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ABSTRACT

TOTAL SYNTHESIS OF BIOLOGICALLY ACTIVE FUNGAL NATURAL PRODUCTS
DALDIQUINONE AND BULGAREIN, AND INTRAMOLECULAR DIELS-ALDER

REACTIONS FOR FLUORANTHENE SYNTHESIS.

Dilgam AHMADLI
MSc. in Chemistry
Advisor: Asst. Prof. Dr. Yunus Emre Tirkmen

June 2021

Natural products continue to play a significant role in drug discovery and be a substantial
source for novel pharmaceutical drugs. Total synthesis of biologically active natural products is
critical for deciphering how natural products regulate cellular and other biological processes and,
structure determination. In addition, the total synthesis of natural products has also been a stimulus
for the discovery of new methodologies and reactions.

The fungal natural product daldiquinone (15), which possesses a highly oxidized binaphthyl
skeleton, was isolated in 2018 from Daldinia concéntrica, and was shown to have antiangiogenesis
activity against HUVECs with an 1Csy value of 7.5 uM. Another fungal natural product bulgarein (1)
was first isolated in 1976 from the fungus Bulgaria inquinans, and was shown to induce
topoisomerase I-mediated DNA cleavage. However, as in the case of daldiquinone (15), total
synthesis of bulgarein (1) has yet to be reported. In this work, we report the first total syntheses of
daldiquinone (15) and bulgarein (1) starting from the commercially available 1,8-DHN (1,8-

dihydroxynaphthalene, 1,8-naphthalenediol) via a concise route. Pd-catalyzed Suzuki coupling and



C-H arylation reactions between functionalized naphthalenes and hypervalent iodine-mediated
double oxidation of phenol to o-quinone were employed as key steps.

Thanks to their thermal stability and electronic properties, fluoranthene derivatives have
widespread medicinal chemistry and organic optoelectronics applications. A significant number of
fluoranthene-based natural products are known, including bulgarein (1). Although many procedures
have been developed to synthesize fluoranthenes, practical and modular strategy for synthesizing
many substituted unsymmetrical fluoranthenes is still desirable. In this work, we report a novel
approach to achieve modular syntheses of fluoranthene derivatives based on intramolecular Diels-

Alder reaction.

Keywords: Natural Products, Total Synthesis, Daldiquinone, Bulgarein, Fluoranthene, Diels-Alder

reactions.



OZET

BIYOLOJIK AKTIiVITEYE SAHIP DALDIKiNON VE BULGAREIN MANTAR DOGAL
URUNLERININ TOTAL SENTEZi VE INTRAMOLEKULER DIiELS-ALDER TEPKIMELERI

KULLANARAK FLORANTEN TUREVLERININ SENTEZI.

Dilgam AHMADLI
Kimya Boluma, Yuksek Lisans
Tez Damgmant: Dr. Ogr. Uyesi Yunus Emre Tirkmen

Haziran 2021

Dogal iirtinler ila¢ kesfinde 6nemli bir rol oynamaya ve yeni farmasotik ilaglarm kaynagi
olmaya devam etmektedir. Biyolojik aktiviteye sahip dogal {iriinlerin total sentezi, hem dogal
trtinlerin hiicresel ve biyolojik sistemlerde nasil davrandiginin anlasilmas: hem de yapi tayini
acisindan kritik dneme sahiptir. Ayn1 zamanda, dogal iiriinlerin total sentezi yeni tepkimelerin ve
yontemlerin bulunmasma neden olmaktadir.

Yiiksek oranda oksitlenmis bir binaftil iskeletine sahip mantar dogal iriinii daldikinon (15),
2018'de Daldinia concéntrica'dan izole edildi ve 7.5 UM ICsy degeri ile HUVEC'lere karsi
antianjiyogenez aktivitesine sahip oldugu gosterildi. Bagka bir mantar dogal tiriinii olan bulgarein
(1) ilk olarak 1976'da Bulgaristan inquinans mantarindan izole edildi ve topoizomeraz I aracili DNA
boliinmesini indiikledigi gosterildi. Gunimilze kadar, her iki dogal iiriin igin de total sentez
gelistirilmemistir. Bu ¢alismada, satin alinabilen 1,8-DHN'den (1,8-dihidroksinaftalin, 1,8-
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naftalindiol) baslayarak kisa bir yoldan daldikinon (15) ve bulgareinin (1)’in ilk total sentezlerini
sunuyoruz. Fonksiyonellestirilmis naftalinler arasmdaki Pd katalizorliigiinde Suzuki kenetlenmesi ve
elde edilen fenol turevlerinin o-kinona yiikseltgenmesi anahtar adimlar olarak kullanilmistir.

Termal kararliliklar1 ve elektronik 6zellikleri sayesinde floranten tiirevleri, tibbi kimya ve
organik optoelektronik alanlarinda yaygmn olarak kullanilmaktadr. Bulgarein (1) de dahil olmakla
onemli sayida floranten bazli dogal iiriin bilinmektedir. Floranten turevlerinin sentezi i¢in bircok
stratejiler gelistirilmis olmasma ragmen, ¢oklu sibstitiyentlere sahip, simetrik olmayan floranten
tirevlerini sentezlemek icin pratik ve moduler strateji gelistirilememisti. Bu ¢alismada,
intramolekiiler Diels-Alder tepkimelerini kullanarak floranten tirevierinin moduler sentezlerine
yonelik yeni bir yontem sunuyoruz.

Anahtar kelimeler: Dogal iriinler, total sentez, Daldikinon, Bulgarein, Floranten, intramolekdler

Diels-Alder tepkimeleri.
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CHAPTER 1: TOTAL SYNTHESIS OF BIOACTIVE FUNGAL NATURAL

PRODUCTS DALDIQUINONE AND BULGAREIN

1.1. INTRODUCTION

1.1.1. Fluoranthene-based Natural Products

Fluoranthene is a cyclopenta-fused polycyclic aromatic hydrocarbon (PAH)
(Figure 1). A significant number of fluoranthene and benzo[j]fluoranthene-based
secondary metabolites are isolated from nature, many of which exhibit promising

biological activities (Figure 2).1

( )

a g‘
® 90

Fluoranthene Benzolj]fluoranthene

Figure 1. Structures of fluoranthene and benzo[j]fluoranthene.

Fungal nutaral products, truncatone A, C and D were isolated from the extracts of
Annulohypoxylon species. 2 Upon biological tests, benzo[j]fluoranthene derivatives
showed moderate cytotoxicity to the mouse fibroblast cell line L929.2 Among the
chemical constituents of mushroom Hypoxylon truncatum, hypoxylon D and E exhibited
antiproliferative activity against human umbilical vein endothelial cells (HUVECSs) and
human umbilical artery endothelial cells (HUAECs) with low 1Csy values (4.1-7.4

pUM). 3 Another group of benzo[j]fluoranthene-based metabolites isolated from



Annulohypoxylon species is daldinones A-D.# Screenings for biological activity revealed
cytotoxicity of daldinone C and daldinone D against SW1116 cell line with the 1Cs
values of 49.5 and 41.0 uM. Later, daldinone D was found to be strongly cytotoxic to
Jurkat J16 and Ramos (human leukemia and lymphoma) cell lines with low 1Cs

values.4
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Figure 2. Selected examples of fluoranthene-based natural products.




In 1976, R. L. Edwards and H. J. Lockett examined the extracts from fungus
Bulgaria inquinans and reported two new secondary benzo[j]fluoranthene metabolites,
bulgarein (1) and bulgarhodin (Figure 3).° Later studies revealed promising bioactivity

of the fungal natural product bulgarein to induce topoisomerase I-mediated DNA

cleavage.®

O OH O OH
bulgarein (1) bulgarhodin
induces topoisomerase I-

mediated DNA cieavage
and DNA winding

Figure 3. Chemical constituents of Bulgaria inquinans.

There are also unnamed fluoranthene derivatives with attractive bioactivity
profiles (Figure 4). A fungal natural product with reduced benzo[j]fluoranthen-3-one
skeleton is a potent inhibitor of anti-CD28-induced IL-2 production (ICso =400 nM) and
Abyl tyrosine kinase (ICsp = 60 nM).” Another natural product, benzo[j]fluoranthene-4,9
diol (2), was isolated from fungus Daldina eschscholzii and exhibited

immunosuppressive activity.8



OH

reduced benzol[jlfluoranthen-3-one benzo [j] fluoranthene-
derivative. 4,9-diol (2)

inhibits anti-CD28-induced

IL-2 production (ICso = 400 nM)
inhibits Abyl! tyrosine kinase (
IC50 =60 nM)

immunosuppressive activity

Figure 4. Unnamed benzol[j]fluoranthene metabolites.

1.1.2. Biosynthesis of benzo[j]fluoranthene metabolites

In a previously reported study4d, biosynthesis of benzo[j]fluoranthene-based
natural products was proposed to start with the conversion of 1,8-DHN (1,8-
dihydroxynaphthalene) to BNT ([1,1’-binaphthalene]-4,4’,5,5-tetrol) via oxidative para
coupling. According to the proposed biogenetic pathway, BNT then experiences the
sequence of events described in Scheme 1 to generate benzo[j]fluoranthene derivatives,

daldinones A, C and D.



OH OH OH O
OH OH Intramolecular
oxidative O idati conjugate addition
O couplmg xidation
OH OH

1,8-DHN

daldinone D

daldinone A

Scheme 1. Proposed biogenetic pathway for benzo[j]fluoranthene-based natural

products.

1.1.3. Total Synthesis of Fluoranthe ne-based Natural Products
To date, only two total syntheses have been reported for the fluoranthene-based
natural products. In 2013, Dalavalle and co-workers reported a 7-steps total synthesis
(LLS) of pentacyclic natural product benzo[j]fluoranthene-4,9-diol (2).° Suzuki coupling
reaction between boronate (4) and bromoaldehyde (3), and Mc-Murry coupling of
resulting dialdehyde (5) were employed as key steps (Scheme 2). Final demethylation of

6 afforded benzo[j]fluoranthene-4,9-diol (2).



Br OMe Pd(PPh3)4 O
OHC OMe
K,COj3
= oo CHO
1,4-dioxane/H,0 ¢ CHO

80 °C

Zn, TiCly,
THF, reflux

O’O M e O’O o
HO O 140-150 °C MeO O
2 6

benzol[j]fluoranthene-4,9-diol

Scheme 2. Dalavalle’s total synthesis of benzo[j]fluoranthene-4,9-diol (2).

In 2018, Hosokawa and co-workers reported the first total synthesis and
structural determination of tyrosine kinase inhibitor XR774 (14).10 The long synthetic
route was marked by series of challenging chemical transformations including
regioselective 1,2-addition of lithiated tetraline 9 to 10, dibromination of tetracyclic core
and Ni-mediated cyclization to assemble benzo[j]fluoranthene skeleton (Scheme 3).
Racemic 13 was finally converted to optically active (-)-XR774 (14) by optical

resolution (dr =1:1) followed by treatment with HCI.



OH OMOMm

1. Ni(cod),, MesP

2. pyridine or Et;N

0 o
o —— (o]
—
OH O MOMO [o] 12
8 10

1. optical resolution
dr=1:1

2. HCI, THF

13 (-)-XR774 (14)

Scheme 3. Hosokawa’s total synthesis of XR774 (14).

1.1.4. ortho-Naphthoquinone-based Natural Products

A number of naturally occurring ortho-naphthoquinone derivatives are known. -
Lapachone was isolated from lapacho tree by Paterno in 1882.11 A broad spectrum of
biological activities reported for [-lapachone, including antifungal, antibacterial,
antitrypanocidal and antitumor activities.1213 Several routes have been reported for the
synthesis of B-lapachone.!! Mansonone E and F were isolated from a tree called Ulmus
pumila L. whose extracts have been used in traditional Chinese medicine.14 Tests for
antiproliferative activities revealed cytotoxicity of mansonone E and mansonone F
against various human tumor cells with ICs, values of 0.9-7.9 pM and 3.0-29.4 uM,
respectively. Constitutional isomer of B-lapachone, rhinacanthone is another naturally
occurring 1,2-naphthoquinone metabolite with antitumor and antifungal (EDsp = pg/ml)
activities.1> In 2016, triphyoquinone A was isolated as one of the chemical constituents

of Triphyophyllum peltatum and showed axial chirality phenomenon. 16 Recently,



Koyama and co-workers separated fungal natural product daldiquinone (15) from the
chemical constituents of Daldinia concentrica, which showed antiangiogenesis activity

against HUVECs with an ICs value of 7.5 uM.1/

X

H;C CHj

B lapachone

antitumor, antifungal
antibacterial activities

o

504

o CH,
CH,

rhinacanthone

antitumor, antifungal
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mansonone E

cytotoxic to human
tumor cells

MeO OH

LI,
L

(o} OH

triphyoquinone A

CH; O
o

CH,

o
H e X

mansonone F

cytotoxic to human
tumor cells

HO OMe

daldiquinone (15)

antiangiogenesis activity

Figure 5. Selected examples of 1,2-napthaquinone based natural products.




1.1.5. Aim of This Work

Biologically active natural product bulgarein (1), which possesses a highly
oxygenated pentacyclic benzo[j]fluoranthene skeleton, was first isolated in 1976 from
the extracts of Fungus Bulgaria inquinans and exhibited topoisomerase | inhibition.> In
2018, another fungal natural product daldiquinone (15) was isolated from Daldinia
concentrica and showed antiangiogenesis activity against HUVECs with a low 1Cs
value (7.5 uM).17 Despite attractive biological activities and grown interest in the
chemistry of fluoranthene and naphthoquinone metabolites, total syntheses for both
natural products have yet to be reported. This work aims to achieve total syntheses of
bulgarein (1) and daldiquinone (15) starting from commercially available 1,8-
naphthalenediol via a concise route. Suzuki coupling reaction between functionalized
naphthalene derivatives followed by selective deprotection and double oxidation to o-
quinone will generate protected 1,2-naphthoquinone derivative, which is proposed to be
a common precursor for both natural products (Scheme 4). The findings of the study

may also shed light on the biogenetic pathway of natural products.
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bulgarein (1)
. J

Scheme 4. Proposed synthetic route for the synthesis of daldiquinone (15) and bulgarein

(1),

1.2. RESULTS AND DISCUSSION

1.2.1. Retrosynthetic analysis

From a retrosynthetic perspective, we started with structural analysis of
daldiguinone (15) and bulgarein (1), which revealed significant similarities between the
two natural products. In terms of the core skeleton, both natural products contain two
naphthalene rings and have the same number of oxygen atoms. Structural similarity
between daldiquinone and bulgarein became even more apparent when we considered
the tautomeric form of bulgarein 16 (Scheme 5). The energy difference between these
tautomeric forms presumably arises from intramolecular hydrogen bonding. This
suggests, if hydroxyl groups on C1 and C2 are protected as methyl ether, then 17 will be
the major tautomeric form since six-membered intramolecular hydrogen bonding will be

preferred over a five-membered one. A reasonable strategy to make the carbon-carbon

11



bond between C3 and C4 can be executed by activating the enone double bond followed
by an electrophilic aromatic attack to sp® hybridized a-carbon (C3) from anisole ring
(C4). Finally, regeneration of the enone double bond via elimination can complete the
transformation. (Scheme 6). However, intramolecular hydrogen bonding makes the
phenol ring more electron-rich than the anisole ring. As a result, electron push from
phenol ring to activated alkene will be more likely, which can be prevented if hydroxyl
group on C5 is also protected. With that in mind, we envisioned naphthoquinone 18 as a
common precursor for both daldiquinone (15) and bulgarein (1). Compound 18 can be
derived from unsymmetrical binaphthalene 19 by selective deprotection and subsequent
oxidation. Suzuki-Miyaura coupling between functionalized naphthalene derivatives 20
and 21 can be used to deliver 19. Both 20 and 21 can be traced back to commercially

available 1,8-naphthalenediol (1,8-DHN).

MeO o

O .
4@

OH OMe

daldiquinone (15)

Scheme 5. Retrosynthetic analysis of daldiquinone (15) and bulgarein (1).
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X =0, Br*, PhSe* X =0, Br, PhSe

Scheme 6. Proposed cyclization of 18.

1.2.2 Total Synthesis of Daldiquinone

At the outset, synthetic sequence commenced with monomethylation of
commercially available 1,8-naphthalenediol by using iodomethane as an electrophilic
methyl source to give 22 in 93% vyield. 18 In addition to the para selectivity of
naphthalene ring due to the relative stability of Wheland intermediate in electrophilic
aromatic substitution reactions, compound 22 also has intramolecular hydrogen
bonding 1° which provides further regioselectivity between phenol and anisole rings by
making phenol ring more electron-rich. Although all efforts for electrophilic aromatic
iodination of 22 by using NIS or I, failed to give desired product 23, electrophilic
aromatic bromination product 24 was synthesized using NBS in 94% yield.18 Notably,
using anhydrous CH3CN and recrystallization of NBS from H,O depleted the formation
of side products and increased the yield of the reaction. Acetylation of 24 using AcCl

and NaH proceeded smoothly to furnish 25 in 96% yield (Scheme 7).

13



s N\
OH OH MeO  OH MeO  OH MeO  OAc
K,CO3, Mel NXS NaH, THF, 0 °C
_— _—
acetone, r.t.,, 24 h CH4CN, rit. then AcCl0°Ctor.t.
X Br
0,
22,93% 23, X =1 notobserved 25,96%
24, X =Br 94%

_ S/

Scheme 7. Synthesis of 25 from 1,8-naphthalenediol.

The next step was the Miyaura borylation reaction of 25 which resulted in the
unexpected formation of symmetrical dimeric naphthalene derivative 26 and the partially
hydrolyzed side product 27, possibly due to the rapid Suzuki coupling reaction between
formed boronic ester and starting material compared to the Miyaura borylation (Scheme
8). Screening the reaction temperature, catalyst loading and the amount of B,pin, did not

provide animprovement (Table 1).

e 3
MeO OAc MeO OH
MeO OAc OO OO
Bopin,, Pd(dppf)Cly'CH,Cl, .
DMSO, 90 °C, 24 h OO
Br OO
25 AcO  OMe AcO  OMe
26 27
major minor
\ J

Scheme 8. Dimerization of 25 under Miyaura borylation conditions.
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Table 1. Screening of reaction conditions for Miyaura borylation of 25.

Entr Pd(dppf)Cl.-CH:Cl. B2pin: Temperature Ar-Bpin
y (equiv.) (equiv.) (°C) formation
1 0.1 1.05 90 Not observed
2 0.05 1.05 80 Not observed
3 0.03 2.0 80 Not observed
4 0.05 1.0 70 Not observed

Reaction conditions: Mixture of 25, Bypin,, Pd(ddpf)Clz-CH.Cl, and KOAc (3 equiv.) in DMSO (purged
with N> for 10-15 minutes) in a round-bottomed flask sealed with a glass stopper and heated to specified

temperature.

Basic hydrolysis of the reaction mixture obtained from the one-pot Suzuki-
Miyaura coupling reaction of 25 by using 0.6 equivalents of B,pin,, furnished natural

product daldinol (28) in 57% vyield over three steps (Scheme 9).20.21

MeO OH

MeO OAc 5 06 OO
2piny eq.)
OO _ Pd(dppf)ClyCHaCl, KQCO3 MeOH
DMSO, 90 °C, 24 h rt,3h
Br

25 HO OMe

daldinol (28)

57% over three steps
83% per step

Scheme 9. Synthesis of daldinol (28) via one-pot Suzuki-Miyaura coupling reaction

At this stage, partially hydrolyzed side product 27 was purified by column
chromatography and oxidized by using 1BX?2 to give naphthoquinone 29 in high yield

(92%). This double oxidation of phenol to o-quinone proceeds via sigmatropic oxygen

15



transfer from iodanyl complex formed after condensation of IBX and phenol.22> Both
commercially available S-IBX23 and the one prepared from IBA following the literature
procedure2* were effective and led to similar results. Final deprotection of acetyl group

of 29 by using K,CO3in MeOH afforded daldiquinone (15) in 75% yield (Scheme 10).

( N
MeO OH MeO [o] MeO (o]
(o] [o]
10 - (XY weomeon (Y]
_—
I I DCM/DMSO/EtOAC l I rt,3h
AcO OMe AcO OMe HO OMe
27 29, 92% Daldiquinone (15)

75%

N J

Scheme 10. Synthesis of daldiquinone (15) from 27.

Inspired by these results, the optimized synthesis of binaphthyl 27 was targeted.
An unsymmetrical binaphthalene containing an orthogonal protecting group to acetate
was required. Since the benzyl group can be deprotected with palladium-catalyzed
hydrogenolysis?® it can be selectively removed in the presence of acetate group in the
later stage of the sequence to give 27. To prepare a boronic ester partner for Suzuki
cross-coupling reaction, benzyl-protected naphthalene derivative 30 was synthesized in
86% vyield from 24 by using BnBr and NaH. Compound 30 was then converted to
boronic ester 31 in 58% yield by using lithium-bromide exchange reaction followed by
addition of i-PrOBpin. With boronic ester in hand, the stage was set for a seemingly
straightforward Suzuki coupling reaction (Scheme 11). Unfortunately, the coupling

reaction between boronic ester 31 and acetoxynaphthalene 25 turned out to be

16



remarkably difficult and proceeded in meager yields to give 32 under typical Suzuki

coupling conditions (Table 2).

(

MeO OH

24 30, 86%

1. NaH, 0 °C, DMF
- ' v .
2. BnBr, DMF, r.t.

n- BuLl -78 °C, THF

then i-| PrOBpln r.t.

i [Pd], base, A
pin

31, 58% AcO OMe

32

Scheme 11. Synthesis of unsymmetrical binaphthalene 32.

Table 2. Screening of reaction conditions for Suzuki cross-coupling between 25 and 31.

Solvent,
Entry Base Catalyst temperature, Formation of 32
time
il KsPO, Pd(PPha)a DMF,80°C,5 h 10 %
2 KsPO, Pd(PPhs), DMF, 80 °C, 6.5 h 24%
32 KOAc Pd(dppf)Cl-CH.Cl,  DMSO0,80°C, 4 h 21%
4 KOAC Pd(dppf)Cl-CH.Cl.  DMSO0,80°C,5 h 32%
5b Ba(OH),-8H,0 Pd(PPhs)s DME/H.0 33%

Reaction conditions: A mixture of 25, 31, Pd catalyst, and base in given solvent(s) heated to 80 °C. Stirred

at 80 °C until TLC indicated the full consumption of 25 or 31 .21.2 equiv. boronic ester 31 used. "NMR

conversion. 1.1equiv boronic ester used.

In the light of previous results where acetoxynaphthalene 25 readily dimerized

under Miyaura borylation conditions, low yields of Suzuki coupling were associated

with the benzyl-protected boronic ester 31. As a viable alternative to the benzyl

protecting group, sillyl ether protection was employed. TIPS-protected naphthalene

derivative 33 was prepared from 24 in 92% vyield. Siloxynaphthalene 33 was then

converted to the corresponding boronic ester 34 by using HBpinZé in 94% yield, which

17



set the stage for the coupling reaction. Suzuki cross-coupling reaction between
acetoxynaphthalene 25 and boronic ester 34 afforded desired unsymmetrical
binaphthalene 35 in high yield (88%). TIPS ether was selectively deprotected to give 27
in 91% vyield using TBAF as a fluoride source. TFA was used to protonate the formed
oxyanion, which otherwise leads to side products by attacking the acetate group of
starting material 35 or product 27. Finally, oxidation of 27 by using IBX followed by
hydrolysis of acetate group concluded the first optimized total synthesis of bioactive

fungal natural product daldiquinone (15) (Scheme 12).

-

MeO  OH MeO  OTIPS MeO  OTIPS

Br
24

TBAF, TFA

MeO

I

33, 92%

Br
NaH, 0 °C, THF OO HBpin, Pd(OAc), OO 25
—_— = . —_—
OO then TIPSCI, THF, r.t. DPEPhos, Et;N Pd(PPhs),Cl,

Br 1,4-dioxane, 100 °C Bpin

34, 94%

MeO

IBX

o
o
OO K,COj3, MeOH
- - .

K3P0Oy,, 100 °C

_—
DCM, EtOAc
DMSO, r.t.

THF, r.t.

9@

AcO

o "

OMe AcO  OMe HO  OMe

27,91% daldiquinone (15)

75%

29, 92%

Scheme 12. Total synthesis of daldiquinone (15).

1.2.3. Total Synthesis of Bulgarein
Having completed the total synthesis of daldiquinone we turned our attention to
test our hypothesis by examining the possible synthesis of bulgarein (1) from 29. To

activate electron-deficient enone double bond and trigger cyclization (Scheme 13),
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various sets of conditions were tested (Table 3). Much to our chagrin, none of the

conditions delivered the desired transformation.

e A

MeO o MeO (0]

90t G

conditions cyclization
----------- > B R
AcO OMe AcO OMe
29 X =0, *SePh, Br* X= OH, Br, SePh

\_ J

Scheme 13. Proposed formation of fluoranthene skeleton via cyclization.

Table 3. Screening of conditions to activate enone double bond in 29.

Entry Conditions Result
1 H,0,, NaOH, EtOH/DCM, r.t. Complex mixture
2 H20,, K,COs, EtOH/DCM, r.t Complex mixture
3 H.O., TBAF, DCM/DMSO Daldiguinone formation
4 TBHP, NaH, DCM/DMSO No reaction
5 m-CPBA, DCM, r.t. Probably Bayer-Villiager oxidation
6 PhSeBr, CHsCN, r.t. then 45°C No reaction
7 NaClO, 1,4-dioxane, 0 °C Decomposition
8 B Slow reaction. Formation of multiple
r
’ products
9 Slow reaction. Formation of multiple
NBS
products

Reaction Conditions: A mixture of 29 and reagents in given solvent(s) stirred at specified

temperature until TLC indicated the fullconsumption of 29.
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The labile acetate group in 29 reacted with nucleophilic oxidizing agents well-
suited for the epoxidation of electron-deficient olefins. It resulted in either
decomposition (Table 3, entries 1,2) or formation of daldiquinone (entry 3). To obviate
acetate hydrolysis, the use of sterically bulky TBHP alongside non-nucleophilic base
NaH not resulted in any detectable product formation (entry 4). Halohydrin epoxidation
by using hypochlorite bleach solution led to decomposition of 29 (entry 7). Attempts to
activate electron-deficient alkene by common electrophilic epoxidizing agent m-CPBA
resulted in a product we believe obtained from Baeyer-Villiger oxidation of diketone
(entry 5). Unfortunately, the exact position of oxygen insertion could not be determined
from the 'H-NMR spectrum. The idea of activating double bond using PhSeBr, and
regenerating enone double bond via pyrolytic syn-elimination was also fruitless since
alkene was not reactive enough to attack PhSeBr (entry 6). The electrophilic bromination
of the alkene by using Br, and NBS failed primarily due to the competing electrophilic
aromatic substitution of electron-rich benzene rings (entries 8, 9).

At this point, we modified our retrosynthetic plan for the total synthesis of
bulgarein (1), and to construct the highly unsaturated pentacyclic fluoranthene core we
decided to utilize a method developed by our group which is based on Suzuki coupling
reaction between 1,8-dihalonaphthalene and aryl boronic ester followed by
intramolecular C-H arylation.! To this end, 1,8-dibromo-4,5-dimethoxynaphthalene (37)
was prepared from 1,8-naphthalenediol according to previously reported procedures.1927
When TIPS-protected boronic ester 34 and 1,8-dibromo-4,5-dimethoxynaphthalene (37)
were subjected to reaction conditions, no product formation was observed (Scheme 14).

Detailed examination of the crude reaction mixture by IH-NMR revealed decomposition
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of boronic ester 34. This result was attributed to the presence of TIPS ether on aryl

boronic ester 34, which presumably does not tolerate harsh reaction conditions.

OH OH MeO  OMe Bpin CQ
_ KaCOs, Me;S0, 1)NBS, DCM, -15°C__ OO 34 .
......................... -
acetone, 70 °c 2) NBS, DMF, rt Pd(dppf)Cl*CH,Cly OO
Br Br

1,8-DHN KOAc, DMSO,110 °C
36, 83% 37, 69% MeO OMe

not observed

Scheme 14. Attempt to construct fluoranthene core by using 34 and 37.

To circumvent this undesirable decomposition, the synthesis of aryl boronic ester
with a more inert protecting group was planned. With this in mind, MOM-protected
naphthalene derivative 38 was prepared from 24 in quantitative yield (99%) and then
converted to corresponding boronic ester 39. Gratifyingly, coupling of MOM-protected
boronic ester 39 and 1,8-dibromo-4,5-dimethoxynaphthalene (37) furnished highly
functionalized fluoranthene core in 45% yield. The endgame of synthesis consisted of
three steps and started with demethoxymethylation of 40 upon exposure to HCI in THF

to afford 41 in 82% yield (Scheme 15).25
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Scheme 15. Total Synthesis of bulgarein (1).

By contrast to the double oxidation of 27 with IBX in daldiquinone (15) synthetic

22

sequence, similar oxidation of 41 to o-quinone turned out to be exceedingly challenging.
Up to this point, various sets of reaction conditions were tested, and the best result was
obtained by PIFA oxidation?2® (32% yield) where the solution of PIFA was added slowly
for 20-minutes to the solution of 41 at 0 °C (Table 4, entry 2). The low solubility of 41
did not allow conducting oxidation by using PIFA at lower temperatures than 0 °C.
Oxidation by using IBX afforded desired product 42 in a slightly lower yield (30%).
Since IBX is poorly soluble in common organic solvents?® except for DMSO (m.p. =18
°C), oxidation could not be carried out at lower temperatures. When the oxidation with
IBX was carried out in other organic solvents in which IBX is slightly soluble, the

formation of the desired o-quinone was not observed (entries 8,9,10). Further




investigation and modifications of reaction conditions are required to increase the yield
of this oxidation step. When compared to oxidation of 27, lower yields obtained for the
oxidation of fluoranthene 41 are likely to be the result of the planar structure of 41.
Unlike 27, & electrons of all four benzene rings are delocalized in 41 resulting in highly
functionalized electron-rich polycyclic aromatic hydrocarbon which may react with
oxidants in many different undesirable and unpredictable pathways including SET
(single electron transfer), oxidative coupling, cationic polymerization, radicalic
polymerization, etc.

Table 4. Screening of reaction conditions for the oxidation of 41 to 42.

. . .. Formation of
Entry Oxidant Equiv. Solvent, additive Temperature 4
CH3;CN/H.O/DCM ]
1a PIFA 2.2 0°C then 23°C 23% yield
(4:2:1)
CH;CN/H.O/DCM .
2b PIFA® 2.2 0°C 32% yield
(2:1:1)
CHsCN/DCM/ H:0
32 PIDA 2.2 0°C Not observed
(2:2:.1)
DMSO/DCM .
4ce S-IBX 45 23 °C 30% yield
(32
5f S-IBX 40 DCM/DMSO (1:1) 23°C 19% yield
6¢ S-IBX 20 DCM/DMSO(1:1) 23°C 16% vyield
7 S-IBX 15 DMSO 23 °C 6% vyield
8¢ S-IBX¢ 1.2 DMF 23°C Not observed
9 S-IBX 11 THF 23°C Not observed
10 S-IBX 11 EtOAC 23°C Not observed
1130 S-IBXref14 15 DCM/H;0 (1:1), TBAB 23°C Not observed
12 CAN 4.0 DCM/H:0 (2:1) 23°C Not observed
134931 m-CPBA 15 DCM 23°C Not observed
EtOH, CuCl; (0.3 equiv),
14% Ox(air) - DMAP (0.3 equiv) 23°C Not observed
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aDilute solution (0.025) of oxidant in H.O/DCM (2:1) added dropwise during 10 minutes. "Dilute solution
(0.0067M) of oxidant in CHsCN/H,O/DCM (3:1.5:1) added dropwise during 20 minutes. “Solid S-IBX
was added in four different portions during 3 hours. “m-CPBA was added in portions during 30

minutes.®Reaction was carried outin dark. "Additional 4.0 equiv. oxidant was added after 75 minutes

The last step of the sequence was global demethylation of 42 which was first
tested with heating 42 in excess of molten pyridine hydrochloride (m.p. = 144 °C).33
Although high temperature (180 °C) resulted in the decomposition of 42, a product
formed at 147 °C (monitored by TLC). However, the formed product could not be
characterized by analytical tools due to the large excess of pyridine, which could not be
removed despite all efforts.

Gratifyingly, complete demethylation of 42 was accomplished using BBrs in
DCM34 to furnish bulgarein (1) (Scheme 15). Although full characterization was difficult
due to the poor solubility and small amount of bulgarein, we obtained satisfactory
analytical data for bulgarein (1). In addition to HRMS data, UV-Vis absorption and color
of the final product in concentrated and dilute ethanolic solutions are in complete

agreement with literature.>

1.2.4. Semisynthesis of Daldiquinone from Daldinol
Possible semisynthesis of daldiquinone (15) from daldinol (28) was also
investigated (Scheme 16). Among the oxidants tested (Table 5), successful oxidation
was only possible with S-IBX in low yield (10%). Further optimization of reaction
conditions may increase the yield of oxidation with S-IBX. These results prove the
importance of synthesis of unsymmetrical binaphthalene 35 and justifies the synthetic

strategy followed in this work.
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Scheme 16. Semisythesis of daldiquinone (15) from daldinol (28).

Table 5. Screening of oxidants for semisythesis of daldiquinone (15) from daldinol (28).

Entry Oxidant (equiv.) Solvent Result
1 PIFA (2.0) Acetone/H,0 (3:1) Complex mixture
2 PIDA (2.0) Acetone/H,0 (4:1) Complex mixture
3 CAN (4.0) CH3CN/DCM/H:0 (1.2:1:1) Complex mixture
4 DDQ (1.0) DCM Complex mixture
5 S-IBX(2.5) DCM/DMSO (2:1.5) 10% yield

1.3. CONCLUSION

In summary, we have achieved the first total synthesis of bioactive fungal natural
product daldiquinone (15) in 8 steps starting from commercially available 1,8-
naphthalenediol. Our synthesis is marked by Suzuki coupling reaction between
functionalized naphthalene derivatives and facile oxidation of phenol moiety to o-
quinone by hypervalent iodine reagent IBX.

Total synthesis of highly oxygenated bioactive fungal natural product bulgarein

(1) was accomplished via a concise route consisting of 8 steps. Suzuki coupling reaction
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between MOM-protected naphthalene boronic ester 39 and 18-dibromo-4,5-

dimethoxynaphthalene (37) followed by intramolecular C-H arylation was proven to be

effective to assemble highly functionalized fluoranthene skeleton. Subsequent
deprotection, oxidation and deprotection sequence set the stage for synthesis completion.

In this study, another natural product daldinol (28) was also synthesized from 25

in 57% yield over three steps by employing a one-pot Suzuki-Miyaura coupling reaction.
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CHAPTER 2: INTRAMOLECULAR DIELS-ALDER REACTIONS FOR THE

SYNTHESES OF FLUORANTHENE DERIVATIVES

2.1. INTRODUCTION

2.1.1. General applications of Fluoranthene derivatives

Owing to their unique photophysical, thermal and electrochemical properties,
fluoranthenes and derivatives have been explored extensively and found a broad range of
applications in material science, organic electronics and medicinal chemistry. 35
Fluoranthenes generally exhibit better thermal and electrochemical stability together
with high photoluminescence quantum yield and do not suffer from oxygen quenching.
A wide band gap of fluoranthene derivatives results in blue light emission, which is one
of the critical colors to achieve full-color display in white OLEDSs.3> With their deep blue
light emitting properties fluoranthene derivatives DPBF and TPF were suggested for
utilization in OLEDS. 36 In 2008, Cao and co-workers developed sulfur-hetero
benzo[k]fluoranthene derivatives as organic semiconductors. 3 Hua and coworkers
reported fluoranthene-based dyes for potential application in solar cells. 38
Triphenylamine-containing fluoranthene derivatives were prepared by group of Jianhua
as sensitizers and suggested for utilization in optoe lectronic materials. 3° Another exciting
property of fluoranthene is the tunability of its optical and photophysical properties by
installing donor-acceptor functionalities. FLUN 550, which contains electron donor and
acceptor groups on fluoranthene ring, exhibited a large Stokes shift (220 nm) and was

used as a probe in selective staining of lipid droplets (LDs) (Figure 6).40

27



B D

O~ O~
(L (L

L L

[DPBF] [TPF]

blue light emitter blue light emitter organic semiconductor

e e 9
Ph Q Ph (CgHs)3N) Q N(CgHs)3
o)

$ S Q o
R
Dye for solar cells potential DSSC/OLED Probe for LDs
material
NC
R: / \
J-:(s—)\/\cozH
N\ J

Figure 6. Selected fluoranthene derivatives.

An elegant use of fluoranthene in medicinal chemistry is reported by Wang and
co-workers in 2018.41 As a part of a click-release-fluoresce strategy, a fluoranthene-
based fluorescent side product was generated, which allowed easy monitoring of CO
delivery. Cascade strategy developed, starts with intramolecular inverse-electron
demand Diels-Alder reaction followed by the release of CO via fast retro Diels-Alder
reaction of norbornenone intermediate and final lactonization of benzyl alcohol to

produce fluorescent side product (Scheme 7).
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Scheme 17. Fluoranthene derivative as a reporter molecule.

29



2.1.2. Reported strategies for synthesis of fluoranthene derivatives

2.1.2.1. Diels Alder reactions

In 1952, Allen et al. reported Knoevenagel condensation of acenaphthenequinone
with a variety of alkyl ketones.#? It was also shown that condensation product dimerizes
at room temperature via Diels-Alder cycloaddition and found in equilibrium with its
dimer, which showed the ability of the condensation product to act as a diene. Later,
Diels-Alder reaction between cyclopentadienone and suitable dienophiles followed by

decarbonylation of cycloaddition product was utilized to construct the fluoranthene core

(Scheme 18).37.43
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Scheme 18. Selected Diels-Alder reactions to synthesize fluoranthene derivatives.
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In another study, Diels-Alder cycloaddition between acenaphthylene and

substituted isobenzofuran was employed to construct benzo[k]fluoranthene skeleton

(Scheme 19).44
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.
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Scheme 19. Diels-Alder reaction between acenaphthylene and isobenzofuran.
Treatment of 2H-acenaphthylen-1-one and 2H-pyran-3-carboxylic acid methyl
esters with NaH in THF gave access to substituted fluoranthenes after the loss of CO,
and H,O (Scheme 20).45 It should be noted that initial ring formation can also proceed
via 1,6-addition followed by cyclization. The main drawback of using Diels-Alder
strategies

is the formation of a mixture of regioisomers with unsymmetrical

dienes/dieneophiles.
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Scheme 20. Reported synthesis
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2.1.22.  Transition metal-catalyzed processes

Over the years, transition metal-catalyzed transformations are shown to be
extremely useful for the synthesis of fluoranthene derivatives. Among them,
palladium-catalyzed processes have emerged as a powerful tool. In an elegant work
reported by Campo et al. 1,4 palladium migration followed by CH arylation was
employed to assemble fluoranthene skeleton. 46 Suzuki-Heck-type coupling cascade
between mono-functionalized naphthalene and ortho-difunctionlized benzene or
peri-difunctionalized naphthalene and mono-functionalized benzene is shown to be
an effective strategy. 4748 In 2008, Ray and co-workers reported Pd-assisted
electrocyclic process by using Pd(OAc), (10 mol%), PPh; (5 mol%) and TBAC.4° In
2016, a 3-step synthetic sequence was developed by Yamaguchi et al. to access
fluoranthene derivatives starting from various 1-naphthols.>° Following year, our
group, in collaborative work with Metin group, developed an efective strategy to
synthesize fluoranthene derivatives by using both homogeneous Pd catalyst and
heterogenous rGO-CuPd nanoparticles (Scheme 21).1 All of these methodologies
have the same common limitation of modularity since all of them construct
fluoranthene core from at most two building blocks. As a result, those methods are

not well-suited for the modular synthesis of polysubstituted fluoranthene derivatives.
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Scheme 21. Selected Pd catalyzed processes to assemble fluoranthene core.
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In addition to the Pd-catalyzed processes, Au(l)-catalyzed Friedel-Crafts-type
alkenylation of arenes was developed by the group of Echavarren for the synthesis of 3-

substituted fluoranthenes (Scheme 22).51

r 2

R
X

R
. Au(l) (5 mol %) OO
Q O the: DDQtntZIuene, A > O

Scheme 22. Au(l) catalyzed Friedel-Crafts-type alkenylation of arenes for the synthesis
of 3-substituted fluoranthenes.

An elegant entry to fluoranthene synthesis methodologies by using transition

metal catalysis was reported by Wu et al. where Rh(l)-catalyzed [(2+2)+2] cycloaddition

between norbornadiene and 1,8-naphthalene diyne was employed (Scheme 23).52

( )

R, Q R,
Il lb =
OO Rh catalyst (56 mol%) - OO

p-xylene

Scheme 23. Rh(l)-catalyzed [(2+2)+2] cycloaddition between norbornadiene and 1,8-
naphthalene.
In 2017, Takasu and co-workers developed KHMDS-promoted cascade
cyclization of biaryl compounds bearing acyl and naphthylalkenyl functionalities for the
synthesis of 9-hydroxydibenzo[j,l]fluoranthenes (Scheme 24).53 One main disadvantage
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of this methodology is that transformation proceeds from highly specialized starting

material in terms of both structure and functional group pattern.
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Scheme 24. KHMDS-promoted cascade cyclization strategy for fluoranthene synthesis.

2.1.3. Aim of this work

Most of the methods developed for the synthesis of fluoranthene derivatives
suffer from the lack of modularity, harsh reaction conditions or high catalyst loading.
Procedures based on Diels-Alder reactions mainly give access to only symmetrical
fluoranthenes. In addition, fluoranthene derivatives generated by reported strategies
rarely bear functional groups for further functionalization of fluoranthenes which is
extremely useful to adjust the electronic properties. KHMDS-promoted anionic-radical
reaction cascade developed by Takasu and co-workers allows the synthesis of
hydroxyfluoranthenes. Upon transformation of hydroxyl group into triflate, three
different fluoranthene derivatives were readily prepared.>3 Although this work shows the
ability of hydroxyfluoranthenes for further modifications, the method requires
complicated starting materials. Hydroxylation of arenes is a challenging transformation,
and reported methods usually require pre-functionilization. > Starting with hydroxyl-
containing aryls usually is a disadvantage as it requires protection/deprotection steps for

successful coupling reactions. To this end, a flexible and facile strategy to synthesize
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unsymmetrical hydroxyfluoranthene derivatives from easily accessible starting materials
is desirable. This work aims to develop a novel, modular approach based on the
intramolecular Diels-Alder reaction of furan (IMDAF). As described in Scheme 25,
synthesis of peri-disubstituted naphthalene derivatives from 1,8-dihalonaphthalenes will
be achieved via successive Sonogashira coupling with terminal alkynes and Suzuki
coupling with 2-furanylboronic acid. Then, the obtained product will undergo an
intramolecular Diels-Alder reaction followed by ring-opening isomerization to furnish
hydroxyfluoranthenes. Since all three components (alkyne, furan and naphthalene) may
bear different substituents, the strategy is modular and will allow the synthesis of many

substituted hydroxyfluoranthenes.

R2 R3 RZ
X X . X It N° | |
“ Sonog ashira Suzuki coupling
I I 90
————————————— > LR
R R1 R1 R1 R1

1 1

. Intramolecular
 Diels-Alder
' reaction

v

‘ isomerization .
€ e oo

R1 R1 R1 R1

Scheme 25. Proposed strategy to synthesize substituted hydroxyfluoranthenes.
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2.2. RESULTS AND DISCUSSION

To test our synthetic design and optimize reaction conditions our work was first
started with the syntheses of alkynes. Commercially available trimethylsilylacetylene
was deprotonated with n-BuLi, and 1,2-addition of generated lithium alkynide to
benzaldehyde at -78 °C followed by removal of TMS group by methanolysis gave 1-
phenylpropargyl alcohol 43a in 89% vyield. Under similar reaction conditions, alkynes
with electron-rich anisole ring 43b, electron-deficient p-chlorobenzene ring 43c and

heterocyclic thiophene ring 43d were prepared in moderate to high yields (Scheme 26).

( )

1. — , n-BulLi
o TMS H , n-Buli OH

P THF, -78 °C to 0 °C
Ar” “H Ar)\\\

2. MeOH, K,CO3, 2 h, rt

OH OH OH OH

/i/
/i/
/i/
7

MeO
43a 43b 43c 43d
89% yield 47% yield 47% yield 86% yield

Scheme 26. Synthesis of alkynes 43a-d.

1,8-diiodonaphthalene(45) was prepared from commercially available 1,8-

diaminonaphthalene (44) by Sandmeyer reaction following reported literaure procedure

(Scheme 27).55
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Scheme 27. Synthesis of 1,8-diiodonaphthalene.

As we expected, the mono-Sonogashira coupling reaction between alkynes and
1,8-diiodonaphthalene was challenging due to two competing reactions (di-Sonogashira
and Glaser coupling). When an excess of alkyne 43a was used®® to compensate material
loss resulting from oxidative coupling, obtained product 46a could not be purified from
starting alkyne and unknown side product (product: alkyne 43a ratio = 1:1; calculated
from the recorded H-NMR spectrum). To eliminate problems often encountered with
homo-coupling of the alkyne 43a, the reaction was conducted under copper-free
Sonogashira coupling conditions>” which gave the desired mono-Sonogashira product
46a only in 26% yield. When an excess of 1,8-diiodonaphthalene (4 equiv.) was used,
and the reaction was carried out at 23 °C in EtzN, competing side reactions were
suppressed and mono-Sonogashira product 46a was synthesized in 53% vyield. Notably,
unreacted 1,8-diiodonaphthalene was easily recovered at the end of the reaction by
column chromatography (See Experimental section). Similarly, reactions of 43b, 43c
and 43d with 1,8-diiodonaphthalene were conducted, and mono-Sonogashira products

46b-46d were obtained in high yields (Scheme 28).
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Scheme 28. Mono-Sonogashira reaction of alkynes with 1,8-diiodonaphthalene.

Oxidation of alkyne-ols (46a-46d) was achieved by either Parikh-Doering
modification®8 of Swern oxidation or conventional Corey-Suggs reagent>® (PCC) and
ketones 47a-47d were prepared in moderate yields. (Scheme 29). Since the oxidation
product can act as a Michael acceptor, non-nucleophilic Hiinig’s base was utilized
instead of Et3N to avoid any side reaction between trialkylamine base and o,B-
unsaturated ketone in Parikh-Doering oxidation. For PCC oxidation, adding molecular
sieves (4 A) and/or celite to the reaction mixture at the beginning or at the end of the
reaction did not improve the yields. When alkyne-ol 43d was used as a model, the yield

of the oxidation (50%) with IBX was found to be similar to those obtained by PCC.
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Scheme 29. Oxidation of alkyne-ols to ketones.

a: Parikh-Doering oxidation, b: PCC oxidation

With ketones in hand, the stage was set for Suzuki coupling reaction with 2-
furanylboronic acid. To our delight, when ketone 47a and 2-furanylboronic acid were
subjected to Suzuki coupling conditions, one-pot Suzuki coupling reaction followed by
intramolecular Diels-Alder cycloaddition and final isomerization of cycloaddition
product by ring-opening (Scheme 31) furnished fluoranthene 48a in 92% yield. By using
the same reaction conditions, fluoranthenes 48b-48d were prepared in high yields

(Scheme 30).
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Scheme 30. One-pot three steps synthesis of fluoranthene derivatives
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Scheme 31. Representation for one-pot three steps formation of hydroxyfluoranthenes.
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2.3. CONCLUSION

In summary, we have developed a novel modular strategy to prepare
hydroxyfluoranthenes starting from 1,8-dihalonaphthalenes through intramolecular
Diels-Alder reaction of furan. The last three steps of sequence (Suzuki coupling, Diels-
Alder cycloaddition, and ring-opening isomerization) proceeds in the same pot. So far,
we have achieved the synthesis of four different ketone-containing hydroxyfluoranthenes
(48a-d) in high yields. Based on current results, we believe our method will be effective

for the concise modular synthesis of functionalized fluoranthene derivatives.
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CHAPTER 3: EXPERIMENTAL SECTION

3.1 GENERAL INFORMATION

All reaction were conducted under an inert atmosphere of nitrogen and using flame- or
oven-dried glassware. The progress of reactions were monitored by thin-layer
chromatography (TLC) using aluminum-backed plates pre-coated with silica gel (Merck,
Silica Gel 60 Fs4). For TLC visualization UV light and/or KMnO, solutions were used.
Purification were done by flash column chromatography on Silicycle 40-63 um (230-
400 mesh) flash silica gel. NMR spectra were recorded on a Bruker spectrometer at 400
MHz for H-NMR spectra and 100 MHz for 13C-NMR spectra and calibrated from
internal standard (TMS, 0 ppm) or residual solvent signals (chloroform at 7.26 ppm for
1H spectra, and at 77.16 ppm and for 13C spectra). tH-NMR data are reported as follows:
chemical shift (parts per million, ppm), integration, multiplicity (s = singlet, d = doublet,
t =triplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, m = muliplet,
br = broad, app = apparent), coupling constant (Hz). Infrared (FTIR) spectra were
measured on a Bruker Alpha-P latinum-ATR spectrometer with only selected peaks were
reported. Mass spectral analyses were performed at UNAM-National Nanotechnology
Research Center and Institute of Materials Science and Nanotechnology, Bilkent
University and DAYTAM-East Anatolia High Technology Application and Research
Center, Atatlrk University

Materials: Anhydrous CH3CN was obtained by distillation over P,Os under an inert
atmosphere of nitrogen. N-Bromosuccinimide (NBS) was recrystallized from H,O, dried
thoroughly, and stored in refrigerator. Anhydrous CH,Cl, and DME were purchased
from Acros Organics (AcroSeal®) and used as received. All other commercially

available reagents were used as received unless stated otherwise.
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3.2. CHAPTER 1: Total Synthesis of Daldinol, Daldiquinone and Bulgarein

1,8-Dihydroxynaphthalene (4.00 g, 25.0 mmol) was dissolved in 100 mL of
acetone in a 250-mL round-bottomed flask. K,CO3 (4.15 g, 30.0 mmol) and CH3l (2.33
mL, 37.5 mmol) were added sequentially, and the resulting heterogeneous mixture was
stirred at 23 °C for 24 h. TLC analysis indicated full consumption of 1,8-DHN. The
reaction mixture was treated with H,O (30 mL) and saturated aqueous solution of NH,CI
(30 mL). The aqueous phase was extracted with EtOAc (3x50 mL). The combined
organic phase was washed with brine (100 mL) and dried over anhydrous Na,SO,. After
filtration, the clear solution was concentrated under reduced pressure to give a brown
solid. The crude product was purified by flash column chromatography (SiOy;
EtOAc:hexanes = 1:19 — 1:9) to afford pure 22 (4.04 g, 93% yield) as white solid.
Note:
e This procedure was observed to work successfully on various reaction scales. 8-
Methoxy-1-naphthol (22) was isolated in 92% and 96% yields, when the reaction
was conducted starting from 2.00 g (12.5 mmol) and 200 mg (1.25 mmol) of 1,8-

DHN, respectively.



TLC Images:

Left image: TLC under UV light (254 nm)
Right image: TLC stained with KMnO,4
solution

Spots from left to right:

S: Starting material (1,8-DHN);

C: Co-spot of 1,8-DHN and reaction

mixture;

R: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1:9

M.P. 57-59 °C (EtOAc, hexanes); 57-58 °C (recrystallized from heptane).

Rt = 0.51 (EtOAc:hexanes = 1.9)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) 8: 9.34 (1H, s), 7.43 (1H, dd, J = 8.2, 0.9 Hz), 7.39-7.29
(3H, m), 6.91 (1H, dd, J = 7.5, 1.4 Hz), 6.77 (1H, dd, J = 7.7, 0.8 Hz), 4.04 (3H, ).

13C NMR (100 MHz; CDCls) 6: 156.3, 154.6, 136.9, 127.8, 125.7,122.0, 119.0, 115.2,
110.5, 104.0, 56.2.

FTIR vmax (ATR, solid)/cm® 3352, 3051, 2951, 2844, 1629, 1609, 1580, 1513, 1451,
1397.

HRMS (+APCI) Calcd for C11H11,0, [M+H]*: 175.0754; found: 175.0759.

Elemental (Combustion) analysis: Anal. calcd for C1;H100,: C, 75.84; H, 5.79; found:

C, 75.61; H, 5.44.
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An oven-dried, 100-mL, round-bottomed flask was cooled under vacuum and
refilled with nitrogen. It was charged with 8-methoxy-1-naphthol (22) (3.00 g, 17.2
mmol), and then evacuated and refilled with nitrogen. Anhydrous CH3CN (40 mL) was
added via syringe forming a colorless, clear solution. Afterwards, NBS (3.07 g, 17.2
mmol) was added in one portion at 23 °C. The flask was covered with Al foil, and the
resulting pale yellow solution was stirred at 23 °C under nitrogen for 1 hr. TLC analysis
indicated that the reaction was over at this point. All volatiles were removed under
reduced pressure. Purification by flash column chromatography (SiO,; EtOACc:hexanes =

1:19 — 1:9) afforded bromonaphthol product 24 (4.085 g, 94%) as white solid.

Notes:
e This procedure was observed to work successfully on various reaction scales.
Reaction product 24 was isolated in 85% and 92% yields, when the reaction was
conducted starting from 1.00 g (5.74 mmol) and 100 mg (0.57 mmol) of 8-

methoxy-1-naphthol (22), respectively.
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TLC Images:

Leftimage: TLC under UV light

(254 nm)

Right image: TLC stained with KMnOQO,
solution

Spots from left to right:

S: Starting material (22);

C: Co-spot of 22 and reaction mixture;
R: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1:19

M.P. 110-111 °C (EtOAc, hexanes)

Rt = 0.49 (EtOAc:hexanes = 1.9); 0.22 (EtOAc:hexanes = 1:19).

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 9.45 (1H, s), 7.82 (1H, dd, J = 8.6, 0.7 Hz), 7.64 (1H,
d, J = 8.3 Hz), 7.41 (1H, t, 8.03 Hz), 6.82 (1H, d, J = 7.7 Hz), 6.76 (1H, d, J = 8.3 H2),
4.04 (3H, s).

13C NMR (100 MHz; CDCls) 6:156.3, 154.7,134.3, 131.7, 127.1,121.3, 116.3, 111.4,
111.2, 105.0, 56.5.

FTIR vmax (ATR, solid)/cm 3323, 2944, 2842, 1607, 1570, 1454, 1424, 1390, 1360,
1249, 1234.

HRMS (+APCI) Calcd for C11H1¢"°BrO, [M+H]* 252.9859; found: 252.9870; Calcd for

C11H10%1BrO, ['\/H‘H]+ 254.9839; found: 254.9853.
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Elemental (Combustion) analysis: Anal. calcd for C1;H¢BrO,: C, 52.20; H, 3.58;

found: C, 52.53; H, 3.58.

MeO OAc

L

Br
25

A solution of bromonaphthol 24 (1.50 g, 5.93 mmol) in 15 mL of anhydrous THF
was cooled to 0 °C under an inert atmosphere of nitrogen. After 10 min, NaH (284 mg,
7.11 mmol, 60% dispersion in mineral oil) was added carefully in portions. Vigorous gas
evolution was observed. After 15 min, acetyl chloride (550 uL, 7.70 mmol) was added
slowly via syringe. The resulting mixture was stirred for 10 min at 0 °C and afterwards
for 90 min at 23 °C. TLC analysis indicated full consumption of bromonaphthol 24 at
this point. The reaction mixture was quenched with H,O (30 mL), and the aqueous phase
was extracted with EtOAc (3x20 mL). The combined organic phase was dried over
anhydrous Na,SO,, filtered and concentrated under reduced pressure. Purification by
column chromatography (SiO,; EtOAc:hexanes = 1:9 — only EtOAc) gave pure 25

(1.68 g, 96% yield) as white solid.

Note:
e This procedure was observed to work successfully on various reaction scales.
Reaction product 25 was isolated in 87% and 80% Yields, when the reaction was
conducted starting from 750 mg (2.97 mmol) and 300 mg (1.19 mmol) of

naphthol (24), respectively.
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e For the recrystallization of product 25, dissolving it in a minimum amount of
heptane by heating and then cooling back to room temperature was found to be

an effective method.

TLC Images:

Leftimage: TLC under UV light (254 nm)
Right image: TLC stained with KMnO,
solution

Spots from left to right:

S: Starting material (24);

C: Co-spot of 24 and reaction mixture;

R: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1.9

M.P. 90-92 °C (recrystallized from heptane).

R¢=0.27 (EtOACc:hexanes = 1:9)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 7.89 (1H, dd, J = 8.6, 0.8 Hz), 7.76 (1H, d, J = 8.0 H2),
7.50 (1H, dd, J = 8.4, 8.0 Hz), 6.95-6.91 (2H, m), 3.94 (3H, s), 2.38 (3H, ).

13C NMR (100 MHz; CDCls) 6:170.1, 155.5, 146.5, 134.9, 130.3, 128.0, 120.6, 120.4,
120.3, 119.8, 107.1, 56.5, 21.1

FTIR vmax (ATR, solid)/cm 3001, 2967, 2938, 1749, 1594, 1569, 1500, 1462, 1397,

1360, 1265, 1210.
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HRMS (+APCI) Calcd for C13H;,7°BrO; [M+H]* 294.9965; found: 294.9980; Calcd for
C13H1281BrO; [M+H]*+ 296.9944; found: 296.9963.
Elemental (Combustion) analysis: Anal. calcd for Cy3H11BrO3: C, 52.91; H, 3.76;

found: C,52.70; H, 3.79.

MeO OTIPS

9

Br
33

An oven-dried, 100-mL, two-neck, round-bottomed flask was fitted with a
septum on one neck and connected to the Schlenk line via an adapter on the second neck.
It was cooled under vacuum and refilled with nitrogen. It was then charged with
bromonaphthol 24 (700 mg, 2.77 mmol). Anhydrous THF (15 mL) was added via
syringe, and the resulting clear, colorless solution was cooled to 0 °C in an ice bath.
Sodium hydride (NaH, 133 mg, 3.32 mmol, 60% dispersion in mineral oil) was added
carefully resulting in a vigorous gas evolution. After the mixture was stirred at 0 °C for
15 min, TIPSCI was added dropwise via syringe. After 30 min, the ice bath was
removed, and the yellowish-gray, cloudy reaction mixture was stirred at 23 °C for 23 h.
Afterwards, the mixture was quenched with a saturated aqueous NH,4CI solution (15
mL). The aqueous phase was extracted with CH,Cl, (3x15 mL). The combined organic
phase was dried over anhydrous Na,SO,, filtered and concentrated under reduced
pressure. Purification by flash column chromatography (SiO,; only hexanes — 1%
EtOAC in hexanes — 2% EtOAc in hexanes) gave pure 33 (1.043 g, 92%) as pale yellow
oil.
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TLC Images-I:
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l

TLC Images-II:
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Leftimage: TLC under UV light
(254 nm)

Right image: TLC stained with
KMnQ, solution

Spots from left to right:

S: Starting material (24);

C: Co-spot of 24 and reaction
mixture;

R: Reaction mixture.

Mobile phase: EtOAc:hexanes =

1:19

Leftimage: TLC under UV light
(254 nm)
Right image: TLC stained with

KMnOy, solution

Spots from left to right:

S: Starting material (24);

C: Co-spot of 24 and reaction



mixture;
R: Reaction mixture.

Mobile phase: only hexanes

R¢=0.40 (only hexanes)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) 8:7.78 (1H, dd, J = 8.6, 0.8 HZ), 7.56 (1H, d, J = 8.2 H2),
7.43 (1H,t,J = 8.2 Hz),6.85 (1H, d,J = 7.7 Hz), 6.67 (1H, d, J = 8.2 Hz), 3.90 (3H, s),
1.36 (3H, app quint, J=7.7 Hz), 1.13 (18H, d, J = 7.5 H2).

13C NMR (100 MHz; CDCls) 6:157.7, 153.5, 135.2, 130.5, 127.5,120.8, 119.9, 114.9,
113.5, 105.8, 55.5, 18.1, 13.5

FTIR vinax (ATR, film)/cm1 2943, 2865, 1575, 1459, 1399, 1372, 1311, 1275.
Elemental (Combustion) analysis: Anal. calcd for C,0H29BrO,Si: C, 58.67; H, 7.14;

found: C, 58.53; H, 7.10.

MeO OTIPS

L

Bpin
34

To a solution of 33 (200 mg, 0.49 mmol) in 2.0 ml dioxane, EtsN (272 pL, 1.95
mmol), Pd(OACc); (5.4 mg, 0.025 mmol), DPEphos(27 mg, 0.05 mmol) and HBpin (213

uL, 1.47 mmol) were added sequentially. Reaction mixture heated to 100 °C and stirred
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for 2 hours. TLC indicated the full consumption of 33. Purification by flash column

chromatography (SiO,; only hexanes) gave pure 34 (210 mg, 94%) as pale yellow oil.

TLC Images:

Leftimage: TLC under UV light
(254 nm)

Right image: TLC stained with
KMnO, solution

Spots from left to right:

S: Starting material (33);

C: Co-spot of 33 and reaction
mixture;

R: Reaction mixture.

Mobile phase: EtOAc:hexanes =

19

R¢=0.35 (2% EtOAcC in hexanes)

TLC Visualization: UV active under 366 nm and 254 nm; stains to yellow with KMnO,
solution.

IH NMR (400 MHz; CDCls) &: 8.49 (1H, d, J = 8.0 Hz), 8.05 (1H, d, J = 7.7 Hz), 7.47
(1H,t,J = 8.1 Hz), 6.91 (1H, d, J = 7.8 HZ), 6.84 (1H, d, J = 7.6 HZ), 3.94 (3H, 5), 1.53-
1.41 (3H, m), 1.46 (12H, s), 1.24 (18H, d, J = 7.5 H2).

13C NMR (100 MHz; CDCls) 6:157.7, 156.6, 141.8, 137.1, 126.6, 121.0, 119.4, 114.2,

104.9, 83.5, 55.3, 25.1, 18.2, 13.5
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FTIR vmax (ATR, film)/cm1 2944, 2866, 1578, 1462, 1324, 1289, 1270.
HRMS (+APCI) Calcd for CysH421°BO4Si [M+H]* 456.2977; found: 456.2969; Calcd

for C26H4zllBO4Si [M+H]+ 4572940, found: 457.2964.

MeO OTIPS

L
C

AcO  OMe
35
Arylboronic ester 34 (1.47 g, 3.22 mmol) and acetoxybromonaphthalene 25 (634
mg, 2.15 mmol) were dissolved in THF (8 mL) and H,O (8 mL). Afterwards,
Pd(PPhs).Ck (151 mg, 0.22 mmol) and K3PO, (2.74 g, 12.9 mmol) were added
sequentially, and the resulting mixture was heated to 100 °C. The reaction mixture was
stirred at this temperature for 4.5 h. It was then cooled to ambient temperature and
quenched with H,O. The aqueous phase was extracted three times with EtOAc. The
combined organic phase was dried over anhydrous Na,SO,, filtered and concentrated
under reduced pressure. Purification by column chromatography (SiO,; EtOAc:hexanes

=19 — 1:4) gave pure 35 (1.027 g, 88% vyield) as pale yellow solid.
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TLC Images:

Leftimage: TLC under UV light

(254 nm)

Right image: TLC stained with KMnO,4
solution

Spots from left to right:

S1: Starting material 1 (25);

S2: Starting material 2 (34);
C: Co-spot of 25, 34 and reaction mixture;
R: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1:9

Note: The product (35) exhibits weak fluorescence, and therefore it can be distinguished

on the TLC plate from the starting material 25.

M.P. 152-154 °C (heptane).

R¢ = 0.47 (EtOAc:hexanes = 1:3)

TLC Visualization: UV active; stains with KMnO, solution.

'H NMR (400 MHz; CDCls) 6:7.40 (1H, d,J =7.6 Hz),7.22 (1H,d, J =8.0 HZz), 7.18-
7.09 (3H, m), 6.94 (1H, d, J = 8.0 Hz), 6.90 (1H, d, J = 8.0 Hz), 6.84-6.81 (2H, m), 6.76
(1H, d, J = 8.0 Hz), 3.96 (3H, s), 3.92 (3H, s), 2.42 (3H, s), 1.44 (3H, sept, J = 7.4 Hz),

1.19 (18H, d, J = 7.6 Hz).
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13C NMR (100 MHz; CDCls) &:170.5, 157.7, 155.5, 153.3, 146.1, 137.7, 136.9, 136.7,
130.70, 130.68, 128.6, 128.5, 126.3, 126.1, 120.3, 119.44, 119.35, 119.0, 114.2, 106.2,
104.9, 56.3, 55.4, 21.3, 18.3, 13.6.

FTIR vma (ATR, film)/cm1 2944, 2866, 1764, 1581, 1462, 1402, 1374.

MeO OH

L
I

AcO  OMe
27

Binaphthalene 35 (200 mg, 0.37 mmol) was dissolved in 5.0 mL of anhydrous
THF to give a clear, colorless solution. Tetrabutylammonium fluoride (TBAF, 1.0 M
solution in THF; 0.55 mL, 0.55 mmol) was added at 23 °C, and the color of the solution
turned yellow. After 1 min, trifluoroacetic acid (TFA; 28 uL, 0.37 mmol) was added.
TLC analysis of the resulting green solution indicated full c onsumption of binaphthalene
35. The reaction mixture was quenched with 5 mL of saturated aqueous NH,Cl solution.
The aqueous phase was extracted with EtOAc (3x10 mL). The combined organic phase
was dried over anhydrous Na,SO,, filtered and concentrated under reduced pressure.
Purification by column chromatography (SiO,; EtOAc:hexanes = 1:4 — 1:2 — only
EtOAC) gave pure 27 (126 mg, 89% yield) as pale yellow solid.
Note: In another experiment reaction product 27 was isolated in 91% vyield when the

reaction was conducted starting from 100 mg (0.184 mmol) 35.
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TLC Images:

Leftimage: TLC under UV light (254 nm)
Right image: TLC stained with KMnQO4
solution

Spots from left to right:

S: Starting material (35);

C: Co-spot of 35 and reaction mixture;

R: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1:5

M.P. 238-240 °C (CHCL).

R =0.39 (EtOAc:hexanes = 1:2)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) 8: 9.54 (1H, s), 7.39 (1H, d, J = 7.6 Hz), 7.34 (1H, d, J =
7.8 Hz), 7.19-7.10 (3H, m), 6.99-6.91 (3H, m), 6.83 (1H, d, J = 7.7 Hz), 6.79 (1H, d, J =
7.7 Hz), 4.10 (3H, s), 3.96 (3H, s), 2.43 (3H, 9).

13C NMR (100 MHz; CDCls) 6:170.5, 156.5, 155.5, 154.6, 146.2, 137.2, 136.7, 135.9,
130.1, 129.3,128.6, 126.4, 125.9, 121.0, 120.1, 119.4,119.0, 115.1, 110.2, 106.2, 104.2,

56.4, 56.3, 21.2.
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FTIR vmax (ATR, film)/cm? 3390, 1759, 1609, 1598, 1583, 1466, 1400, 1379, 1365,
1267.

HRMS (+APCI) Calcd for Cy4H2:05 [M+H]* 389.1384; found: 389.1379.

AcO  OMe
29

Binaphthalene 27 (335 mg, 0.86 mmol) was dissolved in EtOAc/DCM (20 ml/14
ml) with the aid of heating and vigorous stirring. Then IBX (605 mg, 2.16 mmol) and
DMSO (14 ml) were added at 23 °C. Initially formed white suspension first became
yellow then orange and finally a red solution. Stirred at 23 °C for 7 hours. TLC indicated
the full consumption of 27. The reaction mixture was quenched with saturated aqueous
Na,COj3 solution (30 ml). The aqueous phase was extracted with DCM (3%20 ml). The
combined organic phase was dried over anhydrous Na,SO,, filtered and concentrated
under reduced pressure. Purification by column chromatography (SiO,; only DCM —

1% MeOH in DCM) gave pure 29 (318 mg, 92% yield) as red solid.
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TLC Images after Aqueous Work-up:

Left image: TLC under UV light (254 nm)
Right image: TLC stained with KMnO,
solution

Spots from left to right:
S: Starting material (27);
C: Co-spot of 27 and reaction mixture;

R: Reaction mixture.

“.

Mobile phase: EtOAc:hexanes = 1.1

M.P. °C 268.3-269.6 °C (CH,CL).

Rf= 0.67 (only EtOAC)

TLC Visualization: UV active; stains with KMnO4 solution.

IH NMR (400 MHz; CDCls) &: 7.40 (1H, d, J = 7.7 Hz), 7.36-7.31 (2H, m), 7.27-7.25
(1H, m), 7.16 (1H, d, J = 7.6 Hz), 7.08 (1H, d, J = 8.6 Hz), 6.89 (1H, d, J = 7.7 HZ), 6.51
(1H, s), 6.42 (1H, d, J = 7.7 Hz), 4.02 (3H, s), 3.97 (3H, s), 2.42 (3H, 5).

13C NMR (100 MHz; CDCls) 6:181.0, 178.7,170.2, 163.2, 156.4, 155.8, 147.7, 138.0,
136.7, 134.6, 133.0, 129.3, 127.6, 126.6, 123.3, 119.6, 119.5, 119.1, 118.9, 115.6, 106.9,
56.6, 56.4, 21.1.

FTIR vmax (ATR, film)/cm 3011, 2942, 2840, 1760, 1666, 1583, 1468.
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HO OMe
Daldiquinone (15)

Naphthaquinone 29 (17.6 mg, 0.044 mmol) was dissolved in MeOH/DCM
(3ml/3ml) ina vial by vigorous stirring. To the resulting clear red solution, K,COj3 (9.07
mg, 0.066 mmol) was added in one portion. The reaction mixture was stirred at 23 °C.
Rxn became black at the end of the first 15 minutes. TLC indicated the full consumption
of 29 after 2 hours. The black reaction mixture was then quenched with saturated
aqueous NH,ClI solution (10 ml). The aqueous phase was extracted with DCM (3x15
ml). The combined organic phase was dried over anhydrous Na,SO,, filtered and
concentrated under reduced pressure. Purification by column chromatography (SiO;
EtOAc:hexanes = 1.2 — 1:1) gave pure Daldiquinone (15) (11.9 mg, 75% yield) as red

solid.

TLC Images after Aqueous Work-up:

Left image: TLC under UV light (254 nm)
Right image: TLC stained with KMnOQO,

solution

Spots from left to right:

S: Starting material (29);

we
Ne
ne
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C: Co-spot of 29 and reaction mixture;
R: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1.1

R¢=0.68 (only EtOAC); 0.23 (EtOACc:hexanes = 1:1)

M.P. °C 268.7-268.9 °C (CHCl).

TLC Visualization: UV active; stains to yellow with KMnO, solution upon heating.

IH NMR (400 MHz; CDCls) &: 9.63 (1H, s), 7.34 (1H, t, J = 8.2 Hz), 7.32 (1H, d, J =
7.9 Hz), 7.25 (2H, m), 7.07 (1H, d, J = 8.6 Hz), 6.96 (1H, d, J = 7.9 Hz), 6.85 (1H, dd, J
=7.1, 0.9 Hz), 6.48 (1H, s) 6.47 (1H, d, J = 7.9 Hz), 4.12 (1H, ), 4.02 (1H, s).

13C NMR (100 MHz; CDCls) §: 181.2, 179, 163.1, 157.1, 156.6, 156.0, 138.5, 136.5,
134.4, 129.4, 128.6, 126.8, 125.6, 123.2, 120, 119.6, 115.4, 115.3, 110.3, 104.8, 56.6,
56.5.

FTIR vma (ATR, film)/cm-1 3379 (br), 3011, 2944, 2842, 1663, 1608, 1585, 1470, 1410,
1339.

HRMS (+APCI) Calcd for CpH170s [M+H]* 361.1071, found: 361.1075.

AcO OMe

26
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Appearance: Dark orange solid

R =0.35 (EtOACc:hexanes = 1:2)

TLC Visualization: UV active; stains with KMnO, solution upon heating.

IH NMR (400 MHz; CDCls) &: 7.41 (2H, d, J = 7.6 Hz), 7.18 (2H, t, J = 8.2 Hz), 7.16
(2H, d,J =7.6 Hz),6.93 (2H, d, J =8.5Hz),6.84 (2H, d, J = 7.7 Hz), 3.96 (6H, s), 2.43
(6H, s).

13C NMR (100 MHz; CDCls) é: 170.5, 155.5, 146.5, 136.7, 136.3, 128.4, 126.6, 120.1,
119.3, 119.0, 106.3, 56.4, 21.2

FTIR vinax (ATR, film)/cm1 1762, 1594, 1462, 1402, 1367, 1266, 1209, 1083, 1032.

HRMS (+APCI) Calcd for CyH2306 [M+H]* 431.1490, found: 431.1508.

MeO OH

L
C

OH OMe
Daldinol (28)

An oven-dried, 50-mL, round-bottomed flask was cooled under vacuum and
refilled with nitrogen. It was then charged with 20 mL of DMSO, which was
deoxygenated by purging with nitrogen gas for 15 min. Afterwards, acetoxynaphthalene
25 (350 mg, 1.19 mmol), Bopin, (166 mg, 0.65 mmol), Pd(dppf)Cl,-CH,CL (97 mg, 0.12
mmol) and potassium acetate (349 mg, 3.56 mmol) were added sequentially. The flask
was then sealed with a glass stopper, and the reaction mixture was stirred at 90 °C for 24

h. TLC analysis indicated full consumption of the starting material (25). The mixture
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was then cooled to ambient temperature and quenched with 20 mL of H,0. The aqueous
phase was extracted with EtOAc (3x15 mL). The combined organic phase was dried
over anhydrous Na,SO,, filtered and concentrated under reduced pressure. The crude
mixture was purified by flash column chromatography (SiO,; EtOAc:hexanes = 1:4 —
1:2 — 1:1) to afford a mixture of 26 and partially hydrolyzed product 27.

The mixture of 26 and 27 was dissolved in 15 mL of MeOH and 5 mL of CH,Cl,
in a 50-mL, round-bottomed flask. To the orange solution was added K,COj3 (165 mg,
1.19 mmol), and the resulting heterogeneous mixture was stirred at 23 °C for 3 h. It was
then quenched with a saturated aqueous solution of NH,CIl. The aqueous phase was
extracted three times with EtOAc and twice with CH,Cl,. The combined organic phase
was dried over anhydrous Na,SO,, filtered and concentrated under reduced pressure.
Purification by flash column chromatography (SiO,; EtOAc:hexanes =1:4 — 1.2 — 1:1)

gave pure daldinol (28) (117 mg, 57% over 3 steps) as a yellow solid.

TLC images for the formation of mixture of 26 and 27 after Aqueous Work-up:
Left image: TLC under UV light (254 nm)
Right image: TLC stained with KMnQO,
solution

Spots from left to right:

Left spot: starting material (25);

Middle spot : Co-spot of 25 and reaction

mixture;
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Right spot: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1.2

TLC Images for the hydrolysis of the mixture of 26 and 27 to give Daldinol (28):

Left image: TLC under UV light (254 nm)

Right image: TLC stained with KMnO,4
solution

Spots from left to right:

Left spot: mixture of 26 and 27,

Middle spot : Co-spot of mixture (26 and

27) and reaction mixture;
Right spot: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1.2

M.P. 269-270 °C (CH.CL);

R =0.39 (EtOAC:hexanes = 1:4)

TLC Visualization: UV active; stains with KMnO, solution.

'H NMR (400 MHz; CDCls) 6:9.52 (2H, s), 7.31 (2H, d, J = 7.8 Hz), 7.11 (2H, t, J =
8.1 Hz),6.97 (2H, d, J = 7.8 Hz), 6.94 (2H, d, J = 8.6 Hz), 6.78 (2H, d, J = 7.6 H2), 4.10
(6H, s).

13C NMR (100 MHz; CDCls) 6: 156.5, 154.3, 136.2, 130.3, 129.7,125.7, 121.0, 115.2,
110.3, 104.1, 56.4

FTIR vmax (ATR, solid)/cmt 3388, 2924, 2854, 1609, 1584, 1399, 1258,

64



HRMS (+APCI) Calcd for Cy,H1904 [M+H]* 347.1278; found: 347.1276.
Elemental (Combustion) analysis: Anal. calcd for C,,H1504: C, 76.29; H, 5.24; found:

C, 75.90; H, 5.41.

MeO OMOM

L

Br
38

An oven-dried 100-ml round-bottomed flask cooled under vacuum and refilled
with N2(x3). Naphthalene derivative 24 (2.38 gram, 5.93 mmol) was added and
dissolved in 15 ml anhydrous DMF under N at 23 °C. The resulting clear pale yellow
solution was cooled down to 0 °C in an ice bath for 10 min. Sodium hydride (NaH, 285
mg, 7.13 mmol, 60% dispersion in mineral oil) was slowly added resulted in gas
evolution. After 10 minutes of stirring at 0 °C, MOMCI (675 pL) was added resulted in
vapor evolution. Ice bath removed after 5 minutes and reaction mixture stirred at 23 °C.
TLC indicated the full consumption of 24 after 90 minutes. The reaction mixture was
qguenched with saturated agqueous NH4CI solution (20 ml). The aqueous phase was
extracted with EtOAc (3x20ml). The combined organic phase was dried over anhydrous
Na,SO,, filtered and concentrated under reduced pressure. Purification by column
chromatography (SiO,; EtOAc:hexanes = 1:9 — 1:5) gave pure 38 (2.67 g, 96% yield)

as white solid.

Note: In another experiment reaction product 38 was isolated in 99% vyield when the

reaction was conducted starting from 1.5 g (5.93 mmol) 24.
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TLC Images after Aqueous Work-up:

Rf=0.50 (EtOAc:hexanes = 1:4)

Left image: TLC under UV light (254 nm)
Right image: TLC stained with KMnQO,
solution

Spots from left to right:

Left spot: Starting material (24);

Middle spot: Co-spot of 24 and reaction
mixture;

Right spot: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1:19

(developed twice)

TLC Visualization: UV active; stains with KMnO, solution to yellow upon heating.

IH NMR (400 MHz; CDCls) &:7.85 (1H, d, J = 8.6 Hz), 7.67 (1H, d, J = 8.3 Hz), 7.48

(1H, t,J =8.2 Hz), 6.94 (2H, t, J = 7.7 H2), 5.25 (2 H, s), 3.97 (3H, s), 3.59 (3H, 5)

13C NMR (100 MHz; CDCls) &:157.1, 154.1, 135.1, 130.5, 127.8, 120.4, 120.0, 116.0,

113.8, 107.3, 97.0, 56.7, 56.6

FTIR vmax (ATR, film)/cm? 1613, 1588, 1575, 1460, 1397, 1375, 1266, 1233, 1150,

1095, 994, 948, 815, 751.
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MeO OMOM

L

Bpin
39

To a pale yellow solution of 38 (500 mg, 1.68 mmol) in 3 ml dioxane, EtsN (0.94
mL, 6.72 mmol), Pd(OAc), (37.72 mg, 0.168 mmol) and DPEphos (183 mg, 0.34 mmol)
were added sequentially. To the resulting brown solution HBpin (730 pL, 5.04 mmol)
was added dropwise resulted in a color change to dark brown and gas evolution Reaction
mixture was then heated to 100 °C and stirred for 2 hours. Reaction stopped and cooled
to 23 °C. Purification by flash column chromatography (SiO,; only hexanes) gave pure

39 (324 mg, 56%) as green oll.

TLC Images after Aqueous Work-up:

Left image: TLC under UV light (254 nm)
Right image: TLC stained with KMnQO,
solution

Spots from left to right:

Left spot: starting material (38);

Middle spot : Co-spot of 38 and reaction

mixture;
Right spot: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1:19
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R¢ = 0.39 (10% EtOAcC in hexanes)

TLC Visualization: UV active; stains to dark yellow with KMnO, solution.

IH NMR (400 MHz; CDCl3) 8: 8.41 (1H, d, J = 8.5 Hz), 8.00 (1H, d, J = 7.8 Hz), 7.43
(1H,t,J =8.0 Hz), 7.04 (1H, d, J = 7.8 HZ), 6.88 (1H, d, J = 7.7 Hz), 5.31 (2H, 5), 3.96
(3H, s), 3.59 (3H, s), 1.40 (12H, ).

13C NMR (100 MHz; CDCls) &: 157.1, 157.0, 141.4, 137.1, 126.8, 121.5, 118.4,111.4,

106.5, 96.3, 83.6, 56.55, 56.54, 25.0

FTIR vmax (ATR, film)/cm1 1613, 1578, 1515, 1464, 1326, 1326, 1262, 1142, 1099.

40

To a green solution of boronic ester 29 (400 mg, 1.16 mmol) in DMSO (7 ml,
purged with N, for 15 minutes) was added 37 (365 mg, 1.06 mmol). To this light brown
suspension Pd(ddpf)Cl,-CH,Cl, (130 mg, 0.16 mmol) was added and resulted in a color
change to red. KOAc (417 mg, 4.24 mmol) was added flask was closed with a glass
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stopper and heated to 110 °C. TLC indicated the full consumption of 37 after 24 hours.
Reaction stopped and cooled to 23 °C. The reaction mixture was quenched with H,0.
The aqueous phase was extracted with EtOAc (several times). The combined organic
phase was dried over anhydrous Na,SO,, filtered and concentrated under reduced

pressure. Purification by column chromatography (SiO,; EtOAc:hexanes = 1.5 > 1:3 >

12 —» 1.1 — EtOAc only) gave pure 40 (192 mg, 45% yield) as goldish yellow solid.

TLC Images:

Left image: TLC under UV light (254 nm)

Right image: TLC under UV light (366nm)

Spots from left to right:

1st spot: Naphthalene boronic ester 39;

»
S

2nd spot: Dibromonaphthalene 37

3 spot: Co-spot of 37, 39 and reaction

|
|
|
:
y

mixture;
4th spot: Reaction mixture.

Mobile phase: EtOAc:hexanes = 1.2

M.P. 215.2-216.4 °C (CHCL).
Rt = 0.37 (EtOAc:hexanes = 1:2)
TLC Visualization: UV active; yellow under 366 nm, doesn’t stain with KMnO,

solution.
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'H NMR (400 MHz; CDCls) &: 8.27 (2H, m), 7.93 (1H, d, J = 7.8 Hz), 7.63 (1H 3),
7.49 (1H, t, J = 8.1 Hz), 6.95 (2H, t, J = 8.0 Hz), 6.86 (1H, d, J = 7.7 Hz), 5.36 (2H, s),
4.08 (6H, s), 4.01 (3H, s), 3.68 (3H, 3).

13C NMR (100 MHz; CDCls) §: 158.9, 157.9, 157.4, 153.7, 137.5, 135.6, 133.6, 130.2,
129.1, 128.1, 127.3, 124.8, 122.6, 118.0, 117.3, 114.4, 108.2, 106.9, 106.7, 105.7, 97.7,
56.7, 56.61, 56.6, 56.5.

FTIR vma (ATR, solid)/cm1585, 1458, 1425, 1395, 1283, 1251, 1154, 1124, 1093,
1050.

HRMS (ESI+) Calcd for C,sH2,0sNa [M+Na]*: 425.1360, found: 425.1362.

OMe

MeO OMe

M

Fluoranthene derivative 40 (100 mg, 0.25 mmol) was dissolved in 10 ml
anhydrous THF with the aid of heating by a heat gun. To this yellowish-orange solution,
concentrated HCI solution (0.83 ml, 10 mmol, 12 M) was added dropwise at 23 °C
resulted in a color change to green and the formation of black insoluble particles. Stirred
at this temperature for 1 hour. TLC indicated the full consumption of 40 after 1 hour.
The reaction mixture was then treated with H,O (20 ml). The aqueous phase was
extracted with EtOAc(3x20 ml). The combined organic phase was dried over anhydrous

Na,SQ,, filtered and concentrated under reduced pressure. Purification by column
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chromatography (SiO,; EtOAc:hexanes = 1:6 — 1:4 — 1:1 — EtOAc only) gave pure

41 (72.6 mg, 82% yield) as yellowish orange solid.

TLC Images:

Left image: TLC under UV light (254 nm)
Right image: TLC stained with KMnO,4
solution

Spots from left to right:

Left spot: Starting material (40);

Middle spot: Co-spot of 40 and reaction

mixture;

Right spot: reaction mixture

M.P. 228.1-229.2 °C (CHCL).

Rf=0.25 (EtOACc:hexanes = 1.5).

TLC Visualization: UV active; yellow under 366 nm, stains to yellow with KMnO,
solution.

IH NMR (400 MHz; CDCl3) &: 9.64 (1H,s), 8.23 (1H, d, J = 8.6 Hz),8.18 (1H, d,J =
7.9 Hz), 7.90 (1H, d, 7.7 Hz), 7.45 (1H, d, J = 7.9 Hz), 7.42 (1H, s), 6.95 (2H, d, J =7.9
Hz), 6.78 (1H, d, J =7.7 Hz), 4.10 (3H, s), 4.08 (6H, ).

13C NMR (100 MHz; CDCls) 6:158.9, 157.3, 156.9, 154.5, 139.2, 135.6, 132.8, 130.5,
129.2,126.8, 124.8, 123.6, 122.6, 118.4, 114.5, 114.2, 106.9, 106.8, 104.6, 103.4, 56.6 2,
56.59, 56.3.

FTIR vmax (ATR, solid)/cm?® 3393, 1595, 1458, 1424, 1399, 1380, 1273, 1243, 1158,
1116, 1088, 811.

HRMS (ESI+) Calcd for CpsH1sNaO4 [M+Na]*: 381.1098, found: 381.1108.

71



MeO OMe

42

A 100 ml round-bottomed flask was charged with 41 (30 mg, 0.084 mmol) and
dissolved in 10 ml CH3CN and 5 ml DCM. To this solution 5 ml H,O was added. The
orange biphasic reaction mixture was cooled down to 0 °C. PIFA (80 mg, 0.184 mmol)
was dissolved in a mixture of CH3CN (15 ml), DCM (5 ml) and H,O (7.5 ml), and added
dropwise to the reaction mixture for 20-minutes at 0 °C. The reaction mixture gradually
became dark-red and TLC indicated the full consumption of 41 after 30 minutes. The
reaction mixture was treated with brine. The aqueous phase was extracted with EtOAc.
The combined organic phase was dried over anhydrous Na,;SO, filtered and
concentrated under reduced pressure. Purification by column chromatography (SiO;

EtOAc only) gave pure 42 ( 10.0 mg, 32% vyield).

R¢ = 0.63 (MeOH:CH,Cl, = 1.9).

'H NMR (400 MHz; CDCls) 8:8.41 (1H, d,J = 8.2 Hz), 8.18 (1H, d, J = 8.2 Hz), 7.81
(1H, d, 6.8 Hz), 7.57 (1H, t, J = 8.0 Hz), 7.02 (2H, d, J = 8.4 Hz), 6.95 (1H, d, J =8.3
Hz), 4.10 (3H, s), 4.08 (6H, s), 4.01 (3H, s).

FTIR vma (ATR, solid)/cm=1640, 1601, 1586, 1502, 1461, 1422, 1364, 1343, 1277,
1256, 1230, 1135, 1120, 1099.

HRMS (ESI+) Calcd for Cp3H1sNaOs [M+Na]+*: 395.0890, found: 395.0897.
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Bulgarein (1)

Compound 42 (4.0 mg, 0.011 mmol) was dissolved in DCM (1 ml). Obtained
solution transferred to an oven-dried Schlenk tube under N,. To obtained dark-red
solution, 0.3 ml BBr; (1M in DCM) was added along the walls at 0 °C. Stirred at 0 °C
for 2 hours. Then stirred at 23 °C for 22 hours. After that reaction mixture was cooled
down to 0 °C and quenched with an excess of water. Stirred at 0 °C for 10 minutes. The
aqueous phase was extracted with EtOAc. The combined organic phase was dried over
anhydrous Na,SQy, filtered and concentrated under reduced pressure. Purified by Prep.
TLC (10% MeOH in DCM) to give bulgarein (1).

UV-Vis Spectrum: : Ama (hm) (EtOH, blue solution): 370 (sh), 400 (sh), 630 (sh).

HRMS (ESI-) Calcd for C,0HgOs [M-H]-: 329.0455, found: 329.0535.
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MeO OMe

36

A 250-ml round-bottom flask was charged with 1,8-dihydroxynaphthalene (2.0
gram, 12.5 mmol). 100 ml acetone was added at 23 °C to give a brown solution. K,CO3;
(17.3 gram, 125 mmol) and Me,SO, were added sequentially at 23 °C. The resulting
suspension was heated to 70 °C and vigorously stirred under reflux at 70-80 °C for 64
hours at the end of which TLC indicated the full consumption of 1,8-
dihydroxynaphthalene. The reaction mixture was then cooled down to 23 °C and acetone
was removed under reduced pressure. To the solution of the remaining solid in CH,Cl,,
100 ml 4M aqueous NaOH solution was added at 23 °C and stirred at this temperature
for 2 hours. Layers were separated and the aqueous phase was washed with CH,Cl(x3).
The combined organic phase was dried over anhydrous Na,;SO, filtered and
concentrated under reduced pressure. Purification by column chromatography (SiO;
EtOAchexanes = 1:19 —» 19 —» 1.5 1:1) gave pure 36 (1.96 g, 83% vyield) as

brownish-yellow solid.

R =0.46 (EtOAc:hexanes = 1:9).

IH NMR (400 MHz; CDCls) : 7.43-7.33 (4H, m), 6.86 (2H, dd, J = 7.2, 1.5 Hz), 3.98
(6H, s).

13C NMR (100 MHz; CDCls) 6: 157.2, 137.5, 126.5, 121.0, 119.0, 106.4, 56.6.

FTIR vma (ATR, solid)/cmt 1580, 1510, 1460, 1427, 1386, 1348, 1273, 1237, 1180.

HRMS (+APCI) Calcd for C1,H130, [M+H]* 189.0911; found: 189.0917.
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37

To a 50-ml round-bottom flask, 36 (1.0 gram, 5.31 mmol) was added and
dissolved in 17 ml anhydrous CH,CkL. To the resulting yellow solution, NBS (945 mg,
5.31 mmol) was slowly added at 23 °C. The dark-gray reaction mixture was stirred at 23
°C for 40 minutes. CH,Cl, was removed under reduces pressure. The remaining solid
was dissolved in 17 ml anhydrous DMF. To this solution, NBS (993 mg, 5.58 mmol)
was slowly added at 23 °C. The resulting reddish-gray reaction mixture was stirred at 23
°C for 40 minutes and then quenched with saturated aqueous Na,S,Ossolution (20 ml).
The aqueous phase was extracted with EtOAc (3x20 mL). The combined organic phase
was dried over anhydrous Na,SO,, filtered and concentrated under reduced pressure.

Purification by flash column chromatography (SiO,; EtOAc:hexanes = 1:19 —» 19 —

15— 1:2— 1:1) gave pure 37 (1.27 gram g, 69% vyield) as goldish yellow solid.

IH NMR (400 MHz; CDCls) 8: 7.82 (2H, d, J =8.5 Hz), 6.72 (2H, d, J = 8.5 Hz), 3.93
(6H, s).

13C NMR (100 MHz; CDCls) 6: 157.8, 135.9, 131.6, 121.7, 110.3, 107.8, 56.9

FTIR vmax (ATR, solid)/cm-1 3010, 2965, 2916, 2837, 1583, 1508, 1462, 1448, 1369,
1351, 1293, 1231.

HRMS (APCI+) calculated: C1,H117°Br,0, [M+H]*: 344.9121, found: 344.9122.
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MeO OBn

L

Br
30

An oven-dried 50-ml round-bottomed flask was cooled under vacuum and
refilled with N3(x3). Naphthalene derivative 24 (984 mg, 3.89 mmol) was added and
dissolved in 20 mlanhydrous DMF under N, at 23 °C. The resulting solution was cooled
down to 0 °C in an ice bath for 10 min. Sodium hydride (NaH, 185 mg, 4.67 mmol, 60%
dispersion in mineral oil) was added slowly resulted in gas evolution. After 10 minutes
of stirring at 0 °C, BnBr (600 pL, 863 mg, 5.06 mmol) was added. Ice bath removed
after 5 minutes and reaction mixture stirred at 23 °C. TLC indicated the full
consumption of 24 after 2 hours. The reaction mixture was quenched with H,O (20 ml).
The aqueous phase was extracted with EtOAc (3x20ml). The combined organic phase
was dried over anhydrous Na,SO,, filtered and concentrated under reduced pressure.
Purification by column chromatography (SiO,; EtOAc:hexanes = 1:19 — 1:9) gave pure
30 (1.15 g, 86% yield).

IH NMR (400 MHz; CDCls) &: 7.84 (1H, d, J = 8.5), 7.66 (1H, dd, J = 8.3, 1.4 H2),
7.58 (2H, d, J = 7.6 Hz), 7.50 (1H, td, J = 8.4, 1.4 Hz), 7.42 (2H, t, J = 7.4 Hz), 7.33
(1H,t,J =7.2 Hz), 6.94 (1H, d, J = 7.8 HZ), 6.80 (1H, d, J = 8.4 Hz), 5.19 (2H, 5), 3.96

(3H, s).
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MeO OBn

L

Bpin
31

A flame-dried Schlenk tube was cooled under vacuum and refilled with Ny(x3).
Naphthalene bromide derivative 30 (100 mg, 0.291 mmol) was added and dissolved in 4
ml anhydrous THF under N, at 23 °C. Then reaction mixture cooled to -78 °C and n-
BuLi (218.5 uL, 0.350 mmol, 1.6 M in Hexane) was added dropwise at -78 °C. After 15
minutes of stirring at -78 °C i-PrOBpin (77.2 yL, 70.4 mg, 0.38 mmol) was added. The
reaction mixture gradually allowed to heat to 23 °C. Reaction stopped after 16 hours,
and the reaction mixture was quenched with H,O. The aqueous phase was extracted with
EtOAc. The organic phase was dried over anhydrous Na,SOy, filtered and concentrated
under reduced pressure. Purification by column chromatography (SiO,; EtOAc:hexanes

=1:19) gave pure 31 (64.5 mg, 58% yield).
'H NMR (400 MHz; CDCls) &: 8.46 (1H, d, J = 8.5), 8.05 (1H, d, J = 7.9 Hz), 7.66

(2H, d, J =7.7 Hz), 7.47 (3H, m), 7.42 (2H,t, J = 7.4 Hz), 7.37 (1H,t, J = 7.4 Hz), 6.97

(1H, d, J=7.9 Hz), 6.93 (1H, d, J = 7.8 Hz), 5.29 (2H, s), 3.99 (3H, ), 1.45 (12H, 5).
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AcO OMe
32

To a 25-ml round-bottomed flask, 3 mI DMSO was added and purged with N, for

10 minutes. Boronic ester 31 (50 mg, 0.128 mmol), acetoxynaphthalene 25 (37.7 mg,
0.128 mmol) and KOACc (25.12 mg, 0.256 mmol) were added at 23 °C. After 15 minutes
stirring at 23 °C under N,, Pd(dppf)Cl,-CH,Cl, (10.45 mg, 0.0128 mmol) was added.
Flask sealed with glass stopper and heated to 80 °C. Stirred for 5 hours at this
temperature. After that reaction was stopped and cooled to 23 °C. Quenched with H,0.
The aqueous phase was extracted with EtOAc. The organic phase was dried over
anhydrous Na,SO,, filtered and concentrated under reduced pressure. Purification by
column chromatography (SiO,; EtOAc:hexanes = 1:9) gave pure 32 (20.0 mg, 32%
yield).

IH NMR (400 MHz; CDCls) &: 7.67 (2H, d, J = 7.2 Hz), 7.48-7.39 (3H, m), 7.38-7.32
(2H, m), 7.20-7.14 (3H, m), 7.04 (1H, d, J =8.0 Hz) , 6.96 (1H, d, J = 8.5 Hz), 6.90 (1H,
d,J =85H2z),6.86 (1H, d,J =7.8 Hz),6.83 (1H, d, J = 7.6 Hz), 5.30 (2H, s), 3.99 (3H,

s),3.96 (3H, s), 2.43 (3H, ).

3.3. Diels-Alder reactions for Fluoranthene synthesis.

3.3.1. General Procedure A for the synthesis ofalkynes 43a-43d.
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1. TMS———H n- i
, n-BuLi OH

o
g THF,-78°Ct00°C )\
Ar H Ar
2. MeOH, K,CO3, 2 h, rt A

Compounds 43a-43d were synthesized according to reported literature procedure.0

An oven-dried 2-neck round-bottomed flask was cooled under vacuum and
refilled with N,(x3). Ttrimethylsillylacetylene (1.1 equiv.) was added and dissolved in
10 ml anhydrous THF under N,. The resulting solution was then cooled to -78 °C and
stirred for 10 minutes. After that n-BuLi (1.6 M in hexane, 1.06 equiv.) was added
dropwise at -78 °C, and the reaction flask was transferred to 0 °C after 10 minutes. After
20 minutes of stirring at 0 °C, the reaction mixture was cooled back to -78 °C. After 10
minutes of stirring at this temperature, a solution of aryl aldehyde (1 equiv.) in 3 ml
anhydrous THF was added dropwise at -78 °C. The reaction mixture heated to 0 °C after
10 minutes and gradually allowed to heat to 23 °C. After 2 hours of stirring, MeOH (10
ml) and K,CO3 (196 mg, 1.42 mmol) were added at 23 °C. The resulting reaction
mixture was stirred for 2 h at 23 °C and quenched with saturated aqueous NH,4CI. The
aqueous phase was extracted with CH,Cl, (3x15 mL), and the combined organic phase
was dried over anhydrous Na,SO,, and concentrated under reduced pressure. The residue

was purified by column chromatography.
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43a
Alkyne 43a was prepared from benzaldehyde (500 mg, 479 pL, 4.71 mmol),
trimethylsilylacetylene (513 mg, 724 L, 5.22 mmol), n-BuLi (1.6 M in hexane, 3.12 ml,
4.99 mmol) and THF (13 ml) according to General Procedure A. The crude product was
purified by flash column chromatography (SiO,; EtOAc:hexanes = 1:9 —» 1:8 — 15) to

afford pure 43a (556 mg, 89% yield) as a colorless oil.

R¢ =0.31 (EtOACc:hexanes = 1.5)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 7.57-7.55 (2H, m) 7.42-7.33 (3H, m), 5.47 (1H, dd, J =
6.2, 2.2 Hz), 2.68 (1H, d, J = 2.3 Hz), 2.44 (1H, br d, J = 4.7 HZ), 2.29 (1H, t, J = 6.3
Hz).

13C NMR (100 MHz; CDCls) 6: 140.2, 128.8, 128.7, 126.7, 83.6, 75.0, 64.5.

FTIR vmax (ATR, solid)/cm-1 3290, 1493, 1453, 2349, 1493, 1453, 1262, 1191, 1019,

946, 723.

OH

O
MeO

43b

Alkyne 43b was prepared from p-anisaldehyde (504 mg, 450 pL, 3.70 mmol),
trimethylsilylacetylene (403 mg, 569 pL, 4.11 mmol), n-BuLi (1.6 M in hexane, 2.45 ml,

3.92 mmol) and THF (11 ml) according to General Procedure A. The crude product was
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purified by flash column chromatography (SiO,; EtOAc:hexanes = 1:9 — 1.5) to afford

pure 43b (312 mg, 47% yield) as a yellow oil.

R =0.43 (EtOACc:hexanes = 1:3)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 7.46 (2H, app d, J = 8.4 Hz), 6.90 (2H, app d, J = 8.8
Hz), 5.40 (1H, d, J = 2.2 Hz), 3.80 (3H, 5) 2.66 (1H, d, J = 2.2 Hz), 2.56 (1H, br s).

13C NMR (100 MHz; CDCls) 6: 159.9, 132.5, 128.2, 114.1, 83.9, 74.7, 64.1, 55.5.
FTIR vinax (ATR, film)/cm-1 3394 (br), 3285, 1610, 1510, 1304, 1243, 1172, 1025, 947,

831, 810.

OH

3

Cl

43c

Alkyne 43c was prepared from p-chlorobenzaldehyde (250 mg, 1.78 mmol),
trimethylsilylacetylene (199 mg, 280 uL, 2.02 mmol), n-BuLi (1.6 M in hexane, 1.20 ml,
1.92 mmol) and THF (7 ml) according to General Procedure A. The crude product was
purified by flash column chromatography (SiO,; EtOAc:hexanes = 1:19 — 1:9— 15) to

afford pure 43c (138 mg, 47% yield) as a yellow oil.

R¢=0.52 (EtOACc:hexanes = 1:4)

TLC Visualization: UV active; stains with KMnO, solution.
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'H NMR (400 MHz; CDCls) §: 7.44 (2H, d, J = 8.5 Hz), 7.33 (2H, d, J = 8.4 Hz), 5.39
(1H, brs), 3.11 (1H, app d, J = 4.4 Hz), 2.67 (1H, dd, J = 2.2, 0.6 Hz).

13C NMR (100 MHz; CDCls) 8: 138.5, 134.4, 128.9, 128.1, 83.2, 75.3, 63.7.

FTIR v (ATR, film)/cm? 3294, 2886, 2120, 1597, 1490, 1405, 1261, 1191, 1090,

1013, 944.

OH

S
YA

43d
Alkyne 43d was prepared from thiophene-2-carboxaldehyde (500 mg, 416 L,
4.46 mmol), trimethylsillylacetylene (486 mg, 686 pL, 4.95 mmol), n-BuLi (1.6 M in
hexane, 2.96 ml, 4.73 mmol) and THF (13 ml) according to General Procedure A. The
crude product was purified by flash column chromatography (SiO,; EtOAc:hexanes =

1:19 —» 15— 1:2) to afford pure 43d (527 mg, 86% yield) as orange oil.

Rf=0.32 (EtOAC:hexanes = 1:5)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) 8: 7.31-7.30 (1H, m), 7.18 (1H, app d, J = 3.5 Hz), 6.98
(1H, dd, J =5.1, 3.5 Hz), 5.63 (1H, dd, J = 6.5, 1.8 Hz), 3.05 (1H, br s), 2.68 (1H, d, J =
2.2 Hz).

13C NMR (100 MHz; CDCls) 8: 143.9, 126.8, 126.3, 125.9, 82.9, 74.4, 60.0.

FTIR vima (ATR, film)/cm 3286, 1261, 1229, 1009, 917.

82



3.3.2. General Procedure B for the Sonogashira reaction between alkynes and 1,8-
diiodonaphthalene

HO. _A
Pd(PPh3),Cl, r

(7 mol%)

O ' . Cul (14 mol%)
o SR
EtsN, 23 °C

To a solution of alkyne (1.0 equiv.) and 1,8-diiodonaphthalene (4 equiv.) in EtzN

f%
%

(0.03 M), Pd(PPh3),Cl, (0.07 equiv.) ve Cul (0.14 equiv.) were added at 23 °C under No.
The resulting reaction mixture stirred at 23 °C until TLC showed full consumption of
alkyne. Usually, a color change from yellow to orange was observed. EtsN was removed
under reduced pressure. The remaining residue was dissolved in a sufficient amount of
EtOAc or CH,Cl, and washed once with H,O. The organic phase was dried over
anhydrous Na,SO,, and concentrated under reduced pressure. The residue was purified

by column chromatography

46a

Sonogashira coupling product 46a prepared from 1,8-diiodonaphthalene (350

mg, 0.92 mmol), alkyne 43a (30.5 mg, 0.23 mmol), Pd(PPh3),Cl, (11.2 mg, 0.016
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mmol), Cul (6.2 mg, 0.032 mmol) and EtsN (6 mL) according to General Procedure B.
The crude product was purified by flash column chromatography (SiO,; EtOAc:hexanes
= 15) to afford pure 46a (50 mg, 56% vyield) as orange oil. After column

chromatography unreacted 1,8-diiodonaphthalene (287 mg, 82%) was recovered.

TLC Visulization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) 6: 8.26 (1H, dd, J = 7.4, 1.3 Hz), 7.86 (1H,dd, J = 7.2, 1.4
Hz), 7.82 (1H, dd, J = 4.3, 1.2 Hz), 7.80 (1H, dd, J = 4.5, 1.3 Hz), 7.70-7.66 (2H, m),
7.45-7.33 (4H, m), 7.09 (1H, dd, J = 8.0, 7.5 Hz), 5.81 (1H, d, J = 5.3 Hz), 2.46 (1H, d, J
= 5.8 Hz).

13C NMR (100 MHz; CDCls) 8: 142.9, 140.2, 136.5, 135.0, 132.1, 130.9, 130.3, 128.8,
128.5, 127.3, 127.2, 125.5, 122.0, 100.0, 92.9, 86.4, 66.1.

FTIR vmax (ATR, film)/cm 3371, 2918, 2850, 1553, 1493, 1453, 1362, 1196, 1047,

1036, 1002, 947, 817, 758, 717, 698.

46b

Sonogashira coupling product 46b prepared from 1,8-diiodonaphthalene (291
mg, 0.76 mmol), alkyne 43b (31 mg, 0.19 mmol), Pd(PPh3),Ck (9.4 mg, 0.013 mmol),
Cul (5.1 mg, 0.026 mmol) and EtsN (6 mL) according to General Procedure B. The

crude product was purified by flash column chromatography (SiO,; EtOAc:hexanes =
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1:9 — 1:5) to afford pure 46b (57 mg, 72% yield) as reddish orange oil. After column

chromatography unreacted 1,8-diiodonaphthalene (209 mg, 72%) was recovered.

Rt = 0.40 (EtOAc:hexanes = 1:3)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCl3) &: 8.24 (1H, dd, J = 7.4, 1.2 Hz), 7.84 (1H, dd, J = 7.3, 1.4
Hz), 7.82-7.75 (2H, m), 7.60 (2H, app d, J = 8.6 Hz), 7.38 (1H, dd, J = 8.2, 7.3 Hz), 7.07
(1H, dd, J = 8.0, 7.5 Hz), 5.76 (1H, s), 3.81 (3H, s), 2.65 (1H, br s).

13C NMR (100 MHz; CDCls) &: 159.8, 142.8, 136.4, 134.9, 132.6, 130.8, 130.2, 128.6,
128.4, 127.2, 125.4, 122.1, 114.1, 100.3, 92.9, 86.04, 65.6, 55.5.

FTIR vma (ATR, film)/cm? 3399 (br), 1610, 1510, 1362, 1303, 1248, 1172, 1034.

46¢c

Sonogashira coupling product 46¢ prepared from 1,8-diiodonaphthalene (328
mg, 0.86 mmol), alkyne 43c (36 mg, 0.22 mmol), Pd(PPh3),Cl, (10.5 mg, 0.015 mmol),
Cul (5.7 mg, 0.030 mmol) and EtsN (6 mL) according to General Procedure B. The
crude product was purified by flash column chromatography (SiO,; EtOAc:hexanes =

19 > 1.7 —» 1:6 — 15) to afford pure 46¢ (56 mg, 62% vyield) as reddish orange oil.
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After column chromatography unreacted 1,8-diiodonaphthalene (240 mg, 73%) was

recovered.

M.P. 109.3-109.6 °C (CHCI)

R =0.42 (EtOACc:hexanes = 1:4)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCl3) 8: 8.25 (1H, dd, J = 7.4, 1.2 Hz), 7.84-7.78 (3H, m), 7.61-
7.58 (2H, m), 7.41-7.35 (3H, m), 7.08 (1H, t, J = 7.8 Hz), 5.78 (1H, s), 2.72 (1H, br s).
13C NMR (100 MHz; CDCls) 8: 142.9, 138.7, 136.5, 134.9, 134.2,132.0, 131.1, 130.3,
128.8, 128.5, 127.3, 125.5, 121.7, 99.5, 92.8, 86.6, 65.3.

FTIR vma (ATR, film)/cm1 3365 (br), 1553, 1489, 1405, 1362, 1197, 1089, 1048, 1036,

1014.

46d

Sonogashira coupling product 46d prepared from 1,8-diiodonaphthalene (308
mg, 0.81 mmol), alkyne 43d (28 mg, 0.20 mmol), Pd(PPhs),Cl, (10.0 mg, 0.014 mmol),
Cul (5.4 mg, 0.028 mmol) and EtsN (6 mL) according to General Procedure B. The

crude product was purified by flash column chromatography (SiO,; EtOAc:hexanes =
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1:9 — 1:5) to afford pure 46d (64.5 mg, 82% yield) as reddish orange oil. After column

chromatography unreacted 1,8-diiodonaphthalene (223 mg, 72%) was recovered.

Rt = 0.44 (EtOAc:hexanes = 1.5)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) 8: 8.25 (1H, dd, J = 7.4, 1.3 Hz), 7.87 (1H, dd, 7.2, 1.4
Hz), 7.81-7.79 (2H, m), 7.40 (1H, dd, J = 8.1, 7.3 Hz), 7.33 (1H, dd, J = 5.1, 1.3 H2),
7.31 (1H, dt, J = 3.5, 1.0 Hz), 7.08 (1H, t, J = 7.8 Hz), 7.01 (1H, dd, J = 5.0, 3.6 HZ),
6.02 (1H, d, J = 6.5 Hz), 2.77 (1H, d, J = 6.5 Hz).

13C NMR (100 MHz; CDCls) &: 144.3,142.8, 136.6, 134.9, 132.1,131.1, 130.3, 127.3,
126.9, 126.1, 125.9, 125.5, 121.7, 99.3, 92.9, 85.8, 61.8.

FTIR vmax (ATR, film)/cmt 3367, 1553, 1363, 1227, 1199, 1047, 1034, 997, 939.

HO_ _Ar Oy Ar

I | | | | |
PCC (3 equiv.)
OO CH,Cl,, 23 °C j OO

3.3.3. General Procedure C for the oxidation of propargyl alcohols with PCC

To a solution of propargyl alcohol in CH,Cl, (0.01 M), PCC (3 equiv.) was
added at 23 °C to give a dark red reaction mixture. The progress of the reaction was
monitored by TLC which indicated full consumption of alcohol in 2-3 hours. Reaction
mixture diluted with CH,Cl, and filtered. SiO, was added to the resulting solution and
the solvent was removed under reduced pressure and obtained solid loaded directly to

the column. Purification by column chromatography on SiO, gave pure desired ketone.

87



47a
Propargyl alcohol 46a (25 mg, 0.065 mmol) was dissolved in 2.0 ml anhydrous

CH,Cl, at 23 °C. To this solution i-Pr,Net (63 mg, 85 pL, 0.49 mmol) and DMSO (0.10
mL, 1.4 mmol) were added. The resulting reaction mixture was cooled down to 0 °C in
an ice bath and stirred for 10 minutes. After that SO3-pyridine (41.4 mg, 0.26 mmol) was
added. After 10 minutes of stirring at 0 °C, a saturated aqueous solution of NaHCO3; (5
ml) was added and stirred for 5 minutes. The reaction mixture was then diluted with H,0
and EtOAc. The aqueous phase was extracted with EtOAc.The combined organic phase
was dried over anhydrous Na,SO,4. After filtration, the clear solution was concentrated
under reduced pressure. The crude product was purified by flash column
chromatography (SiO,; EtOAc:hexanes = 1:19) to afford pure 47a (14.2 mg, 57% yield)

as yellow oil.

Rt = 0.23 (EtOAc:hexanes = 1:19)

TLC Visualization: UV active; stains with KMnQO, solution.

IH NMR (400 MHz; CDCls) &: 8.32 (3H, app d, J = 7.4 Hz), 8.10 (1H, dd, J = 7.2, 1.3
Hz), 7.94 (1H, dd, J = 8.2, 0.9 Hz), 7.89 (1H, dd, J = 8.1, 0.8 Hz), 7.64 (1H, tt, J = 7.4,

1.3 Hz), 7.57-7.48 (3H, m), 7.18 (1H, dd, J = 8.0, 7.5 Hz)
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13C NMR (100 MHz; CDCls) 6: 178.1, 143.3, 138.6, 137.1, 135.1, 134.2, 133.0, 132.8,
130.4, 130.0 128.8, 127.8, 125.6, 120.3, 99.2, 93.1, 92.5.

FTIR vmax (ATR, film)/cmt 2174, 1632, 1597, 1578, 1449, 1363, 1339, 1313, 1286,
1226, 1170, 1046, 979, 817, 756, 698.

HRMS (ESI+) Calcd for C19H1210 [M+H]*: 382.9927, found: 382.9927.

47b
Compound 47b was obtained from alcohol 46b (55 mg, 0.13 mmol), PCC (75

mg, 0.35 mmol) and CH,Cl, (3 mL) according to General Procedure C. The crude
product was purified by flash column chromatography (SiO,; EtOAc:hexanes = 15 —
1:3) to afford pure 47b (34.3 mg, 63% vyield) as orange oil.

R¢ = 0.53 (EtOACc:hexanes = 1:3)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 8.31-8.27 (3H, m), 8.06 (1H, dd, J = 7.3, 1.4 Hz), 7.91
(1H, dd, J = 8.2, 1.1 Hz), 7.86 (1H, dd, J = 8.2, 1.2 Hz), 7.48 (1H, dd, J = 8.1, 7.3 H2),

7.15 (1H, dd, J = 8.1, 7.4 Hz), 6.99 (2H, app d, J = 9.0 Hz), 3.90 (3H, s).
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13C NMR (100 MHz; CDCls) 8: 176.6, 164.5, 143.0, 138.3, 134.9, 132.6, 132.5,132.2,
130.4, 130.2, 127.6, 125.4, 120.3, 113.9, 99.1, 93.0, 91.6, 55.6.

FTIR vmax (ATR, film)/cmt 2174, 1627, 1596, 1572, 1508, 1290, 1258, 1235, 1162,
1028.

HRMS (ESI+) Calcd for CyoH1410, [M+H]*: 413.0033, found: 413.0041.

47c
Compound 47c was obtained from alcohol 46¢ (53 mg, 0.13 mmol), PCC (82

mg, 0.38 mmol) and CH,Cl, (8 mL) according to General Procedure C. The crude
product was purified by flash column chromatography (SiO,; EtOAc:hexanes = 1.9 —

1:4) to afford pure 47¢ (23 mg, 44% yield) as bright orange solid.

R¢=0.36 (EtOACc:hexanes = 1.9)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 8.31 (1H, dd, J = 7.4, 1.2 HZ), 8.27-8.23 (2H, m), 8.08
(1H, dd, J = 7.2, 1.4 Hz), 7.95 (1H, dd, J = 8.2, 1.3 Hz), 7.88 (1H, dd, J = 8.2, 1.1 H2),
7.52-7.48 (3H, m), 7.18 (1H, t, J = 7.8 Ha).

13C NMR (100 MHz; CDCls) 6:176.7, 143.3, 141.8, 140.8, 138.7, 135.5, 135.1, 133.2,

131.3, 130.4, 129.2, 127.8, 125.6, 120.0, 98.8, 93.03, 93.01.
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FTIR vmax (ATR, film)/cm? 2175, 1634, 1586, 1363, 1339, 1287, 1224, 1167, 1090,
981.

HRMS (ESI+) Calcd for C19H10%°CINaO [M+Na]*: 438.9357, found: 438.9357.

47d
Compound 47d was obtained from alcohol 46d (60 mg, 0.15 mmol), PCC (99

mg, 0.46 mmol) and CH,CL (10 mL) according to General Procedure C. The crude
product was purified by flash column chromatography (SiO,; EtOAc:hexanes = 1.9 —

1:5) to afford pure 47d (29.1 mg, 49% yield) as a bright orangish-yellow oil.

R¢=0.41 (EtOACc:hexanes = 1:7)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) 8: 8.30 (1H, d, J = 7.3 Hz), 8.16 (1H, dd, J = 3.8, 1.2 H2),
8.05(1H, dd,J =7.2,09 Hz), 7.92 (1H, dd, J = 8.2, 1.3 Hz), 7.87 (1H, dd, J = 8.1, 1.1
Hz), 7.73 (1H, dd, J = 5.0, 1.2 Hz), 7.48 (1H, t, J = 7.7 Hz), 7.21-7.14 (2H, m).

13C NMR (100 MHz; CDCls) 8: 169.9, 145.1, 143.2,138.7, 135.5, 135.2, 135.0, 133.0,
132.7, 130.4, 128.5, 127.8, 125.6, 120.0, 98.6, 93.1, 91.1

FTIR vmax (ATR, film)/cmt 2178, 1610, 1514, 1410, 1363, 1301, 1231, 1051, 949.
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(HO):B__ o OH
W :
| | | (2 equiv.) N O Ar
Pd(PPh3), (0.05 equiv.) .
OO K3POy4 (3 equiv.) OO

1,4-dioxane/H,0, 100 °C
3.3.4. General Procedure D for the syntheses of Fluoranthenes.

To a 25 ml, round-bottomed flask alkyne 47 (1.0 equiv.) was added and
dissolved in 1.0 ml 1,4-dioxane at 23 °C under N,. To this solution 2-furanylboronic acid
(2.0 equiv.), K3PO4 (3.0 equiv.) and Pd(PPh3), (0.05 equiv) were added. After that 1.0
ml 1,4-dioxane and 1.0 ml H,O were added along the walls. The resulting reaction
mixture was heated to 100 °C under stirred under reflux for 3-6 hours. The reaction
mixture was cooled to 23 °C and before the addition of H,O (5 ml). The aqueous phase
was extracted with EtOAc (3x10 mL). The combined organic phase was dried over
anhydrous Na,SO,, filtered and concentrated under reduced pressure. The residue was

purified by column chromatography on SiO,.

48a

Fluoranthene derivative 48a was synthesized from alkyne 47a (18.5 mg, 0.048
mmol), 2-furanylboronicacid (10.8 mg, 0.096 mmol), K3PO, (30.8 mg, 0.145 mmol) and

Pd(PPhs)4 (2.8 mg, 0.0024 mmol) according to General Procedure D. The crude product
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was purified by flash column chromatography (SiO,; EtOAc:hexanes = 19 —» 1.9 —

1:4) to afford pure 48a(14.4 mg, 92% vyield) as greenish yellow amorphous solid.

R¢=0.52 (EtOACc:hexanes = 1:2)

TLC Visualization: UV active under 254 ve 366 nm; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 8.83 (1H, s), 7.98 (3H, app t, J = 7.0 Hz), 7.88 (1H, d,
J=7.0Hz),7.76 (1H, d, J = 8.2 Hz), 7.69 (1H, d, J = 8.1 Hz), 7.63-7.54 (2H, m), 7.39
(2H,t,J = 7.8 Hz), 7.17 (1H,t, J = 7.7 HZ), 7.09 (1H, d, J = 8.6 Hz), 6.78 (1H, d, J = 7.2
Hz).

13C NMR (100 MHz; CDCIs) 8: 199.3, 158.0, 139.4, 138.3, 135.9, 135.7, 134.1,
132.54, 132.52, 130.7, 129.9, 129.0, 128.0, 127.7, 127.5, 126.4, 126.3, 126.1, 125.7,
119.5, 116.5.

FTIR vmax (ATR, film)/cm? 3359, 1653, 1581, 1449, 1440, 1395, 1316, 1286, 1226,
815, 773.

HRMS (ESI-) Calcd for C3H130, [M-H]: 321.0921, found: 321.0918.

Fluoranthene derivative 48b was synthesized from alkyne 47b (28.5 mg, 0.070
mmol), 2-furanylboronicacid (15.5 mg, 0.14 mmol), K3PO4 (44 mg, 0.21 mmol) and

Pd(PPhs)4 (4.0 mg, 0.0035 mmol) according to General Procedure D. The crude product
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was purified by flash column chromatography (SiO,; EtOAc:hexanes = 1.9 — 1:1) to

afford pure 48b (17.8 mg, 73% vyield) as brown oil.

Rt = 0.37 (EtOAc:hexanes = 1:2); 0.71 (EtOAc:hexanes = 1:1).

TLC Visualization: UV active under 254 ve 366 nm; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 8.47 (1H, s), 7.97-7.93 (3H, m), 7.87 (1H, d, J = 6.9
Hz), 7.75 (1H, d, J = 8.2 Hz), 7.70 (1H, d, J = 8.1 Hz), 7.60 (1H, dd, J = 8.0, 7.0 H2),
7.24 (1H,t,J = 7.7 Hz), 7.06 (1H, d, J = 8.2 Hz), 6.92 (1H, d, J = 7.2 Hz), 6.85 (2H, d, J
=8.9 Hz), 3.83 (3H, 9).

13C NMR (100 MHz; CDCls) &: 197.3, 164.6, 157.3, 139.1, 136.0, 135.7, 133.1, 132.6,
132.4,130.9, 128.0, 127.8,127.3, 126.2, 125.9, 125.7,120.1, 119.4, 116.3, 114.3, 114.1,
55.7.

FTIR vma (ATR, film)/cm1 3317 (br), 1643, 1594, 1439, 1262, 1159.

HRMS (ESI-) Calcd for Cy4H1503 [M-H]-: 351.1027, found: 351.1028.

OH

Qs
ol

48c

o]

Fluoranthene derivative 48c was synthesized from alkyne 47c¢ (20 mg, 0.048
mmol), 2-furanylboronicacid (10.7 mg, 0.096 mmol), K3PO, (30.6 mg, 0.144 mmol) and

Pd(PPhs)4 (2.8 mg, 0.0024 mmol) according to General Procedure D. The crude product
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was purified by flash column chromatography (SiO,; EtOAc:hexanes = 1:9 — 15) to

afford pure 48c (11.8 mg, 69% yield) as a brown oil.

Rt = 0.53 (EtOAc:hexanes = 1:2)

TLC Visualization: UV active under 254 ve 366 nm; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 853 (1H, s), 7.97 (1H, d, J = 8.3 Hz), 7.92-7.87 (3H,
m), 7.77 (1H, d, J = 8.2 HZ), 7.73 (1H, d, J = 8.1 Hz), 7.61 (1H, dd, J = 8.2, 6.9 H2),
7.38-7.35 (2H, m), 7.25 (1H, dd, J = 8.1, 7.2 Hz), 7.07 (1H, d, J = 8.3 Hz), 6.86 (1H, d, J
=7.2 Hz).

13C NMR (100 MHz; CDCls) &: 197.7, 157.6, 140.6, 139.2, 136.5, 135.8, 135.4,
132.64, 132.55, 132.0, 131.9, 129.9, 129.4, 128.1, 127.73, 127.67, 126.5, 126.3, 125.9,
119.7, 116.5.

FTIR vma (ATR, film)/cm1 3361 (br), 1654, 1584, 1439, 1398, 1310, 1286, 1226, 1091.
HRMS (ESI-) Calcd for Cy3H123°ClO, [M-H]-: 355.0531, found: 355.0532; Calcd for

C23H123"CIO;, [M-H]-: 357.0502, found 357.0502.

Fluoranthene derivative 48d was synthesized from alkyne 47d (17.0 mg, 0.044
mmol), 2-furanylboronicacid (9.9 mg, 0.088 mmol), K3PO, (28 mg, 0.13 mmol) and

Pd(PPhs)4 (2.5 mg, 0.0022 mmol) according to General Procedure D. The crude product
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was purified by flash column chromatography (SiO,; EtOAc:hexanes = 1.5 — 1:3) to

afford pure 48d (13.1 mg, 91% yield) as dark yellow solid.

R =0.48 (EtOAC:hexanes = 1:2)

TLC Visualization: UV active under 254 ve 366 nm; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 7.99 (1H, br s), 7.94 (1H, d, J = 8.1 Hz), 7.87 (1H, d, J
= 6.9 Hz), 7.76 (3H, m), 7.61 (2H, m), 7.32 (1H, dd, J = 8.1, 7.2 Hz), 7.14 (1H, d, J =
7.1 Hz), 7.05 (1H, d, J = 8.1 Hz), 6.95 (1H, dd, J = 4.8, 3.9 H2).

13C NMR (100 MHz; CDCls) 8: 190.1, 156.4, 144.0, 138.9, 137.4,136.0, 135.9, 135.7,
132.8, 132.6, 130.0, 128.7, 128.1, 127.8, 127.5, 126.4, 125.8, 125.5, 120.4, 119.6, 116.2.
FTIR vinax (ATR, film)/cm1 3332 (br), 1625, 1582, 1509, 1453, 1439, 1408, 1396, 1379,
1354, 1309, 1288, 1228, 1210, 1055, 1039, 904.

HRMS (ESI-) Calcd for Cy;H1,0,S [M-H]: 327.0485, found: 327.0486.

1,8-Diiodonaphthalene (45). A 250 mL 3-neck round-bottomed flask was
charged with 1,8-diaminonaphthalene (44) (1.00 g, 6.32 mmol) and cooled down to -15
°C in an ice/NaCl bath. Then it was dissolved in 11.6 mL 6.9 M H,SO4(aqg). To this
solution, NaNO; (1.308 g, 18.96 mmol, dissolved in 5 mL H,0O) was added dropwise
resulting in the formation of a brown gas. Then, KI (6.029 g, 37.92 mmol, dissolved in 5
mL H,0) was added dropwise at -15 °C. The resulting reaction mixture was heated

quickly to 85 °C and stirred at this temperature for 45 minutes. Cooled to 23 °C and

96



neutralized with NaOH pellets. The resulting solid filtered off with suction and then
extracted with DCM in a Soxhlet apparatus for 10 hours. The resulting extract was
sequentially washed with 10 % HCI solution, saturated aqueous Na,S,03 solution and
1M NaOH solution. Then, the organic phase was dried over anhydrous Na,SQ,, filtered
and concentrated under reduced pressure. Purification by column chromatography (SiOo;
hexanes only) gave pure 1,8-dilodonaphthalene 45 (430 mg, 18% vyield) as yellow solid.
R¢=0.41 (Only hexanes)

TLC Visualization: UV active; stains with KMnO, solution.

IH NMR (400 MHz; CDCls) &: 8.39 (2H, d, J = 7.3 Hz), 7.79 (2H, d, J = 8.0 Hz), 7.03
(2H,t,J = 7.7 H2).

13C NMR (100 MHz; CDCls) 6: 144.1, 135.8, 132.1, 131.1, 127.0, 96.2.

IR vmaks (ATR, solid)/cm™: 3051, 2923, 2853, 1532, 1488, 1417.

HRMS (APCI+) Calcd for C1oHgl, [M]*: 379.8554; found: 379.8562.
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1H and 13C spectra
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Figure 7.'H-NMR spectrumof 22 in CDCls.
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Figure 14.C-NMR spectrumof 33 in CDCls.
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Figure 15.*H-NMRspectrumof 34 in CDCls.
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Figure 16.3C-NMR spectrumof 34 in CDCls.
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Figure 17.*H-NMRspectrumof 35 in CDCls.
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Figure 18.3C-NMR spectrumof 35 in CDCls.
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Figure 19.*H-NMRspectrumof 27 in CDCls.
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Figure 20.3C-NMR spectrumof 27 in CDCls.
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Figure 21.*H-NMRspectrumof 29 in CDCls.
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Figure 22.3C-NMR spectrumof 29 in CDCls.
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Figure 23.*H-NMRspectrumofdaldiquinone (15) in CDCls.
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Figure 24.C-NMR spectrumof daldiquinone (15) in CDCls.
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Figure 25.*H-NMRspectrumof 26 in CDCls.
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Figure 26.C-NMR spectrumof 26 in CDCls.
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Figure 27.*H-NMRspectrumofdaldinol (28) in CDCls.
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Figure 28.C-NMR spectrumofdaldinol (28) in CDCls.
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Figure 29.*H-NMRspectrumof 38 in CDCls.
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Figure 30. °C-NMR spectrumof 38 in CDCls.
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Figure 31.*H-NMRspectrumof 39 in CDCls.
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Figure 32.3C-NMR spectrumof 39 in CDCls.
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Figure 33.*H-NMRspectrumof40 in CDCls.
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Figure 34.3C-NMR spectrumof 40 in CDCls.
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Figure 66.C-NMR spectrumof47c in CDCls.
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Figure 68.C-NMR spectrumof47din CDCls.
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Figure 76.°C-NMR spectrumof48din CDCls.
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Figure 78.°C-NMR spectrumof 45 in CDCls.
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