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Abstract— We investigate cross-lingual sentiment analysis,
which has attracted significant attention due to its applications in
various areas including market research, politics, and social sci-
ences. In particular, we introduce a sentiment analysis framework
in multi-label setting as it obeys Plutchik’s wheel of emotions.
We introduce a novel dynamic weighting method that balances
the contribution from each class during training, unlike previous
static weighting methods that assign non-changing weights based
on their class frequency. Moreover, we adapt the focal loss that
favors harder instances from single-label object recognition liter-
ature to our multi-label setting. Furthermore, we derive a method
to choose optimal class-specific thresholds that maximize the
macro-f1 score in linear time complexity. Through an extensive
set of experiments, we show that our method obtains the state-
of-the-art performance in seven of nine metrics in three different
languages using a single model compared with the common
baselines and the best performing methods in the SemEval
competition. We publicly share our code for our model, which
can perform sentiment analysis in 100 languages, to facilitate
further research.

Index Terms— Cross-lingual, label imbalance, macro-f1 max-
imization, multi-label, natural language processing (NLP),
sentiment analysis, social media.

I. INTRODUCTION

A. Preliminaries

WE study sentiment analysis problem in multi-label
setting, which has been widely studied in the litera-

ture due to its significance in various applications including
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market research, politics, public health, and disaster man-
agement [1]–[3]. In particular, we introduce a method for
cross-lingual sentiment analysis, which is a harder prob-
lem than the standard sentiment analysis problem since one
needs to make predictions for various languages, including
even unseen ones. Cross-lingual sentiment analysis aims to
leverage high-quality and abundant resources in English for
classification to improve the classification performance of
resource-scarce languages [4]. Moreover, we use data of three
languages to obtain the best score in seven of nine metrics
of Arabic, English, and Spanish languages in the SemEval
emotion classification [1].

Emotions are an integral part of human communication
and decision-making mechanisms [5]. Plutchik [6], in 1980,
has created the wheel of emotions in his psychoevolutionary
theory of emotion to illustrate his idea of emotion. He suggests
eight bipolar primary emotions that appear on the opposite
sides of the wheel: joy versus sadness, anger versus fear,
disgust versus trust, and surprise versus anticipation. The
primary emotions are expressed at different intensities and the
intermediate emotions occur as a mix of these primary emo-
tions. Moreover, the emotions are non-exclusive in Plutchik’s
model as their combinations derive other emotions. There
exist correlations between the emotions, for example, joy
and sadness are represented as the opposite emotions. The
Hourglass of Emotions [7], [8] reinterprets Plutchik’s model
by reorganizing the primary emotions along four independent
dimensions. Following these emotion models, we formulate
the sentiment analysis as the multi-label classification task,
in which more than one label can be assigned to a text
simultaneously. Yet, the class imbalance is an inherent issue
in multi-label classification [9]. Although class imbalance has
been extensively studied for the binary classification setting,
it remains a challenge in multi-label classification [9]. Further-
more, the tail labels, that is, the labels with a low number of
instances, impact the performance significantly less compared
with the common labels when the classes are equally weighted
in the multi-label setting due to the rarity of relevant examples
and result in suboptimal performance [10]. Thus, we introduce
a dynamic weighting method to dynamically adjust the class
weights during training to remedy the class imbalance.

In this article, we introduce a multilingual sentiment
analysis framework in multi-label setting on 100 different
languages. Our method uses focal loss to enhance the impor-
tance of hard examples. We introduce a dynamic weighting
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method to cope with the label imbalance. We also derive a
macro-f1 maximization method within linear time complexity.
Our method achieves the best result for seven of nine metrics
for the SemEval competition for Arabic, English, and Spanish
languages [1]. We also demonstrate the performance of our
method on cross-lingual combinations of the datasets and
assess the performance gains obtained by the components in
our method.

B. Prior Art and Comparisons

The current sentiment analysis methods can be
represented under three different categories: knowledge-based
(symbolic), statistical (sub-symbolic), and hybrid [11].
Knowledge-based methods mainly use manually or
semi-automatically constructed lexicons to classify texts
into affect categories [11], [12]. The knowledge-based
methods are widely adopted because of their accessibility
and affordability [11]. Single-language sentiment analysis
usually uses lexicons or ontologies, which are manually
or semi-automatically constructed [12]. SenticNet is a
knowledge base of sentimental concepts, aiming to improve
the generalization and interpretability of the sentiment
analysis methods. Statistical approaches for sentiment
analysis task include deep-learning-based methods, which we
describe in the next paragraph. The hybrid methods adopt
both knowledge-based approaches and statistical methods.
SenticNet 6 [13] ensembles both symbolic and sub-symbolic
approaches by integrating logical reasoning into deep learning
framework.

The deep-learning-based methods have been shown to be
successful in various classification tasks [14], [15]. Sentic-
Net 5 [16] shows that concept clusters, which share similar
syntactic or semantic functions, can automatically be discov-
ered through a deep learning framework. Transfer learning
approaches have been popular in sentiment analysis and shown
to be successful, especially in datasets with a small number
of instances [17]. Through transfer learning, large unlabeled
corpora in social media have been incorporated to increase the
target sentiment analysis task’s performance, for example, [17]
uses 1.7 billion tweets with emojis to pretrain the network.
However, [18] demonstrates that the transfer learning approach
does not improve the performance on the SemEval emotion
classification competition datasets, which is our target due to
the richness of its labels, which has significantly more number
of instances compared with the number of instances used
in [17]. Suttles and Ide [19] emulate a multi-label classifier
through a binary classifier for each of the four opposite
emotions that are on the opposite sides of Plutchik’s wheel of
emotions, such as joy and sadness. However, their approach
does not include the correlations to the rest of the labels since
they train each of the four classifiers with the objective of
binary classification of the opposite sides. To remedy those
issues, we introduce a multi-label deep learning model for the
emoji prediction task that directly predicts the active set of
labels simultaneously, that is, in the multi-task setting. More-
over, the multi-label classification is a generalization of binary
and multi-class classification tasks as we describe through
remarks. Thus, our method is also applicable to these tasks.

Multi-label classification also requires a prediction method
that converts scores into predictions, for which we derive a
class-specific thresholding method by macro-f1 maximization
in linear time complexity.

Multilingual sentiment analysis on social media has become
an important problem as it is becoming mainstream media
for communication and expression of thoughts in many
different languages [12]. Being easily applicable to other
languages, [20] leverages hashtags to collect sentiment clas-
sification dataset and performs training on it. Balahur and
Turchi [21] translates an annotated English dataset to build
classifiers in other languages. However, this method is prone
to errors caused by translation. BabelSenticNet uses statistical
machine translation to provide a concept-level multilingual
sentiment analysis framework that applies to a wide range of
domains [22]. Our method leverages XLM-RoBERTa [23] to
perform cross-lingual and multilingual sentiment classification
on tweets.

Multi-label classification has an inherent issue of data
imbalance [9]. Although significant research has been per-
formed in the literature, the class imbalance problem remains
a challenge for multi-label classification [9]. Consider the
multi-label classification task with 16 distinct labels. There
are 216 possible combinations in the superset of the labels.
Accordingly, it is not feasible to obtain balanced data for
each combination of the labels. Many studies in multi-output
classification either try to balance the data by resampling
or ignore the imbalance [9]. Yet, the over-sampling and
under-sampling methods are not designed for multi-label clas-
sification; thus, their adaptation to the multi-label setting is not
straightforward [9]. One heuristic that is widely adapted uses
inverse class frequency per class as a weighting factor [24].
However, this heuristic results in suboptimal performance as
shown by [25] and in Section IV-E. Cui et al. [25] replace
the inverse number of instances with the expected volume of
instances and a controlling hyperparameter. Aurelio et al. [26]
propose to use class prior probabilities as weights for the
cross-entropy loss. Commonly, these methods propose static
weights for each class. To remedy the label imbalance in the
multi-label setting, we introduce a novel dynamic weighting
method, which equalizes the contribution of each class to the
loss. We use focal loss [27] to incorporate the hardness of the
instances and our dynamic weighting method can readily be
adapted to other losses as we show through a remark.

Recent language models such as bidirectional encoder rep-
resentations from transformers (BERT) [28] have been dom-
inating the areas in the natural language processing (NLP)
literature; however, they contain an excessive amount of
parameters. Accordingly, training or fine-tuning these mod-
els require an excessive amount of resources [28]. We use
XLM-RoBERTa [23], which is a robustly trained BERT on
100 languages, as feature extractor to benefit from BERT and
reducing the number of required resources.

SemEval emotion classification competition [1] has paved
the way for many multi-label sentiment analysis models. Emo-
tion mining for Arabic (EMA) and PARTNA are among the
models that opt for the more traditional support vector machine
approaches and still achieve the best results in the Arabic
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language [29]. On the other hand, more recent long short-term
memory (LSTM), convolutional neural network (CNN), and
attention models are also adopted to obtain the highest ranked
results in English and Spanish [30], [31]. It is important to note
that most of these models are language-specific and use special
embeddings such as AraVec [32] or special lexicons paired
with language-specific preprocessing steps. Tw-StAR attempts
to create a generic model to apply multiple languages, yet is
ranked behind the language-specific models [33]. We introduce
a framework that uses bidirectional LSTM with attention and
multi-label focal loss, which achieves the best score only
using a single model on seven of the nine metrics on three
different languages of the SemEval emotion classification
competition [1].

C. Contributions

Our contributions are as follows.

1) For the first time in the literature to the best of our
knowledge, we introduce a multi-label emotion classi-
fication method capable of producing uniformly high
classification performance on 100 different languages
using a single model. Our method can readily be adapted
to the cross-lingual platforms such as Amazon without
using any language detection component. We make our
model publicly available1 to facilitate reproducibility
and further research.

2) We introduce a dynamic weighting method to remedy
the class imbalance that is an inherent problem in
multi-label classification with adaptive loss weights as
training progress, unlike the previous static weighting
methods [25], [26]. We demonstrate significant per-
formance gains compared with the previous weighting
methods. Our method performs no worse than the uni-
form weighting, that is, no weighting, for none of the
hyperparameter choices. Our dynamic weighting method
can be readily extended to other losses as we show
through a remark.

3) We derive a method to maximize macro-f1 with
class-specific threshold choices, which reduces the
time complexity from exponential to linear. Moreover,
we adapt focal loss to our multi-label emotion classifi-
cation framework from the single-label object recogni-
tion literature, and we show performance improvements
obtained via the focal loss [27].

4) Through an extensive set of experiments, we show that
our model achieves the best scores in seven of nine
metrics in the SemEval emotion classification compe-
tition for Arabic, English, and Spanish via a single
model [1]. Furthermore, we perform cross-lingual exper-
iments, hyperparameter studies, and an ablation study to
assess the effectiveness of our method.

D. Organization of This Article

The rest of the article is organized as follows. In Section II,
we describe the multi-label sentiment analysis task and show

1https://github.com/selimfirat/multilingual-sentiment-analysis

that it is the generalization of the binary and multi-class
classification tasks. In Section III, we introduce our deep
metric learning-based framework and the components to cope
with the label imbalance. In Section IV, we demonstrate the
performance improvements obtained by our proposed model
compared with the state-of-the-art methods in the literature and
the SemEval [1] emotion classification competition winners.
In Section V, we conclude by providing remarks.

II. PROBLEM DESCRIPTION

In this article, all vectors are column vectors and defined by
boldfaced lowercase letters. All matrices and tensors are rep-
resented by boldfaced uppercase letters. |·| denotes cardinality,
that is, the number of elements, of set ·.

We aim to predict the labels of the given text in multi-label
framework through our network F . We receive training data
P = {(si , ci )}ni , where si is the text of i th training instance,
n is the number of training instances, ci = [ci,1 ci,2, . . . , ci,w]T
is the label vector of the i th training instance, w is the number
of classes, and ci,a , a ∈ {1, 2, . . . , w}, is defined by

ci,a =
{

1, if class a is inferred

0, otherwise.

To satisfy this decision function, we predict score ĉi,a for
the target sentence si via our network F as

ĉi,a = F(si ) = p(ci,a = 1 | si ). (1)

Remark 1: Multi-class classification is a generalization of
multi-class and binary classification tasks. For both, we have
only one active label, that is,

∑w
a=1 ci,a = 1, ∀i ∈

{1, 2, . . . , n}. The number of classes w = 2 and w > 2
for binary and multi-label classification, respectively. Since
we formulate the problem as a multi-label classification, our
framework is applicable to binary classification, multi-class
classification, and multi-label classification settings.

III. METHODOLOGY

In this section, we first describe language modeling and
recurrent modeling with attention for multi-label classification.
We then introduce our multi-label adaptation of focal loss and
our dynamic weighting method. Finally, we derive a method
to select thresholds by maximizing macro-f1 within linear
time complexity. Fig. 1 illustrates the overall structure of our
methodology.

A. Deep Multilingual Language Modeling

Here, we describe our language modeling approach using
XLM-RoBERTa [23].

Traditional approaches such as well-known Bag-of-Words
fail to generalize to unseen data due to the sparsity of the
language [34]. Early word embedding-based methods, such
as the well-known word2vec [35], based approaches have
been used to cope with this problem via learning a vector
for each word in a large vocabulary exploiting semantic
relationships between words [34]. However, these methods
assign a single vector to each word regardless of the context
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Fig. 1. Overall structure of our model.

of the target sentence. Recently, language models such as
BERT have achieved outstanding results on various tasks [28].
These language models assign context-dependent vectors to
each token in the target space instead of assigning a fixed
vector. These models are trained using large corpora in an
unsupervised setting. However, these models contain millions
of parameters, and it is not reasonable to fine-tune them on a
small corpus. Thus, we use feature vectors extracted from the
pretrained model for each text instead of directly fine-tuning
the pretrained model.

As shown in Fig. 1, we use XLM-RoBERTa pretrained
tokenizer and pretrained model [23]. XLM-RoBERTa is pre-
trained on CommonCrawl corpora of 100 different languages.
We first tokenize the input sentence si into subword units
via byte-pair encoding using Sentencepiece tokenizer [36].
We convert the sentence si to X (i) ∈ R

m×di using the hidden
state vectors of the pretrained language model, where m is
the embedding vector length and di is the number of tokens
in the sentence si . We obtain an embedding vector for each
token in the sentence, that is, X (i) = [x1, . . . , xdi ], where
x j ∈ R

m,∀ j ∈ {1, 2, . . . , di}.
Remark 2: Our model can be adapted to other languages

since we tokenize via byte-pair encoding and convert to fea-
tures without applying any language-dependent preprocessing.
For the languages that XLM-RoBERTa does not support, one
can directly use any other pretrained model that supports the
target language. We show the cross-lingual performance of our
method in Section IV-D.

B. Temporal Modeling of Sentence via Recurrent Networks

Here, we describe our recurrent modeling for multi-label
emotion classification using the frozen features via the lan-
guage modeling network.

We are given a sequence of token embeddings X (i) ∈ di×m
for the sentence si , where di is the number of tokens in the
sentence si and m is the embedding size. xk ∈ R

m indicates
the embedding of the kth token.

As shown in Fig. 1, we use bidirectional RNNs to incor-
porate both the forward and the backward information of
the sequence. Through RNN, we process the variable length
sequences. We use deep networks, where the number of layers

is u. For timestep t and kth layer, we use
−→
h (k)

t and
←−
h (k)

t

notations to define forward and backward RNNs, respectively.
We define kth layer of the forward RNN that uses Elman’s
formulation [37] as

−→
h (k)

t = tanh
(

W (k)
hh
−→
h (k)

t−1 +W (k)
hx
−→
h (k−1)

t + b(k)
)

where
−→
h (0)

t = xt for t ∈ {1, 2, . . . , di} −→h (k)
0 ∼ N (0, 0.01),

b(k) is the bias term to be learned, and W (k)
hh and W (k)

hx are the
weights to be learned. We also define the backward RNN’s
hidden state

←−
h (k)

t for the kth layer by feeding the reversed
input to the RNN, that is,

←−
h (k)

t = tanh
(

V (k)
hh
←−
h (k)

t+1 + V (k)
hx
←−
h (k−1)

t + c(k)
)

where
←−
h (0)

t = xdi−t+1,
←−
h (k)

di
∼ N (0, 0.01), c(k) is the bias

term to be learned, and V (k)
hh and V (k)

hx are the weights to be
learned.

Remark 3: We extend our framework to LSTM [38] due
to its success in capturing complex temporal relationships.
We feed the input sentence embedding X (i) to the LSTM
instead of the RNN as

z(k)
t = tanh

(
W (k)

z

−→
h (k−1)

t + V (k)
z

−→
h (k)

t−1 + b(k)
z

)
s(k)

t = sigmoid
(

W (k)
s

−→
h (k−1)

t + V (k)
s

−→
h (k)

t−1 + b(k)
s

)
f (k)

t = sigmoid
(

W (k)
f

−→
h (k−1)

t + V (k)
f

−→
h (k)

t−1 + b(k)
f

)
c(k)

t = s(k)
t � z(k)

t + f (k)
t � c(k)

t−1

o(k)
t = sigmoid

(
W (k)

o

−→
h (k−1)

t + R(k)
o

−→
h (k)

t−1 + b(k)
o

)
−→
h (k)

t = o(k)
t � tanh

(
c(k)

t

)
where

−→
h (0)

t = xt ,
−→
h (k)

0 ∼ N (0, 0.01), c(k)
t ∈ R

m is the cell
state vector, and h(k)

t ∈ R
w is the hidden state vector, for the

t th LSTM unit. s(k)
t , f (k)

t , and o(k)
t are the input, forget, and

output gates, respectively. � is the operation for elementwise
multiplication. W , V , and b with the subscripts z, s, f , and
o are the parameters of the LSTM unit to be learned. We also
define the backward LSTM via

←−
h (k)

t by reversing the input
order for each layer of the LSTM, as in RNNs.

We concatenate the hidden states of the backward and
forward RNNs of the kth layer at time t as

h(k)
t =

[−→
h (k)

t←−
h (k)

t

]
.

We then apply attention to the hidden states by weighing
each timestep’s hidden state with a single parameter as [39]

h̄ =
p∑

t=1

βt h(u)
t
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where p is the sequence length and βt =
(exp(ht s))/(

∑p
i=1 exp(hi s)) for the timestep t ∈ {1, 2, . . . , p}.

Finally, we use linear layer and sigmoid activation to convert
our predictions to the labels as

r = sigmoid(W h̄) (2)

where r ∈ R
s and s is the number of the target labels of the

task.
Remark 4: We use sigmoid activation at the final layer

instead of softmax since the softmax assumes indepen-
dence between labels, whereas in our case, the labels are
non-independent due to Plutchik’s theory [6] as we describe
in Section I-A.

C. Multi-Label Focal Loss

In this section, we adapt the focal loss for our multi-label
framework from the single-label object recognition litera-
ture [27]. We define pi,a for notational convenience as the
following:

pi,a =
{

ri,a, if ci,a = 1

1− ri,a, otherwise

where ri,a is the sigmoid output for class a and the instance i ,
which is obtained via (2). Then, the standard cross-entropy
loss for instance i and class a becomes − log pi,a.

Focal loss has been proposed to overcome the class
imbalance problem in object recognition, which extends the
cross-entropy loss [27]. The focal loss focuses training of the
hard instances instead of the well-classified ones as

li,a = −(1− pi,a)
γ log pi,a

where γ ∈ R is a tunable parameter and γ ≥ 0. Note that the
focal loss extends the cross-entropy loss by multiplying with
(1− pi,a)

γ .
We convert the loss into a scalar by taking weighted sum

with respect to the classes and averaging with respect to the
instances in the batch as

L = 1

b

b∑
i=1

w∑
a=1

αt,ali,a (3)

such that
∑w

a=1 αt,a = 1, t is the index of the mini-batch
iteration, b is the batch size, and αt,a is the weight of the class
a at the mini-batch iteration t . We can assign equal weights
to by setting αt,a = 1/w for each class a and for all mini-batch
iteration t . In Section III-D, we introduce a novel method for
choosing αt,a to remedy the class imbalance.

D. Novel Dynamic Weighting Method for Label Imbalance

Here, we introduce our dynamic weighting method to
improve the imbalanced multi-label classification, which can
also be applied to single-label problems and other loss func-
tions, as we show through remarks.

Although focal loss improves the imbalanced classification
performance, there is still plenty of room for improvement.
For instance, [27] uses an alpha balanced variant of the focal
loss in practice, where they choose the inverse frequency of

the class as in the imbalanced classification. Cui et al. [25]
also extend focal loss by class-volume-based formulation and
introduces another hyperparameter. We introduce a method to
equalize the losses from all classes in the problem. Our goal
is to define weights in a way that each class has an equal
contribution to the loss, that is,

|P|∑
i=1

αt,1li,1 =
|P|∑
i=1

αt,2li,2 = · · · =
|P |∑
i=1

αt,wli,w

where P is the training data.
Finding the exact value for αt,a is intractable since model

parameters change after each mini-batch and we train in
mini-batch setting. Thus, we track the losses by exponentially
smoothed approximation ωt,a at mini-batch iteration t and
class a, which is given by

ωt,a = (1− κ)ωt−1,a + κ

b∑
i=1

li,a

where κ is the smoothing hyperparameter to be tuned and
ω1,a = 1/w,∀a ∈ {1, 2, . . . , w}. We invert ωt,a and introduce
a very small � term if there appears no loss for any class for
numerical stability of our method since we may get 0 loss for
some classes, as the following:

φt,a = 1

� + ωt,a

where we set � = 1× 10−5. Using φt,a , we define αt,a in (3)
as

αt,a = φt,a∑w
u=1 φt,u

. (4)

Through (4), we guarantee that the weights sum up to 1 for
any mini-batch iteration. We set the gradient with respect to
the network parameters 	 to zero, that is, ∇	αt,a = 0,∀t ∈
{1, 2, . . .}, a ∈ {1, 2, . . . , w}. We balance the loss contribution
from the classes using αt,a in (3).

Remark 5: Note that our dynamic weighting method’s
weights change over time with respect to the hardness of the
instances among classes, unlike the previous methods in the
literature [25], [26].

Remark 6: Dynamic weighting is loss-agnostic and, thus,
can readily be adapted to other alternative losses. For exam-
ple, we can adapt it into the cross-entropy loss by setting
li,a = − log pi,a and directly use (3).

Remark 7: The dynamic weighting method can also be
applied to the single-label problems without any change since
the multi-label problem is a generalization of the single-label
variant.

E. Class-Specific Thresholding via Macro-F1 Maximization

We derive a macro-f1 maximization method by choosing the
optimal class-specific threshold within linear time complexity.

We have the model output ĉi = r i , which is our score
vector, that is to be thresholded to make a prediction. We have
a class-specific score ĉi,a for class a. We expect high scores for
the inferred classes and low scores for the non-inferred classes.
We split a part of the validation set as the thresholding set and
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then use it to choose the optimal threshold that maximizes the
macro-f1 score. We concatenate the scores of all instances in
the thresholding set T into ĉa ∈ R

|T | as

ĉa =
[
ĉ1,a ĉ2,a · · · ĉ|T |,a

]T
.

Our aim is to find a threshold vector τ ∈ R
w given by

τ = [
τ1 τ2 · · · τw

]T
.

We select the optimal threshold for each class that maxi-
mizes the macro-f1 score, which is the F1 score calculated for
each class and averaged among the classes. F1 is the harmonic
mean of the precision and recall for a class a, that is,

F1(ca, ĉa) = 2× precision× recall

precision+ recall

such that

precision(ca, ĉa) = TP

TP + FP

recall(ca, ĉa) = TP

TP + FN
where TP, FP, and FN are the number of true positives, false
positives, and false negatives, respectively.

Definition 1: The arg maxρ f (ρ) function returns ρ that
maximizes the proceeding function f (ρ). Note that if more
than one value of ρ maximizes the function f (ρ), then
arg maxρ f (ρ) returns the minimum ρ among the ones
maximizing f (ρ).

As shown in Fig. 1, we select the threshold vector τ

to threshold the model scores by maximizing the MacroF1
function on the validation set as

τ = arg max
τ

MacroF1(δ(ĉa ≥ τa), ca) (5)

where δ(·) function returns the same-sized vector with its
input, which outputs 1 for the dimensions that satisfy inequal-
ity and 0 for the rest. Directly optimizing (5) via grid search
becomes infeasible as the number of classes increases and it
may not be possible to find the optimal value since the time
complexity is in 	(T w),2 where T is the number of elements
to be tried and w is the number of classes. By expanding the
MacroF1 function in (5), we obtain

τ = arg max
τ

1

w

w∑
a=1

F1(δ(ĉa ≥ τa), ca)

= 1

w

w∑
a=1

arg max
τ

F1(δ(ĉa ≥ τa), ca).

Since the class-specific thresholds in τ are independent,
we separate the thresholds into different arg max functions as

τa = arg max
τa

F1(δ(ĉa ≥ τa), ca).

Thus, we obtain that τ is equivalent to [τ1 τ2 · · · τw]T such
that

τa = arg max
τa

F1(δ(ĉa ≥ τa), ca) (6)

for all a ∈ {1, 2, . . . , w}.
2	(w(n)) denotes the set of all r(n), where a1w(n) ≤ r(n) ≤ a2w(n),
∀n > n0 for n ∈ Z

+ such that there exist positive integers a1, a2, and n0.

Fig. 2. Number of label occurrences versus rank plot of the labels in datasets
that demonstrate the class imbalance.

Using (6), the time complexity becomes linear with respect
to the number of classes, that is, 	(T w). Thus, we calculate
the threshold vector τ using (6).

Remark 8: Note that it is not reasonable to choose the
threshold using the training set since the model already
memorizes it and unavoidably performs biased scoring for the
training data. This is why we use the unseen thresholding set.

IV. EXPERIMENTS

In this section, we first describe the datasets, the evaluation
methodology, and the implementation details. We then com-
pare our method with the first ranking methods in the SemEval
emotion classification competition [1] and the state-of-the-art
methods. We then analyze the performance of our method via
cross-lingual experiments. Later, we demonstrate performance
gains obtained via our dynamic weighting method and analyze
its hyperparameter. Finally, we present our method’s individual
class performances and demonstrate the performance gains
obtained by our method’s components via an ablation study.

A. Datasets

We use datasets in three different languages from the
SemEval competition [1]: SemEval-Arabic, SemEval-English,
and SemEval-Spanish. For simplicity, we refer SemEval-
Arabic, SemEval-English, and SemEval-Spanish datasets as
Arabic, English, and Spanish, respectively. Since the datasets
are in multi-label setting, the instances contain zero or more
labels among the 11 labels in the dataset. Fig. 2 demonstrates
the class imbalance via the number of occurrence versus rank
plot of the labels in the datasets. We use the splits of the
SemEval emotion classification competition [1]. Arabic dataset
has a total of 4381 instances consisting of 160 206 tokens
and split into 3561 training, 679 validation, and 2854 test
instances. The English dataset has 10 983 instances consisting
of 338 763 tokens and split into 6838 training, 886 vali-
dation, and 3259 test instances. The Spanish dataset has
7094 instances consisting of 176 650 tokens and split into
2278 training, 585 validation, and 1518 test instances.
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B. Evaluation Methodology and Implementation Details

We use macro averaged F1 (macro-f1), micro averaged F1
(micro-f1), and Jaccard index, which are the metrics used in
the SemEval competition [1]. For fairness, we optimize our
network, BERT [28], RoBERTa [43], XLM-RoBERTa [43],
and deepmoji [17] baselines using Tree Parzen Estimator
of the Optuna library [45] and choose the model with the
largest validation macro-f1 score among 100 trials. For the
FastText [40] baseline, we use its own hyperparameter opti-
mization module with 130 different trials for each of the
languages, that is, 30 more trials than our optimization for
our model and the deepmoji baseline. For the methods in
the SemEval emotion classification competition, we directly
use their reported scores for fairness. These methods have
also followed similar approaches for hyperparameter optimiza-
tion, for example, EMA [29] performs a grid search, and
NVIDIA [18] and NTUA-SLP [30] use Bayesian optimization
in dimensional space of all the possible values.

We train our model via the Adam [46] optimizer.
We use ekphrasis3 preprocessing library to perform
language-independent preprocessing of social cues such
as username normalization. We use weight decay and early
stopping. We stop the training when ten epochs are exceeded
without any macro-f1 improvements on the validation set.

C. Comparison With the State-of-the-Art

Here, we compare our model with the state-of-the-art meth-
ods and the best models in SemEval-2018 competition in
Arabic, English, and Spanish languages.

To create our best model, we combine the Arabic, English,
and Spanish data by combining their training and validation
sets. We then train our model on the combined data using the
methodology described in Section IV-B.

We use 15 different baselines to compare our method and
demonstrate its effectiveness, most of which are the highest
performing contenders in SemEval-2018 emotion classification
competition. NTUA-SLP [30] ranked first on Jaccard and
micro-f1 metrics for English using a pretrained Bi-LSTM with
a multi-layer self-attention mechanism. They use word2vec
embeddings that are trained on 550 million tweets. The
best micro-f1 score for English is achieved by psyML [31],
which uses a very similar Bi-LSTM with self-attention
model to NTUA-SLP, except they use hierarchical clustering
to group correlated emotions together and train the same
model incrementally for emotions within the same cluster.
NVIDIA [18] trains an attention-based transformer network on
large-scale data and fine-tunes this model on the training set
for SemEval-English before testing it, obtaining results on par
with those in the competition ranking. Deepmoji is a distant
supervision-based LSTM architecture and it obtains the state-
of-the-art performance on many sentiment-related tasks [17].
They convert multi-label instances into separate binary tasks.
We report the results of their chain-thaw approach on the Eng-
lish dataset. For Arabic, EMA [29] (first place in Jaccard and
micro-f1, second place in macro-f1) and PARTNA (first place

3https://github.com/cbaziotis/ekphrasis/tree/master/ekphrasis

in macro-f1, second place in Jaccard and micro-f1) achieve
the highest two ranks. EMA uses AraVec embeddings [32]
as features into a support vector classifier (SVC) with L1

regularization. PARTNA uses a similar support-vector-based
model except using an additional Arabic stemmer designed for
handling tweets [1]. There are also studies that perform well
but are not in SemEval rankings. Among these, context-aware
gated recurrent unit (CA-GRU) [41] uses context information,
the topic of the text in this case, as a feature by first feeding
the text to a topic-detection model to obtain a vector of
probability distributions over topics. HEF-DF [42] is a simple
neural network hybrid model obtained from concatenating
human-engineered (i.e., handpicking features that represent
syntactical and semantical significance) and deep features
(i.e., using combinations of embeddings). As with Arabic,
two models exist for the first place in a metric for Spanish:
MILAB_SNU (first place in Jaccard and micro-f1, second
place in macro-f1) and ELiRF-UPV, which uses manually
and automatically generated lexicon sand combines 1-D CNNs
with an LSTM to obtain the first place in macro-f1 metric [44]
(second place in Jaccard and micro-f1). We also include Tw-
StAR [33] as a baseline to compare our method’s multilingual
performance with a standard model. Tw-StAR uses binary rele-
vance transformation strategy to extract term frequency-inverse
document frequency (tf-idf) features for a linear support vector
machine. They also experiment with combinations of five dif-
ferent preprocessing methods and reach the third rank for both
the Arabic and Spanish datasets. FastText is a framework that
can convert text into feature vectors using a skip-gram model,
where each word is represented as a bag of n-grams [40].
FastText contains readily extracted vectors for 157 languages.
We fine-tune these vectors for English, Arabic, and Spanish
and use them on their respective SemEval datasets. We use pre-
trained BERT [28], RoBERTa [43], and XLM-RoBERTa [43]
as additional baselines, which are described in Section I-B,
and fine-tune all the parameters of them.

Table I presents the results of our model compared with
the state-of-the-art models and the competition winners. The
models that target only a single language perform signifi-
cantly better compared with the multilingual models. The only
exception is our best model, which we train on three different
languages’ training data combined. Our best model obtains
significantly better results compared with our single-language
(Ours-SL) model with the same methodology and trained on
each of these languages separately. Our method achieves the
best score on all of the metrics in Arabic and Spanish lan-
guages. Our method achieves the best score in macro-f1 metric
of the English language. In Arabic, our method achieves
4.8% (absolute) macro-f1 improvement compared with the
previous best model, which is HEF-DF [42]. Our method
obtains 2.3% (absolute) micro-f1 and 0.2% (absolute) Jaccard
score improvement compared with the previous best model
CA-GRU [41]. In English, our method achieves 1% (absolute)
macro-f1 improvement compared with the previous competi-
tion winner psyML [31]. Our method attains 0.5% (absolute)
micro-f1 and 1.2% (absolute) Jaccard score improvements
compared with the competition winner NTUA-SLP [30].
Note that RoBERTa [43] model improves over NTUA-SLP
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TABLE I

COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS IN THE LITERATURE AND THE WINNERS IN SEMEVAL-2018 EMOTION
CLASSIFICATION COMPETITION [1] WITH THE INTRODUCED METHOD. THE PREVIOUSLY REPORTED STATE-OF-THE-ART RESULTS IN THE

SEMEVAL COMPETITION ARE UNDERLINED. THE CURRENT STATE-OF-THE-ART RESULTS ARE BOLDFACED

by 0.9% (absolute) macro-f1 and 0.3 (absolute) Jaccard
score. In Spanish, our method achieves 9.0% (absolute)
macro-f1 improvement compared with the previous best model
ELiRF-UPV [44]. Our method also achieves 4.8% (absolute)
micro-f1 and 1.7% (absolute) Jaccard score improvement
compared with the previous best model MILAB_SNU.

We perform post hoc Nemenyi test among the
multilingual models (Ours, Ours-SL, Tw-StAR, FastText,
XLM-RoBERTa) [47]. Note that we could not perform post
hoc Nemenyi test for all models here since not all of them
report results on different datasets. We first perform Friedman
test where we obtain p < 0.05 for each of macro-f1, micro-f1,
and Jaccard index metrics. Then, we proceed with post hoc
Nemenyi test. In the Nemenyi part, we have again repeated
the test for each metric and obtained the same result from
each: we can only reject the null hypothesis with p < 0.05
that results of the FastText and our best model were drawn
from the same distribution. Note that since there are only
three datasets, it is not possible to reject more than one in the
optimal scenario since the maximum possible average rank
difference is 4 and the critical difference is 3.52 (which must
be greater than the average rank difference to reject).

D. Cross-Lingual Experiments

In this section, we demonstrate the cross-lingual capability
of our method using training and test data combinations of
different languages.

Table II presents the results when a model is trained on
combinations of the datasets of different languages from the
SemEval competition [1]. For each row, we train the model
using the combined training data of the languages in the

TABLE II

EXPERIMENT RESULTS WHEN THE MODEL IS TRAINED ON THE

COMBINATIONS OF THE SEMEVAL DATASETS AND TESTED

ON THE INDIVIDUAL VALIDATION SETS. THE
BEST RESULTS ARE BOLDFACED

first column and validate using the combined validation data.
We then experiment on the test sets of the English (EN),
Spanish (SP), and Arabic (AR) languages separately. Note
that the threshold and the best model are selected using the
validation set of the combined data using the procedure we
describe in Section IV-B. Recall that we use only a single
model, which is the model shown in the last row (AR + EN +
SP) in comparisons with the state-of-the-art in Section IV-C.

As expected, the models trained on a single language
perform the best on the training data’s language. For instance,
the model trained in English performs the best for the English
test data. This is due to the semantic differences and the
implicit biases in each dataset. The results clearly indicate
that training with data from different languages significantly
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Fig. 3. Comparison of the weighting methods for imbalanced classification on the data from the SemEval emotion classification competition [1]. Figure is
best viewed in color. (a) Only English data. (b) Combined Arabic, English, and Spanish data.

improves the performance of our model. For English test data,
including Arabic to English training data improves the model
more than including Spanish. For Arabic test data, including
Spanish to Arabic training data improves the model more
than including English. For Arabic test data, using Arabic and
Spanish training data combined performs the best. For English
test data, using data from all the three languages performs the
best. For Spanish, including English data to Spanish training
data improves the model more than including Arabic. For
Spanish test data, using English and Spanish training data
combined performs the best and including Arabic to these data
lowers the performance.

Our cross-lingual experimental results are consistent for the
models that are trained on single-language datasets with the
semantic similarity atlas of the languages [48]. For example,
English and Spanish are significantly more similar to each
other than to the Arabic language. Among the models that
are trained on a single language, English and Spanish training
datasets score the best for each other’s test data compared with
Arabic. For English test data, Spanish training data score 7.0%
(absolute) macro-f1 more than the Arabic. For Spanish test
data, the model trained on English training data scores 5.5%
(absolute) macro-f1 more than Arabic. For Arabic, which is
closer to English than Spanish in the similarity atlas [48], train-
ing with English data results in 2.7% (absolute) macro-f1 gain
compared with training with Spanish. Note that the models
perform promising even for unseen languages, for example,
the model that is trained on English and Spanish data and
tested on the unseen Arabic validation data perform with 3%
to 11% (absolute) less macro-f1 score compared with the base-
lines and our best model trained on all the three languages. The
model tested on English data, which is trained on the rest of
the languages, performed 2% (absolute) macro-f1 better than
the Tw-StAR baseline and 10.9% (absolute) macro-f1 worse
compared with the best English model trained on all three
languages. For the model tested on the Spanish validation
data, which is trained on the rest of the languages, the model
performs 0.4% (absolute) macro-f1 better than the Tw-StAR

baseline and 13.4% (absolute) macro-f1 worse than our best
model that is trained on all the three languages. Note that these
cross-lingual scores are obtained on the unseen validation sets
of the datasets to prevent the test leak, unlike the baselines,
where they are tested on the test set.

E. Influence of Dynamic Weighting

Here, we analyze the hyperparameter selection of our
dynamic weighting method and compare it with the existing
weighting methods that are proposed to remedy the class
imbalance.

Fig. 3 illustrates the comparison of different weighting
methods in the literature and our dynamic weighting method.
We use the parameters of the best model except for κ ,
which is the smoothing hyperparameter for dynamic weight-
ing. For dynamic weighting method, we experiment with
different κ ∈ [0, 1] with 0.1 spacing. For class-balanced
focal loss term, we additionally experimented with the β ∈
{0.99, 0.999, 0.9999} values as in [25]. Note that β is defined
for [0, 1), and thus, we did not experiment for β = 1. We show
the β term of the class-balanced focal loss via the x-axis
of Fig. 3, too, which controls the growth rate of the weight
with respect to the number of instances belonging to each
class. We experiment with uniform weighting that assigns
equal importance to the losses from each class, that is, αt,a =
(1/w),∀t ∈ {1, 2, . . .}, a ∈ {1, 2, . . . w}. We also compare
with the inverse loss, which is the inverse of the number of
instances belonging to each class. Finally, we compare with
the cost-sensitive loss [26].

Our dynamic weighting method demonstrates significant
performance improvement, that is, ≈2.5% (absolute) macro-f1
improvement compared with uniform weighting and more
improvements compared with the other methods on only Eng-
lish data. The only exception is the class-balanced weighting,
for which our method achieves ≈1.2% (absolute) macro-f1
improvement compared with the best of the class-balanced
weighting when β = 0.999. On the combined data,
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TABLE III

ABLATION STUDY OF DIFFERENT NETWORK ARCHITECTURES AND LOSSES ON THE VALIDATION SET OF THE COMBINED ARABIC, ENGLISH, AND
SPANISH DATA. RL AND AP INDICATE LABEL RANKING LOSS [52] AND AVERAGE PRECISION, RESPECTIVELY. “ZERO-ONE” AND “COVERAGE”

INDICATE ZERO-ONE ERROR AND COVERAGE ERROR, RESPECTIVELY. LOWER IS BETTER FOR ZERO-ONE

ERROR, COVERAGE ERROR, AND RANKING LOSS, AND HIGHER IS BETTER FOR THE REST

the dynamic weighting achieves 1.3% macro-f1 improvement
when κ = 0.4 compared with the uniform weighting and
more improvements compared with the other methods. The
only exception is the class-balanced weighting, for which our
method achieves 0.6% (absolute) macro-f1 improvement when
β = 0.99.

Although there exist fluctuations with respect to κ hyper-
parameter, it performs no worse than the default uniform
weighting for any of the κ values for both only English and
combined Arabic, English, and Spanish data. Note that when
κ = 0, the dynamic weighting method is equivalent to uniform
weighting since the φ parameter is never updated. Our method
achieves its best value at κ = 0.4 for both the datasets.

F. Ablation Study

Here, we perform an ablation study to assess the perfor-
mance gains obtained by the components in our method.
We experiment with our best model, including both focal
loss and dynamic weighting (Ours), our model with dynamic
weighting only (Ours w/o FL), our model with focal loss
only (Ours w/o DW), bidirectional recurrent neural net-
works (Bi-RNNs) [37], bidirectional gated recurrent unit
(Bi-GRU) [49], unidirectional LSTM (Uni-LSTM) [38], bidi-
rectional LSTM (Bi-LSTM) [50], and XML-CNN [51] model
that is proposed for the extreme multi-label classification tasks
with more than thousand labels. Note that all the models
include focal loss and dynamic weighting unless otherwise
stated.

Table III presents the results on the validation set of
the combined Arabic, English, and Spanish data when the
recurrent component is changed with other models and the
loss changed with the standard cross-entropy loss. For each
row, we only change the loss or the model. We keep all
other hyperparameters as is. Our model with focal loss and
dynamic weighting performs significantly better compared
with others and outperforms them in eight of ten metrics.
Adding focal loss improves the model by 2.2% (absolute)
macro-f1, and adding dynamic weighting improves the model
by 2.7% (absolute) macro-f1. To further understand the effects

of focal loss and dynamic weighting on all classes, we first
conduct Friedman test by calculating per class F1 scores
for each classifier on Table III. With p < 0.01, we reject
the null hypothesis that all models perform the same. Fol-
lowing the highly significant Friedman test, we perform the
Wilcoxon signed-rank test to out model using the same
per-class F1 setup. The results show us that there is no
statistical significance in using focal loss or dynamic weighting
by themselves (p > 0.05), but combining both these methods
causes a significant increase in performance ( p < 0.05).
Unidirectional LSTM, which runs on the sentences only in the
forward direction, performs 2.3% (absolute) macro-f1 worse
compared with its bidirectional variant. Although GRU works
better than RNN, it performs 1.7% worse compared with
the bidirectional LSTM. XML-CNN, which is a CNN-based
model and performs significantly worse compared with the
other models.

G. Running Time Comparisons

Table IV shows elapsed times per epoch and in total.
We have performed measurements through NVIDIA GeForce
GTX 1080 Ti. Our best model, containing all components,
takes about 5 min to run. The methods we introduced, that is,
dynamic weighting and focal loss for multi-label classification,
incur negligible running time cost. The increase in time per
epoch is no more than 0.7 s, and the increase in total time is
no more than 5 s. Moreover, these methods do not affect the
asymptotic time complexity for Big-O notation.

Furthermore, XML-CNN, Bi-RNN, and Uni-LSTM reduce
the running time by 8 s at most per epoch compared with our
best model. These models also reduce the total time by 1 min
and 56 s at most compared with our best model. However,
our best model is significantly more accurate than other
models, as shown in Table III. Note that XLM-RoBERTa is
considerably slower due to the number of trained parameters.

H. Individual Class Performances

In this section, we analyze the performance of our method
for individual classes.
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TABLE IV

RUNNING TIME MEASUREMENTS OF DIFFERENT MODELS. TIME PER
EPOCH DEPICTS THE TIME IT TAKES FOR THE MODEL TO APPLY

FORWARD AND BACKWARD OPERATIONS FOR EACH TRAINING

DATA ONCE. TOTAL TIME IS THE TOTAL ELAPSED TIME OF

EXECUTION STARTING FROM THE DATA READ OPERATION
AND ENDING WITH THE CONVERGE OF THE MODEL,

WHICH CAN HAPPEN WITH EARLY STOPPING

Fig. 4. Per-class F1 scores of the validation set of the combined Arabic,
English, and Spanish data. Figure is best viewed in color.

Fig. 4 illustrates the validation F1 score for all classes on
the combined data using the best model on combined data
obtained in Section IV-C. The model performs the best for the
joy class with 80.9% macro-f1 and performs the worst for the
trust class with 25.0% macro-f1. The surprise and trust classes
perform the worst among all as expected since their number of
instances is the least. Discrimination of the optimism is signif-
icantly better than the pessimism as the number of instances in
the optimism class is significantly higher than the number of
instances in the pessimism class. Interestingly, the anticipation
class is the third worst performing class, although it is not the
third in terms of rarity, which is consistent with the results of
the NVIDIA study [18]. Our model performs around 70% for
the rest of the classes, that is, anger, disgust, fear, joy, love,
optimism, and sadness.

V. CONCLUSION

We have investigated the cross-lingual sentiment analysis in
multi-label setting. We have introduced a system that performs
sentiment analysis in 100 different languages. To cope with the
inherent class imbalance problem of multi-label classification,

we have introduced a dynamic weighting method to remedy
the inherent class imbalance problem of multi-label classi-
fication. This method balances the loss contribution of the
classes as the training progresses, unlike the static weighting
methods that assign non-changing weights to the classes.
We have adapted the focal loss to the multi-label setting
from the single-label object recognition literature. Moreover,
we have derived a macro-f1 maximization method in linear
time complexity for choosing class-specific thresholds to pro-
duce predictions. Our system has achieved the state-of-the-art
performance in seven of nine metrics in three different lan-
guages on the SemEval emotion classification competition [1].
We have demonstrated the performance gains compared with
the first ranking methods in the SemEval emotion classification
competition [1] and the common baselines. We have also
evaluated our method in the cross-lingual setting. We have
demonstrated the performance gains obtained by the dynamic
weighting and analyzed the effects of our method’s compo-
nents through an ablation study.
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Hamdi Dibeklioğlu (Member, IEEE) received the
Ph.D. degree from the University of Amsterdam,
Amsterdam, The Netherlands, in 2014.

He is currently an Assistant Professor with the
Computer Engineering Department, Bilkent Univer-
sity, Ankara, Turkey, and a Research Affiliate with
the Pattern Recognition and Bioinformatics Group,
Delft University of Technology, Delft, The Nether-
lands. Before joining Bilkent University, he was a
Post-Doctoral Researcher with the Delft University
of Technology. His research focuses on computer

vision, pattern recognition, affective computing, and computer analysis of
human behavior.
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