than CTM in terms of local

transaction throughput. For the alternative relation, OTM’s local throughput

performance also drops due to the cascading aborts of local transactions as a

results of the large amount of conflicts with alternative subtransactions.
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igure 5.44: Local throughput vs. AlternativeProb, LResourcelinit=20

When we consider the impact of precedence relation on the local trans-
action throughput, as we increase GWriteProb (Figure 5.46), OTM performs

better than CTM since it releases allocated resources of previously executed
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transactions before submitting the next one. In other words, OTM leaves more

resources for local transactions compared to CTM.
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Figure 5.16: Local throughput vs. GWriteProb, precedence relation, LRe-
sourcel nit=20

When we look at retriable transactions’ impact on the local throughput
in Figure 5.47, the throughput with both algorithms slightly decreases as the
ratio of retriable transaction increases. However, C'TNM's local throughput is
not affected as much as that of OTM. The situation is not the same when
we look at the compensatable transactions™ impact on the local transactions.
Figure 5.48 compares OTM’s and CTM’s local throughput as the ratio of com-

pensatable transactions increases. Again, the performance with CTM is not
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much affected by the compensatable transactions. On the other hand, we can
observe an improvement in local transaction performance with OTM, as we
increase CompensatinglProb from 0 to 0.5. As we further increase the Com-

pensatingProb. GTA aborts of OTM algorithm reduces the local thronghput.
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Figure 5.47: Local throughput vs. RetriableProb, LResourceUnit=20

8.30 T T T
s—a CTM

8.20 - =, 2 OTM 4
=]
a E-)_”,/a'/a\e\
g \\CJ
£ 810t -
—
<
[&]
o
3

S .
8.00 - = = o i
7.90 - : .
0.00 0.25 0.50 0.75 1.00

CompensatableProb

IPigure 5.48: Local throughput vs. CompensatableProb, LResourceUnit=20
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5.4 Experiments on Global Deadlock Detec-
tion Algorithms

In the experiments of this section, we have examined the effects of deadlock
detection algorithms on the performance of the system. The basic timeout. the
extended timeout, and the PCG algorithins have been compared. (TN has
been employed in these experiments since it has a higher rate of global deadlock
situations. In all of these experiments the global transaction parameter settings

were the same as the ones in Table 3.3.
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Figure 35.49:  Deadlock detection algorithms, global throughput vs.

GWriteProb, LResourcelUnit=20
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Figure 5.50: Deadlock detection algorithms, global abort ratio vs. GWriteProb,
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[n data contention experiments, we varied GWriteProb parameter to esti-
mate the performance impact of three algorithms under no resource contention.
Figure 5.19 shows the performance results obtained with the three algorithms
as a [unction of increasing data contention. Initially. all the aleorithms’ be-
haviors are similar to cach other, since the timeout abort ratios are very small
under low data contentions. PCG algorithm performs slightly better than the
others when the data contention becomes higher. In spite of this. PCG algo-
vithnm cannot achieve huge performance improvements since its performance is
also dependent on the timeout interval used to check deadlock situation. There
is no considerable performance difference between the basic and extended time-
ont algorithms, since both of them solve the deadlock problem by emploving a
timeout period. PCG’s better performance under very high data contention is

also validated by the global abort ratios plotted in Figure 5.30.
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Figure 3.51: Deadlock detection algorithms, global throughput vs. transaction
length. LResourceUnit=20

We have also investigated how the performance of each algorithm is sen-
sitive to the global subtransaction length. IMigure 5.51 shows the behavior of
three algorithms as the transaction length is increased. The results are similar
to those of the data contention experiments. The advantage of PCG algorithm
is visible only when the subtransaction length is long. If we look at the per-
formance impact of the deadlock detection algorithrms on local transactions in
Migures 5.52 and 5.53, the performance improvement of PCG over the others

can be notified more clearly.
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5.5 Performance Comparison of the Classi-
cal Transaction Model and the Extended
Transaction Model

The final set of experiments have been performed for the comparison ol classical

transaction model and the extended transaction model. In these experiments,

the performance of extended global transactions and the performance of their

semantically equivalent classical transactions have been compared.
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=1
o

Parameters Settings
TreeHeight 3
NumChild 2
NoDcpendeneyProb | 0.31
Precedence Prob 0.0
Preference Prob 0.33
Allernative Prob 0.33
OrdinaryProb L0
CompensatableProb | 0.0
Retriable Prob 0.0

Table 5.7: Global transaction parameter settings for the experiments that com-
pare classical transaction model and extended transaction model

We implemented a semantic analyzer inside the Global Transaction Gener-
ator (GTG) to capture the semantics beyond the extended global transactions.
An extended global transaction is created by using the parameter values listed
in Table 5.7, and then the analyzer parses that extended transaction and cre-
ates a semantically equivalent set of classical global transactions for submission.
(TG semantic analyzer also coordinates the submission of global transactions
from the corresponding set of transactions according to the GTM's abort and
commit response on the previously submitted transaction. We emploved the
siple global time-out mechanism for the execution of both the classical an

the extended transactions in order to be consistent in performance evaluation.

In the first set of experiments. we compared the classical transaction model
and the extended transaction model with both CTM and OTM algorithms un-
der no resource contention. Figure 5.54 illustrates the variation of the global
thronghput as the data contention increases. Initially, both C'TM and OTM
perform better on the classical global transaction model, since the additional
characteristics of the extended model do not introduce any advantages in a
situation where global conflict ratios and abort possibilities are low. But as
(iWriteProb increases the situation changes. \While the classical transaction
model shows a heavy performance loss due to the high abort ratio. the ex-
tended transaction model minimize the global aborts by executing alternative
subtransactions. The global abort ratio values are shown in Iligure 5.55. Low
elobal abort ratio of CTM and OTM on the extended transaction model verifies

the appropriateness of the extended transaction model.
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Figure 5.54: Global throughput vs. GWriteProb, LResourcelinit=20
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Figure 5.55: Global abort ratio vs. GWriteProb, LResourceUnit=20

When we repeat this experiment by setting the NumSites parameter to 16,
thus reducing the conflicts among the subtransactions of global transactions.
('T'M and OTM algorithms perform better in the overall. Figures 5.56 and 5.57
illustrate the global throughput and the abort ratios when we set NumSites
parameter to 16. In these figures we have also confirmed that CTM achieves

better performance than OTM algorithm.
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To examine the situations where the system has resource contention, we

repeated the above experiments by setting the number ol resource unit to I.

IFigure 5.58 illustrates the performance of OTM and CTM on both transaction

models. Under the high resource contention. OTM and CTM perform slightly

hotter with the classical transaction model than with the extended model.

Since the extended model is based on extra resource usage and the resources

are now restricted, additional properties of the extended transaction model

does not improve the performance.

Global abort ratios of the algorithms are

plotted in Figure 5.59. Again, OTM and CTM achieve low abort ratios tor the

extended transaction model.
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Il we compare the two global transaction models in terms of local trans-
actions. by looking at Figure 5.60 we can say that the extended transactions
have negative impact on the local throughput. The local throughput of both
algorithms decreases faster with the extended transaction model than with
the classical model. This is an expected result since the blocking time of the
local transactions increases as the global transactions are allocated more ve-
source from the local sites. When the system has resource contention, again
the classical transaction model has higher local throughput than the extended
transaction model. Local throughput values of the system are plotted in Iigure

3.61. From the figure, we can also observe the worse performance of CTM for
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both transaction models while the data contention is increased.
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Chapter 6

Conclusions

[t 1s difficult to implement traditional transaction scheduling methods in a
multidatabase system (MDBS) due to the heterogeneity and autonomy of the
connected local sites. In this thesis, we introduced an extended transaction
model for MDBSs. The proposed transaction model covers nested transactions.
various dependency types among subtransactions, and commit-independent
transactions that make the model much more flexible and powerful than the
tracditional transaction model. The formulation of complex MDBS transaction
types can easily be accomplished with the extended semantics captured in the
model. The execution model does not make any asstunption regarding the con-
currency control protocols executed at the local sites connected to the MDBS.
The global serializability 1s ensured through the ticketing method proposed
by Georgakopoulos et al. [13]. Atomic commitment of global transactions is
provided through the use of two-phase commit (2PC') protocol. The blocking

effect of 2PC is reduced by executing commit independent transactions.

We handled the global deadlock problem by employing a time-out mech-
anisin for the execution of global transactions. A global deadlock detection
algorithm based on potential conflict graph (PCG) has been adopted to our
execution model to reduce unnecessary global aborts that can occur due to the

estimation errors with the time-out mechanism.

We also proposed a detailed simulation model of a MDBS to analyze the per-
formance of the proposed transaction model. Using this simulation model, first
the performance implications of the classical transaction model with both the
conservative ticket method (CTM) and the optimistic ticket method (CTM)

7
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have been investigated. [Experimental results show that CTM secems to be
the algorithm of choice when the hardware resources at local sites are lim-
ited. OTM does not vield better performance unless there exists high data
contention. Our observations indicate that with both algorithms, global trans-
actions negatively allect the performance ol local transactions. This impact is

more serious when (UM is employed.

With the second set of experiments, we have investigated the performance
impact ol the additional features of the extended transaction model with both
OTM and C'TM. We have observed that although the alternative subtrans-
actions introduce additional workload to the system, the global transactions
with alternative subtransactions perform better than the independent transac-
tions with both OTM and CTM algorithms. Unlike the alternative relation. the
preference relation does not vield significant throughput improvement since the
additional subtransactions do not provide any advantage unless the preferred

subtransactions are aborted.

When we have studied the impact of the precedence relation. we have seen
that the response times of global transactions with this tvpe of relation are
larger than that of global transactions with no-dependency. Clonsequently. the
cost of transaction abort is higher with the precedence relation which causes
OTM to perform worse than CTM.

The performance results obtained for commit-independent subtransactions
can be summarized as follows. While retriable transactions slightly improve
both algorithins™ global throughput, early committed compensable transactions
do not provide any performance advantage for global transactions. Neverthe-
less. the overall performance impact of commit-independent subtransactions is
not significant with either OTM or C'TM. |

When we have looked at the performance impact of extended transaction
characteristics from the local sites’ point of view, we have observed some per-
formance trade-offs hetween the local and the global transaction throughput.
As we introduce more additional features of the extended transaction model.
the Jocal transactions’ performance becomnes worse. This negative effect is morve
noticeable with CTM than that with OTM.

The performance implication of global deadlock detection algorithms has
heen analyzed with the third set of experiments. The considered algorithms

have not shown significant performance differences. The performance of PCG
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has been observed to be a little bit better than the other algorithms under high

lovels of data contention.

With the final set ol experiments, we have compared the performance of
the extended transaction model and the classical transaction model. We have
observed that under low resource contention, our extended transaction model
outperforms the classical transaction model as the data conflict ratio among
transactions becomes higher. The lower global abort ratio of the extended
transaction model is the main reason for its better performance. On the other
hand, the extended transaction model vields lower throughput for local trans-
actions. Therefore, our execution model mav not be suitable for the systems
in which the fraction of local transactions executed is much more than that of

global transactions.
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