
5--̂
·.,

Z
ti

!^-í
'-t)

.,
V

.

Г
-]

M
E

^3
ir-i

O

t>^»

Щ
m

v
4

rt Vf
i.%

wv. -í ·
t'-íT~á

‘‘^
l

<í
l̂»

0
P

í
S

l
^

*

H
i

c.
J

o
.V <, к 1

a
Ç

Ö

^^.1

>—
1

•b
-iI

:;;4
•v̂· .

br.:\

íü
)

ñ
'"

H
 1

C
 j.

1.
·

Ш

í
>'4

^

.VI

■Ц ■’-,
г-3

-

ж
U-...1

Vi
j

■“

·
^
-
 ■-

■І&Ч
rt»

*-----Λ
:.T«t:

I
7
~
^

·

^■4»je».
Щ

1

■

'T.' V·
Î

’w
'

ä

3. i
.
 J

»с*·-!

't̂ "
»
w
?

"ψ
~

^
:

V
3
.
J

;:г->уупі
"'*iS

.-■
*

¿
ä

s
T

-1

í
,

Î·»' и
Л

^
>

'^
3

r^íTi .·
4

—

«

s
;¿

5
4

5

TRANSACTION EXECUTION
IN

MULTIDATABASE SYSTEMS

A T H E S IS

S U B M I T T E D T O T H E D E P A R T M E N T O F C O M P U T E R

E N G I N E E R I N G A N D I N F O R M A T I O N S C I E N C E

A N D T H E I N S T I T U T E O F E N G I N E E R I N G A N D S C I E N C E

O F B I L K E N T U N I V E R S I T Y

IN P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S

F O R T H E D E G R E E O F

M A S T E R O F S C I E N C E

By

Tiniiigin Devirmi§

July, 1996

 ̂ /' '■ / /■ ^

C2 A
7 ^ .3

■ ь з
Û4S
^ e э é

£ 0 4 })

I certify that I have read this thesis and that in iny opinion it is
fully adequate, in scope and in quality, as a thesis for the degree
of Master of Science.

Asst. Prof. Dr. özgür Ulusoy (Principal Advisor)

I certify that I hcive read this thesis and that in rny opinion it is
fully adequate, in scope and in quality, as a thesis for the degree
of Master of Science.

Assoc. PfOT. Dr. Cevdet Aykanat

I certify thcit I have read this thesis and that in iny opinion it is
fully cidequate, in scope and in quality, as a thesis for the degree
of Master of Science. ’

Asst. Prof.'^Dr. Ilyas Çiçekli

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Bcir
Director of Institute of Engineering and Science

11

ABSTRACT

TRANSACTION EXECUTION

IN

MULTIDATABASE SYSTEMS

Timuçin Devirmiş

M.S. in Computer Engineering and Information Science

Advisor: Asst. Prof. Dr. Özgür Ulusoy
July, 1996

Most work in the multiclatabase systems (MDBSs) area has focused on the
issues of transaction management and concurrency control. It is difficult to
implement traditional transaction management techniques in a MDBS due to
the heterogeneity and autonomy of the connected local sites. In this thesis,
we present a new transaction execution model that captures the formalism
and semantics of various extended transaction models and adopts them to a
MDBS environment. The proposed model covers nested transactions, various
dejjendenc}' types among subtransactions, and commit-independent transac­
tions. The execution model does not make any assumption regarding the con­
currency control protocols executed at the local sites connected to the MDBS.

VVe also present a detailed simulation model of a MDBS to aiiiilyze the
performance of the proposed model. The performances of both the traditional
transaction model and the proposed transaction model are evaluated under
a range of workloads and system configurations. The performance impact of
global transactions’ behavior on local transactions is also discussed.

Keywords·. Multidatabases systems, distributed databases, transaction mo­
dels, performance evaluation.

Ill

ÖZET

ÇOKLU VERİTABANI SİSTEMLERİNDE

HAREKETLERİN İŞLETİLMESİ

Timuçin Devirmiş

Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Yrd. Doç. Dr. Özgür ülusoy
Temmuz, 1996

Çoklu veritabanı alanında yapılan çalışmalar genellikle hareketlerin yöneti­
mi ve kontrolü üzerine yoğunlaşmıştır. Klasik hareket yönetimi tekniklerini
çoklu veritabanı sistemlerinde uygulamak, sisteme katılan yerel veritabanları-
nm dışarıdan kontrol edilemeyişi ve heterojenliğinden dolayı çok zordur. Bu tez
çalışmasında, çoklu veritabanları ile ilgili, birçok genişletilmiş hareket model­
lerinin anlamsal özelliklerini ve formatını içeren yeni bir hareket modeli sunul­
maktadır. Önerilen model iç içe geçmiş hareket modellerini, alt hareketlerin
l:>a.ğıınlılıkla.rım ve ba.ğımsız sona erebilen hareket biçimlerini kapsamaktadır.
.Sunulan işletim modeli yerel veritabanları hakkında herhangi bir öngörü gerek­
tirmemektedir.

Önerilen hareket modelinin performans değerlendirilmesi için ctyrıca detaylı
bir simulasyon modeli de sunulmuştur. Simulasyon modeli kullanılarak, klasik
hareket modeli ile beraber önerilen modelin performans değerlendirmeleri yapıl­
mıştır. Yeterli sistem kaynakları olduğunda, önerilen hareket modelinin, klasik
hareket modelinden çok daha iyi sonuçlar verdiği gözlemlenmiştir. Yapılan
deneylerde, çoklu veritabanı hareketlerinin yerel hcireketler üzerindeki etkisi de
incelenmiştir.

Anahtar sözcükler: Çoklu veritabanı sistemleri, dağıtık veritabanları, hare­
ket modelleri, performans değerlendirmeleri.

IV

ACKNOWLEDGMENTS

I am very grateful to my supervisor, Assistant Professor Özgür Ulusoy for his
invaluable guidance and motivating support during this study.

1 would also like to thank to Assoc. Prof. Dr. Cevdet Aykanat and .Asst. Prof.
Dr. Ilyas Çiçekli for reading and commenting about the thesis.

Finally, I want to express my deepest gratitude to my family, for everything
they did to bring me to this position. I dedicate this thesis to them.

Contents

1 Introduction 1

2 Transaction M odel 4

2.1 Related W o r k ... 4

2.2 Proposed Transaction M od e l... 6

3 E xecution A rchitecture 12

3.1 Ensuring Global A tom icity.. 1-5

3.2 Ensuring Global Serializability.. 17

3.2.1 Employing The Optimistic Ticketing Method (OTM) . . IT

3.2.2 Employing The Conservative ticketing method (CTM) 1!)

3.3 Commit Independent Subtransactions... 20

3.4 The Global Deadlock Problem .. 23

4 Sim ulation M odel 25

4.1 Introduction.. 25

4.2 MDBS Simulation M od el......................... ■....................................... 27

4.2.1 Transaction M o d e l .. 28

VI

4.2.2 Simulation Model Components .. 32

5 Sim ulation E xperim ents 36

5.1 Introduction.. 36

5.1.1 .Algorithm S ettin gs... 36

5.1.2 Performance M e tr ics ... 37

5.1.3 General Parameter S e tt in g s ... 38

5.2 E.\periments on the Classical Transaction M od e l.......................... 40

5.2.1 The Impact of Data C ontention.. 41

5.2.2 The Impact of Resource Contention.................................... 46

5.2.3 The Impact of Transaction Length 48

5.2.4 The Impact of Local Transaction Behavior on Global
Transactions... 50

5.2.5 Algorithms’ Impact on Local Transactions....................... 51

5.3 Experiments on the Extended Global Transaction Model ' 55

5.3.1 The Impact of Subtransaction Dependencies.................... 55

5.3.2 The Impact of Commit Independent Subtransactions 61

5.3.3 The Impact of Data Contention.. 64

5.3.4 The Impact of Extended Transactions on Local Transac­
tions .. 65

5.4 Experiments on Global Deadlock Detection A lgorithm s............... 69

5.5 Perfornicince Comparison of the Classical Transaction Model
and the Extended Transaction M o d e l... 71

6 Conclusions 77

CONTENTS vii

List of Figures

2.1 A tran.saction tree representation of Example 1.............................. 10

2.2 .A transaction tree representation of Example 2.............................. 11

3.1 The architecture of the M D B S.. 14

4.1 MDBS closed network model .. 28

4.2 Global transaction model .. 31

4.3 Simulation Model Components 32

0.1 Global throughput vs. GWriteProb, LResourceUnit=20............. 41

5.2 Global throughput vs. GWriteProb, LResourceUnit=20. GSG-
Tim e=0.05... 42

0.3 Global blocking time vs. GWriteProb, LResourceUnit=20 42

5.4 Global conflict ratio vs. GWriteProb, LRe.sourceUnit=20 43

5.5 Global abort ratio vs. GWriteProb, LRe.sourceUnit= 2 0 43

5.6 Global aborts of OTM, LResourceUnit= 2 0 44

5.7 Global aborts of CTM, LResourceUnit=20................................... 44

5.8 Global throughput vs. GWriteProb, LResourceUnit=20, LHotRe-
g ion = 0 .2 .. 45

Vlll

LIST OF FIGURES IX

5.9 Global abort ratio vs. GWriteProb, LResourceUnit=20, LHotRe-
gion=0 .2 ... 45

5.10 Global throughput vs. GWriteProb, ’VuniChilcl=4. LResource-
Unit= 2 0 .. l(j

5.11 Global abort ratio vs. GWriteProb, .N'umChilcl=4, LResource-
U iiit= 2 0 .. 46

5.12 Global throughput vs. GWriteProb, LResourceUnit=l 47

5.13 Global abort ratio vs. GWriteProb, LResourceUnit=l................ 47

5.14 Global throughput vs. GWriteProb, NumChilcl=4, LResource-
Unit=l 48

5.15 Global throughput vs. transaction length, LResourceUnit=20 48

5.16 Global throughput vs. transaction length, LResourceUnit=l . . 49

5.17 Global abort ratio vs. transaction length, LResourceUnit=20 49

5.18 Global abort ratio vs. transaction length, LResourceUnit=l 50

5.19 Global throughput vs. LWriteProb, LResourceU nit=l................ 51

5.20 Global abort ratio vs. LWriteProb, LR esourceU nit=l................ 51

5.21 Local throughput vs. GWriteProb, LResourceUnit=20 52

5.22 Local blocking time vs. GWriteProb. LResourceUnit=20 52

5.23 Local conflict ratio vs. GWriteProb, LRe.sourceUnit=20 53

5.24 Local throughput vs. GWriteProb, LResourceUnit=l, LHotRe-
gion=0.2 53

5.25 Local throughput vs. transaction length, LResourceUnit=20 . . 54

5.26 Local abort ratio vs. GWriteProb, LResourceUnit=20................ 54

5.27 Local abort ratio vs. transaction length, LResourceUnit=20 55

5.28 Global throughput vs. AlternativeProb, LResourceUnit=20 . . . 56

LIST OF FIGURES

0.29 Global abort ratio vs. AlternativeProb, LResourceUnit=20 . . . 57

5.20 Global throughput v.s. AlternativeProb, LR.esourceUnit=l 58

5.2L Global throughput vs. PrererenccProb, LRcsourccUnit=20 . . . 58

5.22 Global abort ratio vs. Prel'erenceProb, LResourceUnit=20 59

5.22 Global throughput vs. GVVriteProb, precedence relation, LRe-
sourceUnit=20 59

5.24 Global cibort ratio vs. GWriteProb, precedence relation, LRe-
,sourceUnit=20 60

5.25 Global throughput vs. GWriteProb, precedence relation, LRe-
.sourceUnit=l . .. 60

5.26 Global throughput vs. RetriableProb, LResourceUnit=20 62

5.27 Global abort ratio vs. RetriableProb, LRpsourceUnit=20 62

5.38 Global throughput vs. CompensatableProb, LResourceUnit=20 62

5.39 Global abort ratio vs. CompensatableProb, LResourceUnit=20 63

5.40 Global throughput vs. GWriteProb, CTM, LResourceUnit=20 . 64

5.41 Global throughput vs. GWriteProb, OTM, LResourceUnit=20 . 65

5.42 Global abort ratio vs. GWriteProb,, CTM, LRe.sourceUnit=20 65

5.43 Global abort ratio vs. GWriteProb, OTM, LResourceUnit=20 66

5.44 Local throughput vs. AlternativeProb, LResourceUnit=20 66

5.45 Local throi,ighput vs. PreferenceProb, LResourceUnit=20 67

5.46 Local throughput vs. GWriteProb, precedence relation, LRe-
.sourceUnit=20 67

5.47 Local throughput vs. RetriableProb, LResourceUnit=20 68

5.48 Local throughput vs. CompensatableProb, LResourceUnit=20 . 68

LIST OF FIGURES XI

0.19 Deadlock detection algorithms, global throughput vs. GWriteProb,
LResourceUuit= 2 0 ... 09

b.oO Di'adlock detection algorithms, global abort ratio vs. ClVVriteProb,
ldl('soiirc('Unit=20 09

•o.bl Deadlock detection algorithms, global throughput v,s. transac­
tion length, LResourceUnit=20 70

0.52 Deadlock detection algorithms, local throughput vs. GWriteProb,
LRe.sourceUnit=20 71

5.53 Deadlock detection algorithms, local throughput vs. transaction
length, LResourceUnit=20.. 71

5.5-1 Global throughput vs. GWriteProb, LResourceUnit=20 73

5.55 Global abort ratio vs. GWriteProb, LR.esourceUnit=20.............. 73

5.56 Global throughput vs. GWriteProb, Num.Sites=16, LResource-
U n it= 2 0 .. .■ . . 7-1

5.57 Global abort ratio vs. GWriteProb, NumSites=16, LResource-
U n it= 2 0 .. 74

5.58 Global throughput vs. GWriteProb, LResourceUnit=l 75

5.59 Global abort ratio vs. GWriteProb , LResourceUnit=l 75

5.60 Local throughput vs. GWriteProb, NumSites=16, LResourceU-
nit= 2 0 ... 76

5.61 Local throughput vs. GWriteProb, LR esourceU nit=l.................. 76

List of Tables

-i.i System model parameters 28

4.2 Loccil transaction model parameters.. 29

4.3 Global transaction model param eters... 30

4.4 Parameter settings to obtain classical global transaction model . 31

4.5 Resource param eters................................... 34

5.1 Performance metrics 38

5.2 System parameter settin gs.. 38

5.3 General Workload parameter settings 3'9

5.4 Variable workload parameter settings for classical transaction
model e.xperim ents............................ 40

5.5 Parameter settings for the analysis of the dependenc}' ̂ relations 56

5.6 Parameter settings for the analysis of commit-independent tran­
saction types 61

5.7 Global transaction parameter settings for the experiments that
compare classical transaction model and extended transaction
model 72

Xll

Chapter 1

Introduction

The recent progress in communication and database technologies has facili­
tated the sharing of information from different sources. The globalization of
enterprises has also started to enforce e.xisting information systems to coop­
erate with each other. .A.S a result of these facts, a need has arisen for the
integration of pre-existing database systems.

.-V multidatabase system (MDBS) is an integrated database system that
provides a global view and uniform access to different local components with­
out requiring the users to know the individual characteristics of the partici­
pant databases. Each local database system (LDBS) can have a different data
model, and different transaction management and concurrency control mecha­
nisms. Integration of those heterogeneous components should not violate the
autonomy of LDBSs. This is the most important feature of MDBSs that dis­
tinguishes it from conventional distributed database systems.

Heterogeneity of the components in a MDBS leads to a requirement for
flexible and powerful ways of accessing the data. The need for the coordi­
nation of the activities that belong to the independent data sources makes it
difficult to adopt traditional transaction control methods in a MDBS environ­
ment. Since the control of a MDBS is totally dependent on LDBSs, designing
a transaction model and control mechanism for MDBSs requires to consider
LDBS transaction management functions.

Traditional transaction models developed for distributed database systems
are quite restrictive for multidatabases. Traditional models generally assume

1

CHAPTER 1. INTRODUCTION

a competition cunong transactions, but in a MDBS sometimes a cooperation
besides the competition is also required for efficient processing of transactions.
Defining and observing dependencies among the transactions executed over
different sites can significantly affect the system performance. The variance
among the execution time of transactions over dilferent local DB.MSs also
forces the existing models to be reorganized accordingly. Also the propertic's
like atomicity and isolation introduced by the traditioiicvl transaction model
are sometimes inappliccible in a MDB.S environment. Under all those consider­
ations, we can safely argue that it is necessary to modify and extend existing
distributed transaction models for MDBS environments.

In this thesis, we propose a new transaction execution model that captures
the formalism and semantics of various extended transaction models and adopts
tliem to a MDBS environment. The proposed model covers nested transactions
[18], the flexible transaction model that provides various dependency types
among subtransactions [24], and the model that involves a relaxed version
of transaction atomicit\^ namely semantic atomicity, to increase the level of
concurrency [9, 17]. While including the semantics of all those transaction
models, the global serializability in our execution .model was ensured through
the use of the ticketing method [L3].

We also describe a detailed simulation model of a MDBS to analyze the
])erformaiice of the proposed transaction model. We discuss the performance
implications of both the classical transaction execution model and the proposed
execution model. We state the range of workloads and the system configura­
tions under which our model can provide performance improvements over the
traditional transaction model.

The remainder of this thesis is organized as follows. Chapter 2 discusses
the previous work on MDBS transaction models and introduces our extended
transaction model. Chapter 3 presents the e.xecution architecture of the pro­
posed transaction model and provides how global serializability and atomic­
ity are achieved with this execution architecture. This chapter also includes
detailed execution strategies for commit-independent transaction types. The
global deadlock problem and its solutions are also discussed in this chapter.

Chapter 4 describes a simulation model of a MDBS and gives the imple­
mentation details of this model. Chapter 5 explains the simulation experiments

CHAPrER 1. INTRODUCTION

carried out and presents the results obtained. In the experiments, first the per­
formance implications of the ticketing method with the classical transaction
model are studied; then the performance results with the extended transac-
tion model are presenterl. Comparison of various global deadlock d('t('ction
algorithms is also provided in this chapter. The experimental results that
compare the classical transaction model with the extended transaction morlel
are discussed at the end of the same chapter. Finally, Cha.|)ter 6 includes the
concluding remarks.

Chapter 2

Transaction Model

2.1 Related Work

In the literature, a number of models that extend the traditional transaction
model have been proposed. An extended transaction model called Sagas was
introduced by Garcia-Molina and Salem [12] for the long-lived transactions to
increase the level of concurrency. In this model, a global transaction consists
of a number of subtransactions 5'i, .S'2, ..., iS'.v and corresponding cornpensai-
ing transactions 6'i, 62,..., C/v· In Sagas, either all of the subtransactions are
committed, or partially committed ones are undone using their compensating
transactions. Furthermore, the subtransactions do not need to see the same
database state. If a subtransaction is ready-to-commit, it can be committed
without waiting for the other subtransactions of the same transaction. Con­
currency is increased in Sagas model in the expense of relaxing the isolation
property. This model can be well suited for the environments where the sub­
transactions are relatively independent.

The nested transaction model introduced by Moss [IS] is another alterna­
tive for the traditional transaction model. In the nested transaction model,
flat transactions are enhanced by a hierarchical control structure. Each nested
transaction consists of either primitive transactions or some nested transac­
tions that are called subtransactions of the containing transaction. The whole
transaction structure can be represented by a tree and the top-level transaction
is called the root of the tree. The transaction that contains subtransactions is

CHAPTER 2. TRANSACTION MODEL

called a parent, and the subtransactions are called its children. In the nested
transaction model, a child starts alter its parent, and terminates before the
|)arent terminates. The parent is not allowed to terminate before all of its
child transactions are terminated. However, if a child is aborted. i)arent doc's
ncT net'd to be aborted. .A two level version of the nested transaction model
has boien adopted to a MDB.S environment [7].

The transaction model developed for the Interbase MDBS [9] allows compo­
sition ol flexible transactions. In this model, subtransaction failures can be dis­
carded if a given function can be accomplished by more than one local database
component. Furthermore, both compensatable and non-compensatable sub­
transactions can be defined within a multidatabase transaction. The execution
dependencies among the subtransactions are specified as negative and positive
dependencies. If a negative dependency is defined between subtransactions ,S'i
and S'2· it means that .S'l cannot start until S-2 fails. .A positive dependency, on
the other hand, means that S\ cannot start until S2 succeeds.

The DOM transaction model that has been developed at GTE laboratories
is another possible model that can be applied to MDBSs [6]. DOM allows both
nested and compensating transaction models to work together. This model also
makes it possible to define contingency transactions which can be executed
as an alternative when a subtransaction fails. The subtransactions can be
classified as vital and non-vital in the DOM model.· If a vital subtransaction
aborts, its parent should also be aborted. However, if a non-vital transaction
aborts, its parent may continue. Conseciuently, if a child transaction fails,
the parent has the following alternatives: ignoring the condition, retrying the
child transaction, e.xecuting a contingency subtransaction, or abort. The DOM
model seems to be promising and should further be investigated in detail for
,MDB.Ss.

In a recent work by Rusinkiewicz, Kiychniak. and Cichocki [19], a. multi-
database transaction, also called a global transaction, consists of subtransac­
tions that can be in one of the following execution states: initial, executing,
aborted, prepared to commit, or committed. Scheduling pre-conditions are as­
sociated with each subtransaction according to their execution states. In order
to complete the execution of a global transaction, an acceptable termination
state is defined using the execution states of its subtransactions. Although the
model is powerful enough to express various types of transactions in a MDBS,
an efficient scheduling of the subtransactions is a major problem.

CHAPTER 2. TRANSACTION MODEL

In [17], the following types are defined for the subtransactions of a dis­
tributed transaction. A cornpensatable transaction can commit before its con­
taining transaction commits, and if that transaction aborts, its effects on tlie
local database can be undone by executing the associated (.•oni[)ensating trans­
act ion. The reiriable transactions are subtransactions that eventually succc'cd
¡1 they are retried a sufRcient number of times. A retriable subtransaction
can be allowed to commit later than its containing transaction. Tlie coin])en-
satable and retriable transactions, which are also called commit independent
l.ransactions, reduce the blocking effects of the commitment protocols.

An integrcition of the flexible transaction model [10] and the transaction
model of [17] has been proposed in [2-1] as an alternative model for MDBS
transactions. The commit dependencies among the subtransactions have been
investigated and a transaction execution model has been introduced to take
the advantage of those dependencies in scheduling subtransactions. Two kinds
of dependency relation, precedence and preference, have been examined in that
work. The relaxed version of atomicity provided in [17] has also been extended
to support flexible transactions.

2.2 Proposed Transaction Model

In this section, we introduce a new transaction model for MDBSs. In this
model, we aim to.capture the formalism and semantics of various extended
transaction models and adopt it to a MDBS environment.

In a MDBS, two kinds of transactions can coexist: local trans:actions and
global transactions. A trcuisaction that is executed at a single site is called a
local transaction. A global transaction on the other hand, can submit opera­
tions to multiple sites, and at each of those sites a subtransaction is executed
on behalf of the global transaction. A subtransaction of a global transaction
is not different from a local transaction from the LDBS point of view.

In a multidatabase environment, some subtransactions can be committed
independent of its global transaction. If a subtransaction's effects on the
database can be semantically undone by executing a compensating transac­
tion, the subtransaction can be allowed to commit earlier. A subtransaction
that reserves, a seat in an airline reservation system is compensatable by a

Cl I AFTER 2. TRANSACTION MODEL

transaction that cancels the reservation. Another kind of commit independent
transactions is the retriable transactions which eventually commit if tliey have
been retried a sufficient number of times. A retriable transaction can be al-
!ow('d to rommit later. Ch-editing a l)ank account is an ('xample of r('triaf>le
transactions. Consequently, as stated in [17] and [24], the transaction type
(TT) of a subtransaction can be either

• Compensatable (C),

• Retriable (R), or

• Ordinary (0) (neither compensatable nor retriable).

.A formal definition for a subtransaction can now be provided:

D efinition 1 /1 subtransaction S is a 2-tuple S=(TT,CT) where

• TT is the transaction type of S;

• CT is the set of compensating transactions of S, if TT is compensatable
(an empty set, otherwise).

Since a global transaction is executed over multiple sites in the form of
subtransactions, we cannot ignore the dependencies that can occur among the
subtransactions. A possible dependency among subtransactions is the execu­
tion order dependency in which a subtransaction cannot be e.xecuted l^efore
some others complete their executions. That kind of dependency relation is
often referred to as precedence relation between subtransactions. .Another kind
of dependency can be specified if some subtransactions are alternative of some
others. In an alternative dependency, one of the functionally equivalent sub­
transactions needs to be executed. If the user assigns priority to alternative
subtransactions, a preference relation exists among the subtransactions.

D efinition 2 Let Si and Sj be two subtransactions. I'Ve define four types of
dependency relation between Si and Sj:

• Precedence relation (<), Si < Sj means that Sj cannot begin execution
until Si successfully finishes its execution.

• Alternative relation (o), Si o Sj means that Sj and Si are alternative of
each other and any of them can be executed, it is also possible to execute
I hem together, but only one of them should be committed.

• l^reference relation (>), Si'> Sj means that among two alternative sub­
transactions Si and Sj, S'i is preferred to Sj. If they are executed together,
Sj can be committed only if Si fails. If they are not allowed to execute
together. Si should execute first, and if it fails, Sj can be executed.

• No-dependency relation (O), Si^Sj means that Si and Sj can execute
independently.

Now a formal definition of a global transaction can be provided as follows:

D efin ition 3 .4 global transaction G is a 3-tuple G=(ST,DT,TO) where

• ST is the set of global transactions and/or subtransactions that are the
children of G;

• DT is the dependency type among the transactions in ST;

• TO is the total order on ST according to the dependency specified in DT.

CHAPTER 2. TRANSACTION MODEL 8

A global trarrsaction in our model is syntactically a nested transaction witli
extended semantics. A global transaction is a set of child transactions each of
which is either a subtransaction or again a global transaction. This transac­
tion model can be represented as a tree where the internal nodes are global
transactions and the leaf nodes are subtransactions. The root of the tree is the
overall global transaction. The level of a global transaction is not fixed at 2,
but it can vary depending on the transaction complexity.

The transaction model introduced here is simply a mixture of three ex­
tended transaction models: the nested transaction model [18], the flexible
transaction model that provides the dependency relations types [24], and the
model described in [9, 17], that provides the commit independent transaction
type. We can give, some real-life examples to demonstrate the practicality of
the proposed transaction model.

CHAPTER 2, TRANSACTION MODEL

E xam ple 1 Consider a travel agent information system [9]. In this system,
a transaction may consist of the agent\s negotiation with airlines for the flight
ticket, the negotiation with car rental companies for car reservation, and the
n(gotiation with hotels to reserve rooms. Assume for a giv(n trip that the
only airlines available are Northwest and United, the only car rental company
is Hertz, and the only hotels in the destination city are Hilton, Sheraton and
Ramada. The agent can order a ticket from either Northwest or United, but
Northwest is preferred, a car is mandatory for the trip and any of the three
hotels is S'uitable for the customer needs. Further, only the reservation of the
hotel room can be canceled. The following subtransactions can be defined for a
global transaction that should be executed for this application:

S\: Order a ticket at Northwest airlines;

S2 ’ Order a ticket at United airlines;

S3 : Rent a car at Hertz;

S.\: Reserve a room at Hilton;

So: Reserve a room at Sheraton;

S(̂ : Reserve a room at Ramada:

S7 : Cancel a room reservation at Hilton;

Sg: Cancel a room reservation at Sheraton;

69; Cancel a room, reservation at Ramada.

The glol)al transaction Gtrip can be specified as follows:

Gtrir>{ST = {GMinesiST = { 5i(TT = OXJT = {}),
52(TT = 0 ,C T = { }) } ,

DT = Preference,

TO = Si > So),

S3{TT = 0 , C T = { }) ,

G,otei{ ST = { S ,{TT = C , C T = {¿V}).
Ss{TT = C , C T = { S s }) .

SeiTT = C , C T = { S m } ^

CHAPTER 2. TRANSACTION MODEL 10

DT = Alternative,

TO = S,oS,oSe)},
DT — i V o — dependency,

10 — Cl ,iirli„eŝ S:iOG

A Preference Relation

Figure 2.1: A transaction tree representation of Example 1.

E xam ple 2 Consider a banking system [24]· A client at bank b\ wants to
withdraw $-50 from his account Ui, and deposit it in his friend’s account a-y in
bank b-2 · If this is not possible he wants to withdraxu $50 from his account «3 in
bank 63 and deposit it in a-i· We assume that depositing an account is always
successful if it is retried sufficient number of times. The subtransactions can
be described as follo ws:

• S\: Withdraw $50 from account ai in bank bi;

• S-y: Deposit $50 in account 02 in bank 62/

• S3 : Withdraw $50 from account 03 in bank 63;

• .S'4.· Deposit $50 in account a\ in bank bi;

• So·' Deposit $50 in account «3 in bank 63.

A global transaction Gtransfer can be constructed using these subtransac­
tions:

CHAPTER 2. TRANSACTION MODEL 11

Gtrans/eriST = {Ĝ thdra,u{ST = { S^{TT = C,CT = {5,}),
S,{TT = C ,C T = {Ss}) } ,

DT = Preference^

TO = S\ >
S2{TT = I lC T = {}) ,

DT = Precedence,

TO (-̂ withdraw *̂2)

A Preference Relation

A Precedence Relation

Figure 2.2: .A. transaction tree representation of E.xample 2.

Chapter 3

Execution Architecture

Due to the autonomy of local sites, the local transactions are directly submitted
to the LDBSs, while global transactions use a common MDBS interface. The
execution of local transactions is controlled by the local transaction manager
(LTM) that exists at each site, and the e.xecution of global transactions is
controlled by the global transaction manager (GTM).

The objectives of GTM are to avoid inconsistent retrieval of data, and to
preserve global consistency and atomicity [13]. These objectives are difficult
to achieve, because:

• Local database systems are not aware of each other and the MDBS.

• Both local and global transactions can run concurrently at each site.

• LTMs do not export any concurrency control information to GTM.

• From the local database systems’ viewpoint, a global subtransaction is
not different from a local transaction.

LTM at each site ensures the local consistency and isolation properties by
generating serializable schedules. GT.M can achieve the global serializability
by coordinating the participant LDBSs. Global serializability can be provided
by obtaining the information of relative serialization order of subtransactions
at each local site and guaranteeing the same relative order at all those sites
[19]. Achievement of global serializability is difficult, because the execution

12

CHAPTER 3. EXECUTION ARCHITECTURE 13

order of globed subtransactions mciy not be consistent with the serialization
order due to the local transactions. Even though the global subtransactions do
not conflict with each other at a particular site, local transactions can cause
indirect conflicts among them.

In the literature, several approaches have been proposed to solve this |)rob-
lein. Some of those approaches suggest a rela.xed version of the global serializ-
ability, like quasi serializability [8], and two level serializability [16], which can
maintain global consistency in restricted applications. Some other approaches
assume that tlie local serialization information can be available to some degree,
and propose some technic[ues based on this assumption. .Another solution to
the global concurrency control problem is to assume conflicts among glol)al
subtraiisactions whenever they are executed at the same site, but this method
has some drawbacks clue to its low degree of concurrency.

The ticketing method proposed in [13] seems to be the first method to show
succes.sfully that the .serialization order of global subtransactions at a local site
can be determined at the global level without violating the autonomy of that
site. The ticketing method uses a regular data object, called a ticket, to deter­
mine the serialization order of global subtransactions. A ticket in a database
can l)e seen as a logical timestamp. One ticket value is maintained at each lo­
cal site. Aiultidatabase concurrency controller forces each subtransaction read,
increment and update the ticket value at the site it executes. The ticket value
obtained by a subtransaction reflects the relative serialization order at that
site. This approach eliminates the effects of indirect conflicts generated by lo­
cal transactions even if the multidatabase svstem cannot detect their existence.

.\ccomplishing the atomicity of global transactions is another problem in
.MDBS transaction management. In traditional distributed database systems,
atomicity can be achieved by using the two phase commit (2PC) protocol. In
a .MDBS, due to the heterogeneity of local components, we can not expect
every participant site to support 2PC. One possible solution to this problem
is using a simulated 2PC protocol. An additional .set of application programs
called agents can be built on top of each site to establish this necessary pro­
tocol. The agents in our model are responsible for controlling the execution of
sul)transactions that are sent to its site. The MDBS architecture assumed for
this model is given in Figure 3.1.

Now, we can start discussing proposed execution model. We assume that

CHAPTER 3. EXECUTION ARCHITECTURE 14

Global iransaciion

Figure 3.1: The architecture of the MDBS

each global transaction has at most one subtransaction at each local site. We
also assume that a local transaction or a subtransaction consists of four basic
operations: r{x), ro(.r), c, and a. r[x) and ■w{x) are read and write operations
on data item x. and c and a are commit and abort operations. Similar to the
execution model presented in [19] ,the execution state of a transaction can be
one of the following types:

• Initial (I),

• Executing (E),

• R,eady-to-commit (R),

• Committed (C),

.4borted (A).

.-V transaction is assumed to be in the ready-to-commit state after it com­
pletes all of its read and write operations. It stays in this state until a commit
or an abort operation is issued.

We have to reconsider the concepts of the global serializability and the
imici

model.
atomicity of a global transaction to establish the correctness of our execution

CHAPTER 3. EXECUTION ARCHITECTURE 15

3.1 Ensuring Global Atomicity

I I I a. MDBS eiiviromncnt, a relaxed version of atomicity, namely semantic atoin-
iriljj. has b('cn discussed in [21, 17]. In traditional atomicity, a global trans­
action can be atomic if either all or none of its subtransactions complete their
execution successfully. Flowever, in semantic atomicity subtransactions can
commit at different times. .A global transaction can commit if all of its sub­
transactions commit; otherwise the effects of committed subtransactions are
undone, and global transaction is aborted. We need to extend this definition
to capture the semantics of dependency relations among subtransactions. The
execution of a global transaction G preserves the semantic atomicity, if the
following conditions are satisfied:

• When a precedence or a no-dependency relation exists among its children,
G can commit if all of its child transactions commit. If one of its child
transactions is aborted, G is aborted and the other child transactions are
either aborted or the effects of committed ones are undone.

• If an alternative or preference relation exists, G can commit if one of
its child transactions commitsh When a child transaction is committed,
other child transactions that are executing are aborted.

The execution of a global transaction containing only ordinary children^
[proceeds as follows:

First, the global transaction is constructed with the initial e.xecution
state.

GTM spawns the children of the global transaction according to the s])ec-
ified dependency type:

- If either a no-dependency, or an alternative dependency, or a pref­
erence dependency exists, all of the child transactions are crecited.

- Otherwise (if a precedence relation was specified), the children are
created on the basis of the given total order.

'Remernber that, with the preference relation, if Si >Sj, then Sj can be committed only
if Si fails.

^The execution of a global transaction that can have commit independent (compensat-
able/retriable) transactions is described in Section 3.3.

CHAPTER 3. EXECUTION ARCHITECTURE 16

• if CTM reaches a leaf node in the nested transaction tree and creates a
subtransaction, it submits the subtransaction to the corresi>onding site
through the agents.

• Wlu'ii a subtransaction iinislies its database o[)('rations. tin' agent of t liat
site sends a iTady-to-cornmit message to the GTM.

• .After receiving a ready-to-cornmit message for a subtransaction, GTM
checks the dependency type associated with the parent of the subtrans-
actiori to find out what to do ne.xt.

- If a precedence relation exists among its children, the next child
transaction in the given order is created by the GTM. If all of the
child transactions enter the ready-to-commit state, the parent also
enters the ready-to-commit state.

- If an alternative relation exists, the parent enters the ready-to-
commit state and GTM sends messages to the relevant agents to
abort the other child transactions.

- If a preference relation exists, the parent enters the ready-to-commit
state if the completed subtransaction is the most preferred one.
When the parent becomes ready-to-commit, GTM broadcasts the
abort message for the other child transactions.

- If a no-dependency relation exists, the execution state of the parent
becomes ready-to-commit after all of its children enter the ready-
to-commit state.

• If the root transaction reaches the ready-to-commit state, GTM decides
to commit or abort the transaction according to the concurrency control
algorithm executed.

• .After a commit or abort is issued lor the root transaction, GTM broad­
casts a message to child transactions down to the leaves of the transaction
tree to commit or abort the subtransactions at local sites.

.As we can understand from this execution protocol, the ready-to-commit
messages are sent in a bottom-up fashion, from leaf transactions to the root
transaction, and the commit or abort messages are transmitted in a top-down
fashion from the root transaction to leaf transactions. By that way, atomic
commitment of a global transaction is ensured.

CHAPTER :j. EXECUTION ARCHITECTURE 17

3.2 Ensuring Global Serializability

A global schedule S is serializable if each local restriction of S is serializable,
;uid t here is a total order O on the glol)al transactions in A such that in <'ach
local schedule of S, the serialization order must be consistent with the order
O [11]. We need to have additional requirements that the si'rialization orch.’r
of child subtransactions in S must be consistent with the serialization order of
their parent global transaction. Specifically, it is sufficient to guarantee that
the relative order of subtransactions in local sites is the same as their parents’
order in (9.

To provide concurrency control, we can apply the ticketing method which
ensui’es the serialization of global transactions. The ticket values obtained by
subtransactions are transferred to their parents up to the root transaction.
CTM ensures the same relative serialization order at all sites of the global root
transaction using the ticket values obtained. Two possible methods that can
be used for concurrency control are the optimistic ticketing method (OTM),
and the conservative ticketing method (CTM) [13].

3.2.1 Employing The Optimistic Ticketing Method
(OTM)

OTM allows subtransactions of global transactions to be executed as soon as
they are submitted to the local sites. .4 global transaction is committed when
all of the tickets obtained by its subtransactions have the same relative order in
all participant LDBSs. If OTM is adopted, a global transaction G is processed
as follows;

• First, a time-out period is set for G (for the detoxtion of a potential
deadlock).

• The GTM spawns the child transactions of G according to the rules given
al)ove up to the subtransactions executed at local sites.

• Subtransactions are allowed to execute under the control ol agents until
they become ready-to-commit.

• When G enters the ready-to-coramit state, it is validated by GTM.

CHAPTER 3. EXECUTION ARCHITECTURE 18

• It the validation ot G is successful, it is committed; otherwise, it is aborted
and then restarted.

(i'I'.M uses a global serialization gra|dr (CSG) to validate the commitment
(d ti'aiisaction G. G.SG is a directed graph which contains nodes tor recently
committed global transiictions. For any pair of recently committed glottal
tiansactions 6 ',· and Gj, there is a directed edge C,· — Gj, if G',· obtained a
smaller ticket value than Gj at a site they were e.xecuted together.

.A global transaction G in the ready-to-cornmit state can be validated as
follows:

• First, a node is created for G in G.SG.

• Then GTM attempts to insert an edge between G and other nodes in
GSG.

• If G has obtained a smaller (larger) ticket value than a recently committed
global transaction Gc at a site, an edge G Gc {CC G) is inserted.

• If all such edges can be added to GSG without creating a cycle, G is
validated.

• Otherwise, the node for G and all related edges are removed from the
graph, and G is aborted.

A validation can be performed on GSG either,

• when a global child transaction becomes ready-to-commit (i.e., early val-
idalion), or

• when a global root ti'ansaction becomes ready-to-commit (i.e., late vali­
dation).

The aim of early validation is to detect the conflicts among global transac­
tions as early as possible and to minimize the global transaction restarts. If a
global child transaction fails in GSG test, GTM can abort that transaction. If
a preference or an alternative relation exists among the transactions that be­
long to the same parent, GTM can execute an alternative transaction for the

CHAPTER 3. EXECUTION ARCHITECTURE 19

failed cliilcl transaction. If a no-dependency relation or a precedence relation
e.Kists, GTM re.starts the aborted global child transaction.

II the validcition test lor a global root transaction is successful, a commit
message is ti'ansmitted to its cliildren. Otherwise', an abort message is sent to
its children and the entire global transaction is restarted. To remove a node for
a committed global transaction G from G.SG, the following properties slioidd
be satisfied [1.3]:

• The node has no incoming edges.

• The transactions that were active when G was committed have all been
terminated.

3.2.2 Employing The Conservative ticketing method
(CTM)

(i'TM was introduced to eliminate the global restarts e.xperienced by OTM due
to the ticketing conflicts. CTM controls the order in which the subtransactions
take their tickets. In order to apply CTM, we need an additional ready-to-take-
a-ticket state for both global transcictions and subtransactions. .T subtransac­
tion enters the ready-to-take-a-ticket state after it completes all of the database
operations before obtaining its ticket v̂ alue. The agents over the local sites are
responsible to detect ready-to-take-a-ticket states of subtransactions and send
appropriate messages to GTM. Similar to the readyTo-commit messages, the
ready-to-take-a-ticket messages are also sent from leaves of a transaction tree
up to the root to provide atomicity in obtaining a ticket value. CTM processes
a set of global transactions as follows:

• Initially a time-out period is set for each global transaction.

• Subtransactions are allowed to execute under the control of LDBSs until
they enter the ready-to-take-a-ticket state.

• A ready-to-take-a-ticket message is transmitted up to the global root
transaction, according to the execution rules specified for the ready-to-
commit message in Section 3.1.

CHAPTER :J. EXECUTION ARCHITECTURE 20

• Global transactions in ready-to-take-a-ticket state are allowed to take
their tickets according to the order in which they enter the rcady-to-
take-a-ticket state. If a global transaction G'l becomes ready to take a
ticket before transaction G'2, G'l is assigned a smaller ticket vahu' than
that of G'2.

• .A global transaction that enters the ready-to-commit state is committed
by G'FM. If the time-out of the transaction e-xpircs before it is committed,
the transaction is aborted and restarted.

3.3 Commit Independent Subtransactions

Before the description of the execution model for commit independent sub­
transactions, let us specify the necessary assumptions and restrictions for the
underlying MDBS environment:

• There should be no- value dependencies among the commit independent
subtransactions.

• If a compensating transaction is initiated, it completes successfully [Lu].

The commit independent transaction type was proposed to minimize the
blocking effect of the 2PC global atomic commitment protocol. If a child
subtransaction commits before its parent, it is called an early committed sub-
transaction. Similarly, if a child subtransaction commits after its parent it is
a late committed subtransaction. Compensatable subtransactions can be early
committed, and retriable subtransactions can be late committed. To anhieve
semantic atomicity with commit independent transactions, the following con­
ditions should hold for a global transaction G [17]:

• If G is aborted, the effects of early committed subtransactions of G on
the database are not seen by other transactions.

• if G is committed, the effects of its late committed subtraiisactions are
seen by the transactions serialized after G.

CHAPTER 3. EXECUTION ARCHTTECTURE 21

(Joiiseciueiitly, lor a compensatable subtransaction .S' with its compensating
transaction CS, it the |)arcnt of S is al)orte(l, commitment of S is re(|uirecl
to l)e undone by executing CS. The eifects of committed subtransactions are
not s('en. if no ollu'r subi ransaction is serializc'd bc'twc'en the S and CS [17].
Г11е1Ч'Го1-е. if(!T M ('iisuix's tha.t no other sidjtransaction takes its tida't Ixd’on'
ili(> commitnu'iit of CS, consistency of the M])13.S is preserved.

The compc'iisating transaction execution is handled by agcmts. If a global
t ransaction G lias a com|)eiisatable subtransaction S with its associated com-
p('n.sating transaction 6',S', the execution of .S' is provided as follows when
is being used:

• CS is sent to the relevant agent with the submission of .S'.

• When .S' enters the reacly-to-commit state,

— The agent sends a ready-to-cornrnit message to GTM.

- The ticket value obtained by .S' is recorded and S is early committed
by the agent.

• The agent sends an abort message for the other subtransactions that has
olitained greater ticket value than .S' before a commit message arrives for
.S'.

• If tlie agent receives an abort message for S, it submits CS to LDBS.

• The agent sends an abort message for the other subtransactions that has
obtained greater ticket value than .S' before CS is committed.

If CTM is being used for concurrency control:

• CS is sent to the relevant agent with the submission of .S'.

• When .S' enters a ready-to-take-a-ticket state, the agent sends a ready-
to-take-a-ticket message to GTM.

• When a take-a-ticket message arrives for S, the agent does not permit
other subtrcuisactious to enter their ready-to-take-a-ticket states until .S'
takes its ticket.

r, 7 1 APT Eli 3. EXEC UTION ARCHITECT URE 99

• If S successfully takes its ticket and completes all its oi)eratious, the agent
early commits S and sends a ready-to-commit message for S' to (r i ’M.

• 'I'lie agent does not allow other subtransactions to take their tickets until
a commit cn· an abort is issued for S.

• If an abort is issued for .S', the agent submits CS to the LDBSs and does
tuM, submit any other subtransaction operation until CS is commit led.

Ill the case of retriable transactions, the global transactions do not see
an inconsistent database, if GTM avoids serialization of any subtransactiou
between the commitment of a global transaction and the commitment of a re-
triable subtransaction that belongs to the committed global transaction [17]. .\
global transaction G that contains a retriable transaction RS can be commit­
ted without waiting RS to finish its execution. GTM can commit G', while RS
is still being e.xecuted at a site, but it does not permit another subtransaction
to take a ticket at that site until RS takes its ticket.

If OTM is being used, the protocol handling the execution of retriable
subtransaction RS of G can be described as follows:

• The state of RS is made ready-to-commit before GTM submits it to the
relevant agent. Therefore, the commitment of G does not rec|uire RS to
be completed.

• If G enters the ready-to-commit state before a ready-to-commit nu'ssage
arrives for RS, a +'Oo ticket value is used for G in GSG test. Since the
RS has not taken its ticket yet, the 4-oo ticket value in GSG test ensures
tliat no other subtransaction is serialized between the commitment of G
and the commitment of RS.

• When RS is committed, the agent sends a commit message to GTM in
order to update the ticket value of G.

If CTM is being used, agents are responsible for the correct, execution ol
retriable transactions. They simply do not allow other subtransactions to take
ticket until RS successfully commits. The extension to the standard execution
model, tor a retriable transaction RS, can be described as follows:

C 'll AFTER 3. EXECUTION ARCHTTECTURE 2:3

• Once the agent receives a take-a-ticket message for RS, it does not
send ready-to-take-a-tickct messages for other sul)transactions execnt('d
at that site niUil US takes its tick(!t snce(?ssfnlly.

• (;T.\] mak('s I he state of 13S rcxuly-lo-commit after it sends a 1 ake-a-tiek('t
nu'ssage for it.

• Once Cn'M issiu's a commit for RS, the agent does not submit tickc'ting
(;|)(Mation of other subtransactions to the LDBS until US is committefl.

3.4 The Global Deadlock Problem

In a MDBS (Mivironineiit. the glol:)al deadlock problem can occur if the LDBSs
employ a lock-based concurrency control. The local deadlock detection can be
assumed to be handled by local schedulers. GTM may not be aware of global
deadlock situations since the LDBSs may not export any information al.̂ out
local deadlocks. Using a time-out strategy for a global transaction is the easiest
way to detect global deadlocks. However, the time-out value set for global
transactions significantly effects the throughput of the system. Using a too
small time-out value for a global transaction may result in unnecessary glol;al
transaction aborts, while a too large time-out value may result in blocking of
deadlocked transactions for a long time.

Especially in our transaction model, it is difficult to estimate expected
execution time of a global transaction due to the extended semantics. One
possil)le time-out mechanism that can be ado])ted is to set a time-out for the
(uitire global transaction. This method cannot be very effective, because the
nuiiiber of subtransactions executed in a global transaction can vary according
to the dependencies specified among the subtransactions. Instead of using a
global time-out value for the entire global transaction, we can estimate tlie
subtransaction execution at each site and calculate the time-out period of a
i>iobal transaction as follows:

• If cliild transactions are submitted concurrently, in other words, the de­
pendency type among the child transactions is either no-dependency or
alternative dependency or preference dependency, then the time-out value
for the i)arent transaction can specified to be the maximum time-out value
of its children.

СПАРТЕИ :J. EXECUTION ARCHITECTURE 24

• If the depeiidcucy type among its children is the precedence dependencv.
the time-out value for the parent transaction is the sum of the child
transactions' time-out valuos since the children will he executed seriallv.

Another solution to the global deadlock])roblem is to ap|)ly a dc'adlork
detection algorithm. One oi the deadlock detection algorithms propost-d in [■')]
is based on the Potential (,'onllict Graph (PGG). PCG is a directed graph whert'
the nodes in the graph are the global transactions that have at most one child
t ransaction that is waiting to obtain lock. The edge Gi —̂ Gj exists in P(.'G,
if G'l’s subtransaction is in the waiting state and G'/’s subtransaction is in the
executing state at the same site. A cycle in PCG represents a potential global
deadlock. .A similar algorithm is employed to estimate the global deadlocks
occurring due to ticket waiting. In our PGG algorithm, an edge is inserted
between Gi and G',·, if Gi is in the executing state and Gj is in the ready-to-
take-a-ticket state. The PCG algorithm executed for our transaction model is
as follows:

• .A timestamp and a time-out value is assigned to global transaction G
when it is submitted to the system.

• If one of the children of G enters the ready-to-take-a-ticket state, a node
for G is created and related edges are inserted into PCG.

• If the time-out of G expires, PCG is checked for cycles including G.

• If G appears at least in one cycle then,

— If it has the smallest timestamp value among the transactions in the
same cycle it continues to execute with a reinitiated time-out.

- Otherwise, if the dependency type among its subtrcuisactions is the
alternative or preference dependency, only the child transaction of
G that causes the cycle in PCG is aborted. In all other cases. G is
aborted.

• If G enters the ready-to-commit state, its node·and incident edge's are
re'moved from the graph.

Chapter 4

Simulation Model

4.1 Introduction

In this chapter, we study the global concurrency control problem of MDBSs
from the performance point of view. In the literature, most of the researchers
have concentrated on the serializability problem of global transactions and de­
w-doped various concurrency algorithms for MDBSs. However, the performance
implication of MDBS transaction management and the cost of transaction pro­
cessing in a .MDBS environment have not been investigated in detail.

In a work by Hung et ah [14], a performance analysis of various optimistic
and pessimistic global concurrency control algorithms has been provided. They
lia\'e made an analysis of throughput, response time and abort ratio of both
hDBSs and MDBSs. In their model, they assumed that all the LDBSs a|)ply
St rict two-phase locking (2PL) lor local concurrency control. Their performance
i-o'sults heavily depend on the local concurrency control algorithm. A general
multidata.ba.se simulation model has also been proposed in [11].

Schaad, Schek and Weikum have compared the transaction processing that
uses 2PC protocol with distributed multi-level transaction management [20].
riiey have developed a prototype implementation of a MDBS system. Strict

2PL is also the concurrency control algorithm of LDBSs in their work. They
have performed an analysis of averiige transaction response time under the
va.rious workloads. The effect of global concurrency control mechanisms on
the performance of LDBSs and the performance impact of local transactions’

25

CHAPTER 4. SIMULATION MODEL 26

l)('ha.vior on the global transaction response time have not be'en considered in
their mod(d.

II we assume ('ach LDBS applies a rigorous eoneurrenry control algorithm
lil«' st riet 2Pb in which all the data, locks obtained by a transaction are reh'ased
t(;get.h('r when the transaction commits or aborts [3], the global serializability
can b(' easily achieved by controlling the commitment order of .subtransactions
[I. 13]. ('on.se(|uently. if all of the LDBSs employ strict 2PL. the global concnr-
i<'ncv control problem is reduced to detect possible global deadlocks. As a re­
sult. the perlormance of a MDBS transaction management system also depends
on how the global deadlock problem is handled. In the literature, Scheuermann,
d'ung and Teng have studied the performance of two global deadlock detection
algorithms [21]. They have compared the potential conflict graph (PC'C) [·)]
approach with transaction-blocked-at site graph (TBSG) algorithm [22]. In
another work by Baldoni and Salzo, the performance of PCG iilgorithm and
simple globed time-out method has been studied in a A'IDBS environment where
])articipant LDBSs employ only strict 2PL algorithm [2].

In our work, we have focused on the performance analysis of OTM and CTM
algorithms based on the proposed extended transaction model. Performance
of the ticketing methods has not been investigated by anyone even wdth the
classical transaction model [21, 13, 1-1] yet. Therefore, first a. performance
implication of OTM and CTM algorithms on the classical tra.nsaction model
has been investigated in detail, and then their performance with the extended
transaction model has been studied. We have also analyzed and compared the
performance results of various global deadlock detection algorithms suitable for
the proposed execution model. Finally, experiments that compare the extended
transaction model with the classical transaction model have been performed.
In our perfornumce study, we did not restrict participant LDBSs to employ
oidy strict 2PC concurrency control algorithm as the others did. We made the
followings assumptions and simplifications about the MDBS simulation model,
as we focus only on the performance of the global transaction model and the
concurrency control algorithms.

• No communication or site failures occur, consequently the recovery re­
lated issues are ignored in the simulation model.

• .A centralized version of MDBS where GTM resides at one site is imple­
mented since the proposed algorithms work on the centralized MDBSs.

('I¡AFTER 4. Sl '̂l ULATION MODEL 27

• LDBSs can abort a transaction that executes at its site only due to local
deadlock detection algorithm.

• LDBSs notify the ti'ansaction programs when unilaterally abort a. traiis-
aclion. Ibis iiu'ans that .\lDLhS will be aware cd'subi i-ansacl ion aborts
at local sit(ts.

• LDB.Ss permit serializable and recoverable schedules.

• .Subtransactions have a visible ready-to-commit state.

In the next section, we present a detailed simulation model of an MDBS
which is similar to the one provided in [14].

4.2 MDBS Simulation Model

A MDBS in our system is a closed network with one global site and a fixed
number of local sites. GTM resides at the global site alone as a server to
global clients. .All of the global transaction requests are submitted to the
(4TM interface. W'e also assume that only one LDBS resides at each local site.
.V global transaction agent (GT.A) is also built on top of each LDBS. GTAs are
responsible for submitting global subtransactions to the corresponding LDBSs;
as well as communicating with the GTM. Both local clients and GT.As submit
their requovsts to LDBS interfaces. The architecture of our MDBS is illustrated
in Figure 4.1.

t he parameters describing the MDBS model are listed in Table 4.1. The
multiprogramming level of the MDBS is the maximum number of global trans­
actions that GTM can ¡process at a time. To keep the global nuihiprograinmiug
l(('(I (GMPL) constant throughout the simulation, global clients submit tlieir
i-e<(uests one after another. The local inultiprogramrning level (LMPL) of eadi
LDBS is the number of local transactions plus the number of global subtrans­
actions submitted to that site. The local clients also submit their requests one
after another to keep the local transaction load constant. At local site's, the'
minimum LMPL is LNumClient, and the maximum LMPL is (L-dunit'lient 4-
GNuniGlient). The size of the local database is assumed to be constant for
each site and LDBsize represents LDBS size in pages. Hot region is the part
of the database which is accessed most frequently. LHotRegion parameter can

a i A PTER 4. SIM ELATION MODEL 28

Figure 4.1: MDBS closed network model

be in l^etween 0 and 1, and used to specify the ratio of the hot region in the
local database. The ratio of the hot region is also assumed to be the same for
every '

S ys t e m P aramet ers Meaning
Nu tnSiles
G X mnClient
LX umClient
LDIhize
LHotReejion

Number of local sites
Number of global clients
Number of local clients at each site
Size of each LDBS in pages
Ratio of the hot region in LDBSs

Table 4.1: System model parcimeters

4.2.1 Transaction Model

111 a MDBS environment, two kinds of transactions aifect the performance of
the system: local and global transactions. .-V local transaction contains read and
write operations on data pages. It can be modeled in a simulation environment
with f('w liasic |)arameters. Local transaction model parameters are describi'd
in lable 1.2.

A Local transaction size can vary between LTranMinSize and LTranMaxSize

C7/.A PTl^R 4. SIM ULATION MODEL 29

l.ocal I’ransacl ion
raiiKMc'rs Meanimi

/. Ti’diiMilll.(II
1.1’riniMa.rl.i II

1.11 of,\iTf ssProh
LW'rilcProb
LTIi iiik'Fiiiif'
LP< sldrlTiii ie

Minimum local transad.ion lengt h in pages
Maximum local transaction length in pages
Local transaction hot, rc'gion access |)robabilily
Local transaction update probability
Local clients’ think time in seconds
Restart time of an aborted local transaction

'L'ai)le -1.2: Local transaction model parameters

with uniform distribution. LHotAccessProb is used determine local trimsac-
t ions' access probability to the hot region. LWriteProb represents the proba­
bility of update operation. LThinkTime i)arameter is used to model the client
think time between consecutive local transactions. When a local transaction
finishes its execution, a new one is submitted to the LDBS alter LThinkiime
seconds.

The global transaction model is more complex clue to its semantics. .-Vs
discussed in the previous sections a global transaction can be modeled as a
tree where the internal nodes are global transactions and the leaf nodes are
subtransactions. In the simulation model, a global transaction is characterized.
Ijv the Height and NumChild parameters. These parameters represent max­
imum values for a global transaction and vary depending on the experiment
types. In the experiment that compares the classical model with the extendc'd
model, a global transaction is modeled as a lull tree. Each subtransaction,
like a local transaction, contains several read and write operations on data
pages. Ticketing operations of a subtransaction are assumed to be read and a
write operations on s[)ecific pages. .A representation of a global transaction is
provided in Figure -1-.2.

I'he global transaction parameters used in our simulation model are listed
in Talde -1.3. TreeHeight parameter represents the maximum height of the
tiee and NumChild parameter represents the maximum number of children at
('ach internal node. The maximum number of subtransactions executed in a
global transaction is then The number of subtransac­
tions executed in a global transaction can vary according to the dependenci('s
among the subtransactions. Since we assume that at most one subtransaction

CHAPTER 4. SIMULATION MODEL ;50

(¡lohal 'IVansact-ion
Pai'ainet (M'S Mcaning
!)■(:(II(ifjlil
SuwChUd
.\ o I)(p(II dcIIruPivb
Pr(c(:d(nccPvoh
Pri fi iTiin Prob
Alle null irr Prob
OrdiiiaryProb
('oiiiprusdiablc Prob
P(triablr Prob

Maximum height, of a global transact ion t.rcc
Maximum mimbcr of children in cacli global ti-ansact ion
Probability of no-Deixnidcncy relation
Probability of precedence relation
Probability of |)r('lerence relation

a.lternatiVC relation
o rcl i n a ry s n b t, r ai 1 s ac t i o n s
compensatable snbtransactions

Probabilitv of retriable snbtransactions

Probability ol
Probability ol
Probabilitv oi

(n'riinMiiiLtn
(¡TraiiMaxLrii
(I'HotAcces.iProb
a WrileProb
a 1 'alRrstart Time
(J TiineoutRestarl Time
CiRtslartTime
(iThirıkTime

Minimum global subtransaction length in pages
Maximum global subtransaction length in j:)ages
Global subtransaction hot region acciiss probability
Global subtransaction update probability
Global transaction restart time after GSG aborts
Global transaction restart time after timeout aborts
Global transaction restart time after local site aborts
Global clients' think time in seconds

Table 4.3: Global transaction model parameters

of a global transaction can be executed at each site, the number of subtransac­
tions executed also determines the number of local database sites that a glofial
transaction may access.

The dependencies among the children of a global transaction is determined
In· the probability of eiich dependency type. NoDependencyProb, Preceden-
ceProb. PreferenceProb and .AlternativeProb represent the distribution of d('-
pendencies among the children of global transactions. To analyze the effects of
compensating and retriable transactions, OrdinaryProb, GompensatableProb,
and RetriableProb parameters are defined. Those probabilities represent on the
a.\-erage tlie ratio of sulitransactions’ types in the overall global transaction.

GTranMiiiLen and GTranMaxLen pariuneters cire defined to determine the
subtransaction length. Similar to the local transaction parameters. GMot.\c-
(■('ssProb and GVVriteProb repre.sent the access probabilities of global snbtrans­
actions at local sites. GThinkTirne parameter is also defined to model the think

('ll A PTER 4. SIM ULATION MODEL ;n

Global wSubtraiisaclions

1' igure 4.2: Global t rausaction model

time of a global client. Re.start time of aboi'ted global tran.sactions is deter­
mined according to the abortion type. GV'alRestartT'iine. GTimeoutRestart-
Time. and GRestartTime specify the restart time after a validation, timeout,
and local site aborts, respectively.

We can obtain the classical global trcinsaction model of [14]. [13] by setting
the parameter TreeHeight to 1 and NumChild to the number of subtransactions
ill a global transaction. Table 4.4 provides parameter settings to simulate the
classical global transaction model.

Transaction Parameters Settings
Tree Height
Nnm Child
No D ep e n d e n c 'jjPro b
PrecedenceProl)
P ref even ceProb
AlternaliveProb
OrdinaryProb
CompensatableProb
RetriableProb

1
Number of subtransactions
1.0
0.0
0.0
0.0
1.0
0.0
0.0

I'abh' 1.1: Parameter settings to obtain classical global transaction mode!

('¡¡A PTER 4. SIM ELATION MODEL 32

4.2.2 Simulation Model Components

¡•'iguro 3.3 illustfal.('s the simulation model components. 1'he model is fle.xible
1o inl(\i<:i-al(' di(Fei('nt kinds of concurrency control algorithms and datahasc'
(■(anpoiienis lor investigating varii)us aspects of the systcmi. 'The details of
('acli com|jon(.'iit in the system can be do'scribed as follows:

Global Site

Local Site

Figure 4.3: Simulation Model Components

• (¡lol)al Transaction Generator (GTG) : GTG resides at the global site
and simulates the global client behavior by generating global transactions
using the parameters in Table 4.3. At the beginning of the simulation.
GNumClient global transactions are created and submitted to the GTM.
During the simulation, a new transaction can only be created after the

CHAPTER 4. SlMUL^VnON MODEL ;J3

terniiniitiou of a global transaction. For the last set of experiments,
t his component also co?iverts an extended global transaction to a set of
classical global transactions.

• (ilobal 'IVansaction Manager (GT.M) Chl'M acc('pls global transactions
from GTG and models their execution. It consists of 2 moduh's:

- .Main Module; 'riiis modtde models the transaction ('xecutiou with
the help of Concurrency Control (CC) manager. There are two
main jobs of this module. First, it accepts global transactions and
decomposes them to their subtransactions executed at each local
site according to the rules in Section 3. Second, it establishes 2PC
protocol with cigents and coordinates in-coming and out-going mes­
sages for subtransactions. When a global transaction enters the
recidy-to-comrait state it decides commitment or abortion of that
transaction by communicating with the CC manager.

- Concurrency Control (CC) Manager : CC manager models the exe­
cution of a concurrency control algorithm for serifilization of globcxl
transactions. It also performs the deadlock detection, if it is neces­
sary. This module enables us to plug-in different global concurrency
control and deadlock detection algorithms for performance studies.

• Local Transaction Generator (LTG) : This component simulates the local
client behavior and generates local transactions using the parameters in
Table 4.-1. Like GTG, it submits a new transaction when one of the.
previously submitted local transcictions completes its execution.

• Global Ti'cinsaction Agent (GT.A.): GT.A resides at each local site and
models the execution of global subtransactioiis at that site. Similar to
GTM, it consists of two modules.

- Main Module : GT.A Main Module is responsible for coutrolling sub­
mission of subtransactions at its site. It determines the submission
time of a subtransaction’s operations with the help of the CC man­
ager and the messages coming from GT.VI. It behaves like a local
client for LDBS. .Submission time of the ticketing operation is also
determined in GT.A main module according to the local coiicurreucv
control algorithm. GTA submits the ticketing o|)eratious at the end.
if LTM of its site applies the 2PL algorithm [13]. GT.A main module
also handles the submission of compensating subtransactions with
the coordination of CC manager.

CHAPTER 4. SIMULATION M0D[<:L 34

CC Manager : It is the local agent part oi the concurrency control
algorithm implemented in CTM. It carries out the global conciir-
rc'ncy control for subtransactions at its site.

• .Xc'lwcu'k .Managin' : It modods the lu'l.woi'k r('S(uirce betwcnni 1 hc' (I I'.M
and Ci l.\. We defined MessTransTime |)arameter to simulate the tinu'
duration to transmit a message between (¡T.M and CT.A. MessTransl'inK'
is assumed to L)e the same for each local site. We also assumed that a
subtransaction is transmitted in one MessTransTime. CPUMessTime is
defined to simulate CPU message coding-decoding time.

• Local Transaction Manager (LTM) : LT.M accepts and models the e.\-
ecution of local transactions and subtransactions. It consists of three
modules.

— Main Module : Main module models the local transaction execution
with the help of CC manager and data manager.

— CC manager : CC manager models the local concurrency control
algorithm as well as the local deadlock detection algorithm.

— Data manager : Data manager models the data accessing ixncl pro­
cessing by interacting with the resource manager and the main mod­
ule of LTM.

• Resource manager : This component models the CPU and disk accesses
at its site.

Resou rce Para meters Meaning
CTUMc.^TTune
MessTraii-sTiine

CPU message coding-decoding time in seconds
Message transmission time in seconds

LR.(:ifourceUuit
LCPUTinu
L Disk Tim t
(ISCiTiinf

Number of resource units at each site
CPU time for processing one page
Disk time for read/write of one page
Execution time of CSC! algorithm in OTM

'I'able 4.5: Resource parameters

Disk and CPU resource parameters are included in Table 4.5. resource
unit is modeled as one CPU and two disks as in [1]. Each site has ecpial number
of resources which is determined with the LResourceUnit parameter. We also

(‘I IA FT Ell 4. SIMULATION MODEL 35

employ a parameter to model the execution time of a glol)al serialization graph
algorithm in OTM.

Chapter 5

Simulation Experiments

5.1 Introduction

Our performance model has been implemented on a simulation testbed using
the (.'SIM simulation package from MCC [23]. We can categorize our experi­
ments ill four sections:

• Experiments on the cla,ssical transaction model.

• Experiments on the extended transaction model.

• Experiments to evaluate global deadlock detection algorithms l:)ased on
the extended model.

• Performance comparison of classical transaction model with the extended
transaction model.

Before providing the details of each experiment, we will first discuss the
algorithm settings, performance metrics, and general parameter .settings.

5.1.1 Algorithm Settings

In our performance model, we do not restrict local concurrency control algo­
rithms to be either strict or cascadeless. Since we have aimed to cover a wide

36

CHAPTER 0. SIMULATION EXPERIMENTS 37

i-aiige oF local concurrency control algorithms, we have employed tlie basic
2PL concurrency control algorithm in each L13BS, which is not restricted to
sti'ict (;r cascadeless schedules. Using a locking-l)ased local concurrency control
algorithm also gave us a chance to model and compare the global ih'adh^ck dc'-
lection algoritlims besides evaluating OTM and CIWI. We ha\e imi)lementc(l
tlie ti ansaction wait-for graph algorithm [-3] to handle local deadlock situations.
In llu' performance comparison of OT.M and CTM algorithms on the classi­
cal global transaction model, we have implemented a simple global time-out
method. In this method, the time-out period was calculated using the formula
below [I 1]:

Timeout Period = Global ResponseTime 3- 2 * std{GlobalResρon.í■tTİ■me.)

where GlobalRtsponseTime is the average response time of a global trans­
action, and st,d{ GlobalResponseTime) is the standard deviation of the global
I'espon.se time. GlobalResponseTirne changes dynamicly during the simulation
and reflects the on-line estimation of global transaction execution time.

For the extended transaction model, we have also implemented the extended
global time-out method mentioned in Section 3.-1. In the extended time-out
method, tirnc-out period of each subtransaction was also calculated using the
same formula given above by replacing GlobalResponseTiine with subtransac­
tion response time.

5.1.2 Performance Metrics

Primary and secondary performance metrics employed in the exp('riments
are provided in Table o.l. Our experimental results present the mean values of
the perlbrinance measures. We looked only the statistically significant perfor­
mance differences tor the evaluation of performance results. In all experiments,
t hroughputs are measured over a long simulation time periods. The response
times are measured between the transaction submission time and the trans­
action commitment time. Local throughputs are computed as the averages of
all local sites. Local throughputs and response times are measured to investi­
gate the effects of global transactions on local transactions. Since the global
aborts are composed of validation aborts, global time-out aborts, and local sites
aborts, we also examined the each category of aborts separately. Compensated
transaction ratios are analyzed to comment on the compensatable transaction

CHAPTER ó. SIMULATION EXPERIMENTS 38

P ci r fo r I n a. n c e A' 1 (.' t r i c s Meaning
(Mobal/local Ihronghpat Number of global/local transactions completed

per second
Globdl/locdl response lime ■Average response time measured bcMwcen the

global/local transaction submission time
and completion time

(Hobal/locdl dbort vdlio Totcil number of global/local transaction aborts
over the total global/local transactions
submitted to the system

Global/local conflict ratio Total number of global/local access conflicts
over the total number of global/local
access recpiests

Global/local blocking time Average global/local transaction
waiting time per page request

¡lesource Utiliza/ion Fraction of time that the disk
resources are busy

Table 5.1: Performance metrics

e.\:ecutioii in the extended transaction model. False, global deadlock ratio was
measured in the performance analysis of deadlock detection algorithms. We
examined the disk I|0 utilization to determine the rate of resource contention.

System Parameters Settings
A'uinSitei:
LDBSize
CPUMtssTime
.1 less Tra ns Tim e
LCPUTime
LDiskTime

8 sites
1000 page per site
0.02 .seconds
0.05 seconds
0.10 seconds
0.20 milliseconds

Table 5.2: System parameter settings

5.1.3 General Parameter Settings

Syst('in parameter settings can be seen in Table 5.2. The parameters are
common in all performance experiments unless specified otherwise. The lo­
cal database size was set to 1000 pages to create high levels of conflicts in the
system. Number of sites was set to 8 to have a rea.sonable number of sites for
the extended transaction model. All the other system parameter values chosen

CHAPTER 5. SIMULATION EXPERIMENTS 39

Parameters •Settings
GNumCUent 20 clients
LNumClitnt 30 clients
Llfol Rujion 0.5
LTninMinitn 8 pages
LTranMaxLen S pages
LHotAccesProb 0.5
LWriteProb 0.25
LTliinkTime 0.0 second
LRestartTime L ResponseT i me
Treelleight 1,3
NwmChild 2
G Tran Min Len 8 pages
G TranMaxLen 8 pages
GII0 tA ccessPro b 0.5
G WriteProb 0.25
GThinkTimt 0.0 second
G ValRestart T irne 0.0 second
G TinieoutRestart Time GResponseTime
GRestartTime GResponseTime
GSGTirne 0.0 second
LResourceUnit 1, 20

Table 5.3: General Workload parameter settings

are similar to those used in [1], [14] to be able to obtain competable results
witli the previous performance studies.

The general workload parameter settings are listed in Table 5.3. Those
are the standard parameter settings of all experiments. Their variations will
be given with the description of the relevant sections. The general experi­
ments were performed on both low and high resource contentions by setting
LResourceUnit to 20 and 1, respectively. It was observed from the simulation
results that, 20 resource units were enough to avoid resource contention. The
local, global transaction lengths and write probabilities were .selected to create
reasonable number of transaction conflicts. Those values are also similar to
those' used in the previous performance models. For the classical transaction
model experiments we set ThreeHeight to 1. For the other experiments, we set
it to 3.

Our preliminary experiment results showed that an adaptive restart delay

с и л ИТ Ell о. SIM ULATION EXPERIMENTS 40

depending on the observed average response time is the best for the aborted
ti-ansactions. For an aborted global transaction, we set the validation abort
d(da.y to 0, since the global transaction already completed all its o])erations
1к'Го1Ч' being validated. 'ГЬегеГоге there is no need to wait For resnbmission.
The piadimiiuiry e.xperiment resnlts also confirm that no delaying for valida-
ti(jn aborts provides the best performance. However, For the timeout and local
sil(' aborts, an adaptive delay based on the committc'd global transaction re­
sponse time performs slightly better than zero delay especially on high rlata
conflict situations. .An adaptive delay of one global response time period gave
l('ss glof)al timeout and local abort ratios. Therefore, we chose to employ a
dynamicly changing restart delay value for the timeout and local site abort
sit uations of global transactions. In addition, these restart times do not alFect
the performance in low abort and data conflict ratios. We did not employ
parameters related to the hot region in standard experiments, since we did not
want to create high levels of data conflicts in those experiments.

5.2 Experiments on the Classical Transaction
Model

in the following experiments we compare OTM and (JTM algorithms using the
chissical transaction model. The simple global time-out method is employed
for global deadlock detection. We vary one of the parameters given in Table
.'). t at each experiment, and examine the pertbrmance results.

Variable Parameters Settings
LWriteProb 0.0. 0.25. 0.50. 0.75. 1.0
G WriteProb 0.0. 0.25, 0.50. 0.75. 1.0
CrTranMiuLccn
GTranMaxLcn

2, 4, 8. 12. 16 pages
2, 4. 8, 12, 16 pages

Table 5.4: Variable workload parameter settings for classical trcinsaction model
('X|n'riments

CHAPTER 0. SIMULATION EXPERIMENTS 41

6.0

5.0 f .
f

Q . i

"oi 4.0 -

_ oO
3.0

2.0

1.0
0.00

C T M
-Q O T M

0.25 0.50
G W rite P ro b

0.75 1.00

Figure 5.1: Global throughput vs. GWriteProb, LResourceUiut=20

5.2.1 The Impact of Data Contention

We have examined the effects of data contention in both high and low resource
contention situations. The variation in the data contention was achie\'ed l)y
clianging the value of GWriteProb. First, we set LResourceIJnit to 20 to iso­
late the effects of resource contention. Figure 5.1 shows the global throughput
of the two algorithms. When the data contention is very low, OTM]:)erforms
bet ter than GTM since the global blocking and conflict ratios are low. This sit­
uation minimizes the variation of subtransaction completion time which also
decreases the validation aborts. Further, since we isolate the resource con­
tention. under low conflict ratios the throughput toss from re-submission of
al)orted transactions is at the minimum values which is in favour of OTM. On.
the other hand, if we do not ignore the execution time of the GSG algorithm.
OTM loses its performance advantage to CT.M even for the low data conflict
ratios. Figure 5.2 compares the global throughput of the two algorithms wlien
G.SG'rime is set to 0.05 second.

.\s the data contention increases. OTM is no longer the winner, because
of the high validation aborts. Finally, when the data contention is very high
("I'.M suffers from global and local deadlocks. The reason for this ix'sult is I hat
a. subtransaction that completes its data operations has to wciit its siblings (o
enter the ready-to-take-a-ticket state before taking its ticket and releasing its
locks. Hence the blocking times for both subtransactions and local transactions

C'[IAFTER 0. SIMULATION EXPERIMENTS 42

Figure 0.2: Global throughput vs. GVVriteProb, LResourceUnit=20. G.SG-
Time=U.05

increase which reduces the CTM throughput. On the other hand, OTM sub­
mits the ticketing operation immediately after the subtransaction completes
its data operations. Therefore, the global conflict ratio and the blocking times
are smaller with OTM. Figures 5.3 and 5.4 confirm the OTM ’s lower global
blocking times and conflict ratios under high data contention.

G W rite P ro b

Figure 5.3: Global blocking time vs. GWriteProb, LResourceUnit=20

Figure 5.5 illustrates the total global abort ratios of OTM and CTM. OTM
has a higher abort ratio due to validation aborts. Figures 5.6 and 5.7 give the
individual abort ratios of two algorithms respectively. The high abort ratio
of OTM algorithm is mainly due to local and validation aborts. At higher

CHAPTER 5. SIMULATION EXPERIMENTS 4A

Figure 5.4: Global conflict ratio vs. GWriteProb, LResourceUnit=20

(lata conflict.s, the local abort ratio cloininate.? the other abort ratio.s for l:>oth
algorithms. CTM has higher timeout and local abort ratios compared to OTM.

Figure 5.5: Global abort ratio vs. GWriteProb, LResourceFnit=20

CIW'Fs poor performance under high data conflicts becomes more clear
when we repeat the same experiment with the setting of LHotRegion to 0.2.
Figure 5.8 shows the comparison of the global throughput ratios when the data
contention among transactions is increased with the new setting of LHotR,f?gion.
For the GWriteProb values that are greater than 0.25, CTM faces a great
performance loss due to very high rate of local and timeout aborts. We can

CHAPTER 0. SIMULA'TION EXPERmENTS 44

conclude that CTM is much more sensitive to data contention than O'r.M.
Ihgure 0.9 compares the global abort ratios of two algorithms.

0 .3 5 ,-----------------

:--------- -
V a lid a tio n A b o rt

0 .3 0 - L o c a l A b o rt
T im e o u t A b o rt

o
"ca

0 .2 5 -

OC
■ c
o

0 .2 0 -

<
0 . 1 5"cö-Qo

O !
0 . 1 0

0 .0 5
j '

0 .0 0
i ' . i

____ 1
0.00 0.25 0.50 0.75

G W h t e P r o b
1.00

Fdgure .5.6: Global aborts of OTM. LResourceUnit=20

0.35

0.30 i-
j

0.25 i- o
^ I
^ 0.20 -
o
<

0.15JQ
_ oo 0 .1 0

0.05

0.00

L o c a l A b o rt
T im e o u t A b o rt

0.00 0 .2 5 0 .5 0
G W rite P ro b

0.75 1.00

Figure 5.7: Global aborts of CTM, LResourceUiiit=20

O^FM’s problem with large amount of validation aborts is more visible when
we look at the situation where the number of children in a global transaction is
1. As we can see from Figure 5.10, OTM performs veiy l)ad since around half
of the submitted transactions are aborted. Figure 5.11 shows the globed abort
ratio versus update probability with 4 children. It is very difficult to achieve the
situation that every child subtransaction is serialized at the same order when

CHAPTER 5. SIMULATION EXPERIMENTS 45

the number of subtransactions in a global transaction increases. CTM is the
algorithm of choice when the number of sites that a global transaction accesses
is large. But again with high data conflict rates, CTM’s performance drops
rapidly as a result of the increase in the total glol)al blocking time and conllict
ratio. Ihis situation also increases the local aborts of global transactions,
bc'caiise the local abort probability of a global transaction is higher with a
greater number of subtransactions.

G W rite P ro b

Figure 5.S: Global throughput vs. GWriteProb, LResourceUnit=20. LHotRe-
gion=0.2

Figure 5.9: Global cxbort ratio vs. GWriteProb, LResourceUnit=20, LHotRe-
gion=0.2

CHAPTER 5. SIMULATION EXPERIMENTS 46

C LJCOi

3.0

2.0

o i-o r

0.0
0.00

A -----------A C T M
Ci--------e:, O T M

0.25 0.50
G W h t e P r o b

0.75 1.00

Figur(? o.iO; Global throughput vs. GlWriteProb, NumChilcl=::4, LResourceU-
nit=20

Figure 0.11: Global abort ratio vs. GWritePrpb, NumChikl=4, LResource
iiit=20

5.2.2 The Impact of Resource Contention

la this e.xperiment, we set LResourceUnit to 1 and by changing the update
probability, we examine the effects of data contention under the condition that
a resource contention also exists. Figures .0.12 compares glolral throughput
values of the two algorithms. Although GTM throughput decreases faster than
OTM as the data contention increases, CTM performs well in the overall. Un­
der high resource contentions, the cost of aborting a transaction is higher, con­
sequently validation aborts significantly affect the global throughput of OTM.

CHAPTER 5. SIMULATION EXPERIMENTS 47

Figure 5.12; Global throughput vs. GWriteProb, LResourceUiiit=l

Figure 5.13: Global abort ratio vs. GWriteProb, LResourceUiut=i

The abort ratios of OTM and CTM are plotted in Figure 5.13. The trends
of the abort ratios are nearly the same as the situation where there exists no
resource contention (Figure 5.5). In addition to this, as the data contention
increases, we observed slightly higher abort ratios under high resource con­
tention.

When we compare OTM and CTM by setting .NumChild to I in Figure 5.11.
CTM ’s superior performance under low resource contention is noticed clearly.
Waste of resources due to restarts negatively affects the OTM's performance.
OTM has a chance to perform better only when the GTM’s throughput sharply
decreases with the high rate of data conflicts.

Cl!A PTER 0. SIMULATION EXPERIMENTS 48

0.40

0.30 -
•■V.

O .
-crcm

0.20 !

0.10 L

0.00
0.00

Vi C T M
w O T M -

0.25 0.50
GW riteProb

0.75 1 .OO

Fi,i>iu'e 0.14: Global throughput v.s. GVVriteProb, NumGhild=4, LRe.source(.'-
iiit= 1

5.2.3 The Impact of Transaction Length

111 thi.s experiment, the performance of two algorithms was measured by vary­
ing the subtransaction length from 2 pages to 16 pAges. Again the standard
workload parameter values in Table 5.3 were used throughout this experimeiu .

l'’ igure 5.15: Global throughput vs. transaction length, LResourceUnit=20

I'hgure 5.15 shows the throughput of the algorithms under low resoimo'
coiitciitioii. When the system has no resource problem and the subtransactioii
length is smaller than 8, OTM performs better. This result is not surprising
since under low resource contention the response time of the global transactions
is short; consequently, restarts with OTM have a little effect on the throughput.

CHAPTER 5. SIMULATION EXPERIMENTS 49

Oil the other hand, since CTM is conservative about ticketing time, response
time of a global transaction becomes larger clue to the extra waiting time before
I iclnning. As the subtransaction length increases. OTM ’s throughput decreases
sharply Ix'low ("TM's throughput. I'diially, with very large transaction lengths,
in addition to the transaction execution time, the data access conilict ratio also
increases which makes CT.M behave worse. Ex|)lanation of this follows that of

Figure 5.16: Global throughput vs. transaction length, LResourceUiiit=:i

h'igure 5.17: Global abort ratio vs. transaction length, LRc?sourceUnit=20

When we look at the high resource contention situation in Figure 5.16.
OTM losses its advantage with the increase in resource costs. CTM produces
higher throughput rate than OTM in the overall, although it suffers from long
transaction waiting as the subtransaction length increases.

CHAPTER 6. SIMULATION EXPERIMENTS 50

Figures 5.17 and 5.18 illustrate the total global abort ratios on low and high
lesource situations. O'l'M has an higher abort rate in both figures as e.xpected
due to its CSC aborts. The abort rate of both algorithms slightly increases as
a riinction of the subtransaction length.

Figure 5.18: Global abort ratio vs. transaction le.ngth. LResourceUnit=l

5.2.4 The Impact of Local Transaction Behavior on
Global Transactions

1'he effects of local transaction behavior on global transactions were tested l)y
changing the update probability of local transactions. We have performed the
e.xperiments by varying LWriteProb from 0 to 1 using the standard workload
parameter values and setting LResourceUnit to 1.

We can understand from Figure 5.19 that both algorithms" performance de­
creases when the local transactions create more conflicts and hold the ro:-sources
longer time. CTM ’s performance is more sensitive to the local transaction be­
havior. As the update probability of local transactions increases, the CTM's
performance sharply decreases. When we look at the global abort ratios in
Figure 5.20, both OTM and CTM abort ratios steadily increase as the local
data, access conflicts increase. The increase in abort ratios is mainly dne to
the local aborts because of the deadlock situations between global transactions
and local transactions.

CHA PTER 5. SIM ULATION EXP ERİM ENTS 51

L W rite P ro b

'igure 5.19; Globc\l throughput v.s. LVVriteProb, LResourceUnit=l

Figure 5.20: Global abort ratio vs. LWriteProb, LResourceUiiit=l

5.2.5 Algorithms’ Impact on Local Transactions

111 tlie e.xperimeuts discussed above, we also examined the impact of OTi\i and
('d'.M algorithms on the loccil database performance. We can understand from
Figure 5.21 that under no resource contention, as we increase GWriteProb of
glol)al transactions, local throughput decreases for both algorithms. However,
OTM has better performance in terms of local throughput under all levels of
data conflicts. The reason for this result is that, with OTM, global transactions
do not hold page locks for very long periods. Global transactions take their

CHAPTER 5. SIMULATION EXPERIMENTS 52

P’igure 5.21: Local throughput vs. GWriteProb, LResourceUnit=20

tickets and release their locks as soon as they complete their data operations,
thus the local blocking time and conflict ratio are minimized.

Figure 5.22: Local blocking time vs. GVVriteProb. LResourceUnit=20

On the other hand, CTM follows just the opposite way and prefers to hold
locks until it becomes sure about the serialization order of subtransactions
using the take-a-ticket command. Figures 5.22 and 5.2.3 confirm our intuition
about the worse performance of CTM for local transactions. Especially at
high data contention, local transactions Inive large average blocking times and
conflict ratios.

CHAPTER 5. SIMULATION EXPERIMENTS 53

G W rite P ro b

Figure 5.23: Local conflict ratio vs. GWriteProb, LResourceUnit=20

0.00 0.25 0.50
G W rite P ro b

0.75 1.00

Figure 5.24: Local throughput vs. GWriteProb, LResourceUnit=l, LHotRe-
gion=0.2

The impact of CTM algorithm on local transaction throughput is much
worse when we create high levels of data conflict by setting LFIotRegion pa­
rameter to 0.2. In Figure 5.24, the local throughput decreases very sharply with
CTM algorithm, since as the number of global and local deadlocks increases, re­
sponse time of a local transaction becomes longer. From the the subtransaction
length experiments, we can observe similar results. Local transaction behavior
in response to subtransaction length is plotted in Figure 5.25. As the global
subtransaction length increases the local throughput decreases. However, the
local transaction response time is not very sensitive to varying subtransaction

CHAPTER 5. SIMULATION EXPERIMENTS 54

length with OTM. On the other hand, CTM does not perform well when the
subtransaction length is long.

Figure 5.25: Local throughput vs. transaction length, LResourceUnit=20

G W r ite P r o b

Figure 5.26: Local abort ratio vs. GVVriteProb, LResourceUnit=20

When we look at the local abort ratios of two algorithms in Figure 5.26, at
high data contention, OTM has higher local abort ratio due to cascade aborts
caused by validation aborts. Figure 5.27 shows the local abort ratios as the sub­
transaction length increases. Although overall performance trends cire simihir,
at very large subtransaction lengths, CTM causes more local deadlocks. The
reasons for this result is that long transactions increase both the transaction
blocking times and data access conflict rates.

CHAPTER 5. SIMULATION EXPERIMENTS 55

Overall, our observations indicate that we cannot ignore the global concur­
rency control algorithms’ impact on the local system performance. Algorithms
like (.'T'.VI that holds the data resources for longer periods of time, have a
significant effect on the performance of the local transactions.

Figure 5.27: Local abort ratio vs. transaction length, LResourceUnit=20

5.3 Experiments on the Extended Global Tran­
saction Model

In the experiments of this section, we have investigated the performance im­
pact of the extended OTM and CTM algorithms and the extended transaction
model characteristics. We set TreeHeight to 3 and NurnChild to 2 where at
most 8 global subtransactions can be executed in a global transciction. In all
of these e.xperirnents, we limited the number of subtransactions required to be
committed in a global transaction to achieve consistent global throughput and
response times measurements. The other workload parameters of these exper­
iments are the same as the settings given in Table 5.3. For global deadlock
detection, simple global time-out mechanism was applied.

5,3.1 The Impact of Subtransaction Dependencies

In this set of experiments , we have investigated the effects of each depen­
dency type individually. For the alternative and preference dependencies, one

CHAPTER 5. SIMULATION EXPERIMENTS 56

Variable Parameters Settings
No Dependency Prob
Prefe rence Pro b
Allrrnat.ivcProb

1.00, 0.75, 0.75, 0.50, 0.50, 0.25, 0.25, 0.00, 0.00
0.00, 0.25, 0.00, 0.50, 0.00, 0.75, 0.00, 1.00, 0.00
0.00, 0.00, 0.25, 0.00. 0.50, 0.00, 0.75. 0.00. 1.00

Table 5.5: Parameter settings for the analysis of the dependency relations

of the dependency probabilities was varied against the NoDependencyProb [)a-
rarneter and the throughput and average response time of global transactions
were measured. Table 5.5 shows a sample of dependency parameter settings
for this e.xperiment. As the probability of each dependency type increases, the
number of subtransactions executed in the system also increases. However,
the number of subtransactions to be committed is limited to 2 in all settings.
All of these experiments were conducted under both high and low resource
contention.

A lte rn a tiv e P ro b

Figure 5.28: Global throughput vs. .AlternativeProb, LResourceUnit=20

Figure 5.28 illustrates the effects of the alternative relation on the perfor­
mance of OTM and CTM when there is no resource contention. The through­
put of the system increases with both algorithms as the number of alternative
transactions in a global transaction increases. Flowever, OTM shows a sharp
climbing and achieves better performance when the AlternativeProb is around
0.5. As we further increase AlternativeProb, both algorithms perform worse,
because the additional alternative subtransactions introduce no advantage, and
even unnecessarily increase the workload of the system. Also, alternative sub­
transactions execute more data operations which increases the global conflict
probability. Consequently, throughput of both CTM and OTM are negatively

CHAPTER 5, SIMULATION EXPERIMENTS 0 (

aiFected when we increase the number of alternative snbtransactions. Figure
5.29 illustrates the total global ¿ibort ratios of both algorithms. The rapid
dc'crease in global abort ratio seems to be the main reason for both algorithms
to |)erfomi better when AltcrnativeProb is betwecMi 0 and 0.5.

o

0.40

0.30

0.20

0.10

0.00
0.00 0.25

-A C T M
O T M

0.50
A lte rn a tiv e P ro b

0.75 1.00

Figure 5.29: Global abort ratio vs. .AlternativeProb, LR.esourceUiiit=20

If vve concentrate on a situation where there e.xists a high resource con­
tention (Figure 5.30), as AlternativeProb increases, both algorithms' perfor­
mance becomes better. If a global transaction has more alteriicitive subtrans­
actions. it has a chance to select the one which has a shorter response time.
Besides, when an alternative relation is specified, thé abortion of a single sul)-
transaction does not lead to an immediate abortion of its parent transaction.
,\s we increase .AlternativeProb beyond 0.5, a global transaction acce.sses more
I'esources and creates more conflicts which results in a performance loss for both
algorithms. Nevertheless, the global throughput of the system is not below the
situation where no alternative relation is specified.

When we hcive e.xamined the preference dependency’s effects on the al­
gorithms’ performance, the results obtained were different from that of the
alternative dependency. Figure 5.31 illustrates the global throughput versus
PreferenceProb under low resource contention. Initially, the throughput of
both algorithms slightly increa.ses but this does not last long. As the number
of preferred subtransactions increases, OTM’s and CT.M’s throughputs sharply
decrease. The reason for this result is that, in preference relation GTM sub­
mits all of the alternative subtransactions, but waits for the preferred one.
Executed alternative subtransactions are not committed unless the preferred
one is aborted by the local site. Therefore, subtransactions which are not the

(7i/\ FTER 5. SIM ULAIFION EXPERIMENTS 58

Figure 5.•30: Global throughput vs. AlternativeProb, LResourceUnit=i

P r e fe r e n c e P r o b

Figure 5.31: Global throughput vs. PreferenceProb. LResourceUnit=20

preferred ones cannot minimize their parents’ re.sponse time, although they
have completed their data operations. As we can understand from Figure 5.32.
the global abort ratios slightly decrease as the preference relation probability
increases. This result shows that the abort possibility of preferred transac-
I ions is low which makes most of the alternative subtransactions unnecessary.
In addition to these, with CTM algorithm, alternative subtransactions do not
rc'lease their locks before the preferred one enters to the ready-ti)-take-a.-ticket
state. Especially when PreferenceProb is high, holding the data locks a long
period of time negatively affects CTM’s performance. This is the main reason
that throughout of CTM abruptly drops below thé throughput of OTM as

CHAPTER 0. SIMULATION EXPERIMENTS 59

Pret'erenceProb increases.

0.40

0.30
O
03OC

O
0.10

0.00
0.00

^ -------- A C T M
rv.-------- O T M

0.25 0.50 0.75
P re fe re n c e P ro b

1.00

Figure 5.32: Global abort ratio vs. PreferenceProb, LResourceUnit=20

[•'igure 5.33: Global throughput vs. GWriteProb, precedence relation. LRe-
sourceUnit=20

d'o analyze the impact of precedence relation, we set both PrecedeuceProb
and TreeHeight to 1 and by changing GWriteProb, we examined the behavior
of OTM and CTM algorithms. Figure 5.33 shows the global throughput of
OTM and CTM under no resource contention. If the dependency relation
is precedence, the response time of a global transaction is longer than the
response time of transactions with no-dependency relation. Hence, the abortion
cost of a global transaction is higher. When there is no resource contention,
C'TM ¡)erforms better than OTM under low data contention. As the data
contention increases, CTM’s performance rapidly decreases due to the same

CHAPTER o. SIMULATION EXPERIMENTS 60

ro'asons inoMitioued in the section of the classical transaction model experiments.
■Abort ratios of two algorithm are plotted in Figure 5.34. OT.\I suifers from
\alidation a.l)orts as ('xi)ected. Under the high resource contention. OT.M's
poor])('i'formance is also verified in Figure 5.35. .All of these results show I hat
glol)al transactions witli precedence relation lU'gaiively affect tlie throughput
(jf the svstems in which restart rate is liisiher.

Figure 5.34: Global abort ratio vs. GWriteProb. precedence relation, LRe
sourceUnit=20

0.00 0.25 0.50
G W r ite P r o b

0.75 1.00

? 5.35: Global throughput vs. GVVriteProb, precedence relation, Llle-
sourceUnit=l

CHAPTER 0. SIMULATION EXPERIMENTS 61

5.3.2 The Impact of Commit Independent Subtransac­
tions

111 I his sot oi cxpofiiueiits, we have invoistigalofl how ooiiipc'iisatable and r o -

triahle siibtransactions aifect the overall performance. Varying Com[)('nsat-
abh'Prob and Retrial)leProb |>arameters against OrdinaryProb parameter has
|)rovidcd ns various situations to evaluate the effects of commit independent
subtrausaction types. The settings of the experiments on the commit inde­
pendent types cire listed in Table 5.6. To evaluate the performance impact of
commit-independent subtransactions, we employ clcissical transaction model
1)V setting Treelleight and NoDependencyProb to 1. Thus, we isolate the ef­
fects of subtransaction dependencies. In these experiments, we also isolate the
impact of resource contention by setting LResourceUuit to 20.

Parameters .Settings
OrdinaryProb
Co rn p e ns at able P rob
R.e tri able P rob

1.00. 0.75, 0.75. 0.50, 0.50, 0.25. 0.25, 0.00, 0.00
0.00, 0.25, 0.00, 0.50, 0.00. 0.75, 0.00, 1.00, 0.00
0.00, 0.00. 0.25. 0.00. 0.50, 0.00. 0.75. 0.00. 1.00

d'able 5.6: Parameter settings for the analysis of commit-independent tran­
saction types

Figure 5.36 shows the effects of retriable transactions to the performance
of OTM and CTM. In general both algorithms’ performance slightly increases
as the probability of retriable transiictions increa,ses. It can be said tlia.t. tlu'
global throughput is not very sensitive to the RetriableProb. Since the sub­
transactions executed at the same site have to access the same data item to
take their tickets, the retriable subtransactions indirectly affect performance
of the other subtransactions executed at the same site. Especially, with the
CT.\I algorithm, if GTM decides to commit a retriable sul)tra.nsa.ction. other
subtransactions executing at the same site has to wait for that subtransaction
to take its ticket. Figure 5.37 represents the global abort ratios of the two
algorithms. OTM ’s abort ratio increases with increasing Retricd:)leProb. The
r('ason for this result is that OTM uses GSG validation mechanism to ensure
that no other transaction is serialized between a global transaction and its
retriable subtransaction.

n I AFTER 5. SIMULATION EXPERIMENTS 62

o

4.00

3.80 -

CD 3.60 rZD
2 I

I

3.20

3.00
0.00 0.25 0.50

R e tr ia b le P ro b

¿i.--------- A C T M
□ ---------O T M

0.75 1.00

Figure 0.36: Globcil throughput vs. RetriableProb, LResourceUnit=20

0.00
0.00 0.25 0.50 0.75

R e t r ia b le P ro b
1.00

Figure 5.37: Global abort ratio v.s. RetriableProb, LResourceUnit=20

The impact of cornpensatable transactions on the global throughput is il­
lustrated in Figure 5.38. CTM ’s performance is not very sensitive to the coin-
p('usatable transactions, while OTM behaves worse as we increase (.'ornpeii-
salableProb. Compensating transactions have a negative effect on the overall
performance of the OTM algorithm. Like retriable transactions, due to the
ticketing approach, compensatable transactions affect the e.xecution of otlier
subtransactions at their sites. With the OTM algorithm, GTA aborts the sub­
transactions that have obtained higher ticket values than the compensatable

CHAPTER 6. SIMULATION EXPERIMENTS 63

1,ra.nsaction l^efore its parents commits. Therefore, these additional aborts to
ensure serializability of compensatable subtransactions decrease the through­
put of OTM. ('llol)al abort ratios of the two algorithms plotted in Figure 5.39
co il linn this obser\'alion.

4.0

3.5 h

OT 3.0
o

o
2.0

1.5
0.00

-A C T M
-B O T M

0.25 0.50
C o m p e n s a t a b le P r o b

0.75 1.00

' igure 0.38: Global throughput vs. CompensatableProb. LResourceUriit=20

Figure 0.39: Global abort ratio vs. CompeiisatableProb, LResourceUiiit=20

We should not expect overall performance gains from the compensatabh'
transactions since the response time of a global transaction does not depend on
the execution of its compensatable children. However, from the local database
point of view, early committed transactions can improve the local transaction

CHAPTER 0. SIMULATION EXPERIMENTS 64

(.hroiighput as Uie locks are relecised earlier. This prediction is confirmed l)v
the experiments of Section 5.3.4.

5.3.3 The Impact of Data Contention

III ordi'i' (-0 examine the impact of data contention on the performance of the
extended transaction model, we have compared alternative, preference, and
no-d(,'pendency relations by varying GWriteProb. In this ex[)erirnent. we have
examined the performance results with three different workloads; tlie one that
only contains Nodependency relation, the one with 0.5 .-MternativeProb and
the one with 0.5 PreferenceProb.

Figure 5.40: Global throughput vs. GWriteProb, GT.M. LResourceUnit=20

Figures 5.40 and 5.41 illustrate throughput of each dependency type with
CTM and OTM, respectively. From these figures, we can understand that
gloinvl transactions that have alternative subtransactions])rovide better pei·-
formance with both OTM and CTM. Transactions with preference relation
perform better than the transactions that has no dependency when OTM is
(Muployed for global concurrency control. Contraiy, throughput ot the trcins-
actions with the preference relation face a sharp decrease when C'F.M is the
algorithm of choice. This is due to the fact that all of the alternative sub-
transactions do not release their locks until the preferred one completes its
execution. On the other hand, with OTM, alternative subtransactions do not
lurve to wait for preferred ones to release their locks. Figures 5.42 and 5.43

CHAPTER o. SIMULATION EXPERIMENTS 65

6.0

rK-5.0

K 4.0 !..
Oí
o Í
-C 3.0 !l·—
75J23
§ 2.0 -

1 .0 -

0.0 !
0.00

----A O T M N o-Dependency
a— a O T M Alternative
--- ̂ O TM Preference

0.25 0.50
GW riteProb

0.75 1.00

Figure 0.41: Global throughput vs. GVVriteProb, OTM, LResourceUiiit==20

.show glol^al abort ratios obtained with these experiments. The low abort ra­
tios ol the global transactions with the alternative relation explain their l)etter

.•manee.

0.40

0.00
0.00

C T M No-Dependency
C T M Alternative
C T M Preference

0.25 0.50
GW riteProb

0.75 1.00

l''igure 5.12: Global abort ratio vs. GVVriteProb, GTM, LResourceUnit=20

5.3.4 The Impact of Extended Transactions on Local
Transactions

If we look at the performance impact of the alternative and the preference
dependencies from the local database point of view, the local throughput is
negatively affected for both OTM and GTM as shown in Figures 5.44 and 5.45.

CHAPTER 0. SIMULATION EXPERIMENTS 66

Figure 0.43: Global abort ratio vs. GWriteProb, OTM, LResourceUiiit=20

The reason for this result is that global transactions with alternative subtrans­
actions access more data resources and create more conflicts with the local
transactions. In general, OTM performs better than CTM in terms of local
transaction throughput. For the alternative relation, OTM ’s local throughput
performance also drops due to the cascading aborts of local transactions as a
results of the large amount of conflicts with alternative subtransactions.

AlternativeProb

Figure 0.44: Local throughput vs. AlternativeProb, LResourceUnit=20

When we consider the impact of precedence rehition on the local trans­
action throughput, as we increase GWriteProb (Figure 5.46), OTM performs
lietter than CTM since it releases allocated resources of previously executed

CHAPTER 0. SIMULATION EXPERIMENTS 67

8 .5

’P""-
8.0 .

Q .
SZ
CO

1 7 .5

7 .0 r

A-------- A C T M
a -------- E] O T M

6 .5
0.00 0 .2 5 0 .5 0

P r e fe r e n c e P ro b
0 .7 5 1.00

Figure 5.45: Local throughput vs. PreferenceProb, LResourceUnit=20

transactions before submitting the ne.xt one. In other words, OTM leaves more
resources for local transactions compared to CTM.

Figure 5.46: Local throughput vs. GWriteProb, precedence relation, LHe-
sourceFnit=20

When we look at retriable transactions' impact on the local throughput
in Figure 5.47, the throughput with both algorithms slightly decreases as the
ratio of retriable transaction increases. However, CTM's local throughjout is
not affected as much as that of OTM. The situation is not the same when
we look at the compensatable transactions' impact on the local transcictions.
Figure 5.48 compares OTM ’s and CTM’s local throughput as the ratio of com­
pensatable transactions increases. Again, the performance with CTM is not

(.'I I AFTER 0. SLMULATION EXPERIMENTS 68

much affected by the compensatable transactions. On the other hand, we can
observe an improvement in local transaction performance with OTM, as we
increase (.'ompensatingProb from 0 to 0.5. .As we further increase the Com-
p('nsatingProl). (,iT.\ aborts of OTM algorithm reduces the local throughput.

R e t r ia b le P r o b

Figure 0.47: Local throughput vs. RetriablePrpb, LResourceUnit=20

Figure 5.48: Local throughput vs. CompensatableProb, LResourceUnit=20

CHAPTER o. SIMULATION EXPERIMENTS 69

5.4 Experiments on Global Deadlock Detec­
tion Algorithms

111 the experiments of this section, we have examined the effects of divullock
detection algorithms on the performance of the system. The basic timeout, the
('Xtended timeout, and the PCG algorithms have been compared. (.’'FM has
been employed in these experiments since it has a higher rate of global deadlock
situations. In all of these experiments the global transaction parameter settings
were the same as the ones in Table 5.3.

F'igure 5.49: Deadlock detection algorithms, global throughput
GV\'i·iteProl), LResourceUnit=20

vs.

G W rite P ro b

Figure 5.50: Deadlock detection algorithms, global abort ratio vs. GVVriteProb,
L Resou rce U ni t=20

CHAPTER 0 . SIMULJEnON EXPERIMENTS 70

In data contention experiments, we varied CJVVriteProb parameter to esti­
mate the performance impact of three algoritlirns under no resource coutentiou.
1̂ 1̂110 0.19 .shows tlie performance results obtained with the thro>e algoritlims
as a. rmicliou of increasing data contention. Initially, all the algorithms’ b(>-
haviors are similar to (vich other, since the timeout abort ratios are very small
under low data contentions. PCG algorithm performs slightly better than the
others when the data contention becomo's higher. In sjtite of this. PCC algo­
rithm cannot achieve huge performance improvements since its performance is
also dependent on the timeout interval used to check deadlock situation. There
is no considerable performance difference Itetween the basic and extended time­
out algorithms, since both of them solve the deadlock problem by employing a.
timeout period. PCG's better performance under very high data contention is
also validated by the global abort ratios plotted in Figure o.oO.

I' igure .').dl; Deadlock detection algorithms, global throughput vs. transaction
length. LKesourceUnit=20

We have also investigated how the performance of each algorithm is sen­
sitive to the global subtransaction length. Figure 5.51 shows the behavior of
three algorithms as the transaction length is increased. The results are similar
to those of the data contention experiments. The advantage of PGG algorithm
is visible' only when the subtransaction length is long. If we look at the per­
formance ini|)act of the deadlock detection algorithms on focal transactions in
I'^gures 5.52 and 5.53, the performance improvement of PGG over the others
can be notified more clearly.

CHAPTER o. SIMULATION EXPERIMENTS

9.0

Q .

cn
8.0 r

7.0 r

6.0
0.00 0.25

A----- A BASIC T IM E O U T
---- Fj E X T E N D E D T IM E O U T

o -------- P C G

0.50
GW riteProb

0.75 1 .00

"igure 5.o2: Deadlock detection algorithnns, local throughput vs. GWriteProb,
. Resource U ni t=20

Transaction Length

Figure 5..■33: Deadlock detection algorithms, local throughput \'s. transaction
Ie 11 gt h, LResourceUui t='20

5.5 Performance Comparison of the Classi­

cal Transaction Model and the Extended
Transaction Model

The final .set of experiments have been performed for the comparison ol cUissical
transaction model and the extended transaction model. In these experiments,
the performance of extended global transactions and the performance of their
senumtically equivalent classical transactions have been compared.

CHAPTER 0. SIMULATION EXPERIMENTS ¡2

P aram eters S ettin gs
Trec.Heifjlit ; i

NumChild 2

Xo Dtp c n (1 c n r.y P /'() I) 0.5 f
Precedence Pro!) 0.0
P reference P rob o . ; m

AllernativeProb o . ; i ; b

OrdinaryProb l . O

CompensatableProb 0.0
Ret riableProb 0.0

T a b le 0 .7 : G lo b a l tran .saction p aram eter settin gs for the e x p e r im e n ts th at c o m ­
pare classica l tra n sa ction m o d e l and e x te n d e d tra n sa ction m o d e l

We implemented a semantic analyzer inside the Global Transaction Gener­
ator (GTG) to Ccipture the senuintics beyond the extended global transactions.
.An extended global transaction is created by using the parameter values listed
in Table d.T, cind then the analyzer parses that e.xtended transaction and cre­
ates a semantically equivalent set of classical global transactions for submission.
GTG semantic analyzer also coordinates the submission of global transactions
from the corresponding set of transactions according to the GTM's abort and
commit response on the previously submitted transaction. We employed the
simple global time-out mechanism for the execution of both the classical and
the extended transactions in order to be consistent in performance evaluation.

In the first set of experiments, we compared the classical transaction model
and the e.xtended transaction model with both CTM and OTM algorithms un­
der no resource contention. Figure 5.54 illustrates the variation of the global
throughput as the data contention increases. Initially, both CT.M and OTM
perform better on the cla.ssical global transaction model, since the additional
(haracteristics of the extended model do not introduce any advantages in a
situation where global conflict ratios and abort possibilities are low. But as
GWriteProb increases the situation changes. While the classical transaction
model shows a heavy performance loss due to the high abort ratio, the ex­
tended transaction model minimize the global aborts by executing alteruatixe
snbtransactions. The global abort ratio values are shown in Figure 5.55. Low
glol)al abort ratio of GTM and OTM on the extended transaction model verifies
the appropriateness of the extended transaction model.

CHAPTER 0. SIMULATION EXPERIMENTS 73

Figure 0.54; Gloljal throughput vs. GWriteProb, LResourceUuit=20

igure 5.55: Global abort ratio vs. GVVriteProb, LResourceUnit=20

When we repeat this experiment by setting the Num.Sites parameter to Ki,
thus reducing the conflicts among the subtransactions of global transactions.
(JTM and OTM algorithms perform better in the overall. Figures 5.56 and 5.57
illustrate the global throughput and the cibort ratios when we set NurnSites
parameter to 16. In these figures we have also confirmed that CTM achieves
better performance than OTM algorithm.

('ll AFTER 0. SIM ULATION EXPERIMENTS 74

Figure 5.56: Global throughput vs. GWriteProb, NumSites=16, LResourceU
iiil-20

Figure 5.57: Global abort ratio vs. GVVriteProb, NumSites=16. LResour-cel■-
uit=20

To examine the situations where the system has resource contention, we
repeated the above experiments by setting the number of resource unit to 1.
Figure 5.58 illustrates the performance of OTM and CTM on both ticuisactiou
models. Under the high resource contention. OTM and CTM perform slightly
better with the classical transaction model than with the extended model.
•Since the extended model is based on extra resource usage and the resourc(\s
are now restricted, additional properties of the extended transaction model
floes not improve the performance. Global abort ratios ol the algorithms are
plotted in Figure 5.59. Again, OTM and CTM achieve low abort ratios for the
extended transaction model.

Cl [AFTER 0. SIM UL^VriON EXPERIMENTS 10

0 .6 5 h

0 .0 5
0.00

A----------A C T M C L A S S I C
f-j----------a O T M C L A S S I C
o --------- f:> C T M E X T E N D E D
O--------- O T M E X T E N D E D

0 .2 5 0 .5 0
G W rite P ro b

0 .7 5 1.00

Figure 5.58: Global throughput v,s. GVVriteProb, LResourceUnit=l

Figure 5.59: Global abort ratio vs. GWriteProb , LResourceUiiit:

ir we compare the two global transaction models in terms of local trans­
actions. by looking at Figure 5.60 we can say that the extended transactions
have negative impact on the local throughput. 'Fhe local throughput of both
algorithms decreases faster with the extended transaction model than withO

the classical model. This is an expected result since the blocking time of the
local transactions increases as the global transactions are allocated more re-
sotirce from the local sites. When the system has resource contention, again
the classical trcinsaction model has higher local throughput than the extended
transaction model. Local throughput values of the system are plotted in Figure
5.61. From the figure, we can also observe the worse performance of GTM for

(■HAFTER /3. SIM UL^VTION EXPERIMENTS 76

both transaction models while the data contention is increased.

9 .0

8.0 i-

Q .jz:
CO

7 .0

6.0

5 .0
0.00 0 .2 5

A--------------C T M C L A S S I C
Q--------------O T M C L A S S I C
o--------- o C T M E X T E N D E D
O---------O O T M E X T E N D E D

0 .5 0
G W rite P ro b

0 .7 5 1.00

Figure 5.60: Local throughput vs. GWriteProb, NumSites=16, LResourceU
uit=20

G W rite P ro b

Figure 5.61: Local throughput vs. GWriteProb, LResourceUiiit=:l

Chapter 6

Conclusions

It is difficult to implement traditional transaction scheduling methods in a
multidatabase system (MDBS) due to the heterogeneity and autonomy of the
connected local sites. In this thesis, we introduced an extended transaction
model for MDBSs. The proposed transaction model covers nested transactions.
\'arious dependency types among subtransactions, and commit-independent
transactions that make the model much more flexible and powerful than the
traditional transaction model. The formulation of complex MDBS transaction
types can easily be accomplished with the extended semantics captured in the
model. The execution model does not make any assumption regarding the con­
currency control protocols executed at the local sites connected to the MDBS.
Tlie global serializability is ensured through the ticketing method proposed
In’ Georgcikopoulos et al. [13]. .Atomic commitment of global transactions is
provided through the use of two-phase commit (2PC) protocol. The blocking
effect of 2PC is reduced by executing commit independent transactions.

VVe handled the global deadlock problem by employing a time-out mech­
anism for the execution of global transactions. A global deadlock detection
algorithm based on potential conflict graph (PCG) has been adopted to our
execution model to reduce unnecessary global aborts that can occur due to the
estimation errors with the time-out mechcuiism.

We also proposed a detailed simulation model of a MDBS to analyze the po'r-
fbrmance of the proposed transaction model. Using this simulation model, first
the performance implications of the classical transaction model with both the
conservative ticket method (CTM) and the optimistic ticket method (CTM)

77

CHAPTER 6. CONCLUSIONS 78

have been investigated. Experimental results show that CTM seems to be
the algoritlim of choice when the hardware resources at local sites are lim­
ited. O'l'.VI does not yield better performance unless there exists high data
c(nil('ntion. Our observations indicate that with both algorithms, global trans­
actions negativ('ly allect the performance of local transactions, rids imijact is
more so'fious wlu'n (.'TM is employed.

With tlie second set of experiments, we have iin'estigated the])erfonnance
impact of the additional features of the extended transaction model with both
0 r.M and CTM. We have observed that iilthough the alternative subtrans­
actions introduce additional workload to the system, the global transactions
with alternative subtransactions perform better than the independent transac­
tions with both OTM and CTM algorithms. Unlike the alternative relation, the
|)reference relation does not yield significant throughput improvement since the
additional subtransactions do not provide any advantage unless the preferred
subtransactions are aborted.

When we have studied the impact of the precedence relation, we have seen
that the response times of global transactions with this type of relation are
larger than that of global transactions with no-dependency. Consec[uently. the
cost of transaction abort is higher with the precedence relation which causes
OTM to perform worse than CTM.

The performance results obtained for commit-independent subtransactions
can l.)e summarized as follows. While retriable transactions slightly improve
b(jtl) algorithms' global throughput, early committed componisable transactions
do not provide any performance advantage for global transactions. Neverthe­
less. the overall performance impact of commit-independent subtransactions is
not significant with either OTM or CTM.

Wlien we have looked at the performance impact of extended transaction
cha.racteristics from the local sites’ point of view, we have observed some |)er-
forniance trade-offs between the local and the global transaction throughput..
.As we introduce more additional features of the extended transaction model.
1 h(' local transactions’ performance becomes worse. This negative effect is more
noticeable with CTM than that with OTM.

'I'lie performance implication of global deadlock detection algorithms has
been analyzed with the third set of experiments. The considered algorithms
have not shown significant performance differences. The performance of PCG

CllAPrER 6. CONCLUSIONS 79

has been observed to be a little bit better than the other algorithms under high
levels of data contention.

With the final set of e.xperiments, we have compared the performance of
t he <'Xt('ii(led transact ion model and the classical transaction model. We have
observed that under low resource contention, our e.xtended transaction model
(uitperforms the classical transaction model as the data conllict ratio among
ti-ansactions becomes higher. The lower global abort ratio of the e.xtench'd
transaction model is the main reason for its better performance. On the otlu'r
hand, the extended transaction model yields lower throughput for local trans­
actions. Therefore, our execution model may not be suitable for the systems
in wliich the fraction of local transactions executed is much more than that of
global transactions.

Bibliography

[1] R. Agrawal, M.J. Carey, and M. Livniy. Concurrency control modeling:
.\lternati\‘es and implications. ACM Transaction on Database Systems.
12(4), 19öT.

[2] R. Baldoni and S. Salza. Deadlock detection in multidatabase systems:
.A performance analysis. Technical Report 949, Istitut de Recherche En
Informatique .Systèmes Aléatoires, 1995.

[3] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison Wesley Pubh, İ9S7.

[4] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of inulti-
databa.se transaction management. Technical Report STAN-CS-92-1432,
Department of Computer Science, Standford University, 1992.

[5] Y. Breitbart, W. Litwin, and A. Silberschatz. Deadlock problems in a
multidatabase environment. In COMPCON., 1991.

[b] A.P. Buchmann, M.T. Ozsu, D. Georgakopoulos M. Hornick. and l''..\.
.Manola. .\ transaction model tor a.ctive distributed object system, lu
■\. Elmagarmid, editor, Database Transaction Models for Advanced Appli­
cations. Morgan Kaufman Pubh, 1992.

[7] A. Deacon, H. Scheck, and G. Weikum. Semantic-based multilevel transac­
tion management in federated systems. In lOth International Conference
of Data Enyineering, pages 452-461, 1994.

[8] W. Du and .A. Elmagarmid. Quasi serializability: A correctness criterion
for global concurrency control in heterogeneous distril:>uted datal)ase sys­
tem. in 15th International Conference on Very Large Dateibases, pages
347-355. 1989.

SO

BIBLIOGRAPHY 81

[9] A. Elmagarrnicl. Y.Leu, VV. Litwin, and M. Rusinkiewicz. A multidatabase
transaction model for InterBase. In J6th International conference on Very
Large Datahases, pages 507-518, 1990.

[10] .A. Idmagarmid and A. Zhang. Modelling flexibility in distributc'd trans­
actions. Technical Report C.SD-TR-93-060, Department of (i'ornputer .Sci­
ence. Ihu'due University, 1993.

[1 1] A. Elmagarmid and A. Zhang. A theory of global concurrency control in
multidatabase systems. VLDB Journal 2. 2(3):331-360, 1993.

[12] II. (¡arcia-Molina and K. Salem. Sagas. In ACM SIGMOD International
Conference on Management of Data, pages 249-259, 1987.

[13] D. Georgakopoulos, M. Rusinkiewicz, and A.P.Sheth. Using tickets to en­
force the serializability of multidatabase transaction. IEEE Transactions
011 Knowledge and Data Engineering., 6(1):166-180, 1994.

[14] .J. Huang. S. Hwang, and Srivastava. Concurrency control in feder­
ated databcise systems: A performance study. Technical Report TR93-15.
Department of Computer Science, University of Minnesota. 1993.

[15] E. Levy. H. Kortli, and A. Silberschatz. An optimistic commit protocol
for distributed transaction management. In ACM SIGAIOD International
Conference on Management of Data, pages 88-97, 1991.

[16] S. Mehrotra, R. Rastogi, H.F. Korth, and A. Silberschatz. Non-sericilizable
execution in heterogenous distributed datcibase systems. In 1 st Interna­
tional Conference on Parallel and Distrubuted Information Systems. 1991.

[17] S. .Vlehrotra., R. Rastogi, H.F. Korth, and A. Silberschatz. A transaction
model for multidatabase systems. Technical Report TR-92-14, Depart­
ment of Computer Science, University of Texas at Austin, 1992.

[18] -}.E. Moss. Nested Transactions: An Approach to Reliable Distributed
Computing. MIT Press, 1985.

[19] -\'i. Rusinkiewicz, P. Krychniak. and .A. Cichocki. Towards a. model for
multidatabase transactions. Technical Report UH-CS-92-18, Department
of Computer Science, University of Huston, 1992.

[20] VV. Schaad, H..J. Schek, and G. Weikum. Implementation and performance
of multi-level transaction management in a multidatabase environment.

BfBLJOGRAPHY 82

In 5th International Workshop on Research Issues on Data Engineering^
pages 108-115, 1995.

[21] P. Scheuerman, H. Tung, and C.K Teng. Performance analysis of two
global deadlock detection algorithms for multidatabase systems. Techni­
cal report, Department of Electrical Engineering and Computer Science,
Nortwestern University, 1992.

[22] P. Scheuermann and H. Tung. A deadlock checkpointing scheme for mul­
tidatabase systems. In 2nd International Workshop on Research Issues
on Data Engineering: Transaction and Query Processing, pages 184-191,
1992.

[2.8] U. Schwetman. CSIM User's Guide. MCC Technical Report Number
ACT-126-90, 1990.

[24] A. Zhang, M. Nodine, B. Bhargava, and 0 . Bukhres. Ensuring relaxed
atomicity for fle.xible transaction in multidatabase systems. In ACM SIG-
MOD International Conference on Management of Data, pages 67-78,
1994.

